
Unboxing using Specialisation�Cordelia HallUniversity of Glasgow Simon L. Peyton JonesUniversity of GlasgowPatrick M. SansomUniversity of GlasgowyAbstractIn performance-critical parts of functional programs substantial perfor-mance improvements can be achieved by using unboxed, instead of boxed,data types. Unfortunately, polymorphic functions and data types cannotdirectly manipulate unboxed values, precisely because they do not con-form to the standard boxed representation. Instead, specialised, monomor-phic versions of these functions and data types, which manipulate theunboxed values, have to be created. This can be a very tiresome anderror prone business, since specialising one function often requires thefunctions and data types it uses to be specialised as well.In this paper we show how to automate these tiresome consequentialchanges, leaving the programmer to concentrate on where to introduceunboxed data types in the �rst place.1 IntroductionNon-strict semantics certainly add to the expressive power of a language [8].Sometimes the performance cost of this extra expressiveness is slight, but notalways. It can happen that an inner loop of a program is made seriously lesse�cient by non-strictness. For example, consider the following fragment of acomplex-number arithmetic package:data Complex = Cpx Float FloataddCpx :: Complex -> Complex -> ComplexaddCpx (Cpx r1 i1) (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)In a strict language, a complex number would be represented a pair of un-boxed
oating point numbers, and addCpx would actually perform the addi-tions of the components. In a non-strict language such as Haskell [7], though,a complex number is a pair of pointers to possibly-unevaluated thunks. Thefunction addCpx cannot actually force these thunks, since they might be bot-tom, but rather must build further thunks representing (r1+r2) and (i1+i2)respectively. If complex arithmetic is in the inner loop of the program, theperformance penalty is quite substantial.�This paper appeared in Functional Programming, Glasgow 1994, Workshops in Comput-ing, Springer Verlag, 1995.yAuthors' address: Dept of Computing Science, University of Glasgow, GlasgowG12 8QQ,Scotland. E-mail: fsimonpj,sansomg@dcs.glasgow.ac.uk.

Let us suppose, then, that a pro�ler has focussed the programmer's atten-tion on this arithmetic package. What can be done to make it more e�cient?Peyton Jones & Launchbury [16] suggested that unboxed data types could bemade \�rst class citizens", and that the programmer be allowed to declare datatypes involving them, thus:data Complex = Cpx Float# Float#Here, Float# is the type of unboxed
oating-point numbers. (An immediateconsequence is that the components of a complex number must be evaluatedbefore the complex number itself is constructed, so that the representation isstricter than before.) Modi�cations of this kind can have a dramatic impacton the performance of some programs.There is a catch, though. Suppose we wanted to transform a list of complexnumbers to a list of their imaginary components. We might try to write:imags :: [Complex] -> [Float#]imags cs = [im | Cpx re im <- cs]Unfortunately, we cannot form a list of unboxed
oating point numbers, becauseboth the size and the pointer-hood of a Float# di�ers from that of a pointer.Instead, a new data type must be declared for lists of Float#:data LFloat = NilF| ConsF Float# LFloatAlas, none of the usual list-manipulating functions (map, filter etc) work overLFloat, so new versions of them have to be de�ned, and so it goes on.In general, Peyton Jones & Launchbury [16] put forward the restrictionthat: polymorphic functions (and data constructors) cannot be used at unboxedtypes. We use the term \creeping monomorphism" to describe the sad necessityto declare new functions simply because of this restriction. The goal of thispaper is to lift the restriction, by automating the production of new versionsof existing functions and data constructors.Even the humble + function in addCpx is an example. When the Complexdata type is changed, type inference will �nd that r1 and r2 are of type Float#.Since + is an overloaded function, with type(+) :: Num a => a -> a -> aPeyton Jones & Launchbury would prohibit + from being applied to a valueof type Float#. However, if the restriction is lifted, and Float# is made aninstance of class Num, then the code for addCpx will compile without modi�ca-tion.Our goal is to allow the programmer to use pro�ling information [19] toimprove run-time performance by making minimal changes to data type decla-rations and type signatures. The system we describe in this paper propagatesthese changes throughout the program, compiling specialised versions of poly-morphic functions and constructors where they are now used at unboxed types.We begin by describing our Core language (Section 2). We then examinethe use of polymorphic functions and data types in the presence of unboxed val-ues (Section 3), formalising Peyton Jones & Launchbury's unboxing restriction,

