
How to Lose at TetrisHEIDI BURGIELIntroductionTetris is a computer game which has obsessed many computer users and at-tracted much attention, despite the simplicity of its rules. This paper addressesthe question: \can you `win' the game Tetris?"Designed by Soviet mathematician Alexey Pazhitnov in the late eightiesand imported to the United States by Spectrum Holobyte, Tetris won a recordnumber of software awards in 1989 [4]. Versions of Tetris are sold for mostpersonal computers. There are Tetris arcade games, Tetris Nintendo cartridges,and hand-held Tetris games; Tetris has been played on machines ranging frommainframes to calculators. The game's success has prompted the invention ofseveral similar games, including Hextris, Welltris, and Wordtris.Although mathematicians have spent many hours \studying" Tetris, sur-prisingly little is known about the mathematical properties of the game. Muchresearch has been done on the subject of covering rectangles with sets of poly-ominoes [2,3,5,6]; Tetris adds a new twist to this familiar problem.The game takes place on a grid or \board" ten units wide and twenty unitstall. When the game starts, the board is empty. Then tetrominoes, groupsof four connected \cells", each cell covering exactly one grid square, appearat the top of the board and fall row by row toward the bottom of the board(see Figure 1). When a tetromino reaches the bottom or a point where itcan fall no further without two or more cells overlapping, it remains in thatspot and another tetromino (randomly selected from the set of seven possibletetrominoes) appears at the top of the board. The player uses rotations andhorizontal translations to orient the tetrominoes as they fall, attempting to coverrows of the board with cells. When a row is covered, the cells on that row areremoved from the board and the cells of the rows above drop down to �ll the

Figure 1: The Tetrominoes1



Figure 2: Z-Tetrominoesgap. Figure 1 shows how this can open up gaps which had been buried, givingthe player a second chance to �ll these spaces. If the player does not �ll the rowsfast enough, eventually there will be no room on the board to place tetrominoesand the game will end.Given just these instructions and a string of randomly selected tetrominoesfalling very slowly, one can pack the tetrominoes densely enough to keep thegame going for a long time. Tetris is interesting because players cannot correcttheir mistakes and because the rate at which pieces fall increases as the gameprogresses, forcing the player to make more mistakes. Would a perfect playerbe able to play Tetris inde�nitely? Could one program a computer to playperfectly?In his master's thesis [1], titled \Can You Win at Tetris?", John Brzustowskiattempts to answer this question. De�ning a \winning strategy" to be one thatallows the player to continue a Tetris game inde�nitely, he describes winningstrategies for some very simple Tetris games, in which the same one, two, orthree tetrominoes are presented to the player over and over. He also describesan algorithm the computer could follow to bring any Tetris game to an end.Brzustowski proved that there is no winning strategy for Tetris if the com-puter is is aware of and reacting to your moves. This paper proves theslightly stronger result that the computer can win without being aware of theplayer's moves. This is done by producing a sequence of tetrominoes that will�ll up the board no matter how the player places them.A Very Special Tetris GameWe identify a Tetris game by the in�nite string of pieces that appear on thescreen during the game. Our �rst task is to prove that there is at least oneTetris game that can't be beaten. Since the odds of one particular Tetris gameoccurring in our lifetime are near zero, this may not seem like a useful result.However, we can extend this result to show that almost all Tetris games musteventually end.De�nition. A left handed Z-tetromino is the Z-shaped tetromino shown onthe left in Figure 2. The mirror image of a left-handed Z-tetromino (center)is called a right handed Z-tetromino. A horizontal Z-tetromino is one that isoriented so that its cells lie in three columns of the board, while the cells of avertical Z-tetromino (right) lie in only two columns of the board. (Note that aTetris player can easily convert horizontal tetrominoes to vertical ones, but can2



never turn left handed Z's into right handed ones.)We will show that a Tetris player presented with a sequence of Z-tetrominoesthat are alternately right and left handed must eventually leave un�llable gapsin the rows of cells on the board. Such gaps prevent the cells on the rows theyoccupy from being removed from the board; an accumulation of gaps will �llthe board and end the game.Theorem 1 The Tetris game consisting of only Z-tetrominoes alternating ori-entation will always end before 70,000 tetrominoes have been played.First we show that certain placements of Z-tetrominoes can only occur a�nite number of times without ending the game. For instance, horizontal Z'scontribute two cells to the column containing their center and only one cell toeach of the columns on either side. This causes a \bump" to form in the centercolumn, which the player can never fully smooth out. Similarly, if we number thecolumns of the board from one to ten starting with the leftmost column, verticalZ-tetrominoes placed with their leftmost cells in an even numbered column willcause unsmoothable bumps1. We can compute how many of these bumps canform before inequities in column height bring about the end of the game.Lemma In a Tetris game in which only Z-tetrominoes are presented to theplayer, no more than 120 Z-tetrominoes can be placed either vertically with theirleftmost cells in an even-numbered column or horizontally in any column withoutlosing.Proof: Number the columns of the Tetris board from one to ten. Let bibe the total number of cells placed in the ith column, let hi be the number ofhorizontal Z-tetrominoes that contribute cells to the (i� 1)st; ith; and (i+ 1)stcolumns, and let vi be the number of vertical Z-tetrominoes dropped in the ithand (i+ 1)st columns. Since all the tetrominoes in our game are Z's,bi = 2vi�1 + 2vi + hi�1 + 2hi + hi+1:If ci denotes the number of cells in column i of the board, deleting a rowleaves the di�erence ci � cj �xed for any i; j. Hence ci � cj = bi � bj . Since thedi�erence in the heights of the highest cells in columns i and j must be less thanor equal to the height of the board, until the game is lost jbi�bj j = jci�cj j � 20;we cannot add too many cells to column i without also adding some to j.Since the tetrominoes must remain within the con�nes of the board, we knowthat h1 = h10 = 0, so b1 = 2v1 + h2; similarly, b10 = 2v9 + h9. Thus,jb2 � b1j = 2v2 + h2 + h3 � 20: (�)Similarly, 2v8 + h8 + h9 � 20.In general,bi+1 � bi = 2vi+1 � 2vi�1 + hi+2 + hi+1 � hi � hi�1 � 20;1These statements are equivalent to Brzustowski's Lemma 2 [1].3



