
On the Equivalence Between the Support VectorMachine for Classi�cation and Sparsi�ed Fisher'sLinear DiscriminantA. Amnon ShashuaInstitute of Computer ScienceHebrew University of Jerusalem91904 Jerusalem, Israelhttp://www.cs.huji.ac.il/� shashua/(Received ..... ; Accepted in �nal form .....)Abstract. We show that the orientation and location of the separating hyperplanefor 2-class supervised pattern classi�cation obtained by the Support Vector Machine(SVM) proposed by Vapnik and his colleagues, is equivalent to the solution obtainedby Fisher's Linear Discriminant on the set of Support Vectors. In other words, SVMcan be seen as a way to \sparsify" Fisher's Linear Discriminant in order to obtainthe most generalizing classi�cation from the training set.Key words: Unsupervised 1. IntroductionThe goal of 2-class supervised learning is stated as follows: Let X beset of random variables over the real numbers, and let Y be a set ofrandom binary variables over the �eld f1;�1g. We are given a \train-ing" set f(xi; yi) 2 X � Y gli=1 obtained by sampling the set X � Y .The classi�cation problem is then to �nd a function f(x), such thatgiven x which does not belong to the training set (a \test" example),f(x) will give the \correct" classi�cation (�1 if x belongs to the �rstclass, or f(x) = 1 if x belongs to the second class).Since the test example x is not part of the training set, the word\correct" often means that f(x) models the probalistic relationshipbetween X and Y , and thus in turn we tacitly assume that the jointprobability distribution P (x; y) is captured (not necessarily estimatedor modeled) by the training set. An equivalent statement of \correct-ness" is that the desired estimation is the one that provides the bestgeneralization from the given training set.In a linear classi�er approach, the classi�er is represented as a lin-ear combination of the input training examples fxigli=1, i.e., if we letfxigli=1 be the columns of the n� l matrix A, then w = Ac =Pi cixifor some set of coe�cients c = (c1; :::; cl), is a classi�er of the form:f(x) = sign(x>w + b)



2 A. Amnon Shashuafor some scalar b. In most practical situations, a separating hyperplane(w; b) does not exist, but a non-linear hypersurface does. This can beachieved by projecting the input space into a higher dimensional space(say the space of d-degree monomials) and looking for a separatinghyperplane there (see Appendix A for more details).The question is therefore what should be the criteria for choos-ing the right coe�cient vector c? Vapnik and his colleagues (15; 2;4) have proposed an induction principle, called Structural Risk Mini-mization, which among all possible models that classify correctly thetraining data �nds the one with the smallest complexity | where thecomplexity is measured by the VC dimension of the model. In thecase of linear classi�ers (in some chosen space, input space or higherdimensional feature space), the SRM principle is equivalent to selectingamong all possible separating hyperplanes the one that maximizes themargin between the two classes of training data, where the margin isde�ned as the sum of the distances of the hyperplane from the closestpoint of the two classes. Vapnik shows that the implementation of thisidea can be described as a Quadratic Linear Programming problem.Furthermore, as such, it follows from the Kuhn-Tucker necessary con-ditions for optimality that the vector c is sparse and the correspondingexamples xi associated with the non-vanishing coe�cients ci are thevectors on the margin, which Vapnik refers to as Support Vectors.Girosi (7) has recently shown that Vapnik's Support Vector Machine(SVM) can be rederived directly from a sparsity constraint principle,rather than through the principle of minimizing the complexity of themodel measured by its VC dimension. Girosi's rederivation applies tofunctional approximation (the regression problem), not classi�cation,but given the similarity between the two problems it seems possiblethat such an approach would extend to the classi�cation problem aswell.The concept of sparsity aims at �nding the most parsimonious rep-resentation for the problem and is widely spreading in the recent years.One can �nd the concept of sparsity in the context of Linear Cod-ing or Functional Approximation with the use of overcomplete rep-resentations in which a signal is approximated by a linear combina-tion of basis functions taken from a redundant set of signals (12; 8;3) . In this case, among all approximating functions with the samereconstruction error, the sparsity criteria favors the one with the leastnumber of non-vanishing coe�cients. Sparsity is relevant for imple-menting non-metric similarity measurements (violating the triangleinequality), which appears more naturally suited to similarity judg-ments performed by humans (14) (see also (9)), which in turn is also
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On the RelationshipBetween the SupportVectorMachine for Classi�cationand Sparsi�edFisher's Linear Discriminant3relevant to the recent wave of using Robust estimation methods inComputer Vision (11).In this paper we make the connection between applying Fisher'sLinear Discriminant on a sparse set and the optimal hyperplane foundby the Support Vector Machine. We show that the optimal hyperplaneis equivalent to the vector maximizing Rayleigh's quotient on the setof Support Vectors. In other words, SVM can be seen as a way to\sparsify" Fisher's Linear Discriminant in order to obtain the mostgeneralizing classi�cation from the training set.For the sake of completeness, Vapnik's Support Vector Machine isdescribed in Appendix A and Fisher's Linear Discriminant is describedin Appendix B. The main result of this paper is described in Section 2,and issues of implementation are described in Appendix C.2. SVM and Fisher's Linear DiscriminantLet xi; yi, i = 1; :::; l, where xi 2 Rn, yi 2 f1;�1g, be the trainingset. The linear classi�er f(x) = sign(w>x + b) that maximizes themargin between the two classes is a solution to the following QuadraticProgramming (QP) problem:Minimize 12w>wwSubject to yi(w>xi + b)� 1 � 0 (1)and the dual QP problem has the form,Minimize n12 Pi;j �i�jyiyjx>i x+ bPi �iyi �Pi �ioSubject to �i � 0 (2)where the minimization is over �i and maximization over b (i.e., b is asaddle point), and w =Pi �iyixi. From the Kuhn-Tucker conditions ofoptimality, �i > 0 for all points xi that lie on the boundary (SupportVectors), i.e., yi(w>xi + b) � 1 = 0 whereas �i = 0 for all remainingpoints. Therefore, the orientation of the separating hyperplane w issolely determined from the (sparse) set of support vectors. More detailscan be found in Appendix A. We prove the following result:Theorem 1. Let S be the set of support vectors, i.e., �i 6= 0 for allxi 2 S. The separating hyperplane w = Pi �iyixi where f�ig are thesolution to the QP problem (2), is the null space of SW , i.e., SWw = 0,where SW is the sum of the scatter matrices associated with classes oneand two (out of S). fisher-NPL.tex; 9/06/1998; 13:27; no v.; p.3