describing the process of specialisation which enables us to relax this restriction(Section 3.1), and presenting a partial evaluator which performs this speciali-sation (Section 3.2). In Section 4 we discuss the practical implications, beforepresenting some preliminary results (Section 5) and discussing related work(Section 6).2 The Core LanguageOur source language is Haskell, but the language we discuss in this paper is theintermediate language used by our compiler, the Core language [15]. There arethree reasons for studying this intermediate language. First, it allows us to focuson the essential aspects of the algorithm, without being distracted by Haskell'ssyntactic sugar. Second, Haskell's implicit overloading is translated into explicitfunction abstractions and applications so that no further special treatment ofoverloading is necessary. Third, the type abstractions and applications whichare implicit in a Haskell program, are made explicit in the Core program.Thus, each polymorphic application which manipulates unboxed values caneasily be identi�ed by looking at the type arguments in the application. Ourtransformation identi�es any applications involving unboxed types and replacesthis with an appropriately specialised version of the function.The syntax of the Core language is given in Figure 1. It is an explicitlytyped second-order functional language with (recursive) let, (saturated) dataconstructors, algebraic case and explicit boxing. This language combines thehigher-order explicit typing of Core-XML [11] with the explicit boxing and typestructure of Peyton Jones & Launchbury [16].In this language the argument of an application is always a simple variable.A non-atomic argument is handled by �rst binding it to a variable using a let-expression. This restriction re
ects the fact that a non-atomic argument mustbe bound to a heap-allocated closure before the function is applied. In the caseof a strict, unboxed value (� 2 UnboxedType), the let-expression evaluatesthe bound expression and binds the result value before the function is applied.A type normalised expression [6] is one that satis�es the following two con-ditions. 1) The type abstractions occur only as the bound expression of let-expressions; i.e. let x :� = ��1:��2: � � ���n:e1 in e2 which we will abbreviatewith let x :� = ��1 � � ��n:e1 in e2. 2) Type applications are only allowed forvariables; i.e. x f�1g � � �f�ng which we will write x f�1 � � ��ng. Henceforth wewill assume that all expressions are type normalised.2.1 Data constructorsIn this second-order language a data constructor must be (fully) applied toboth the type arguments of the data type and the value arguments of the dataobject being constructed. For example, the standard list data typedata List � = Nil | Cons � (List �)has two constructors, Nil and Cons. The implied constructor declarationsmight be expressed in the higher-order calculus as follows:

Expression e ::= xj �x :�:ej e xj let x :� = e1 in e2j ��:ej e f�gj C f�1 � � ��ng x1 � � �xaj case e of fCj xj1 :�j1 � � �xjaj :�jaj -> ejgmj=1PolyType � ::= 8�:� j �MonoType � ::= � j vBoxedType � ::= �j �1 ! �2j � �1 � � ��nUnboxedType v ::= int# j float# j char#j �# �1 � � � �nFigure 1: Core Language SyntaxNil : 8�:List �= ��:[Nil]Cons : 8�:�! List �! List �= ��:�v1 :�:�v2 :List �:[Cons v1 v2]where [] indicates actual construction of the data object. Even though theconstructor Nil has an arity of zero the higher-order constructor still requiresa type parameter to indicate what type it is being used at, e.g. Nil fIntg. Ingeneral, a data declaration has the formdata � �1 � � ��n = C1 �11 � � ��1a1 | � � � | Cm �m1 � � ��mamwhich gives rise to m higher-order constructors with the formCj : 8�1 � � ��n:�j1 ! � � � ! �jaj ! � �1 � � ��n= ��1 � � ��n:�vj1 :�j1: � � ��vjaj :�jaj :[Cj vj1 � � �vjaj]where n is the number of type parameters of the data type and aj is the arityof the data constructor. Since the number of type parameters is determined bythe arity of the type constructor, �, it is the same for all data constructors ofthat type.2.2 Well-formed expressionsWe call an expression e well-formed under type assumption � if we can derivethe typing judgement � ` e : �. The typing rules are quite standard [11] andare not given here (but see Section 3).

