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Abstract

We are building a very high performance 1.2 Gb/s ATM network interface chip called theAPIC

(ATM Port Interconnect Controller).  In addition to borrowing useful ideas from a number of research and

commercial prototypes, the APIC design embraces several innovative features, and integrates all of these

pieces into a coherent whole.  This paper describes some of the novel ideas that have been incorporated in

the APIC design with a view to improving the bandwidth and latency seen by end-applications.  Among the

techniques described,Protected DMA andProtected I/O were designed to allow applications to queue data

for transmission or reception directly from user-space, effectively bypassing the kernel.  This argues for

moving the entire protocol stack including the interface device driver into user-space, thereby yielding bet-

ter latency and throughput performance than kernel-resident implementations.Pool DMA when used with

Packet Splitting, is a technique that can be used to build true zero-copy kernel-resident protocol stack

implementations, using a page-remapping technique.Orchestrated Interrupts andInterrupt Demultiplex-

ing are mechanisms that are used to reduce the frequency of interrupts issued by the APIC; the interrupt

service time itself is significantly reduced through the use of a hardwareNotification Queue which is used

to report the occurrence of events in the APIC to software.

Although our ideas have been developed in the context of an ATM network interface, we believe

that many of these ideas can be effectively employed in other contexts too (including different types of net-

work interfaces).  In particular, we believe that protected DMA and protected I/O could be used by other

devices in the system, thereby facilitating the construction of microkernels that can potentially deliver bet-

ter performance than their monolithic counterparts.
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1 Introduction
Network interface design and the structuring of protocol implementations in operating systems are

two areas of research that have received considerable attention in recent years [1,3,4,5,7,8,9,22,23,28,30].

The sudden interest in these subjects can be attributed to the observed gross disparity between the raw

bandwidth available from emerging gigabit networks, and the maximum effective throughput that can be

delivered to end applications.  The bottlenecks in end-systems that give rise to this disparity are far easier

to identify than to rectify.  Indeed, it is a well known fact that memory bandwidth limitations, coupled with

the overhead of operations such as data copying, software checksumming, servicing of interrupts, and con-

text switching are usually responsible for the observed poor performance.  Several of the aforementioned

research efforts have identified mechanisms that are at least partially effective in overcoming some of these

handicaps.  We have attempted to integrate a number of these “proven” good mechanisms, along with some

new ones of our own creation, in our attempt to build a state-of-the-art high performance ATM network

interface.  Our research prototype of this network interface, which is called the APIC (ATM Port Intercon-

nect Controller), is capable of supporting a full duplex link rate of 1.2 Gb/s.  Since one of our overriding

goals during the course of the project was to minimize cost (of a production version of the interface), the

entire interface is being implemented on a single ASIC chip.  In addition to being a network interface in the

traditional sense, the APIC also has the capability to double as a building block for an I/O Desk-Area Net-

work (DAN) [20,21], or a Very Local Area (ATM) Network (VLAN).  This was achieved by building into

the chip a small 2× 2 ATM switch that would allow multiple APICs to be interconnected to create a small

network; each APIC in this resulting network can directly interface either to an I/O device or to a computer

system bus.  An example of an APIC-based DAN is shown in Figure 1(a).  An introduction to the APIC

chip and APIC-based DANs, and a brief overview of the internal design of the APIC can be found in [8].

In this paper, we present several innovative mechanisms that have been incorporated in the APIC design

with the objective of delivering very high performance (in terms of both throughput and latency) to end-

applications running on the host computer.

1.1 A Brief Overview of APIC Features

The APIC has two ATM ports which can be connected either to an optical link interface, or to

another APIC.  Both ports implement ATM Forum’s 16-bit wide UTOPIA (Universal Test and Operations

PHY Interface for ATM) standard to connect to receive and transmit links.  The prototype APIC interfaces

to computer systems and devices over an external memory interface which supports three different bus

standards: Sun’s MBus, which is a 2.56 Gb/s (peak) 64-bit wide CPU-memory bus, and 32 and 64 bit wide

versions of the PCI bus, which is a 1.056 Gb/s peak (for PCI-32, twice that for PCI-64) I/O bus.  Thus, as
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shown in Figure 1(b), the APIC is capable of interfacing to a host system either over an I/O bus or over a

CPU-memory bus.  When interfacing to a CPU-memory bus, the APIC issues cache-coherent transactions

to ensure cache consistency.

The capability of interfacing directly to a CPU-memory (main) bus is a noteworthy departure from

most existing network interface designs, which typically interface to an I/O bus only.  Main bus implemen-

tations of the network interface enjoy a number of benefits that I/O bus implementations cannot, not the

least of which is improved performance.  For example, an APIC that interfaces to a CPU-memory bus can

physically address the entire range of physical memory in the machine, whereas an I/O bus implementation

would, in most typical systems, be forced to use virtual mappings1 to access physical memory that falls

outside of the limits imposed by the I/O bus width.  As a case in point, Sun’s MBus supports a 36-bit phys-

ical address space, but the I/O bus (SBus) supports only 32 bit addresses.  Other problems associated with

I/O bus interfacing typically arise when the bus adapter that is used to interface the I/O bus to the main bus

has been improperly designed.  As networking becomes more an integral part of computer systems, we

expect that network interfaces will migrate to the main bus on the motherboard in order to achieve maxi-

mum performance.  This trend is already visible in emerging systems such as Sun’s new UltraSparc line of

machines, which feature a 100 Mb/s fast Ethernet adapter built into the motherboard.

The APIC implements fullAAL-5 Segmentation and Reassembly (SAR) functionality on-chip.