4 A. Amnon ShashuaThe remainder of this section is devoted to the proof of this state-ment. Let ci = �iyi (note that �i = ciyi because yi 2 f�1; 1g), thenthe QP problem (2) applied only to the subset of training examples S(the support vectors) has the form:Minimize n12c>A>Ac+ bc>1 � c>yoc; b (3)where A is a n � s matrix whose columns are the members of S, 1 isthe vector of 1s, s is the total number of support vectors (cardinality ofS) and w = Ac. The global minima satis�es the necessary condition:A>Ac = y � b1 (4)from which we represent b as a function of w,b = s1 � s2s �w>� (5)where s1; s2 are the number of support vectors associated with classone and two, respectively, and � is the mean of all support vectors. LetA = UDV > be the Singular Value Decomposition (SVD) of A, wherethe columns of U are orthonormal, the rows of V T are orthonormaland D is a diagonal matrix of singular values f�ig with the number ofnon-vanishing entries �i being equal to the rank of A. Since w = Acwe have, w = UDV >(VD2V >)�1(y � b1)Note that in case the rank of A is smaller than s, then the solution withthe smallest norm (which is what we desire) is obtained by de�ning D�1to have vanishing entries for every �i = 0 and 1=�i for �i 6= 0 | thuswe have: w = UD(D2)�1V >(y � b1) (6)= U(D2)�1U>UDV >(y � b1) (7)UD2U>w = UDV >(y � b1) (8)which gives us the following relation:AA>w = A(y � b1) (9)After substituting the value of b from (5), we obtain:AA>w + bA1 = Ay (10)AA>w + bs� = s1�1 � s2�2 (11)hAA> � s��>iw = s1(�� �1)� s2(�� �2) (12)hAA> � s��>iw = 2s1s2s (�1 � �2) (13)fisher-NPL.tex; 9/06/1998; 13:27; no v.; p.4



On the RelationshipBetween the SupportVectorMachine for Classi�cationand Sparsi�edFisher's Linear Discriminant5Let ST be the total scatter matrix of the set S, i.e.,ST = Xxi2S(xi � �)(xi � �)>:It can be easily veri�ed that,ST = AA> � s��>;thus we have, STw = 2s1s2s (�1 � �2): (14)Note that in case ST is singular, the minimum norm solution w is foundusing the pseudo-inverse of ST (i.e., by use of SVD). Let SW be thesum of scatter matrices one for each class, i.e.,SW = 2Xj=1 Xxi2Sj(xi � �j)(xi � �j)>;where Sj is the subset of elements of S that belong to class j = 1; 2. Itcan be easily veri�ed that,ST = SW + s1(�1 � �)(�1 � �)> + s2(�2 � �)(�2 � �)>: (15)From eqn. 4 we obtain, �>w = s1 � s2s � b (16)�>1 w = 1� b (17)�>2 w = �1� b (18)Substituting the above in eqn. 15 we obtain,STw = SWw + 2s1s2s (�1 � �)� 2s1s2s (�2 � �) (19)and after substitution of eqn. 14 we obtain the desired result thatSWw = 0:3. DiscussionThe Support Vector Machine is appealing from the standpoint of pro-viding a rigorous and coherent framework for \the correct" classi�ca-tion from training examples. The drawback is the complexity intro-duced by working with Quadratic Programming especially for largefisher-NPL.tex; 9/06/1998; 13:27; no v.; p.5



