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Abstract

Object identification—the task of deciding that two observed objects are in fact
one and the same object—is a fundamental requirement for any situated agent that
reasons about individuals. Object identity, as represented by the equality operator
between two terms in predicate calculus, is essentially a first-order concept. Raw
sensory observations, on the other hand, are essentially propositional—especially
when formulated as evidence in standard probability theory. This paper describes
patterns of reasoning that allow identity sentences to be grounded in sensory obser-
vations, thereby bridging the gap. We begin by defining a physical event space over
which probabilities are defined. We then introduce an identity criterion, which se-
lects those events that correspond to identity between observed objects. From this,
we are able to compute the probability that any two objects are the same, given a
stream of observations of many objects. We show that the appearance probability,
which defines how an object can be expected to appear at subsequent observations
given its current appearance, is a natural model for this type of reasoning. We apply
the theory to the task of recognizing cars observed by cameras at widely separated
sites in a freeway network, with new heuristics to handle the inevitable complexity
of matching large numbers of objects and with online learning of appearance prob-
ability models. Despite extremely noisy observations, we are able to achieve high
levels of performance.

Key words: Object identification; Matching; Data association; Bayesian inference;
Traffic surveillance

! This work was sponsored by JPL’s New Traffic Sensor Technology program, by
California PATH under MOU 152/214, and by ONR Contract N00014-97-1-0941.
2 Now at the Department of Mathematics and Computer Science, Middlebury Col-
lege, Middlebury, VT 05753.

Preprint submitted to Elsevier Preprint 9 June 1998



1 Introduction

Object identification—the task of deciding that two observed objects are in
fact one and the same object—is a fundamental requirement for any situated
agent that reasons about individuals. Our aim in this paper is to establish the
patterns of reasoning involved in object identification. To avoid possibly empty
theorizing, we couple this investigation with a real application of economic
significance: identification of vehicles in freeway traffic. Each refinement of the
theoretical framework is illustrated in the context of this application. We begin
with a general introduction to the identification task. Section 2 provides a
Bayesian foundation for computing the probability of identity. Section 3 shows
how this probability can be expressed in terms of appearance probabilities,
and Section 4 describes our implementation. Section 5 presents experimental
results in the application domain. Related work is discussed in Section 6.

1.1 Conceptual and theoretical issues

The existence of individuals is central to our conceptualization of the world.
While object recognition deals with assigning objects to categories, such as 1988
Toyota Celicas or adult humans, object identification deals with recognizing
specific individuals, such as one’s car or one’s spouse. One can have specific
relations to individuals, such as ownership or marriage. Hence, it is often
important to be fairly certain about the identity of the particular objects one
encounters.

Formally speaking, identity is expressed by the equality operator of first-order
logic. Having detected an object C' in a parking lot, one might be interested
in whether C'= MyCar. Because mistaken identity is always a possibility, this
becomes a question of the probability of identity: what is

P(C = MyCar|all available evidence)?

There has been little work on this question in Al.? The approach we will take
(Section 2) is the standard Bayesian approach: define an event space, assign a
prior, condition on the evidence, and identify the events corresponding to the
truth of the identity sentence. The key step is the last, and takes the form of
an identity criterion. Once we have a formula for the probability of identity,
we must find a way to compute it in terms of quantities that are available

3 In contrast, reasoning about category membership based on evidence is the canon-
ical task for probabilistic inference. Proposing that MyCar is just a very small
category misses the point.



in the domain model. Section 3 shows that one natural quantity of interest is
the appearance probability. This quantity, which covers diverse domain-specific
phenomena ranging from the effects of motion, pose, and lighting to changes
of address of credit applicants, seems to be more natural and usable than
the usual division into sensor and motion models, which require calibration
against ground truth.