The APIC does not store-and-forward entire AAL-5 frames; instead, it implements cut-through at cell

granularity.  For this reason, the APIC can make do with only 256 cells worth of buffering on-chip, and no

off-chip buffers. This is in keeping with our objective of very low production costs, since APIC interface

1 These would have to be setup in advance by the CPU in a special I/O MMU that is built into the bus adapter.

Figure 1:  The APIC Gigabit Network Interface
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cards do not need any on-board memory and almost no glue logic.  In addition to AAL-5 SAR, the APIC

also supports transmission and reception of raw ATM cells (AAL-0 ).

Among other APIC features,multipoint and loopback connections, andremote controllability

(using control cells which can originate elsewhere in the network) bear mention.  Some other features are

listed below:

Cell Batching:  This refers to the ability to batch cells (from the same connection) that are to be read/writ-

ten from/to contiguous locations in memory, when executing bus transfers.  This is motivated by the fact

that larger sized bus transfers are usually more efficient (especially when interfacing to an I/O bus).

Cell Pacing: When transmitting data, the operating system is responsible for scheduling bursts of data to

be sent, and the APIC is responsible for pacing out cells belonging to bursts at a rate which is indepen-

dently specifiable on a per-connection basis.  Cell pacing is required to prevent cell buffer overflow in

ATM switches, and to adhere to the peak rate specification that was agreed upon at connection setup time.

Low Delay Priority Mechanisms: A connection can be specified to be a “low delay” connection; traffic

on such connections always gets priority within the APIC, and can bypass paced traffic.

Best Effort: The APIC allows a transmit connection to be specified as a “best-effort” connection; such

connections share all the bandwidth that is left over after accounting for paced and low delay traffic.

Future versions of the APIC will also include support for ATM Forum’s rate-based ABR proposal.

Transport CRC Assist:  The APIC includes on-chip logic for assisting software in computing a transport

level trailer CRC.  Note that because the APIC is a cut-through interface, it cannot help with computing

checksums that reside in transport protocol headers.

In addition to the above features, the APIC includes DMA mechanisms that are designed to support

efficient implementations of zero-copy protocol stacks, and mechanisms designed to reduce the frequency

of interrupts and interrupt service overhead.  The focus of this paper is on theseDMA and interrupt

related mechanisms.  For this reason, it will be sufficient for the rest of the paper to think of the APIC as

a traditional network interface (see Figure 1(b)), and to ignore its desk-area networking capabilities.

The prototype APIC will be implemented in 0.5 micron CMOS, with a (conservatively) estimated

die size of 1.8 square centimeters, and a package size of a little over 200 pins.  The VHDL coding effort for

the APIC is currently underway, and we expect to have the first chips back from the foundry in November

of 1996.  This version of the APIC will support a maximum of 256 transmit and 256 receive connections.

A 0.3 micron version of the APIC is also being planned, which will support 1024 transmit and 1024 receive

connections.
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1.2 Summary of Innovative Claims and Contributions

This paper introduces the following five techniques, in the context of the APIC interface design:

Protected DMA:  This is a technique that is used to allow protocol libraries residing in user-space to queue

buffers for transmission or reception directly to the APIC, without any kernel intervention, and without

compromising the protection mechanisms of the operating system.  Although similar functionality has been

provided earlier in the Bellcore OSIRIS [9] and in the Cornell U-Net [14] interfaces, their implementations

are not amenable to straightforward hardware implementation, and result in higher cost interfaces.

Section 3.3 of the paper, which deals with protected DMA, discusses the relative merits of our approach in

more detail.

Protected I/O:  Protected I/O is a technique that is used to allow protocol libraries residing in user space

programmed I/O access to the memory-mapped registers on the APIC, with the specific access permissions

to individual registers specifiable by the OS kernel.  This is very similar to the protection mechanism used

to supportapplication device channels in the OSIRIS [9] interface, but our scheme extends that idea to

allow the kernel to have a finer granularity of control over access permissions to individual device regis-

ters.

Pool DMA with Packet Splitting:  This technique enables true zero-copy2 kernel-resident protocol stack

implementations using page remapping.  Although the idea of using page remapping to avoid data copying

is not new [25], we show how it can be done cleanly and efficiently in the context of ATM networks.

Orchestrated Interrupts:  When the CPU queues buffers for transmission or reception to the APIC, it can

“mark” some of these buffers; the APIC will issue an interrupt whenever it encounters “marked” buffers.

Such (pre-)orchestrated interrupts are useful for reducing the frequency of interrupts issued by the APIC.

Interrupt Demultiplexing:   By allowing interrupts to be enabled/disabled on a per-connection basis, we

can exploit the connection-oriented aspect of ATM networks to significantly reduce the frequency of inter-

rupts raised by the APIC.  We call this scheme “interrupt demultiplexing.”

Notifications: Notifications are messages posted by the APIC to the operating system, recording the occur-

rence of events such as completion of transmission or reception of a frame, error conditions, etc.  By read-

ing notifications off a hardware queue on the APIC, an interrupt service routine can avoid costly scans of

per-connection buffer chains to determine what events have occurred.  Notifications afford simplifications

to the OS software, and reduce interrupt service time.

We would like to point out here that although the above techniques have been developed in the con-

text of an ATM network interface, we believe that many of these ideas can be used to advantage in other

2 The term “true zero-copy” is used to indicate that data moves directly between application data structures
and the network interface without any intermediate copying.  A definition of the term can be found in [14].
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scenarios too.  In particular, we feel that it would be possible for other types of devices such as disks and

video frame buffer cards to exploit protected DMA and protected I/O, and we intend to make this a subject

for future study.