2.3 NotationFor notational convenience we abbreviate sequences such as x1 � � �xn with x,where n = length x. This is extended to sequences of pairs which are abbrevi-ated with paired sequences, e.g. xj1 :�j1 � � �xjaj :�jaj is abbreviated with xj :�j.We use � for syntactical identity of expressions.3 Polymorphism and Unboxed ValuesA pure polymorphic function is usually compiled by treating all polymorphicvalues in a uniform way. Typically all such values are required to be representedas a pointer to a heap allocated closure i.e. they must be boxed. For example,consider the permuting combinator C:C f x y = f y x (Haskell)C = �a b c:�f :a!b!c:�x :b:�y :a:f y x (Core)To generate the code for C we must know the representation of the polymorphicvalues, x and y, being manipulated.1 By insisting that such polymorphic valuesare always boxed we can compile code which assumes that such values arealways represented by a single pointer into the heap.It follows that a polymorphic function can only be used at boxed types,since the representation of an unboxed type violates the assumption above.We impose a restriction in the typing rules for expressions which prevents apolymorphic function being applied to an unboxed type.2� ` e : 8�:�� ` e f�g : �[�=�] � 62 UnboxedType (�)A similar restriction is imposed in the typing rule for data constructors. Thisprohibits the construction of polymorphic data objects with unboxed compo-nents, e.g. List Float#.These restrictions cause the \creeping monomorphism", described in Sec-tion 1, since the programmer must declare suitable monomorphic versions ofany polymorphic functions and data types used at unboxed types. This can beexceedingly tedious and error prone.To address this problem we propose to relax the unboxing restriction (�),allowing the programmer unrestricted use of unboxed values. During the com-pilation we undertake automatically to generate the necessary monomorphicfunction versions: converting the unrestricted program into one which satis�esthe unboxing restriction (�). We can then generate code which directly ma-nipulates the unboxed values since their type, and hence their representation,1The representation information that is typically required is the size of a value and theposition of any heap pointers (so that all roots can be identi�ed during garbage collection).When more sophisticated calling conventions are used, such as passing arguments in registers,the actual type may also a�ect the treatment of a value. For example a boxed value maybe passed in a pointer register, an Int# in an integer register, and a Float# in a dedicated
oating point register.2This restriction is equivalent to \Restriction 1: loss of polymorphism" in Peyton Jones& Launchbury [16].

is known at compile time. For example, here is the monomorphic version of Cwhich manipulates Float#s:C0 = �f :Float#!Float#!Float#:�x :Float#:�y :Float#:f y xSince the code generator knows that x and y have type Float# it produces codewhich manipulates
oating point numbers, instead of pointers. This is the onlydi�erence between the code produced for C and C 0.3.1 SpecialisationThe transformation of program with unrestricted use of unboxed types intoone which satis�es the unboxing restriction above is performed using a partialevaluator. The idea is to remove all type applications involving unboxed typesby creating new versions of the functions being applied, specialised on theunboxed types. These specialised versions are created by partially evaluatingthe unboxed type applications.Before launching into the de�nition of the partial evaluator itself, we give anoverview of the algorithm. Each time a function (or constructor) is applied toa sequence of types, a new version of the function (or constructor), specialisedon any unboxed types in the application, is created, unless such a version hasalready been created. For example, given the code3append fInt#gxs (map f[Int#] Int#g(sum fInt#g) (append f[Int#]g yss zss)a version of append, specialised at type Int#, is created. Given the de�nitionof append:append = ��:�xs : [�]:�ys : [�]:ethe specialised version, append_Int#, is:append_Int# = append fInt#g= (��:�xs : [�]:�ys : [�]:e) fInt#g= (�xs : [�]:�ys : [�]:e)[Int#=�]= �xs : [Int#]:�ys : [Int#]:e[Int#=�]The name of the specialised version, append_Int#, is constructed by appendingthe specialising type(s) to the original name.When a function is applied to a boxed type, there is no need to specialiseon that type argument since the polymorphic version, which assumes a boxedtype will su�ce. Consequently, we make the specialisation polymorphic in anyboxed type arguments. For example, the application of map is only specialisedon the second type argument, Int#, since the �rst type argument, [Int#], isa boxed type.map = �� �:�f : �! �:�xs : [�]:emap_*_Int# = ���:map f�� Int#g3For notational convenience we use the standard [] list notation, where [�] � List �.