1.2 Application

The authors are participants in Roadwatch, a major project aimed at the
automation of wide-area freeway traffic surveillance and control [7]. Object
identification is required for two purposes: first, to measure link travel time—
the actual time taken for traffic to travel between two fixed points on the
freeway network; and second, to provide origin/destination (O/D) counts—
the total number of vehicles traveling between any two points on the network in
a given time interval. The sensors used in this project are video cameras placed
on poles beside the freeway (Figure 1). The overall system design is shown in
Figure 2. In addition to the real surveillance system, we also implemented a
complete microscopic freeway simulator capable of simulating several hundred
vehicles in realistic traffic patterns. The simulator includes virtual cameras
that can be placed anywhere on the freeway network and that transmit real-
time streams of vehicle reports to the Traffic Management Center (TMC). The
reported data can be corrupted by any desired level of noise. We found the
simulator to be an invaluable tool for designing and debugging the surveillance
algorithms.

Obviously, a license-plate reader would render the vehicle identification task
trivial, but for political and technical reasons, this is not feasible. In fact, be-
cause of very restricted communication bandwidth, the vehicle reports sent to
the TMC can contain only about one hundred bytes of information. In addi-
tion, the measurements contained in the reports are extremely noisy, especially
in rainy, foggy, and night-time conditions. Thus, with thousands of vehicles
passing each camera every hour, there may be many possible matches for each
vehicle. This leads to a combinatorial problem—finding most likely consistent
assignments between two large sets of vehicles—that is very similar to that
faced in data association, a form of the object identification problem arising
in radar and sonar tracking. Section 6 explores this connection in more detail.
We adopt a solution from the data association literature, but also introduce
a new “leave-one-out” heuristic for selecting reliable matches. This, together
with a scheme for online learning of appearance models to handle changing
viewing and traffic conditions, yields a system with performance good enough
for practical deployment (Section 5).



2 Inferring identity from observations

This section shows how the probability of identity can be defined in terms of
physical observations and events. We begin with the formal framework and
then illustrate it in the traffic domain.

2.1 Formal Bayesian framework

Let O be a random variable whose domain is the set of complete observation
histories. That is, any particular value of O might correspond to the complete
set of observations of objects made by some agent: O ={oy,...,0,}. Let o,
and o, be two specific observations made, which we may think of as having
been caused by objects @ and b.* Informally, we may write the probability of

identity of @ and b as P(a=0|0={oy,...,0,}).7

To make this probability evaluable, we define an event space S = (Hy, ..., Hy),
where each Hj, is a random variable denoting the “life history” of the kth ob-
ject in the universe, and each event is an N-tuple specifying the life history
of all N objects. We can think of the index k as an invisible “object identi-
fication number.” We impose a prior distribution P(S), with the restriction
that the prior is exchangeable, i.e., invariant under any permutation of object
indices. Also, we will use the notation o; € Hjp to mean that observation o,
was generated by the kth object.

Now the key step is to provide an identity criterion to select those events
corresponding to ¢ and b being the same object. We write this as

a=b <= \/[(0s € Hy) A (0, € Hy)

That is, the two observed objects are the same if each observation was gener-
ated by the life history of the same object. This is the basic step in relating

4 For the purposes of this paper, we will assume that each observation corresponds
to exactly one physical object. This assumption can be relaxed, at the cost of in-
troducing into the theory the mechanism whereby objects generate observations.

> One is tempted to write this as P(a=b|oy,...,0,), i.e., to condition on a con-
junction of the “positive” observations. However, conditioning on the positive ob-
servations is not the same as conditioning on both positive observations and neg-
ative observations—that is, observations of no vehicles at a given time and place.
The temptation therefore reflects a natural “semi-closed-world” assumption: one
assumes that the stated positive observations are all that have been made in the
past, and that all other observations were negative. Obviously, one does not make
this assumption regarding the future.



propositional observations to identity sentences.

Since the propositions in this disjunction are mutually exclusive, we have

P(a=0b0) =

Conditioning on the event space S yields

P(a=1b|0) = ﬁ / S" P(0s, 00 € Hy, Ols)P(s)ds
seS *

where 04,0, € Hy, is shorthand for (o, € Hy) A (0, € Hy). Finally, we expand
P(o4,05 € Hi,Ols) to obtain

P(a=1|0) = ﬁ | S P(Olow o, € His)Plon,0, € Hils)P(s)ds(1)
seS

In this way, we express the probability of identity in terms of the probability
of observations given events. We now make this framework more concrete in
the context of the traffic domain.