6 A. Amnon Shashuaproblems (see Appendix C). The result presented here shows that SVMcan be seen as a way to \sparsify" Fisher's Linear Discriminant inorder to obtain the most generalizing classi�cation from the trainingset. Conversely, this result may motivate an approach for seeking an\approximately correct" classi�cation that may require a much simplerand tractable machinery. For example, since the norm of w is relatedto the distance between the centers �1;�2 of the two classes takenfrom the sparse set S, one may consider a sparsi�cation approach thatwould gradually reduce the distance between the centers, rather thanemploying the full strength of the QP machinery.Recasting the problem of classi�cation as a \sparsi�ed" FLD prob-lem, may also be useful for obtaining a handle for approachingthe multi-class classi�cation problem. Currently there is no rigorousapproach for extending the SVM method for dealing with m > 2 class-es. Yet, FLD naturally extends to any number of classes. Therefore,a \sparsi�ed" FLD would enforce constraints among the separatinghyperplanes (for example, by adding orthogonality as an additionaloptimizing criteria).Finally, since FLD is optimal for Normally distributed classes, theremay be further connections between the use of Gaussian processes,sparsi�cation and SVM.Since FLD has and is being used for classi�cation problems in Vision(see for example, face recognition approaches in (1)), the drive for �nd-ing synergies between those classical approaches and modern approach-es, like SVM, may provide fruits for better applications as well.AcknowledgmentsI thank Tomaso Poggio, Federico Girosi and Alessandro Verri for help-ful discussions and for creating a stimulating research environmentthroughout my Summer visit at CBCL. Special thanks to BernhardSchoelkopf for comments on an earlier draft of this report.AppendixA. Vapnik's Support Vector MachineThe SVM approach of (15; 2; 4) seeks to �nd a separating hyperplanethat divides the two classes while maximizing the distance betweenthem (the margin). This criteria follows from the observation that bydoing so one would �nd a solution that possesses the best generalizationfisher-NPL.tex; 9/06/1998; 13:27; no v.; p.6



On the RelationshipBetween the SupportVectorMachine for Classi�cationand Sparsi�edFisher's Linear Discriminant7properties, in the sense that the VC dimension of the model is thesmallest possible.The set of training examples xi 2 Rn, i = 1; :::l is separable if thereexists w; b such that, w>xi + b � 1 if yi = 1 (20)w>xi + b � �1 if yi = �1 (21)or equivalently if yi(w>xi + b) � 1. Since w; b are determined up to amutual scale, let the scale be de�ned such that,minxifyi(w>xi + b) = 1gIn other words, that the distance between the closest point to the hyper-plane becomes 1=pw>w. Since maximizing the margin is maximizingthe distance between the closest point to the hyperplane, we obtain thefollowing optimization criteria:Minimize 12w>wwSubject to yi(w>xi + b)� 1 � 0 (22)Recall that a non-linear optimization problem of minimizing f(x) undera set of inequality constraints g(x) � 0, has its local minima satisfythe necessary Kuhn-Tucker conditions:rf(x)�Xi �irgi(x) = 0where �i � 0 and �igi(x) = 0, i = 1; :::; l, i.e., �i = 0 when gi(x) > 0.In this case, since f(x) is convex, the local minimum is also the globalone as well. The Lagrange functional in our case is therefore,L(w; b;�) = 12w>w � lXi=1 �i(yi(w>xi + b)� 1) (23)which is to be minimized with respect to w; b and maximized withrespect to the Lagrange multipliers �i � 0. Since at the saddle point@L@w = 0, we obtain the necessary condition for w to satisfy,w = lXi=1 �iyixi:From the Kuhn-Tucker conditions we have that �i is non-zero onlyfor the xi that satisfy yi(w>xi + b) = 1 which are the vectors at thefisher-NPL.tex; 9/06/1998; 13:27; no v.; p.7



