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Abstract. We show that the orientation and location of the separating hyperplane
for 2-class supervised pattern classification obtained by the Support Vector Machine
(SVM) proposed by Vapnik and his colleagues, is equivalent to the solution obtained
by Fisher’s Linear Discriminant on the set of Support Vectors. In other words, SVM
can be seen as a way to “sparsify” Fisher’s Linear Discriminant in order to obtain
the most generalizing classification from the training set.
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1. Introduction

The goal of 2-class supervised learning is stated as follows: Let X be
set of random variables over the real numbers, and let Y be a set of
random binary variables over the field {1, —1}. We are given a “train-
ing” set {(x;,y;) € X x Y}!_, obtained by sampling the set X x Y.
The classification problem is then to find a function f(x), such that
given & which does not belong to the training set (a “test” example),
f(x) will give the “correct” classification (—1 if @ belongs to the first
class, or f(x) = 1 if @ belongs to the second class).

Since the test example & is not part of the training set, the word
“correct” often means that f(x) models the probalistic relationship
between X and Y, and thus in turn we tacitly assume that the joint
probability distribution P(z,y) is captured (not necessarily estimated
or modeled) by the training set. An equivalent statement of “correct-
ness” is that the desired estimation is the one that provides the best
generalization from the given training set.

In a linear classifier approach, the classifier is represented as a lin-
ear combination of the input training examples {fﬂi}i':p i.e., if we let
{x;}'_, be the columns of the n x [ matrix A, then w = Ac = ¥, c;@;
for some set of coefficients ¢ = (¢q, ..., ¢), is a classifier of the form:

f(z) = sign(z"w + b)
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for some scalar b. In most practical situations, a separating hyperplane
(w, b) does not exist, but a non-linear hypersurface does. This can be
achieved by projecting the input space into a higher dimensional space
(say the space of d-degree monomials) and looking for a separating
hyperplane there (see Appendix A for more details).

The question is therefore what should be the criteria for choos-
ing the right coefficient vector ¢? Vapnik and his colleagues (15; 2;
4) have proposed an induction principle, called Structural Risk Mini-
mization, which among all possible models that classify correctly the
training data finds the one with the smallest complexity — where the
complexity is measured by the VC dimension of the model. In the
case of linear classifiers (in some chosen space, input space or higher
dimensional feature space), the SRM principle is equivalent to selecting
among all possible separating hyperplanes the one that maximizes the
margin between the two classes of training data, where the margin is
defined as the sum of the distances of the hyperplane from the closest
point of the two classes. Vapnik shows that the implementation of this
idea can be described as a Quadratic Linear Programming problem.
Furthermore, as such, it follows from the Kuhn-Tucker necessary con-
ditions for optimality that the vector ¢ is sparse and the corresponding
examples @; associated with the non-vanishing coefficients ¢; are the
vectors on the margin, which Vapnik refers to as Support Vectors.

Girosi (7) has recently shown that Vapnik’s Support Vector Machine
(SVM) can be rederived directly from a sparsity constraint principle,
rather than through the principle of minimizing the complexity of the
model measured by its VC dimension. Girosi’s rederivation applies to
functional approximation (the regression problem), not classification,
but given the similarity between the two problems it seems possible
that such an approach would extend to the classification problem as
well.

The concept of sparsity aims at finding the most parsimonious rep-
resentation for the problem and is widely spreading in the recent years.
One can find the concept of sparsity in the context of Linear Cod-
ing or Functional Approximation with the use of overcomplete rep-
resentations in which a signal is approximated by a linear combina-
tion of basis functions taken from a redundant set of signals (12; 8;
3) . In this case, among all approximating functions with the same
reconstruction error, the sparsity criteria favors the one with the least
number of non-vanishing coefficients. Sparsity is relevant for imple-
menting non-metric similarity measurements (violating the triangle
inequality), which appears more naturally suited to similarity judg-
ments performed by humans (14) (see also (9)), which in turn is also
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relevant to the recent wave of using Robust estimation methods in
Computer Vision (11).

In this paper we make the connection between applying Fisher’s
Linear Discriminant on a sparse set and the optimal hyperplane found
by the Support Vector Machine. We show that the optimal hyperplane
is equivalent to the vector maximizing Rayleigh’s quotient on the set
of Support Vectors. In other words, SVM can be seen as a way to
“sparsify” Fisher’s Linear Discriminant in order to obtain the most
generalizing classification from the training set.

For the sake of completeness, Vapnik’s Support Vector Machine is
described in Appendix A and Fisher’s Linear Discriminant is described
in Appendix B. The main result of this paper is described in Section 2,
and issues of implementation are described in Appendix C.