2.2 Identity in the traffic domain

The basic vehicle identification task involves two cameras on a freeway, one
upstream and one downstream. The TMC monitors a vehicle’s progress by
matching the appropriate upstream observation of the vehicle with the appro-
priate downstream observation. It is natural to keep the observation history
O separated in two parts, U (observations by upstream camera u) and D
(observations by downstream camera d). Each observation o € U of vehicle
i is a pair (r¥, f*), where r includes the location of the vehicle and the time
of observation, while f* corresponds to observed values of intrinsic features
of the vehicle, such as color and size. The same holds for observation 0? eD
of vehicle j. It is reasonable to assume that each r is unique, since a vehicle
cannot be in two places at once, nor can two vehicles be in the same place at
once.

Hj. can be thought of as a trajectory for the kth vehicle, specifying its position
as a function of time. The identity criterion for observed vehicles a and b now
becomes

a:b<:>\/{(r;‘ € Hy) A (rf € Hk)}



To illustrate Eq. (1), consider the simplified case where the universe contains
exactly two vehicles of similar appearance, each moving at constant velocity
along the same road. Two reliable cameras, located at y, and y;, make obser-
vations whenever vehicles pass by. From time ¢ =0 to ¢t =T, the observation
history O consists of U= {0"} recorded at ¢, and D ={o}} recorded at .
The event space S = (Hy, Hy) therefore ranges over all possible trajectories for
two vehicles; these can, in turn, be defined by the random variables (y;,vy)
and (yz, v2), where y; and ys are the positions of the vehicles at time ¢, and vy
and vy are the velocities. Figure 3 shows two possible events consistent with
the observations—one where @ =b and one where a # b.

It turns out to be easiest to compute the probability of identity from the ratio

Jses P(a=b,0ls)P(s)ds
Jses Pla#b,0ls)P(s)ds

since the P(O) term in Eq. (1) cancels. Suppose now that y;—y, is 2000 meters,
and that ¢, —t, is 100 seconds. Furthermore, suppose P(S) is such that y; and
y2 are independently and uniformly distributed in the range [y,, y4], and v; and
vy are independently and uniformly distributed in the range [10m/s,40m/s].
Then P(s) is constant over the range of integration and the above ratio is
given by

Yd—4y2

fyf_m(tb_ta) Jig™™ dvadys

1
Z;Z:ilj yd—lo(tb—ta) 2
10 dvy fyu dys

hence P(a=0|0) = 1/3.

3 Appearance models

The previous section showed how to express the probability of identity in
terms of the probability of observations given events. Some domains, including
traffic surveillance, involve observation sets that contain initial observations
of objects as well as subsequent observations of objects. In these situations,
appearance probabilities, which define how objects observed at some point in
the past can be expected to appear at some point in the future, seem to provide
a more usable model than standard motion and sensor models. In this section,
we show how to express Eq. (1) in terms of appearance probabilities and
describe the specific appearance probabilities used in the vehicle identification
domain.



3.1 Identity in terms of appearance probabilities

Suppose we are given observation history O = UUD, where U consists of initial
observations of objects, and D consists of subsequent observations of objects.
Keeping these sets separate in Eq. (1) gives the following for P(a =b|U,D):

1
P(U.D) /S Zk:P(U,D|0a,0b € Hy,8)P(04,0, € Hy|s)P(s)ds
se

Expanding P(U,D|o,, 0, € Hy,s) yields

1
DTT TV / P(D|U70avob S Hkvs)P(U|0avob S Hkvs)P(Oavob S Hk|S)P(S)dS
PuD) | %

Se

At this point, we define a new event space (), which is a coarsening of S.
First, we need some new terms: A matching is a simply a pairing indicating
that two observations were generated by the same object. For example, the
matching (a,b) indicates that the same object generated o, and o;. Given a
set of initial observations and a set of subsequent observations, an assignment
is a set of matchings for every observation in each set. The assignment space
0 is an event space that ranges over the space of possible assignments. It
thus divides the space S into subsets of events, such that each subset is rela-
tively homogeneous if we condition on the observations—because each subset
then effectively specifies that starting point and ending point of each vehicle’s
trajectory.