8 A. Amnon Shashuamargin, referred to as Support Vectors, thus the sum is only over the setof support vectors. Putting the expression forw back into the Lagrangefunctional we obtain the expression (the dual optimization problem),Xi �i � 12Xi;j �i�jyiyjx>i x� bXi �iyi (24)which is to be maximized with respect to �i and minimized with respectto b1, under the inequality constraints �i � 0. One may then employone of many software packages for solving for the QP (dual) problem| see also Appendix C.Vapnik (2; 15) also considers the issue of mapping the input spacex 2 Rn into a higher dimensional feature space Z (possibly of in�nitedimensional space) through some, a priori chosen, nonlinear mapping.A separating hyperplane in feature space Z would correspond to a non-linear decision surface (hypersurface) in the original input space. Forexample, one may choose the feature space to span the set of polyno-mials in d variables (the dimension of Z is then exponential in d). Ifzi = z(xi) is the mapping from input to feature space, then Vapnikand his colleagues have noticed that if certain conditions are met, thescalar products z>i zj may be computed in the input space by a kernelfunction K(xi;xj) = z>i zj rather than in the large dimensional fea-ture space. According to Mercer's theorem (see (5))K(u; v) can be anysymmetric function satisfying the following (general) conditions:Z Z K(u; v)g(u)g(v)dudv > 0for all g 6= 0 for which Z g2(u)du <1then, K(u; v) has an expansion of the formK(u; v) = 1Xi=1 �i i(u) i(v)with �i > 0. In other words, K(u; v) describes an inner product insome feature space. For example, the feature space spanning the set ofpolynomials in d variables, one can easily show thatK(x;y) = (1 + x>y)d:1 Note that b is the Lagrange multiplier of the equality constraint P�iyi = 0,which arises from setting @L@b = 0. In Vapnik's derivation the term with b does notappear in the dual functional, and instead the equality constraint is added to theconstraints �i � 0. fisher-NPL.tex; 9/06/1998; 13:27; no v.; p.8



On the RelationshipBetween the SupportVectorMachine for Classi�cationand Sparsi�edFisher's Linear Discriminant9The QP problem that should be solved is exactly like eqn. (24) withthe exception that x>i x is replaced by K(xi;x). The resulting linearclassi�er has the form:f(x) = sign(Xi yi�iK(xi;x) + b):B. Fisher's Linear DiscriminantLet xi 2 Rn, i = 1; :::; l be divided into m sets (classes)  1; :::;  mand let � be the center of all the data points, and �j be the center ofclass j. We wish to �nd a direction vector w 2 Rn (perpendicular tohyperplanes w>x + b = 0, where b is the distance of the hyperplanefrom the origin), such that the projection of the centers �j onto thedirection w has the maximum variance (the centers are as separatedfrom each other as possible), and that the projection of the pointsxi 2  j are clustered near the projection of the center �j . This desirecan be formalized into the following optimization functional.Recall that the signed distance between a point x and the hyper-plane (w; b) is w>x+ bj w jwhere j w j is the norm of w. The relative (signed) distance betweentwo points x1;x2 from the hyperplane is thus,w>(x1 � x2)j w j ;which is the distance between the projections of the points onto thedirection w. The sum of square distances between the projected pointsin class j from the projected center �j is:1j w j Xxi2 j(w>(xi � �j))2 = 1j w jw>Sjwwhere Sj is the scatter matrix of class j de�ned by:Sj = Xxi2 j(xi � �j)(xi � �j)>:The sum of variances of each class around its center (in the projectedspace) is therefore 1j w jw>SWw; (25)fisher-NPL.tex; 9/06/1998; 13:27; no v.; p.9



10 A. Amnon Shashuawhere SW = Pmj=1 Sj . Our desire is to bring the expression above tominimum. The sum of square distances of the projected centers �j fromthe global center � is:1j w j mXj=1(w>(�j � �))2 = 1j w jw>SBw; (26)where SB is the scatter matrix of the centers, de�ned by:SB = mXj=1(�j � �)(�j � �)>:The desire to minimize expression (25) and maximize expression (26)is satis�ed by maximizing the quotientJ(w) = w>SBww>SWw ;known as the \Rayleigh" quotient. The necessary condition forextremum is0 = @J@w = (w>SWw)SBw � (w>SBw)SWw(w>SWw)2therefore w satis�es SBw = �SWwthat is the generalized eigenvector associated with the maximal gener-alized eigenvalue (� = J(w)). In case SW is non-singular, then w is theeigenvector associated with the maximal eigenvalue of S�1W SB.In the case of two classes, m = 2, the computation is simpler sincethe squared projected distance between the centers is1j w j(w>(�1 � �2))2 = 1j w jw>SBw;where SB is SB = (�1 � �2)(�1 � �2)>;and since SBw �= (�1 � �2), we have that,w �= S�1W (�1 � �2)and if SW is singular we take the pseudo-inverse solution which selectsthe solution with the smallest norm.Using Fisher's solution w as a separating hyperplane for the 2-classproblem is optimal when the distributions of both classes are Normalfisher-NPL.tex; 9/06/1998; 13:27; no v.; p.10