2. SVM and Fisher’s Linear Discriminant

Let @;,y;, 1 = 1,...,1, where &; € R", y; € {1,—1}, be the training
set. The linear classifier f(z) = sign(w'x + b) that maximizes the
margin between the two classes is a solution to the following Quadratic
Programming (QP) problem:

Minimize w ' w
w (1)

Subject to y;(w'x; +b)—1>0

[N

and the dual QP problem has the form,

Minimize {% Zi,j oeioejyiyja:;—a: +0> iy — > oy (2)
Subject to «; > 0

where the minimization is over a; and maximization over b (i.e., bis a
saddle point), and w = Y; oyy;@;. From the Kuhn-Tucker conditions of
optimality, a; > 0 for all points x; that lie on the boundary (Support
Vectors), i.e., y;(w'z; +b) — 1 = 0 whereas a; = 0 for all remaining
points. Therefore, the orientation of the separating hyperplane w is
solely determined from the (sparse) set of support vectors. More details
can be found in Appendix A. We prove the following result:

Theorem 1. Let S be the set of support vectors, i.e., a; # 0 for all
x; € S. The separating hyperplane w = 3", a;y;@; where {a;} are the
solution to the QP problem (2), is the null space of Sw, i.e., Syww = 0,
where Sy is the sum of the scatter matrices associated with classes one
and two (out of §).
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The remainder of this section is devoted to the proof of this state-
ment. Let ¢; = ayy; (note that a; = ¢;y; because y; € {—1,1}), then
the QP problem (2) applied only to the subset of training examples S
(the support vectors) has the form:

Minimize {%CTATAC +bc™1 — CTy} (3)
c,b

where A is a n X s matrix whose columns are the members of §, 1 is
the vector of 1s, s is the total number of support vectors (cardinality of
S) and w = Ac. The global minima satisfies the necessary condition:

ATAc=y -1 (4)
from which we represent b as a function of w,

51 — 52

b= —w'p (5)

where sq, sy are the number of support vectors associated with class
one and two, respectively, and p is the mean of all support vectors. Let
A=UDVT be the Singular Value Decomposition (SVD) of A, where
the columns of U are orthonormal, the rows of V71 are orthonormal
and D is a diagonal matrix of singular values {\;} with the number of
non-vanishing entries A; being equal to the rank of A. Since w = Ac
we have,
w=UDVT(VD?*VT) (y - b1)

Note that in case the rank of A is smaller than s, then the solution with
the smallest norm (which is what we desire) is obtained by defining D1
to have vanishing entries for every A; = 0 and 1/X; for A\; # 0 — thus
we have:

w = UD(D*) ™'V (y - b1) (6)
= UDHWTUDV T (y —b1) (7)
UD*UTw = UDV (y — b1) (8)
which gives us the following relation:

AATw = A(y — b1) (9)

After substituting the value of b from (5), we obtain:
AATw + A1 = Ay (10)
AATw 4 bsp = s pq — Sopty (11)
[AAT —sppT[w = si1(i— 1) = s2(p — o) (12)
[AAT —sppT | w = 28;82 (1 — 12) (13)
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Let S7 be the total scatter matrix of the set S, i.e.,

Sr= > (®—p)(zi—p)T.

T, ceS
It can be easily verified that,
St =AAT —sup”,

thus we have,

Stw = —— (11 — pa). (14)

Note that in case St is singular, the minimum norm solution w is found
using the pseudo-inverse of St (i.e., by use of SVD). Let Sy be the
sum of scatter matrices one for each class, i.e.,

2
Sw=, > (mi—p)(@i—ny)",
J=1ZT,€S;

where §; is the subset of elements of S that belong to class j = 1,2. It
can be easily verified that,

St = Sw+si(py — ) (g — )T +s2(y — ) (py — )7L (15)

From eqn. 4 we obtain,

plw = Ty, (16)
s

plw=1-b (17)

pow = —1—b (18)

Substituting the above in eqn. 15 we obtain,

(g — ) — (g — 1) (19)

and after substitution of eqn. 14 we obtain the desired result that

28182 28182

STw = Sww +
S

Sww = 0.

3. Discussion

The Support Vector Machine is appealing from the standpoint of pro-
viding a rigorous and coherent framework for “the correct” classifica-
tion from training examples. The drawback is the complexity intro-
duced by working with Quadratic Programming especially for large
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problems (see Appendix C). The result presented here shows that SVM
can be seen as a way to “sparsify” Fisher’s Linear Discriminant in
order to obtain the most generalizing classification from the training
set. Conversely, this result may motivate an approach for seeking an
“approximately correct” classification that may require a much simpler
and tractable machinery. For example, since the norm of w is related
to the distance between the centers pq, py of the two classes taken
from the sparse set §, one may consider a sparsification approach that
would gradually reduce the distance between the centers, rather than
employing the full strength of the QP machinery.