Summing over only those assignments w that satisfy the identity criterion for
a and b gives

1

P(a=HU.D) = 55

>, P(DU,0)P(Ulw)P(w)

weQ:(a,b)Ew

Since the principle of exchangeability requires a uniform prior over {2, and since
P(U|w) is constant given no information about the observations to which the
observations in U correspond, these constant terms can be grouped outside of
the summation along with the normalization constant P(U,D)™! so that we
have

P(a=blU,D)=a >  P(D|U,w).

weQ:(a,b)Ew



Our final assumption is that the probability of a specific subsequent obser-
vation, given a specific initial observation and a matching between the two
observations, is independent of the other observations and matchings. (This
assumption is discussed further below.) Hence, we can factor P(D|U,w) into
the product of the individual probabilities as follows:

PD[U.w)= [ P(oflof.i=3) (2)

(4,7)Ew

In this expression, P(o;l|0§»‘, i=7j) is an appearance probability, the probability
that an object that initially generated observation of subsequently generated
observation o;l. We will write this as P(0|o") where no confusion is possible.
It is important to note that the appearance probability is not the probability
that 1 =7.

Eq. (2) can be substituted into the identity equation to give

Pla=bUD)=a Y T[ P(eleti=J) (3)

weQ:(ab)ew (1,7)Ew

This is the basic equation we will use for identifying objects. Notice that if
there are n candidate objects for matching, then the set {w € Q: (a,b) € w}
contains (n — 1)! possible assignments consistent with a =b. It can be shown
that this complexity is unavoidable—our task essentially involves computing
the permanent of a matrix—so our implementation will be based on a heuristic
approximation.

To ground this discussion, we will now discuss the specific observed features
and appearance probability models used in the traffic domain.

3.2 Observed features for traffic

When a certain camera ¢ observes some vehicle ¢, it generates a vehicle report
consisting of various features. Thus, the observation of in our system is a vector
of features. Currently, we use the features shown in Table 1.

The matching algorithm is designed to be independent of the specific features
used; new features of arbitrary complexity, informativeness, and noise level
can be added without changing the algorithm. In particular, it is possible to
use direct matching of vehicle images as an additional feature as long as the
communication bandwidth is available.



Name | Description

t time of observation

T lane position (1, 2, 3, etc.)

Y distance along lane
z lateral velocity

U forward velocity

w vehicle width

) sum of vehicle length and height

h mean vehicle color hue

s mean vehicle color saturation

v mean vehicle color value

C histogram of color distribution over vehicle pixels

Table 1

Features used in vehicle observation reports.

3.3  Appearance probabilities for traffic

The appearance probability is currently treated as the product of the following
independent models:

lane (z): discrete distribution P(z%|z%)

e size (w, [): multivariate Gaussian

P(w®, 1*|w", ") = N

Mw,lvzw,l(wd - wu7 ld - lu)

e color (h, s, v): multivariate Gaussian
d d dipzuw u _u\ __ d u d u .d u
P(h,s,v|h,3,v)—NMhysymghysyv(h —h" s" — s 0" — ")

e arrival time (¢): univariate Gaussians conditioned on upstream and down-
stream lane
Pt 2% a") = N yapu g pu (1 — 1)
TR

The arrival time model is particularly important, since it drastically reduces
the number of vehicle pairs that are considered to be plausible matches. The
parameters /,Lfd’xu and de’xu represent the mean and standard deviation of
the predicted link travel time for cars that start upstream in lane x* and end
up downstream in lane z%. This allows the system to accurately model, for
example, the fact that cars in the carpool lane travel faster than cars in other
lanes.



Our assumption that vehicle trajectories are independent, used in Eq. (2),
would make little sense for traffic, were it not for the fact that the appearance
probability submodel for arrival time is parameterized by uy " the current
average travel time for the link. Clearly, the trajectories of consecutive cars
in a stream of heavy traffic are highly correlated rather than independent,
but we subsume most of this correlation in the current average travel time.
The assumption of independence given average travel time is identical to the
assumption made by Petty et al. [8], whose work is discussed in Section 6.