1.3 Organization of the Paper

The rest of this paper is organized as follows: Section 2 elaborates on the notion of protected I/O.

Section 3 describes the three DMA mechanisms supported by the APIC.  In Section 4, we explore the ideas

of orchestrated interrupts, interrupt demultiplexing, and notifications.  Finally, Section 5 makes some con-

cluding remarks.  Throughout the paper, comparisons with related work are made where appropriate.

2 Protected I/O
The APIC device driver running on the host CPU communicates with the APIC by two mechanisms:

through reading/writing memory-mapped on-chip registers, and through shared data structures in the host’s

main memory.  The APIC’s on-chip device registers fall into two categories: global registers, and per-con-

nection registers.  The set of global registers contain state that is of global relevance, such as the interrupt

status registers, the software reset register, etc.  There is one set of per-connection registers for each con-

nection supported by the APIC; these hold state that varies from connection to connection, such as the con-

nection identifier (VPI/VCI), the pacing bandwidth, etc.  Protected I/O is designed to give untrusted user-

space protocol implementations the ability to directly read or write per-connection registers, in a way that

would not compromise the security or protection mechanisms of the operating system.  Protected I/O

should really have been called “protected programmed I/O,” but we chose the former name in the interests

of brevity.  Protected I/O is really just an extension of the protection mechanism that was used by Druschel

et al. to implement application device channels (ADCs) in the OSIRIS interface [9].  The U-Net interface

from Cornell [14] also uses the same mechanism as ADCs.  Both of these efforts attempt to give an appli-

cation read/write access to only those memory-mapped I/O registers on the interface that correspond to

connections that are “owned” by the application.  An application is said to “own” a connection if it was

responsible for initiating the connection setup.  Figure 2 demonstrates how the ADC protection mechanism

works.  The per-connection registers on the interface are mapped into its memory-mapped I/O address

space in such a way that all registers corresponding to a connection fall into the same physical page frame,

and no page frame contains registers for more than one connection.  Thus, all device registers for a partic-

ular connection can be accessed through physical addresses that fall within the same page frame (or set of

page frames, if the machine’s page size is not large enough to hold all the registers) in the physically

addressed memory-mapped I/O space of the device.  When a user process makes a connection setup request

to the OS kernel, the kernel modifies the system page table entries such that the page corresponding to the
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connection is mapped into the process’ virtual address space with read/write permissions.  The process now

becomes the owner of the connection, and it can control the connection by reading or writing the registers

on the interface directly, without having to make system calls or otherwise interact with any trusted code.

This process cannot, however, control other connections that it does not also own, because the pages corre-

sponding to those connections are not mapped into its virtual address space.  To summarize,  the system’s

virtual memory (VM) protection mechanisms are overloaded to provide protected access to per-connection

device registers.

The ADC scheme does not allow the kernel fine grain control over which individual per-connection

registers the application is given access to, or selectively control the type of access (no access, read-only,

or read-write) to these registers.  This is important because some administrators may be willing to grant

more privileges to their users than others, and some processes may similarly be given more control by the

operating system than others.  For example:  Should a user process be allowed to change the pacing rate for

a connection that it owns?  Should the operating system permit a user process to dictate under what condi-

tions the interface will raise an interrupt, when a connection-specific event occurs?  There is no way cur-

rently to use the ADC protection mechanism to provide this type of fine grain access control, short of

mapping each device register into a separate page, and setting up page table entries and protections appro-

priately.  This scheme is not acceptable because if there are many registers per connection, the number of

page mappings in each process’ context becomes large, resulting in inefficiencies from potentially slower

page table lookups in the MMU, and thrashing in the TLB.  Protected I/O provides the solution to this prob-

lem by extending the ADC protection idea to include the concept of anaccess mask register.  The access

mask register is a register that augments the set of per-connection device registers, so that each connection

Figure 2:  Protection Mechanism Used to Implement Application Device Channels (ADC)
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has an associated access mask register.  In addition, all per-connection registers (including the access mask

register) are mapped twice, and in different page frames, in the physically addressed memory-mapped I/O

space of the device.  Note that this means that each hardware per-connection register can be accessed (read

or written) using two different physical addresses, each of which resides in a separate page frame.  We term

these two different methods of access as kernel-mode and user-mode accesses.  The kernel ensures that the

virtual memory page tables are setup in such a way that the kernel can use kernel mode accesses for all reg-

isters, but user processes are forced to use user-mode accesses.  Furthermore, the ADC protection mecha-

nism is used to ensure that only a process that owns a connection can access the corresponding per-

connection registers (using user-mode accesses).  The device (APIC) differentiates read or write accesses

to a per-connection register based upon the access type.  Only kernel-mode accesses are guaranteed to be

successful.  Thus, the kernel has full read/write access to all device registers, including the access mask

registers for all connections.  As shown in Figure 3, the access mask register contains one bit for every per-

connection register that is associated with the corresponding connection; for each bit that is set, the device

allows user-mode write access to the corresponding register.  Otherwise, only read access is granted.  The

kernel is responsible for setting up the access mask register to grant appropriate permissions to the user

process that owns the corresponding connection.  Clearly, this scheme can be extended to allow the option

of providing no access (in addition to R/W and R/O) to registers by having two bits per register instead of

just one, in the access mask register; however, this added functionality has not been included in the current

version of the prototype APIC, because there were no per-connection registers that needed to be completely

hidden from applications.