= ���:(�� �:�f : �! �:�xs : [�]:e) f�� Int#g= ���:(�f : �! �:�xs : [�]:e)[��=�; Int#=�]= ���:�f : �� ! Int#:�xs : [��]:e[��=�; Int#=�]A * is used to indicate a boxed type argument in which the specialised versionremains polymorphic. This reduces the number of specialised versions createdsince all boxed type arguments will be treated as a * type when determining thespecialisation required. For example, the application map fBool Int#g wouldalso use the specialised version map_*_Int#.The applications can now be modi�ed to use the specialised versions, withall unboxed types new removed from the application. The �nal version of thecode for the example above is:append_Int#xs (map_*_Int# f[Int#]gsum_Int# (append_* f[Int#]g yss zss))In summary the specialisation algorithm is:while the unboxing restriction (�) is not satis�ed:1. Find a type application, ff�g, involving an unboxed type.2. Create a suitably specialised version of f (if it does notalready exist).3. Use the specialised version at this application site, removingthe unboxed types from the application.Since all polymorphic values must be let-bound (see Figure 1), the de�nitionof f , which has to be specialised, will always be visible in the enclosing scope.Notice that the specialised versions must themselves be specialised since thesubstitution of the unboxed type over the body of the function may introducefurther unboxed type applications. To ensure termination in the presence ofrecursive functions we rely on Hindley-Milner type inference having guaranteedthat all recursive references occur at the same type; thus no new versions of afunction will be created while specialising its body, since we must be creatingthe specialised version required.3.2 The partial evaluatorThe specialisation algorithm is e�ciently implemented using a partial evaluator.The partial evaluator, T , takes an expression with unrestricted use of un-boxed types, and two environments: one containing the polymorphic let-bindings and the other the specialised versions of those let-bindings whichhave been created so far. It returns a triple containing an equivalent expressionwhich satis�es the unboxing restriction, a modi�ed environment of specialisedversions, and a set of specialised data types required.T :: Exp ! BEnv ! SEnv ! (Exp; Senv; TSet)� 2 BEnv :: Name ! (Type; Exp)� 2 SEnv :: Name ! ((Name; [Type]) ! (Type; Exp))
 2 TSet :: f(Name; [Type])g

The environments are partial maps with suitable domain and lookup func-tions. BEnv simply maps a variable name to its type and unrestricted expres-sion. SEnv is a nested environment, mapping a variable name to an environmentcontaining the specialised versions for that variable. The domain of this spe-cialised environment is the variable name and the specialising types (a vectorcontaining unboxed types and *s), which uniquely identi�es the specialised ver-sion. We use a subscript notation xv to refer to the specialised version. Wealso use the notation fg for the empty environment and �[x! v] to extend (ormodify) an environment � with the mapping x! v.TSet is the set of specialised data types required by the expression. Thepartial evaluator does not explicitly specify the data type transformation |it just collects the data types required. These are subsequently given to thecode generator which creates the required constructor functions directly fromthe data type speci�cations.The partial evaluator is de�ned in Figure 2. The equations for simple vari-ables (1), �-abstraction (2), application (3), monomorphic let-binding (4), andcase (8) are quite straightforward.For a polymorphic let-binding (equation 5) let x :� = e� in e the body eis evaluated using the following environments: � extended with the binding forx; and � extended with an empty set of specialised bindings for x. (We assumethat all bound variables have unique names.) The set of specialised bindingsfor x, returned in the modi�ed specialisation environment �1, are then let-bound and returned. For simplicity, we assume that the target form of the corelanguage allows the set of specialised bindings to be bound in a single let.A polymorphic application (equation 6) is replaced with an application ofan appropriately specialised version of the binding. The auxiliary functionspectys (Figure 3) determines:v: the unboxed types on which the binding must be specialised. A * typeindicates that the specialised version is still polymorphic in that typeparameter.�: the boxed types the specialised version remains polymorphic in. Thesecorrespond to the * types in v.The specialised version xv is then applied to the remaining boxed type argu-ments � and returned. The auxiliary function specfn (Figure 3) is used toextend the environment � with a newly created specialisation (if it does al-ready contain it). The original binding is extracted from � and the specialisingtypes substituted for the corresponding type variable. (The usual alpha sub-stitution to avoid capture is assumed.) The partial evaluator is then appliedto the specialised body, e0, in an environment, �0, extended with the specialisa-tion being created. This ensures termination in the presence of recursion sincerecursive references will assume that the required specialisation already exists(see Section 3.1).Finally, a constructor application (equation 7) is replaced with an applica-tion of an appropriately specialised version of the constructor and returned witha speci�cation of the specialised data type required. The global environment �maps constructors to their data type.