In examining the empirical distributions for the appearance probability, we
were surprised by the level of noise and lack of correlation in measurements
of the same feature at two different cameras. Some features, such as color
saturation and vehicle width, appear virtually uncorrelated. In all, we estimate
that the size and color features provide only about 3 to 4 bits of information.

3.4 Online learning of appearance models

Because traffic and lighting conditions change throughout the day, our sys-
tem uses online (recursive) estimation for the appearance probability model
parameters. As new matches are identified by the vehicle matcher, the pa-
rameters are updated based on the observed feature values at the upstream
and downstream sites. Figure 4 shows a sample set of & values for matched
vehicles, from which P(z%|z*) can be estimated, as well as a sample set of hue
values for matched vehicles, from which P(h?|h*) can be estimated. To adapt
to changing conditions, our system uses online exponential forgetting. For ex-
ample, if a new match is found for a vehicle in lane z* upstream and lane z?
downstream, with link travel time ¢, then the mean travel time is updated as
follows:

o, zd o, zd
pr Y ey A+ (L= )t

The v parameter, which ranges from 0.0 to 1.0, controls the effective “window
size” over which previous readings are given significant weight.

The above assumes that the match found is in fact correct. In practice, we
can never be certain of this. A better motivated approach to model updates
would be to weight each update by the probability that the match is correct.
An approach that avoids matching altogether is described in Section 6.

10



4 Matching algorithm

We begin by describing the simplest case, where all vehicles detected at the
upstream camera are also detected downstream, and there are no onramps or
offramps. We then describe the extension to handle onramps and offramps.

4.1 Matching with full correspondence

The aim is to find pairs of vehicles @ and b such that P(a=5b/U,D)>1 — ¢
for some small e. We have derived an equation (3) for this quantity, under
certain independence assumptions, and shown how to compute the appearance
probabilities that are used in the equation. As mentioned earlier, the problem
that we now face is the intractability of computing the summation involved.

The core of the approach is the observation, due to Cox and Hingorani [5],
that a most probable assignment (pairing all n vehicles) can be found in time
O(n?) by formulating the problem as a weighted bipartite matching problem
and using any of several well-known algorithms for this task. To do this, we
construct an association matriz M of appearance probabilities, where each
entry M;; = — log P(0?|o}), so that the assignment with least total weight in
the matrix corresponds to the most probable assignment, according to Eq. (2).

For our purposes, knowing the most likely assignment is not enough. It can
easily happen that some ¢ of the n vehicles are all very similar and fairly
close to each other on the freeway—a situation that we call a cliqgue. One
common example might be cliques of yellow cabs on the freeways leading to
major airports. Given a clique of size ¢, there will be ¢! assignments all having
roughly the same probability as the most probable assignment. Since matches
within the clique may be very unreliable, we employ a leave-one-out heuristic
that “forbids,” in turn, each match contained in the best assignment. For
each forbidden match, we measure the reduction in likelihood for the new
best assignment. Matches whose forbidding results in a significant reduction
are deemed reliable, since this corresponds to a situation where there appears
to be no other reasonable assignment for the upstream vehicle in question.

11



For example, suppose we have the following association matrix:

Downstream

Upstream || z Y z
a 3.2 25127

b 8.5 4.5 | 4.4

c 7.3 5.0 5.0

Here the best assignment is {a =xz,b=2z,c=y}, with a total weight of 12.6.
(Notice that a =1y is the “closest” match for a, but leaves no good match
for the others.) If we forbid a =z, the best assignment is {a =y, b==z,c¢=x}
with weight 14.2. If the difference between these two weights is greater than
some reliability threshold ¢,¢ i.e., if 14.2 — 12.6 > ¢, then we accept the a ==z
match, since no other reasonable choice seems to exist. On the other hand, if
we forbid b=z, the best assignment has weight 12.7. If 12.7 — 12.6 <¢, then
we reject b=z, since there is another match for b that yields a good overall
assignment. By increasing the threshold ¢, we obtain more reliable matches,
i.e., the error rate ¢ is reduced; however, this reduces the overall number of
accepted matches.