3 APIC DMA Mechanisms
The APIC uses DMA for all movement of transmit/receive data from/to main memory.  DMA is also

used by the APIC to read/write control data structures stored in main memory called buffer descriptors,

Figure 3:  Illustration of Fine Grain Access Control using Protected I/O
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which are needed to support scatter/gather DMA.  All buffer descriptors are 16 bytes long, and contain

information about a data buffer in physical memory, such as the physical address of the buffer, its length,

and the type of data in the buffer (AAL-0 or AAL-5).  Buffer descriptors are used by the host CPU to queue

buffers containing data to be transmitted, or to queue empty buffers that will be used to hold received data.

Figure 4 demonstrates the use of buffer descriptors in receiving data.  For transmission, the scenario is

almost identical, except that the buffers on the right in the figure would contain data that has already been

transmitted (or is in the process of being transmitted), while the buffers on the left hold data that has yet to

be transmitted.  To allow buffer descriptors to be queued, each descriptor contains the address of the next

descriptor in a singly linked list (chain) of descriptors.  One descriptor in a chain is always designated as

the “current” descriptor; this is the descriptor that the APIC is currently using.  When the APIC is done

with the current descriptor (i.e., it has finished transmitting all the data in the corresponding buffer, or it has

filled the buffer with received data), it writes the descriptor back to main memory, and fetches the next

descriptor in the chain.  The current descriptor (which is on-chip) is visible to software through APIC

device registers.  These registers are also used by the software to setup the first descriptor in the chain, at

the time of connection initialization.  Each descriptor contains two bits, called theREADY andDONE bits,

that are used to synchronize APIC and CPU accesses of the descriptors.  TheREADY bit is set by the CPU

to inform the APIC that the corresponding buffer is ready to be transmitted from, or received into.  The

DONE bit is set by the APIC when it has finished sending data from (or receiving data into) the correspond-

ing buffer.  The CPU can “catch up” with the APIC by chasing the next descriptor links until it comes to a

descriptor that has itsDONE flag set to zero (this is the current descriptor).  In addition to the fields already

mentioned, buffer descriptors contain several control and status flags.  These include anINTERRUPT flag

Figure 4:  Example to demonstrate how data is received using buffer descriptors
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which can be set by the CPU to instruct the APIC to issue an interrupt when it first reads in the descriptor

(see Section 4.1 for details on how this flag is used), anEND-OF-FRAME flag, which is used to mark the

last buffer of an AAL-5 frame, and aCRC-OK flag which is set by the APIC to inform the processor

whether AAL-5 CRC verification was successful.

It should be noted that a single AAL-5 frame can span multiple data buffers.  The APIC will always

transmit all the data in a transmit buffer.  However, the APIC does not allow data from more than one

AAL-5 frame in a single receive buffer, so receive buffers may not be completely filled by the APIC (this

happens if the portion of the received frame in the buffer is less than the size of the buffer).

The APIC supports three different varieties of scatter/gather DMA: Simple DMA, Pool DMA, and

Protected DMA.  The choice of which to use depends on whether protocols are implemented in the kernel

(or equivalently,  in a trusted user level server process) or in an untrusted user level library, and on whether

data is being transmitted or received.  We now go on to describe all three DMA mechanisms.

3.1 Simple DMA

With simple DMA, each connection supported by the APIC is associated with a separate and dedi-

cated chain of descriptors, as shown in Figure 5.  Since the prototype APIC supports a maximum of 256

transmit and 256 receive connections, there can potentially be as many as 512 active connections that have

512 different descriptor chains associated with them.  Clearly, the APIC needs to have on-chip storage for

512current descriptors.

Simple DMA can be used by kernel-resident (or trusted user-level server) protocol stack implemen-

tations only.  This is because if untrusted user-level programs were given write access to descriptors, they

could queue arbitrary buffers from main memory for transmission or reception (including those not other-

Figure 5:  Illustration of Simple DMA
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wise accessible to the process), thereby compromising the security and defeating the protection mecha-

nisms of the operating system.  Protected DMA, which is described in Section 3.3, is designed to be usable

by untrusted user-level protocol stack implementations.

Simple DMA can be used for both transmit and receive connections.  However, simple DMA can be

very inefficient in its use of memory resources if it is used for receiving data.  This is because simple DMA

requires free (or empty) buffers to be dedicated to each open receive connection.  Because free buffers

queued on one connection cannot be used by another, and because there is no way to anticipate when data

will arrive on a connection, the amount of free buffer space required can be very large.  Pool DMA is

designed to overcome this limitation of simple DMA.

3.2 Pool DMA

Pool DMA allows a set of receive connections to all share the same pool of free buffers (see

Figure 6).  The APIC fetches a descriptor from a global “pool chain” whenever a connection needs a new

empty buffer to place arriving data in.  Before it writes the old “full” descriptor back, however, the APIC

fills in the next descriptor pointer field in that descriptor with the address of the new descriptor.  This

results in the buffer descriptors (and buffers) getting demultiplexed into separate chains of “full” buffers,

one per connection.  Note that pool DMA is intended for use by receive connections only; transmit connec-

tions cannot use pool DMA.

The prototype APIC supports four global pool chains, and it is possible to specify which of these

chains to use for each connection.  This can be useful, because we may know in advance that some connec-

tions always carry very small packets (remote login, for example), so we can use a pool of small buffers for

all connections of that type.  Other connections may draw from pools with larger sized buffers.  Since the

Figure 6:  Illustration of Pool DMA
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APIC does not allow multiple packets in a single buffer, this scheme results in further reductions in mem-

ory resource usage for buffers.