T [[x]] � � = ([[x]]; �; fg) (1)T [[� x :�:e]] � � (2)= let (e0; �1;
1) = T e � �in ([[� x :�:e0]]; �1;
1)T [[e x]] � � (3)= let (e0; �1;
1) = T e � �in ([[e0 x]]; �1;
1)T [[let x :� = e1 in e2]] � � j e1 6� ��:e ; � 2MonoType (4)= let (e01; �1;
1) = T e1 � �(e02; �2;
2) = T e2 � �1in ([[let x :� = e01 in e02]]; �2;
1 [
2)T [[let x :� = e� in e]] � � j e� � ��:e ; � 2 PolyType (5)= let (e0; �1;
1) = T e �[x! (�; e�)] �[x! fg]in ([[let (�1 x) in e0]]; �1[x!?];
1)T [[x f�g]] � � (6)= let (v; �) = spectys �incase xv 2 dom (� x) ofTrue ! ([[xv f�g]]; �; fg)False ! let (�1;
1) = specfn x v � �in ([[xv f�g]]; �1;
1)T [[C f�g x]] � � (7)= let (v; �) = spectys �� = � Cin ([[Cv f�g x]]; �; f�vg)T [[case e of fCj xj :�j ! ejgmj=1]] � � (8)= let (e0; �0;
0) = T e � �(e01; �1;
1) = T e1 � �0� � �(e0n; �m;
m) = T en � �m�1in ([[case e0 of fCj xj :�j ! e0jgmj=1]]; �m;
0 [� � � [
m)Figure 2: The partial evaluator T

spectys �= let v = [v j � �; v = if � 2 BoxedType then � else �]� = [� j � � ; � 2 BoxedType]in (v; �)specfn x v � �= let (8�:�;��:e) = � xn = length �e0 = e [(if vi 6� � then vi else �i)=�i]ni=1(e00; �1;
1) = T e0 � �0�0 = �[x! (� x)[xv ! (�; e�)]]�� = [�i j i [1::n]; vi � �]e� = ���:e00� 0 = � [(if vi 6� � then vi else �i)=�i]ni=1� = 8��:� 0in (�1;
1)Figure 3: Specialisation functions4 Practical ConsiderationsThe specialiser described above interacts with a number of other language fea-tures including: overloading, and separate module compilation. We addressthese issues and discuss the process of introducing unboxing below.4.1 Overloaded functionsIn Haskell many primitive functions, such as comparison and addition, areoverloaded. This allows these operations to be applied to a number of di�erenttypes. For example, addition belongs to the class Numclass Num a where(+) :: a -> a -> a...which has instances for types such as Int, Integer, Float and Complex. Eachof these instances provides a de�nition of the function which is called when itis used at that type. For example:instance Num Int where(+) x y = plusInt x y...Since an overloaded function can now be applied to an unboxed type (it wasprohibited by the unboxing restriction (�) before), it makes sense to introducenew instances declarations for these unboxed types. For example:

instance Num Int# where(+) x y = plusInt# x y...This allows us to manipulate unboxed values in the same way as we manipu-late their boxed counterparts, greatly reducing the code modi�cations requiredwhen introducing unboxing. It also overloads the literals, allowing us to write1 instead of 1#, where an Int# is required.4.2 Character I/OIn Haskell I/O is often a major performance bottleneck. One reason for this isthat the I/O operations read and write strings i.e. [Char]. Given the ability tomanipulate unboxed values directly, it would be nice to extend the I/O systemto provide the ability to read and write strings containing unboxed charactersi.e. [Char#], as well. One approach would be to introduce a parallel set of I/Ooperations, such as appendChan#, which read and write [Char#]. This wouldgive the programmer the ability to choose unboxed I/O if desired.Unfortunately these unboxed I/O operations must be used explicitly (sincethey require the # in the name). We are currently exploring an alternativeapproach which overloads the original I/O operations, enabling them to outputlists of Char or lists of Char#.4.3 Separate module compilationIn a language with separate module compilation type information
ows fromthe de�ning module to the importing module. However, specialisation requiresinformation about the use of a function to
ow from the importing module backto the de�ning module. For example, consider the module structure:module Tree (Tree(..), maptree) wheredata Tree k a = Leaf k a | Branch k (Tree a) (Tree a)maptree :: (a->b) -> Tree k a -> Tree k bmaptree f t = ...module Use whereimport Tree (Tree, maptree)unbox_inttree :: Tree Int# Int -> Tree Int# Int#unbox_inttree inttree = maptree int_to_int# inttreeIn this example, module Use requires the maptree_*_Int#_Int# version of theimported function maptree. However, since Use imports Tree, Tree must becompiled before Use. When we compile Tree there is no requirement to createthe maptree_*_Int#_Int# version of maptree since we have no informationabout module Use. When we subsequently compile Use we are faced with theproblem that the required version of maptree has not been created.One simple solution is to place this responsibility on the programmer: re-quiring them to request any specialised versions, which are not automaticallygenerated, using pragmas. For example:{-# SPECIALISE maptree :: (Int->Int#) -> Tree Int# Int-> Tree Int# Int# #-}

The SPECIALISE pragma is converted to the corresponding second-order typeapplication: maptree fInt Int# Int#g. This is then processed by the partialevaluator and the specialised versions maptree_*_Int#_Int# produced. Thespecialised versions of the Tree data type: Tree_Int#_* and Tree_Int#_Int#,will also be created.The existence of all specialised versions created is recorded in the mod-ule's interface. If any specialised versions required by an importing module arenot in the interface an error message is generated and the programmer has toadd the appropriate specialise pragma to the declaring module and recompile.Unfortunately, the amount of programmer intervention and recompilation re-quired is very unsatisfactory. To reduce these overheads, we plan to develop ascheme which automatically propagates the SPECIALISE pragmas back to theappropriate source modules and only recompiles once.4.4 Introducing unboxingIn a lazy language, the programmer has to be careful when introducing unbox-ing, since an unboxed value is also strict. It is only safe to introduce unboxingwhere the implied strictness does not cause the program to bottom. This isnormally not a problem, since the programmer is usually aware of the strictnessimplications.We suggest that the programmer ensure that any intended unboxing ismade explicit by introducing data type declarations with unboxed componentsor explicit type signatures for unboxing polymorphic data types. For example,the intention to unbox the list of prime numbers could be speci�ed using thetype signature:primes :: [Int#]After introducing this unboxing signature type errors may occur where theunboxed data structure is created and used.4 In modifying the code to correctthese type errors the programmer has to introduce explicit unboxing/boxingcoercions at the \boundaries" of the unboxed values. We believe this is a \goodthing", since the programmer is forced to identify these boundaries and considerthe strictness implications. If the unboxing does cause the program to bottomthe boundaries can be moved or the unboxing modi�cations abandoned.It remains to be seen what the practical overheads of introducing this formof explicit unboxing are. However, we believe that when performance is an issue,and resources are allocated to improving it5, it is essential that the programmerhas access to language features, such as this, which enable them to optimisethe execution.5 Preliminary ResultsWe have not yet completed the implementation of the specialiser. However,we do have some preliminary results for programs in which we have introduced4These boundary type errors will not occur where the unboxed values are created/usedby overloaded functions which have instances for the unboxed type (see Section 4.1).5We would also avocate that such improvements are carefully directed at the actual hot-spots identi�ed by an execution pro�ler [18].