so 2vi+1 + hi+1 + hi+2 � 20 + 2vi�1 + hi + hi�1. Letting i = 3 and applyingequation (�), we get: 2v4 + h4 + h5 � 40:Similarly, 2v6 + h6 + h7 � 40.We conclude that P10i=1 hi +P5j=1 v2j � 120:2From the lemma we see that in the Tetris game under consideration all play-ers eventually reach a point beyond which they must place all the tetrominoesvertically in �ve \lanes", each lane two columns wide with odd numbered left-most column (Figure 3). We now use the fact that the string of tetrominoes weare considering alternates orientation to prove that even placing the Z's in lanesresults in the creation of undeletable rows and so brings an end to the game.Suppose the topmost tetrominoes on the board are arranged in �ve non-empty lanes, each lane two columns wide. Consider the orientation of the topZ-tetromino in each lane. Since there are an odd number of lanes, there mustbe a majority of either right handed or left handed Z's on top.Without loss of generality, we may assume that the majority of topmost Z'sare right handed. Then, until a left handed Z is placed in a right handed lane,the total height of the left handed lanes will grow faster than the total heightof the right handed lanes. Eventually (after at most 240 Z's are dropped) ourplayer will be forced to place a left handed Z in a right handed lane or lose thegame. When this occurs, a hole two cells deep and one cell wide forms in therightmost row of the lane (See Figure 3).Unless the player places a tetromino vertically between lanes or horizontally,this hole can never be �lled; the two rows of cells containing the hole can neverbe removed from the board. When there are twenty rows on the board whosecontents can't be deleted, the game will end.Since a similar argument holds when a majority of the topmost Z's are lefthanded, the player must form such holes repeatedly. It is impossible to havemore than 50 (ten per lane) holes like this on the board without ending thegame.We know from the lemma that a player can make at most 120 \exceptional"tetromino placements. Since each exceptional placement can �ll at most twoholes, the game might continue until 120 � 2 + 50 = 290 holes are formed. Theplayer cannot place more than 240 Z's without forming a hole, so the game mustend after at most 290 � 240 = 69; 600 pieces are played.This concludes the proof of Theorem 1: in a Tetris game in which only Z-tetrominoes of alternating orientation appear, any player will lose after placingat most 69,600 tetrominoes.Other Tetris GamesWe now have a loose upper bound on the amount of time a player canplay one speci�c Tetris game. It would be nice to show that all Tetris gamesare necessarily �nite, but this is not possible. A game in which only square4



Figure 3: Stacking Z-Tetrominoes5



tetrominoes (four cells arranged in a square) are dropped can go on forever.However, our methods do apply to most Tetris games.Theorem 2 Almost all Tetris games must eventually end.Proof: A randomly generated in�nite string of tetrominoes will, with proba-bility one, contain any given �nite sequence of tetrominoes. Hence, we need onlyexhibit a �nite string of tetrominoes that will force a loss to prove that almostall Tetris games will end. This string of tetrominoes will, of course, consist ofalternating left- and right-handed Z-tetrominoes.The methods of the previous proof still apply here, but we no longer knowthe initial condition of the board. Suppose our string of Z-tetrominoes occurswhen there are ai cells in column i; let bi equal the number of cells added tocolumn i beyond that point in the game, and let di = bi+ai be the total numberof cells placed in column i. For any i and j,di � dj = ai � aj + bi � bj � 20:Thus bi � bj � 20+ aj � ai; and since aj � ai � 20, we get bi � bj � 40 for anyi and j.The above inequalities are very similar to those encountered in the proof ofthe lemma. In fact, if we go through the lemma's proof replacing jbi+1�bij � 20with jbi+1�bij � 40, we can conclude that in a Tetris game with arbitrary initialconditions the bound on the number of exceptional placements is doubled (from120 to 240). Using the techniques developed in the proof of Theorem 1, weconclude: whenever a string of (240 � 2 + 50) � 240 = 127; 200 Z-tetrominoes ofalternating orientations occurs in a Tetris game, the game must end.2We see that it is easy to lose a Tetris game, although it may take a longtime.Unanswered QuestionsThe bounds found in this paper are very loose; the number of alternatingZ-tetrominoes needed to bring a Tetris game to a close may be closer to 1,000than to 100,000. A more careful estimate of how many tetrominoes can beplayed between the formation of \holes" in lanes, or of the number of holes�lled by each exceptional placement, would almost certainly reduce the boundspresented here.Information on variants of the game Tetris and on Tetris games using theother four tetrominoes can be found in [1], but many questions remain unan-swered. What sequences of tetrominoes will force a player to lose? What is theprobability that one of these sequences will occur in the �rst n pieces droppedin a Tetris game? Is there an optimal strategy for Tetris? What if pentominoesare used in place of tetrominoes? I suspect that some of these problems willhave simple solutions, while others may never be solved.6
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