4.2 New and missing vehicles

In the general case, vehicles can appear from onramps between the cameras
or can disappear onto offramps. (Equivalently, they can fail to be detected
at the upstream or downstream camera.) To handle this, we add extra rows
and columns to the association matrix. With m upstream and n downstream
vehicles, the matrix now has m 4+ n rows and columns to allow for all possi-
bilities. Figure 5 illustrates the structure of the matrix for m =n = 2. Here, «
is the probability that a vehicle exits the freeway, 3 is the number of vehicles
entering the freeway between the cameras per unit time, and P(o;) refers to
the prior probability of seeing a vehicle with features o;. © The formulas in the
table explain the interesting fact that human observers feel far more confident
matching unusual vehicles than typical vehicles: not only is the probability
of confusion with other vehicles lower, but the probability that the upstream
vehicle exited, only to be replaced by another vehicle of the same unusual

6 The value compared with the reliability threshold is the negative logarithm of the
relative likelihood of the observations given the best assignment and the observations
given the best assignment with a forbidden match.

" In our implementation, each of these models is learned online; & and 3 are also
specific to individual lanes.

12



appearance, can be discounted because the extra multiplicative P(o;) factor
for an unusual vehicle would be tiny.

5 Results

We tested the vehicle matcher with data from a region-based vehicle tracker
on video sequences from the sites in Figure 1.

On any given run, the number of matches proposed by the vehicle matcher de-
pends on the reliability threshold selected for that run. In the results discussed
below, coverage refers to the fraction of vehicles observed by both cameras for
which matches were proposed, and accuracy refers to the fraction of proposed
matches that were in fact correct. In general, the coverage goes down as the
reliability threshold is increased, but the accuracy goes up.

To verify the accuracy of the matcher, the ground-truth matches were deter-
mined by a human viewing the digitized sequences with the aid of a frame-
based movie viewer. Since this method required about 3 hours of viewing to
match each minute of video, it was used only during the early stages of test-
ing. In subsequent testing, we first ran the matcher on the vehicle report data
and then used the frame-based movie viewer to verify whether the suggested
matches were correct.

Testing our system involved a start-up phase during which it estimated the
appearance probability models online. For the results shown in Figure 6, we
trained our system on a pair of 60-second video sequences and then ran it
on the immediately following 60-second sequences. The sequences contained
29 vehicles detected at both cameras, along with over 40 vehicles that either
entered or exited the freeway in between the cameras. The resulting accu-
racy /coverage curve in Figure 6(a) shows that despite very noisy sensors, the
system achieved 100% accuracy with a coverage of 14%, and 50% accuracy
with a coverage of 80%. To simulate performance on freeway sections with-
out onramps and offramps, we also tried removing the tracks of entering and
exiting vehicles from the data stream. This makes the problem substantially
easier: we achieved 100% accuracy with a coverage of 37%, and 64% accuracy
with a coverage of 80% (Figure 6(b)). The boxed vehicles in Figure 1 show a

pair of vehicles correctly matched by our system.

Link travel times between each camera pair are currently calculated by av-
eraging the observed travel times for matched vehicles. These times were ac-
curate to within 1% over a distance of two miles, over a wide range of cov-
erage/accuracy tradeoff points. This suggests that matched vehicles are rep-
resentative of the traffic low—that is, the matching process does not select

13



vehicles with a biased distribution of speeds.

6 Related work

The vehicle matching problem is closely related to the traditional “data associ-
ation” problem from the tracking literature, in which new “observations” (from
the downstream camera) must be associated with already-established “tracks”
(from the upstream camera). Radar surveillance for air traffic control is a typ-
ical application: the radar dish determines an approximate position for each
aircraft every few seconds, and each new set of positions must be associated
with the set of existing tracks. There is a large literature on data association—
typically over 100 papers per year. The standard text is by Bar-Shalom and
Fortmann [3], and recent developments appear in [2]. Ingemar Cox [4] surveys
and integrates various developments, deriving formulas very similar to those
in Figure 5. Cox’s aim in his review paper is to present the ideas from the
data association field to the computer vision and robotics community, where
they might be used to resolve problems of identifying visual features seen in
temporally separated images by a moving robot. Major differences between
our work and “standard” data association include the following;:

(1) Sensor noise and bias are large, unknown, time-varying, site-dependent,
and camera-dependent, and sensor observations are high-dimensional.