3.2.1 Pool DMA with Packet Splitting

The APIC allows a received packet (AAL-5 frame) to be split into a header portion, a data portion,

and the AAL-5 trailer, with each of these portions written to buffers drawn from different pool chains.  This

is illustrated in Figure 7.  The location of the header-data split is independently specifiable for each connec-

tion as an offset from the start of the packet; this “header length” is fixed for the lifetime of the connection.

The location of the data-trailer split is determined by the APIC using the length field in the AAL-5 trailer.

The packet splitting feature of the APIC can be used to implement a zero-copy protocol stack using

page-remapping techniques, under the following assumptions: the network and transport protocol headers

are of fixed size for each connection, and the amount of data in each packet is an exact multiple of the

receiving host’s page size3.  The first of these assumptions is not as restrictive as it may seem: it is suffi-

cient if the total (network + transport) header size is fixed over extended bursts of packets.  Indeed, an

examination of TCP/IP packet traces has shown us that in almost all cases, the combined TCP/IP header

size remains fixed for the lifetime of a connection (excluding the connection setup and teardown phases).

The second assumption, however, is not true of most existing transport protocols.  We are currently work-

ing on developing a high performance ATM transport protocol that satisfies both of the above assumptions.

The page-remapping strategy for implementing the receive side of a zero-copy protocol stack is

illustrated by the example in Figure 8.  The APIC splits received packets into headers and data (trailers,

3 If there are multiple receiving hosts, and if we assume that pages are always a power of 2 in size, then the
data portion of each packet would have to be a multiple of the largest of the page sizes of all receivers.

Figure 7:  Pool DMA with Packet Splitting
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which are handled in the same way as headers, have intentionally been omitted to simplify the example).

The split is possible because the APIC knows the fixed header length in advance.  The header buffers are

all drawn from a pool of buffers that are mapped into the kernel’s address space.  Buffers that will hold the

data portion of packets are all drawn from a pool of free physical pages.  Since each packet holds one or

more pages worth of data, no page will be left partially filled.  When packets are received, the operating

system examines the header of the packet to determine where the corresponding data page(s) should reside

in the application’s address space; it then modifies the page table entries appropriately.  The end-result is

that data from consecutively sequenced packets appears contiguous in the application’s address space.  The

(sometimes high) cost of modifying page table entries can be minimized by processing packets in batches,

thereby avoiding the need to flush the TLB for every packet; this is known as lazy updating of page tables.

The transmit side of the zero-copy protocol stack is considerably simpler: data can be transmitted directly

from an application buffer using simple DMA; no page-remapping is needed.

Note that in a zero-copy protocol stack implementation, a BSD socket type of API cannot be pre-

sented to applications.  A suitable API is provided by fbufs [10], container shipping [26], or UCMIO [6].

Also note that using page-remapping to eliminate data copying is by no means a new idea [25].  The Axon

[28] network interface was among the first to introduce the use of page-remapping as a method of avoiding

data copying.

Figure 8:  Zero-Copy Using Packet Splitting and Page Remapping
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3.3 Protected DMA
3.3.1 Motivation and Related Work

There have been several research efforts [12,13,19,24,29] that have attempted to make user-level

library implementations of protocol stacks that can be linked with the application.  Most of these efforts

have left the network interface device driver inside the kernel, thereby requiring the use of system calls for

transmitting and receiving data.  System calls are expensive — our experiments show that a null system

call takes between 10 and 50 microseconds in state-of-the-art workstations running derivatives of the Unix

operating system.  In and of itself, this is bad from the viewpoint of minimizing end-to-end latency for

latency-critical LAN applications (many distributed computing applications, RPC, and NFS fall in this cat-

egory).  But the high cost of system calls can also result in poorer throughput if the protocols have not been

implemented carefully.  Most of the researchers who have explored library implementations of protocols

have given serious attention to amortizing the overhead of a system call over multiple operations by batch-

ing them into a single system call.  We believe that this places an unnecessary burden on protocol coders,

and makes the code less portable and more dependent on the underlying operating system.  Furthermore,

this technique does not solve the higher end-to-end latency problem discussed earlier.

To solve the afore-mentioned problems, system calls should be eliminated from the critical data

path.  As shown in Figure 9(a), the data path should be between the user-space and the network interface.

The control path operations (for example, connection setup and teardown), can still pass through the kernel

without incurring a significant performance penalty.  With this objective in mind, Druschel et al. [9] pro-

posed using ADCs (described earlier in Section 2) to queue buffer descriptors directly on the network inter-

face.  The ADC protection mechanism would ensure that one user could not queue/dequeue  descriptors

to/from another user’s descriptor queue (see Figure 9(b)).  The network interface was given the task of

ensuring that buffer descriptors queued by an application pointed to valid buffers to which the application

Figure 9:  Providing User-Level Access to the Network Interface
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had appropriate read or write access.  To make these checks feasible, the network interface relied on own-

ership and access information for buffers that was provided to it in advance (at connection setup time), by

the operating system kernel.  The checks themselves were performed by the two on-boardi-960 processors

that were part of the OSIRIS network interface.  The U-Net interface from Cornell [14] also relied on these

same ideas to achieve a direct data path between user-space and the network adapter, but this work was

done by modifying the firmware for the on-boardi-960 processor on Fore-System’s SBA-200 ATM

adapter.

There are three main problems with the OSIRIS/ADC and U-Net approaches that make them unsuit-

able for use with APIC-like network interfaces:

1. All buffer descriptors have to reside on the network interface board.  For high bandwidth network

interfaces, the total amount of buffer descriptor space needed can be quite large (a megabyte or

more).  In any case, the amount of space needed would be much more than can fit on a single chip.

