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Introduction

Tetris is a computer game which has obsessed many computer users and at-
tracted much attention, despite the simplicity of its rules. This paper addresses
the question: “can you ‘win’ the game Tetris?”

Designed by Soviet mathematician Alexey Pazhitnov in the late eighties
and imported to the United States by Spectrum Holobyte, Tetris won a record
number of software awards in 1989 [4]. Versions of Tetris are sold for most
personal computers. There are Tetris arcade games, Tetris Nintendo cartridges,
and hand-held Tetris games; Tetris has been played on machines ranging from
mainframes to calculators. The game’s success has prompted the invention of
several similar games, including Hextris, Welltris, and Wordtris.

Although mathematicians have spent many hours “studying” Tetris, sur-
prisingly little is known about the mathematical properties of the game. Much
research has been done on the subject of covering rectangles with sets of poly-
ominoes [2,3,5,6]; Tetris adds a new twist to this familiar problem.

The game takes place on a grid or “board” ten units wide and twenty units
tall. When the game starts, the board is empty. Then tetrominoes, groups
of four connected “cells”, each cell covering exactly one grid square, appear
at the top of the board and fall row by row toward the bottom of the board
(see Figure 1). When a tetromino reaches the bottom or a point where it
can fall no further without two or more cells overlapping, it remains in that
spot and another tetromino (randomly selected from the set of seven possible
tetrominoes) appears at the top of the board. The player uses rotations and
horizontal translations to orient the tetrominoes as they fall, attempting to cover
rows of the board with cells. When a row is covered, the cells on that row are
removed from the board and the cells of the rows above drop down to fill the

Figure 1: The Tetrominoes
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Figure 2: Z-Tetrominoes

gap. Figure 1 shows how this can open up gaps which had been buried, giving
the player a second chance to fill these spaces. If the player does not fill the rows
fast enough, eventually there will be no room on the board to place tetrominoes
and the game will end.

Given just these instructions and a string of randomly selected tetrominoes
falling very slowly, one can pack the tetrominoes densely enough to keep the
game going for a long time. Tetris is interesting because players cannot correct
their mistakes and because the rate at which pieces fall increases as the game
progresses, forcing the player to make more mistakes. Would a perfect player
be able to play Tetris indefinitely? Could one program a computer to play
perfectly?

In his master’s thesis [1], titled “Can You Win at Tetris?”, John Brzustowski
attempts to answer this question. Defining a “winning strategy” to be one that
allows the player to continue a Tetris game indefinitely, he describes winning
strategies for some very simple Tetris games, in which the same one, two, or
three tetrominoes are presented to the player over and over. He also describes
an algorithm the computer could follow to bring any Tetris game to an end.

Brzustowski proved that there is no winning strategy for Tetris if the com-
puter is is aware of and reacting to your moves. This paper proves the
slightly stronger result that the computer can win without being aware of the
player’s moves. This is done by producing a sequence of tetrominoes that will
fill up the board no matter how the player places them.

A Very Special Tetris Game

We identify a Tetris game by the infinite string of pieces that appear on the
screen during the game. Our first task is to prove that there is at least one
Tetris game that can’t be beaten. Since the odds of one particular Tetris game
occurring in our lifetime are near zero, this may not seem like a useful result.
However, we can extend this result to show that almost all Tetris games must
eventually end.

Definition. A left handed Z-tetromino is the Z-shaped tetromino shown on
the left in Figure 2. The mirror image of a left-handed Z-tetromino (center)
18 called a right handed Z-tetromino. A horizontal Z-tetromino is one that is
oriented so that its cells lie in three columns of the board, while the cells of a
vertical Z-tetromino (right) lie in only two columns of the board. (Note that a
Tetris player can easily convert horizontal tetrominoes to vertical ones, but can



never turn left handed Z’s into right handed ones.)

We will show that a Tetris player presented with a sequence of Z-tetrominoes
that are alternately right and left handed must eventually leave unfillable gaps
in the rows of cells on the board. Such gaps prevent the cells on the rows they
occupy from being removed from the board; an accumulation of gaps will fill
the board and end the game.

Theorem 1 The Tetris game consisting of only Z-tetrominoes alternating ori-
entation will always end before 70,000 tetrominoes have been played.

First we show that certain placements of Z-tetrominoes can only occur a
finite number of times without ending the game. For instance, horizontal Z’s
contribute two cells to the column containing their center and only one cell to
each of the columns on either side. This causes a “bump” to form in the center
column, which the player can never fully smooth out. Similarly, if we number the
columns of the board from one to ten starting with the leftmost column, vertical
Z-tetrominoes placed with their leftmost cells in an even numbered column will
cause unsmoothable bumps'. We can compute how many of these bumps can
form before inequities in column height bring about the end of the game.

Lemma In a Tetris game in which only Z-tetrominoes are presented to the
player, no more than 120 Z-tetrominoes can be placed either vertically with their
leftmost cells in an even-numbered column or horizontally in any column without
losing.

Proof: Number the columns of the Tetris board from one to ten. Let b;
be the total number of cells placed in the i*"* column, let h; be the number of
horizontal Z-tetrominoes that contribute cells to the (i — 1)**,4*", and (i 4+ 1)"*
columns, and let v; be the number of vertical Z-tetrominoes dropped in the i*"
and (i 4+ 1)% columns. Since all the tetrominoes in our game are Z’s,

b; =2v;—1 + 2v; + hj—1 +2h; + hiy1.