On the RelationshipBetween the SupportVectorMachine for Classi�cationand Sparsi�edFisher's Linear Discriminant11with equal covariance matrices (for more details, see (6)). Otherwise,there is no guarantee that, even when the classes are linearly separable,that a separable hyperplane would be found.C. Issues of ImplementationThe most popular method for solving QP problems is the \active set"method (see (10), for more details). Let S be a candidate set of sup-port vectors and let w; b be a feasible solution (separable hyperplane),i.e., yi(w>xi + b) � 1, i = 1; :::; l. In case n � l (which is typical,especially when working in the large dimensional feature space), thenthe solution given by (14), using pseudo-inverse when n > l, is feasibleand S contains all the training data. Otherwise, one may use LinearProgramming to �nd a feasible solution, and then select S to be themargin vectors of the LP solution.The active set method updates S by gradually adding and remov-ing points while maintaining feasibility of the solution at every step,and while also strictly decreasing the criteria functional at every step.Hence, the optimal solution is guaranteed after a �nite number of steps,albeit exponential in the worst case. The iterations proceed as follows:(1). Solve for �w and �b, i.e.,ST�w = 2s1s2s (�1 � �2)� STw;using the pseudo-inverse of ST (minimum-norm solution).(2). Consider, w  � w + ��w (27)b  � b+ ��b (28)If � = 1 is a feasible solution, then we have found an optimal solutionover the set S, goto Step (3). Otherwise, �nd the largest 0 < � < 1that maintains feasibility | add the new Support Vector to S, gotoStep (1).(3). Calculate c from eqn. (4), or from the relation w = Ac. If ciyi >0 for all xi 2 S, we are done. Otherwise, remove from S the pointassociated with the smallest ciyi. Go to Step (1).Few comments. In Step (2) one is moving along the direction of theoptimal solution of the unconstrained problem. New Support Vectorsare added when the hyperplane \hits" upon them during the updateprocess, until the unconstrained problem can no longer be improved.If the Lagrange multipliers �i = ciyi are all positive, then we havefisher-NPL.tex; 9/06/1998; 13:27; no v.; p.11



12 A. Amnon Shashuasatis�ed the Kuhn-Tucker conditions, otherwise the criterion functionalcan be decreased further by removing the (most) negative ciyi. Sinceevery step strictly reduces the criterion function, any con�guration Scannot occur twice, thus after a �nite number of steps the process mustend. More e�cient techniques (in terms of memory requirements andaverage running times) can be found in (13).ReferencesP.N Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. Fisherfaces:Recognition using class speci�c linear projection. In Proceedings of the EuropeanConference on Computer Vision, 1996.B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal marginclassi�er. In Proc. 5th Workshop on Computational Learning Theory, pages 144{152, 1992.S. Chen and D. Donoho. Atomic decomposition by basis pursuit. Technical ReportDept. of Statistics, TR-479, Stanford, 1995.C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:1{25,1995.R. Courant and D. Hilbert. Methods of mathematical physics. Interscience PublishersInc., 1953.R.O. Duda and P.E. Hart. Pattern classi�cation and scene analysis. John Wiley,New York, 1973.F. Girosi. An equivalence between sparse approximation and support vectormachines. Technical Report AI Memo 1606, MIT, 1997.G.F. Harpur and R.W. Prager. Development of low entropy coding in a recurrentnetwork. Network, 7:277{284, 1996.D.W. Jacobs and D. Weinshall. Classifying images using non-metric distances. InProceedings of the International Conference on Computer Vision, January 1998.D.G. Luenberger. Linear and nonlinear programming. Addison-Wesley, 1937.P. Meer, D. Mintz, D. Kim, and A. Rosenfeld. Robust regression methods forcomputer vision: A review. International Journal of Computer Vision, 6(1):59{70, 1991.B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive �eld propertiesby learning a sparse code for natural images. Nature, 381(13), 1996.E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An appli-cation to face detection. In Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, 1997.A. Tversky. Features of similarity. Psychological Review, 84(4):327{352, 1977.V.N. Vapnik. The nature of statistical learning. Springer, 1995.
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