This means that the network interface would need to have a significant amount of external on-board

memory, thus increasing the cost of the interface substantially (especially if the memory is imple-

mented as SRAM).

2. The network interface needs to store information about all valid communication buffers that are in

use by each application, and their access permissions, in order to ensure that applications cannot

queue illegal buffers to the interface.  This means even more memory on the network interface board,

and consequently, even higher cost.

3. A fast on-board processor is needed to perform the buffer validity tests.  This involves checking the

buffer that is queued against all valid buffers that can be queued by an application.  A buffer indexing

or a hashing scheme can be used to minimize this overhead, but in any case, it is not amenable to easy

hardware implementation.  We would like to point out here that the details of the types of checks per-

formed, or the mechanism used, has not been elaborated upon in ADC or U-Net publications

[9,11,14].

Our approach to solving the problem of providing untrusted user-space protocols the ability to queue or

dequeue data directly to/from the interface is calledProtected DMA.  This  approach does not suffer from

any of the three drawbacks mentioned above, and it is usable by both APIC and OSIRIS/U-Net types of

interfaces.

3.3.2 Description of Protected DMA

In protected DMA, all buffer descriptors reside in main memory.  Protected DMA is in many ways

similar to simple DMA; however, each buffer is associated with two descriptors instead of one (see
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Figure 10).  We will call thesekernel descriptors anduser descriptors.  Before the APIC uses a buffer, it

always reads both descriptors for the buffer.  The user descriptor contains values supplied by a user level

program, so these values cannot be trusted.  However, the kernel sets up descriptors in such a way that the

kernel descriptor can be used to check the validity of the values supplied in the user descriptor.  Thus,

before the APIC begins using a buffer, it uses the contents of the kernel descriptor to validate, ornotarize,

the values supplied by the application in the user descriptor.  The contents of the kernel descriptor are guar-

anteed by the operating system to be trustworthy; the kernel ensures this by using the VM protection mech-

anism of the system to disallow user-space access to kernel descriptors.

The association between communication buffers and their descriptors is done by the kernel at the

behest of the user, through the use of system calls.  When the user process makes such a request, the kernel

first wires down the pages corresponding to the buffer in main memory, picks a pair of descriptors for the

buffer, initializes the contents of the kernel descriptor, and returns the user descriptor to the user.  If the

buffer spans multiple non-contiguous physical pages, then multiple pairs of descriptors, one pair per page,

will be associated with the buffer.  Kernel descriptors always reside in a page that is not mapped into the

user’s virtual address space, and user descriptors always reside in a page to which the user has full

read/write access.  This ensures that user processes can only modify user descriptors, but not kernel

descriptors.

3.3.2.1 Buffer Notarization Kernel descriptors are initialized by the kernel to contain the actual physical

address of the buffer they reference, and its length (see Figure 11(a)).  User descriptors are interpreted by

the APIC to contain an offset into the buffer, and a length.  Thus, the application is allowed to queue sub-

sets of communication buffers.  The APIC certifies the validity of a buffer by ensuring that the sum of the

Figure 10:  Illustration of Protected DMA

APIC
.
..

.

..

Main Memory Main Memory

Descriptor

Descriptor

.

..

chain for VC 1

chain for VC N

User
Descriptor

Kernel
Descriptor



The APIC Approach to High Performance Network Interface Design Page 16

offset and length specified in the user descriptor is no greater than the length specified in the kernel descrip-

tor.  We call this checking processbuffer notarization.  If a buffer fails notarization, the corresponding con-

nection is suspended and the APIC issues an exception interrupt to the processor; the kernel can then take

whatever action it deems fit.  If a buffer passes notarization, the APIC creates a newresultant descriptor

which contains the length field from the user descriptor, and an address field which is computed as the sum

of the address field from the kernel descriptor and the offset field from the user descriptor.  This resultant

descriptor is then used just like a normal (simple DMA) descriptor would.  When the APIC is done trans-

mitting or filling the buffer, it writes back the resultant descriptor to the location of the user descriptor.

This allows the user process to be able to examine the status of the buffer/connection.  The kernel descrip-

tor is only read and never written, since the kernel is not responsible for keeping track of the state of the

connection.  Note also that the APIC needs on-chip storage for only one (resultant) descriptor per connec-

tion.

3.3.2.2 Link Notarization Although buffer notarization is sufficient to ensure that a user process never

queues an illegal buffer, it cannot guarantee that the user will not queue an illegal descriptor.  To get around

this, the APIC has to subject the next descriptor link in user descriptors to another check which we calllink

notarization.  Figure 11(b) shows how link notarization works.  Every user process is allocated a dedicated

set of 2·n contiguous physical memory pages that will be used to hold user and kernel descriptors for that

process — this can be likened to the file descriptor table for a process.  The value ofn is fixed, and is con-

figured into the operating system kernel at compile time.  The firstn pages contain only kernel descriptors,

and will be referred to as the kernel descriptor pool.  Likewise, the lastn pages contain only user descrip-

tors, and will be referred to as the user descriptor pool.   Pairs of user and kernel descriptors are always allo-

cated such that both descriptors are located at the same offset relative to the start of their respective