Program Brief Description Unboxing Modi�cationsclausify converts logical formula to theirclausal form [17,18] unbox the character symbolslife list based implementation ofConway's Life algorithm [2] unbox the integers used in theboard representationpseudoknot
oating point intensive molecu-lar biology application [5] unbox all integers and
oatingpoint numbers#lines #lines modi�ed/addedProgram code Unbox Boundary Specialise Overload Speedupclausify 112 1 3 25 3 1.25xlife 75 1 1 42 9 1.06xpseudoknot 3146 3 1 10 23666 4.42xFigure 4: Preliminary resultssome unboxing and performed the necessary specialisation by hand. These aresummarised in Figure 4. The Unbox column reports the modi�cations requiredto introduce the unboxing while the Boundary column reports the modi�cationsrequired to coerce data at the boundaries of the unboxing (see Section 4.4). TheSpecialise and Overload columns report the modi�cations which we expect tobe automated (either by specialisation or as a result of extending the classoperations to the unboxed types). The small number of changes required tointroduce the unboxing is very encouraging.6 Related WorkOther treatments of polymorphism in the presence of unboxed values fall intotwo categories. The �rst automatically introduces coercions which box/unboxvalues when they are passed to/from a polymorphic function [6,10,13,20]. Thecosts of creating and manipulating boxed values is only incurred when poly-morphic code is used. This has the unfortunate consequence that it penalisesthe performance of polymorphic code, since unboxing is not possible.The second approach compiles each polymorphic function in such a waythat it can manipulate unboxed values. This is done by passing enough addi-tional information at runtime to describe the representation of the values beingmanipulated [4,14]. This scheme also penalises the performance of polymor-phic code since it must interpret the representation information. It has theunfortunate property that the performance penalty is paid even when the codeis manipulating boxed values.In contrast, our scheme generates specialised versions of polymorphic func-tions and data types which directly manipulate unboxed values. The perfor-mance of polymorphic code is not penalised since the polymorphism is removedprecisely where it would impose a performance penalty. It also enables arbi-trary data types to contain unboxed components. Traded o� against this is the6The large number of modi�cations for pseudoknotwere due to the amount of literal data(about 70% of the program) which had to by unboxed by added #s.

resulting code expansion and the di�culties associated with separate modulecompilation.In a strict language, such as ML, both boxed and unboxed values have thesame semantics. Consequently, the approaches to unboxing in strict languagesfocus on automatically unboxing values, because doing so is always possiblewhen the type is known at compile time [4,6,10,14,20]. In a non-strict language,such as Haskell, unboxed values can only be introduced if we can be sure thatthe implied strictness will not change the behaviour of the program. Ratherthan relying on the often poor results of a strictness analyser, we ask theprogrammer to indicate where the unboxing is to be introduced. A similarapproach is taken by Nocker & Smetsers [13]. They require the programmer tointroduce explicit strictness annotations which they then use to safely unboxedvalues.The use of partial evaluation to produce specialised code is not new. Hall [3]uses partial evaluation of special type arguments to create specialised versionswhich produce and consume an optimised list representation, while both Au-gustsson [1] and Jones [9] use partial evaluation to eliminate the overheadsof overloading: creating versions which are specialised on their dictionaryarguments.7 Jones [9] also proposes an overloaded implementation of datatypes which cause the specialisation of overloading to specialises the data typesas well. Unfortunately this requires a more powerful system of type classes.7 Future WorkOur immediate goal is to complete the implementation of the specialiser, anddevelop a scheme for automatically propagating information about the requiredspecialisations back to the declaring module. This should enable us to exper-iment with the unboxing of large programs by examining the practicalities ofintroducing the unboxing and the performance improvements which result.We also plan to experiment with monomorphisation in general. By modify-ing the de�nition of spectys (Figure 3) the partial evaluator can be directed tointroduce an arbitrary degree of monomorphisation. For example, if we de�nespectys � = (� ; []) we get a completelymonomorphic program. Our intentionis to explore the practical bene�ts of optimisations which require monomorphiccode to produce good results.Bibliography[1] L Augustsson, \Implementing Haskell overloading," Conference on Func-tional ProgrammingLanguages and Computer Architecture, Copenhagen,Denmark, June 1993, 65{73.[2] M Gardner, \Wheels, Life and Other Mathematical Amusements," W.H.Freeman and Company, New York, 1993.7Within our compiler we also use our partial evaluator to eliminate overloading by spe-cialising on all overloaded type arguments, in addition to any unboxed type arguments. Caremust be taken to ensure that the dictionary argument(s), introduced by the translation intothe Core language, are also eliminated.