(2) In radar tracking, the distance moved by each object between observa-
tions is typically small compared to inter-object distances; in freeway
trafic, the opposite is true.

(3) Traffic observations are asynchronous.

(4) Vehicle trajectories in traffic are highly correlated.

As explained in Section 3, this last problem is dealt with in our approach
by conditioning trajectories on the current average link travel time. This is a
device that may prove to be useful in many other applications involving the
modelling of very large systems using aggregate parameters.

The most closely related work on statistical estimation of travel time is by
Petty et al. [8]. They have shown that it is possible to estimate travel times
using an “ensemble” matching approach that detects downstream propagation
of distinct arrival time patterns instead of individual vehicles. Because it uses
only the arrival times, it can operate using data from loops—that is, induction
coils placed under the road surface that indicate the passage of a vehicle. Using
this technique, travel times were estimated accurately over a wide range of
traffic conditions. The method is, however, limited to loops that are fairly
close together and have no intervening onramps or offramps.

14



We are currently collaborating with the authors of the “ensemble” approach
to develop a system that combines the two approaches and may overcome
many of the shortcomings of each. The basic idea, due primarily to Ritov, is
to use a Monte Carlo Markov Chain algorithm to approximate the sum over
assignments in Eq. (3). The states of the Markov chain are complete assign-
ments and the transitions exchange pairings between two pairs of vehicles.
The transition probabilities are defined such that detailed balance is main-
tained and the fraction of time during which any given state is occupied is
proportional to the probability of the corresponding assignment. Hence, the
probability of any given proposition (such as a =0) can be estimated as the
fraction of time spent in states where it is true. Results due to Jerrum and
Sinclair [6] show that the Monte Carlo method applied this particular chain
gives polynomial-time convergence.

This approach can in fact estimate travel times and O/D counts without ever
selecting likely vehicle matches at all: simply compute the average travel time
and average O/D counts over all the assignments visited by the chain. Simi-
larly, the appearance probability models can be updated after each transition
as if the assignment were correct; in the limit, the updated models will reflect
the observed data correctly. Since changing the appearance models changes
the transition probabilities of the chain, the process must be iterated until
convergence. This is an instance of the EM algorithm, where the hidden vari-
ables are the link travel times. We are currently experimenting to see if this
approach can be used in a real-time setting where the structure of the Markov
chain is continually changing as new vehicles are detected.

7 Conclusions and further work

This paper has described the patterns of reasoning involved in establishing
identity from observations of objects. We proposed a formal foundation based
on a prior over the space of physical events, together with an identity criterion
defining those events that correspond to observations of the same object. In
the case of vehicle matching, the events are the different sets of trajectories of
vehicles in a given freeway network. When a single trajectory passes through
two vehicle observations, that implies that the observations correspond to the
same object. This general approach makes it possible to define the probabil-
ity of identity and to integrate the necessary patterns of reasoning into an
intelligent agent.

This research can be seen as another step in the Carnapian tradition that
views a rational agent as beginning with uninformative prior beliefs and then
applying Bayesian updating throughout its lifetime. The general relationship
between perception and the formation of internal models is a subject that
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needs much more investigation [1].

We showed that the abstract probability of identity can be expressed in terms
of measurable appearance probabilities, which define how, when, or where
objects that were observed at some point in the past are expected to appear
at some point in the future. These appearance probabilities can be learned
online to adapt to changing conditions in the environment—such as changing
weather, lighting, and traffic patterns.