Figure 11:  Notarization for Protected DMA
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descriptor pools.  All the pages in the user descriptor pool are mapped with read/write permission into the

process’ virtual address space, while the pages in the kernel descriptor pool are accessible to the kernel

only.  The APIC per-connection state includes a pointer to the descriptor pool base of the process which

owns the connection.  This allows user processes to be able to use offsets within the descriptor pool to ref-

erence descriptors, rather than physical memory addresses.  It also makes the job of link notarization easy

for the APIC.  As shown by the dotted arrows in the figure, the APIC always reads the kernel descriptor for

a buffer before reading the corresponding user descriptor.  Kernel descriptors always contain the relative

offset of the corresponding user descriptor (thisdescriptor separation is alwaysn·pagesize); the APIC uses

this to determine the address of the user descriptor.  User descriptors specify the link to the next descriptor

as an offset into the descriptor page pool.  In order to notarize this link, the APIC has to ensure that the next

kernel (user) descriptor falls within the corresponding kernel (user) descriptor pool.   It does this by making

sure that the offset specified in the user descriptor is no larger than the descriptor separation specified in the

corresponding kernel descriptor.  If the link fails notarization, the APIC suspends the corresponding con-

nection and issues an exception interrupt to the processor.  If the link passes notarization, the APIC initial-

izes the next descriptor link of the resultant descriptor to hold the address of the next kernel descriptor,

which is computed as the sum of the descriptor pool base and the offset in the user descriptor.

Thus, with two simple inequality checks, the APIC  ensures that no illegal buffers or buffer descrip-

tors can be queued by a user process.  Protected DMA can therefore be used by untrusted user-space library

protocol implementations, with the confidence that the security and protection mechanisms of the operat-

ing system will not be compromised.

We would like to point out here that although we have made all control path operations on the APIC

pass through the kernel, there is no reason that they could not instead be made to pass through a trusted

user-level server directly to the APIC.  If this is done, then we have succeeded in moving almost the entire

protocol stack including the APIC device driver, into user space (some kernel code would still be required

to field interrupts from the APIC, but this code can be very small because all it needs to do is wake up rel-

evant processes).  This technique is particularly attractive for microkernel implementations, and has the

potential to outperform monolithic kernel implementations that keep the entire device driver in the kernel.

4 APIC Interrupt Mechanisms
Interrupts are issued by the APIC to report the occurrence of asynchronous events, such as comple-

tion of transmission or reception of data, or an error condition.  It is important that interrupts not be issued

very frequently, because interrupt service overhead can be substantial.  Furthermore, interrupts have a bad

effect on cache performance.  Our experiments with a prototype MBus test board have shown that the min-
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imum interrupt service latency (the time from the instant when the interrupt was issued to the time when the

first instruction of the device interrupt service routine is executed) for a Sun Sparcstation-10 running

SunOS 4.x is 14 microseconds.  This implies that the time to service even a null interrupt can be greater

than the interarrival time between successive packets!  Several researchers have recognized the importance

of reducing the frequency of interrupts [9,17,27,30] to a host interface.  All proposed solutions rely on

batching multiple events so they can be handled with a single interrupt.  Druschel et al. [9] suggest dis-

abling transmit interrupts altogether, and checking for the completion of transmission as part of other driver

activity.  On receive, they interrupt only when new data arrives and there is no old data that has not already

been dequeued by the OS; this has the desirable effect of the interrupt being asserted only once per burst of

incoming packets.  Traw et al. [30] suggest disallowing interface interrupts altogether, and instead polling

the interface on periodic hardware clock interrupts.  This scheme is shown to perform well for high band-

width applications, but is unsuitable for latency-critical LAN applications because the time between suc-

cessive clock interrupts is typically of the order of milliseconds.  The APIC reduces interrupt frequency

through two approaches:orchestrated interrupts, and interrupt demultiplexing.  Furthermore, the APIC

includes anotification mechanism that reduces the time to service interrupts.

4.1 Orchestrated Interrupts

As mentioned earlier, buffer descriptors used by the APIC contain anINTERRUPT bit flag.  If this

flag is set in a descriptor that has been queued on a transmit or receive chain, the APIC will interrupt the

processor when it first reads the descriptor.  This variety of interrupts are termed orchestrated, because they

are issued in response to a fabricated and pre-orchestrated event (viz., the reading of the descriptor).  This

feature is very useful when transmitting data, because the processor can avoid getting interrupted for every

packet, and only get interrupted when the last packet in a large burst has been transmitted.  This is achieved

by only setting the descriptor interrupt bit in the last descriptor corresponding to the last packet of the burst.

Orchestrated interrupts are also used to notify the processor when a (transmit or receive) descriptor chain

underflow is imminent.  This is done by setting the interrupt bit in a descriptor that is located close to the

end of a chain of descriptors; when the APIC reaches this descriptor, it will issue an interrupt and in

response, the kernel can take steps to replenish buffers in the chain.  Note that orchestrated interrupts can

be used to advantage in both connection-oriented and traditional network interfaces.

4.2 Interrupt Demultiplexing

Interrupt demultiplexing is a strategy employed by the APIC to reduce the frequency of interrupts

that are used to report packet arrivals (note that orchestrated interrupts cannot help here).  With interrupt

demultiplexing, traffic patterns and protocol and application processing requirements for individual appli-
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cations directly affect the frequency of interrupts that are generated.  For example, latency-critical applica-

tions may cause an interrupt to be issued for every packet that is received, while high bandwidth

multimedia applications which are willing to tolerate the higher latency (that is a consequence of attempts

to reduce the interrupt frequency) may trigger an interrupt per burst of packets.  The connection-oriented

aspect of ATM is exploited to differentiate (demultiplex) between applications with different traffic pat-

terns and protocol and application processing requirements—hence the nameinterrupt demultiplexing.