Recasting the problem of classification as a “sparsified” FLD prob-
lem, may also be useful for obtaining a handle for approaching
the multi-class classification problem. Currently there is no rigorous
approach for extending the SVM method for dealing with m > 2 class-
es. Yet, FLD naturally extends to any number of classes. Therefore,
a “sparsified” FLD would enforce constraints among the separating
hyperplanes (for example, by adding orthogonality as an additional
optimizing criteria).

Finally, since FLD is optimal for Normally distributed classes, there
may be further connections between the use of Gaussian processes,
sparsification and SVM.

Since FLD has and is being used for classification problems in Vision
(see for example, face recognition approaches in (1)), the drive for find-
ing synergies between those classical approaches and modern approach-
es, like SVM, may provide fruits for better applications as well.
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Appendix
A. Vapnik’s Support Vector Machine
The SVM approach of (15; 2; 4) seeks to find a separating hyperplane
that divides the two classes while maximizing the distance between

them (the margin). This criteria follows from the observation that by
doing so one would find a solution that possesses the best generalization
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properties, in the sense that the VC dimension of the model is the
smallest possible.

The set of training examples ; € R", ¢ = 1, .../ is separable if there
exists w, b such that,

wlae,+b>1 if yi=1 (20)
wlz; +b< -1 if yi=-1 (21)

or equivalently if y;(wT®; +b) > 1. Since w, b are determined up to a
mutual scale, let the scale be defined such that,

ming {y;(w' z; +b) =1}

In other words, that the distance between the closest point to the hyper-
plane becomes 1/vwTw. Since maximizing the margin is maximizing
the distance between the closest point to the hyperplane, we obtain the
following optimization criteria:

Minimize w ' w
w (22)

Subject to y;(w'x; +b)—1>0

[N

Recall that a non-linear optimization problem of minimizing f(«) under
a set of inequality constraints g(«) > 0, has its local minima satisfy
the necessary Kuhn-Tucker conditions:

Vf(x) - ZOHV!JZ’(ZB) =0

where a; > 0 and oyg;(x) = 0,7 =1,...,1,i.e., oy = 0 when g;(x) > 0.
In this case, since f(z) is convex, the local minimum is also the global
one as well. The Lagrange functional in our case is therefore,

L(w,b,a) = —w'w — ZOH(%’(U’T%’ +b)—-1) (23)

=1

N | —

which is to be minimized with respect to w,b and maximized with
respect to the Lagrange multipliers «; > 0. Since at the saddle point

% = 0, we obtain the necessary condition for w to satisfy,

{
w = Z G T
=1

From the Kuhn-Tucker conditions we have that «; is non-zero only
for the x; that satisfy yi(wai + b) = 1 which are the vectors at the
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margin, referred to as Support Vectors, thus the sum is only over the set
of support vectors. Putting the expression for w back into the Lagrange
functional we obtain the expression (the dual optimization problem),

1
ZO@' -3 Zai%‘yz’yﬂ;w - bzaiyi (24)
7 1,7 7

which is to be maximized with respect to a; and minimized with respect
to b!, under the inequality constraints a; > 0. One may then employ
one of many software packages for solving for the QP (dual) problem
— see also Appendix C.

Vapnik (2; 15) also considers the issue of mapping the input space
x € R™ into a higher dimensional feature space 7 (possibly of infinite
dimensional space) through some, a priori chosen, nonlinear mapping.
A separating hyperplane in feature space Z would correspond to a non-
linear decision surface (hypersurface) in the original input space. For
example, one may choose the feature space to span the set of polyno-
mials in d variables (the dimension of Z is then exponential in d). If
z; = z(x;) is the mapping from input to feature space, then Vapnik
and his colleagues have noticed that if certain conditions are met, the
scalar products z z; may be computed in the input space by a kernel
function K (z;,®;) = 2 z; rather than in the large dimensional fea-
ture space. According to Mercer’s theorem (see (5)) K (u, v) can be any
symmetric function satisfying the following (general) conditions:

//K(u,v)g(u)g(v)dudv >0

for all g # 0 for which
/gz(u)du < 00

then, K (u,v) has an expansion of the form
K(u,v)= Z it (w) b (v)
=1

with A; > 0. In other words, K (u,v) describes an inner product in
some feature space. For example, the feature space spanning the set of
polynomials in d variables, one can easily show that

K(z,y)=(1+2"y)"

! Note that b is the Lagrange multiplier of the equality constraint Zoz,'y,' =0,
which arises from setting % = 0. In Vapnik’s derivation the term with b does not
appear in the dual functional, and instead the equality constraint is added to the

constraints a; > 0.
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The QP problem that should be solved is exactly like eqn. (24) with
the exception that = is replaced by K(z;,z). The resulting linear
classifier has the form:

flz) = sign(z i K(z;, ) +b).