We have implemented and tested a system for vehicle matching using an ef-
ficient algorithm based on bipartite matching combined with a leave-one-out
heuristic. Despite very noisy feature measurements from the cameras, our sys-
tem achieved a high level of accuracy in matching individual vehicles, enabling
us to build the first reliable video-based system for measuring link travel times.
Although experimental camera data were not available for the system to do so,
it is already capable of tracking the path of a vehicle over a sequence of camera
sites. Thus, O/D counts for a time period can be computed by examining the
complete set of recorded paths during that time period. For successful O/D
measurement over a long sequence of cameras, however, we need to improve
both matching coverage and the detection rate of the tracking subsystem. We
can perform a crude analysis as follows: if the coverage for the vehicle matcher
is ¢, and the matching accuracy is @, and the single-camera vehicle detection
rate is p, then the probability that a vehicle is correctly tracked across n
sites is p"a”~'¢""! (assuming independence). Suppose now that n=10. To
achieve 90% accuracy in O/D counts, we need a”=0.9 or a ~ 0.988 as well
as a sufficiently high number of tracked vehicles in order to keep sampling
error low. The required percentage of vehicles to be tracked across the 10 sites
will depend on flow rates and the length of the reporting period. To track,
say, 10% of vehicles across 10 sites we need p'°c? =0.1. Given p=0.95, this
means we need ¢ ~ 0.82. Currently, simultaneous achievement of 98.8% accu-
racy and 82% coverage is not feasible. However, we anticipate that improved
measurement of features such as width and height would provide dramatic
improvement in coverage and accuracy. Other possibilities include selecting
a subset of pixels from the rear plane of each vehicle to be used as a match
feature.

The patterns of reasoning described here have broad applicability to other
domains. For example, the object identification problem occurs in database
management, where it is possible that two different records could correspond
to the same entity. Thus, US credit reporting agencies record over 500 mil-
lion credit-using Americans, of whom only about 100-120 million are actually
distinct individuals. Applying our approach to this problem could help with
maintaining database consistency and with consolidating multiple databases
containing overlapping information.
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Fig. 1. Images from upstream (a) and downstream (b) surveillance cameras roughly
two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has
been identified at both cameras.
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Fig. 2. Overall design of our traffic surveillance system. The video streams are
processed at each camera site by vehicle tracking software running on customized
parallel hardware. The resulting streams of chronologically ordered vehicle reports
are sent to the TMC (Traffic Management Center). The TMC uses these reports
to determine when a vehicle detected at one camera has reappeared at another.
These matches are used to build up a path for each vehicle as it travels through the
freeway network. The set of paths can be queried to compute link travel times and
O/D counts as desired. The output of the system is a traffic information display,
updated in real time for use by traffic operations managers or by individual drivers.
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Fig. 3. Time—space diagrams showing two possible events in the two-car universe,

given observations o and of (and no other observations). In (a), we have a=0b,

while in (b), we have a #b.
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Fig. 4. Top: Diagram showing observed upstream and downstream z-position data
for a sample of 41 matched vehicles from the Mack Road and Florin Road cam-
eras. The horizontal axis corresponds to upstream z-position and the vertical axis
corresponds to downstream z-position. Each marked point corresponds to a sin-
gle matched vehicle. Lane dividers are shown as horizontal and vertical lines. For
example, 13 vehicles are observed upstream in lane 4 (onramp, highest z val-
ues), of which 7 are observed downstream in lane 2 (middle lane), indicating that
P(z?=2|2*=4) ~ 0.54. Bottom: Upstream and downstream hue data for a sam-
ple of 25 matched vehicles. The line y = z corresponds to perfect reproduction of
hue at the two cameras. The appearance probability for color, which includes hue,
saturation, and value components, is modeled as a multivariate Gaussian.
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Fig. 5. Extended association matrix for two upstream and downstream observations,
showing additional rows and columns to account for entering and exiting vehicles.
Each entry will be replaced by its negative logarithmic value before computing the

minimum weight assignment.
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Fig. 6. Sample matching results: the graphs shows accuracy versus coverage for a
range of reliability threshold values. A low threshold implies high coverage and low
accuracy, while a high threshold implies low coverage and high accuracy. (a) Results
for a 60-second video sequence containing 29 vehicles detected at both cameras as
well as over 40 entering and exiting vehicles. (b) Results for the same sequence with
the tracks of entering and exiting vehicles removed, to simulate performance on
freeway sections without onramps and offramps.
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