[3] CV Hall, \Using Hindley-Milner type inference to optimise list repre-sentation," Conference on Lisp and Functional Programming, Orlando,Florida, June 1994.[4] R Harper & G Morrisett, \Compiling Polymorphism Using IntensionalType Analysis," Technical Report CMU-CS-94-185, School of ComputerScience, Carnegie Mellon University, Sept 1994.[5] PH Hartel et al., \Pseudoknot: a
oat-intensive benchmark for functionalcompilers," in Proc Sixth International Workshop on the Implementationof Functional Languages, Norwich, JRW Glauert, ed., University of EastAnglia, Norwich, Sept 1994.[6] F Henglein & J Jorgensen, \Formally optimal boxing," 21st ACM Sym-posium on Principles of Programming Languages, Portland, Oregon, Jan1994, 213{226.[7] P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, JFasel, M Guzman, K Hammond, J Hughes, T Johnsson, R Kieburtz, RSNikhil, W Partain & J Peterson, \Report on the functional programminglanguage Haskell, Version 1.2,"ACM SIGPLAN Notices 27(5), May 1992.[8] John Hughes, \Why functional programming matters," The ComputerJournal 32(2), April 1989.[9] MP Jones, \Partial evaluation for dictionary-free overloading," ResearchReport YALE/DCS/RR-959, Dept of Computer Science, Yale University,April 1993.[10] X Leroy, \Unboxed objects and polymorphic typing," 19th ACM Sympo-sium on Principles of Programming Languages, Albuquerque, New Mex-ico, Jan 1992, 177{188.[11] JC Mitchell & R Harper, \On the type structure of Standard ML," ACMTransactions on Programming Languages and Systems 15(2), April 1993,211{252.[12] RMorrison, A Dearle, RCH Conner & AL Brown, \An ad-hoc approach tothe implementation of polymorphism," ACM Transactions on Program-ming Languages and Systems 13(3), July 1991, 342{371.[13] E Nocker & S Smetsers, \Partially strict non-recursive data types," Jour-nal of Functional Programming 3(2), April 1993, 191{217.[14] A Ohori & T Takamizawa, \A polymorphic unboxed calculus and e�cientcompilation of ML," Research Institute for Mathematical Sciences, KyotoUniversity, Japan, 1994.[15] SL Peyton Jones, CV Hall, K Hammond, WD Partain & PL Wadler,\The Glasgow Haskell compiler: a technical overview," Joint Frameworkfor Information Technology (JFIT) Technical Conference Digest, Keele,March 1993, 249{257.[16] SL Peyton Jones & J Launchbury, \Unboxed values as �rst class citi-zens," Conference on Functional Programming Languages and ComputerArchitecture, Cambridge, Massachusetts, Sept 1991.[17] C Runciman & DWakeling, \Heap pro�ling of lazy functional programs,"Journal of Functional Programming 3(2), April 1993, 217{245.

[18] PM Sansom, \Execution pro�ling for non-strict functional languages,"PhD thesis, Research Report FP-1994-09, Dept of Computing Science,University of Glasgow, Sept 1994.[19] PM Sansom & SL Peyton Jones, \Time and space pro�ling for non-strict,higher-order functional languages," 22nd ACM Symposium on Principlesof Programming Languages, San Francisco, California, Jan 1995.[20] PJ Thiemann, \Unboxed values and polymorphic typing revisited," inProc Sixth International Workshop on the Implementation of FunctionalLanguages, Norwich, JRW Glauert, ed., University of East Anglia, Nor-wich, Sept 1994.