If ¢; denotes the number of cells in column i of the board, deleting a row
leaves the difference ¢; — ¢; fixed for any 4, 5. Hence ¢; — ¢; = b; — b;. Since the
difference in the heights of the highest cells in columns ¢ and j must be less than
or equal to the height of the board, until the game is lost |b; —b;| = |c; —¢;| < 20;
we cannot add too many cells to column ¢ without also adding some to j.

Since the tetrominoes must remain within the confines of the board, we know
that hy = h1g = 0, so by = 2vy + hy; similarly, b;g = 2v9 + hg. Thus,

|b2—b1|:2’02+h2+h3 SQO (*)

Similarly, 2vg + hg + hg < 20.
In general,

biv1 —bi = 2v41 — 2v,21 + hiyo + hix1 — hy — hi1 < 20,

IThese statements are equivalent to Brzustowski’s Lemma 2 [1].



SO 20,41 + hiy1 + hivr2 < 20+ 20,1 + h; + h;—1. Letting + = 3 and applying
equation (x), we get:
2’04 + h4 + h5 S 40.

Similarly, 2vg + hg + hr < 40.

We conclude that Z}il h; + Z?zl v9; < 120.0

From the lemma we see that in the Tetris game under consideration all play-
ers eventually reach a point beyond which they must place all the tetrominoes
vertically in five “lanes”, each lane two columns wide with odd numbered left-
most column (Figure 3). We now use the fact that the string of tetrominoes we
are considering alternates orientation to prove that even placing the Z’s in lanes
results in the creation of undeletable rows and so brings an end to the game.

Suppose the topmost tetrominoes on the board are arranged in five non-
empty lanes, each lane two columns wide. Consider the orientation of the top
Z-tetromino in each lane. Since there are an odd number of lanes, there must
be a majority of either right handed or left handed Z’s on top.

Without loss of generality, we may assume that the majority of topmost Z’s
are right handed. Then, until a left handed Z is placed in a right handed lane,
the total height of the left handed lanes will grow faster than the total height
of the right handed lanes. Eventually (after at most 240 Z’s are dropped) our
player will be forced to place a left handed Z in a right handed lane or lose the
game. When this occurs, a hole two cells deep and one cell wide forms in the
rightmost row of the lane (See Figure 3).

Unless the player places a tetromino vertically between lanes or horizontally,
this hole can never be filled; the two rows of cells containing the hole can never
be removed from the board. When there are twenty rows on the board whose
contents can’t be deleted, the game will end.

Since a similar argument holds when a majority of the topmost Z’s are left
handed, the player must form such holes repeatedly. It is impossible to have
more than 50 (ten per lane) holes like this on the board without ending the
game.

We know from the lemma that a player can make at most 120 “exceptional”
tetromino placements. Since each exceptional placement can fill at most two
holes, the game might continue until 120 - 2 + 50 = 290 holes are formed. The
player cannot place more than 240 Z’s without forming a hole, so the game must
end after at most 290 - 240 = 69, 600 pieces are played.

This concludes the proof of Theorem 1: in a Tetris game in which only Z-
tetrominoes of alternating orientation appear, any player will lose after placing
at most 69,600 tetrominoes.

Other Tetris Games

We now have a loose upper bound on the amount of time a player can
play one specific Tetris game. It would be nice to show that all Tetris games
are necessarily finite, but this is not possible. A game in which only square



Figure 3: Stacking Z-Tetrominoes



tetrominoes (four cells arranged in a square) are dropped can go on forever.
However, our methods do apply to most Tetris games.

Theorem 2 Almost all Tetris games must eventually end.

Proof: A randomly generated infinite string of tetrominoes will, with proba-
bility one, contain any given finite sequence of tetrominoes. Hence, we need only
exhibit a finite string of tetrominoes that will force a loss to prove that almost
all Tetris games will end. This string of tetrominoes will, of course, consist of
alternating left- and right-handed Z-tetrominoes.

The methods of the previous proof still apply here, but we no longer know
the initial condition of the board. Suppose our string of Z-tetrominoes occurs
when there are a; cells in column i; let b; equal the number of cells added to
column ¢ beyond that point in the game, and let d; = b; +a; be the total number
of cells placed in column ¢. For any ¢ and j,

di—dj:ai—aj+bi—bj§20.

Thus b; — b; <20+ a; — a;, and since a; — a; < 20, we get b; — b; < 40 for any
7 and j.

The above inequalities are very similar to those encountered in the proof of
the lemma. In fact, if we go through the lemma’s proof replacing |b;11 —b;| < 20
with |b; 11 —b;| < 40, we can conclude that in a Tetris game with arbitrary initial
conditions the bound on the number of exceptional placements is doubled (from
120 to 240). Using the techniques developed in the proof of Theorem 1, we
conclude: whenever a string of (240 - 2 + 50) - 240 = 127,200 Z-tetrominoes of
alternating orientations occurs in a Tetris game, the game must end.O

We see that it is easy to lose a Tetris game, although it may take a long
time.

Unanswered Questions

The bounds found in this paper are very loose; the number of alternating
Z-tetrominoes needed to bring a Tetris game to a close may be closer to 1,000
than to 100,000. A more careful estimate of how many tetrominoes can be
played between the formation of “holes” in lanes, or of the number of holes
filled by each exceptional placement, would almost certainly reduce the bounds
presented here.

Information on variants of the game Tetris and on Tetris games using the
other four tetrominoes can be found in [1], but many questions remain unan-
swered. What sequences of tetrominoes will force a player to lose? What is the
probability that one of these sequences will occur in the first n pieces dropped
in a Tetris game? Is there an optimal strategy for Tetris? What if pentominoes
are used in place of tetrominoes? I suspect that some of these problems will
have simple solutions, while others may never be solved.
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