K3

B. Fisher’s Linear Discriminant

Let @; € R", i = 1,...,] be divided into m sets (classes) 1, ..., %
and let g be the center of all the data points, and p; be the center of
class 7. We wish to find a direction vector w € R™ (perpendicular to
hyperplanes w'a + b = 0, where b is the distance of the hyperplane
from the origin), such that the projection of the centers pu; onto the
direction w has the maximum variance (the centers are as separated
from each other as possible), and that the projection of the points
x; € 1; are clustered near the projection of the center p;. This desire
can be formalized into the following optimization functional.

Recall that the signed distance between a point @ and the hyper-
plane (w, b) is

w'ax+b
| w |

where | w | is the norm of w. The relative (signed) distance between
two points @i, @y from the hyperplane is thus,

wT(azl — x3)

jw| 7
which is the distance between the projections of the points onto the
direction w. The sum of square distances between the projected points
in class j from the projected center p; is:

1
> (wh(zi—py)) = —w'Sw
! | w |
wied/j

1
| w |

where S; is the scatter matrix of class j defined by:

S; = Z (mi—ﬂj)(fﬂi—ﬂj)T-

wielll]

The sum of variances of each class around its center (in the projected

space) is therefore

1
m/lﬂ-l—‘s’w//lﬂ7 (25)
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where Sy = >, S;. Our desire is to bring the expression above to
minimum. The sum of square distances of the projected centers p; from
the global center p is:

= 1
Z )2 = m’lﬂTSB’LU7 (26)

where Sp is the scatter matrix of the centers, defined by:

The desire to minimize expression (25) and maximize expression (26)
is satisfied by maximizing the quotient

w' Spw

J(U’):m7

known as the “Rayleigh” quotient. The necessary condition for
extremum is
dJ  (w'Syw)Spw — (w' Spw)Sww

0= ow (wT Syyw)?

therefore w satisfies
ASB1U ::,XSWVlv

that is the generalized eigenvector associated with the maximal gener-
alized eigenvalue (A = J(w)). In case Sy is non-singular, then w is the
eigenvector associated with the maximal eigenvalue of SV_VISB.

In the case of two classes, m = 2, the computation is simpler since
the squared projected distance between the centers is

a0 (b = ) = T S
where Sp is
Sp = (1 — o) (g — ) T,
and since Spw = (py — py), we have that,

w Syt (g — )

and if Sy is singular we take the pseudo-inverse solution which selects
the solution with the smallest norm.

Using Fisher’s solution w as a separating hyperplane for the 2-class
problem is optimal when the distributions of both classes are Normal
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with equal covariance matrices (for more details, see (6)). Otherwise,
there is no guarantee that, even when the classes are linearly separable,
that a separable hyperplane would be found.

C. Issues of Implementation

The most popular method for solving QP problems is the “active set”
method (see (10), for more details). Let S be a candidate set of sup-
port vectors and let w, b be a feasible solution (separable hyperplane),
e, yi(w'z; +b) > 1, i = 1,...,0 In case n > [ (which is typical,
especially when working in the large dimensional feature space), then
the solution given by (14), using pseudo-inverse when n > [, is feasible
and § contains all the training data. Otherwise, one may use Linear
Programming to find a feasible solution, and then select § to be the
margin vectors of the LP solution.

The active set method updates § by gradually adding and remov-
ing points while maintaining feasibility of the solution at every step,
and while also strictly decreasing the criteria functional at every step.
Hence, the optimal solution is guaranteed after a finite number of steps,
albeit exponential in the worst case. The iterations proceed as follows:

(1). Solve for Aw and Ab, i.e.,

28182

STAw =

(Ml_'ﬂ2)_'STU%

using the pseudo-inverse of St (minimum-norm solution).
(2). Consider,

w — w+ aAw (27)
b +— b+ aAb (28)

If @ =1 is a feasible solution, then we have found an optimal solution
over the set &, goto Step (3). Otherwise, find the largest 0 < a < 1
that maintains feasibility — add the new Support Vector to &, goto
Step (1).

(3). Calculate ¢ from eqn. (4), or from the relation w = Ac. If ¢;y; >
0 for all z; € §, we are done. Otherwise, remove from S the point
associated with the smallest ¢;y;. Go to Step (1).

Few comments. In Step (2) one is moving along the direction of the
optimal solution of the unconstrained problem. New Support Vectors
are added when the hyperplane “hits” upon them during the update
process, until the unconstrained problem can no longer be improved.
If the Lagrange multipliers «; = ¢;u; are all positive, then we have
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satisfied the Kuhn-Tucker conditions, otherwise the criterion functional
can be decreased further by removing the (most) negative ¢;y;. Since
every step strictly reduces the criterion function, any configuration §
cannot occur twice, thus after a finite number of steps the process must
end. More efficient techniques (in terms of memory requirements and
average running times) can be found in (13).
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