In the APIC, interrupt demultiplexing is implemented by including a one-bit flag in the per-connec-

tion state which is used to tell whether interrupts are enabled for the connection.  When an event (e.g.,

packet arrival) occurs on a particular connection, an interrupt is generated only if interrupts were enabled

for that connection, and immediately following this the APIC automatically disables interrupts for that con-

nection.  Subsequent packet arrivals on that connection will not trigger an interrupt (although events on

other connections might) until after the host CPU has specifically re-enabled interrupts by writing to an

APIC per-connection command register.  The CPU always re-enables interrupts for a connection after it

has finished processing all outstanding packets that have arrived on that connection.  Processing of packets

belonging to latency-critical applications is always given higher priority than other types of packets.  In

fact, the higher the priority at which packets are processed, the lower the latency that such packets will

experience.  Clearly, a single interrupt would suffice for processing an entire burst of rapidly arriving pack-

ets.  If a latency-critical packet arrives in the midst of a burst of packets belonging to a high bandwidth con-

nection, the APIC would issue an interrupt which would result in the low latency packet getting immediate

service, while service of the high bandwidth burst is postponed.

The amount of processing that will be done on packets before interrupts are re-enabled, and the

scheduling policy that is used for software interrupts or threads, are both critical in determining how well

interrupt demultiplexing performs.  Some of the possibilities are outlined below:

• A kernel software interrupt routine can do all protocol processing and deposit received packets in a

(socket) buffer for the application to pick up later, and then re-enable interrupts before returning.

• An application thread may be delegated the responsibility of re-enabling interrupts after it has fin-

ished processing any received packets.  Protected I/O would provide secure access to the APIC regis-

ter that is used to re-enable interrupts.

• Received packets may be delivered to an application using upcalls [5].  Interrupts can be re-enabled

when the upcall returns.  The upcall can be responsible for simple protocol processing, or it could be

used to incorporate the contents of the packet into an on-going computation (à la Active Messages

[15]).

• The scheduling policy used could be a simple Unix-like priority scheme, or a periodic real-time
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scheme such as that used with Real-Time Upcalls (RTUs) [18,19].  In the latter case, it is possible to

entirely disable interrupts for a connection, and the application can periodically (in an RTU) check

the receive queue for packet arrivals.  This scheme has all the benefits of clocked interrupts [30], and

has the advantage that low latency applications can also be supported efficiently.

Clearly, interrupt demultiplexing allows for a great deal of flexibility in the way in which protocol stacks

are structured.  A future paper will report on the relative benefits and trade-offs involved with implement-

ing interrupt demultiplexing in a variety of environments.

4.3 Notifications

In an APIC interrupt service routine, it is important to be able to find out which connections have

had some activity on them, so that only the corresponding application threads or software interrupts are

scheduled.  In order to avoid having to scan the descriptor queues for all open connections to test for the

occurrence of events on a connection, the APIC has an on-chip queue, called thenotification queue, which

contains a list of “active” connection IDs.  The CPU can read entries off the queue; once an entry has been

read, it is removed from the queue.  Only those connections that have had some activity since the time the

queue was last emptied by the processor, are considered to be “active.”  Each notification on the queue con-

tains, in addition to the connection ID, a notification code which encodes the current status of the connec-

tion.  Notifications can be used either in an interrupt service routine, or in a clock interrupt to poll the APIC

for activity quickly and efficiently.

5 Conclusions
In this paper, we have presented several techniques for high performance network interface design.

These techniques enable the APIC to efficiently support both high throughput and latency-critical applica-

tions.  Note that this is achieved without imposing a specific structure on protocol implementations or the

operating system.  Instead, the programming interface presented by the APIC to the software includes sev-

eral mutually exclusive mechanisms that can be mixed and matched in different ways by a systems pro-

grammer in order to extract the maximum performance from the interface.  Furthermore, the connection-

oriented nature of the underlying network allows different compositions of these mechanisms to be used

for different applications, thereby allowing for customizing of protocol implementations.  For example,

one application may choose to be interrupted by the interface on every packet arrival, while another may

choose to be interrupted only once per burst of packets, and yet another may disable interrupts altogether

and instead decide to poll the interface.  Customization is further facilitated by the fact that the APIC

includes support for user-space driver implementations.

  In addition to interfacing to standard workstations, displays, and video cameras, the APIC is also
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going to be used to implement a high performance video storage server [2], and a video wall.  The APIC

driver software and VHDL programming work is currently in progress.  We have also successfully built

and tested MBus prototype cards to test the bus interface.  We expect the first set of APIC chips to be back

from fabrication in late 1996.  A future paper will report on the measured performance of prototype APIC-

based systems in our gigabit local-ATM testbed.

While all the mechanisms described in this paper were presented in the context of the APIC network

interface, we are convinced that some of these mechanisms can be used to advantage in other types of I/O

devices too.  This conviction is based on the fact that I/O typically involves multiple sequential streams of

data, with individual streams associated with different applications.  This property is reminiscent of ATM

connections.  It should therefore be possible to use techniques like protected DMA, protected I/O, and

interrupt demultiplexing for other types of I/O devices.  In particular, protected DMA and protected I/O can

be used to off-load the task of controlling hardware in the system to applications running in user space.

This facilitates the construction of new kernel architectures such as the MIT Exokernel [16].  By exposing

the hardware to applications (as opposed to hiding it under an abstraction), significant performance gains

are possible.  Our future research plans include exploring the feasibility of using protected DMA and pro-

tected I/O mechanisms for other types of devices, and in particular for mass storage devices like disks and

RAIDs.
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