
GRAPHICAL MODELS, CAUSALITY,AND INTERVENTIONJudea PearlCognitive Systems LaboratoryComputer Science DepartmentUniversity of California, Los Angeles, CA 90024judea@cs.ucla.eduI am grateful for the opportunity to respond to these two excellent papers. Althoughgraphical models are intuitively compelling for conceptualizing statistical associations, thescienti�c community generally views such models with hesitancy and suspicion. The twopapers before us demonstrate the use of graphs { speci�cally, directed acyclic graphs (DAGs){ as a mathematical tool of great versatility and thus promise to make graphical languagesmore common in statistical analysis. In fact, I �nd my own views in such close agreementwith those of the authors that any attempt on my part to comment directly on their workwould amount to sheer repetition. Instead, as the editor suggested, I would like to provide apersonal perspective on current and future developments in the areas of graphical and causalmodeling.1I will focus on the connection between graphical models and the notion of causality instatistical analysis. This connection has been treated very cautiously in the papers beforeus2 and I would like to supplement the discussion with an account of how causal models andgraphical models are related.It is generally accepted that, because they provide information about the dynamics ofthe system under study, causal models, regardless of how they are discovered or tested, aremore useful than associational models. In other words, whereas the joint distribution tells ushow probable events are and how probabilities would change with subsequent observations,1A complementary account of the evolution of belief networks is given in [4].2In [3], the graphs were called \causal networks," for which the authors were criticised; they have agreedto refrain from using the word \causal." In the current paper, Spiegelhalter etal. deemphasize the causalinterpretation of the arcs in favor of the \irrelevance" interpretation (page 4). I think this retreat is re-grettable for two reasons: �rst, causal associations are the primary source of judgments about irrelevanceand, second, rejecting the causal interpretation of arcs prevents us from using graphical models for makinglegitimate predictions about the e�ect of actions. Such predictions are indispensable in applications such astreatment management and patient monitoring. 1



the causal model also tells us how these probabilities would change as a result of exter-nal interventions in the system. For this reason, causal models (or \structural models" asthey are often called) have been the target of relentless scienti�c pursuit and, at the sametime, the center of much controversy and speculation. What I would like to discuss in thiscommentary is how complex information about external interventions can be organized andrepresented graphically and, conversely, how the graphical representation can be used tofacilitate quantitative predictions of the e�ects of interventions.The basic idea goes back to Simon [9] and is stated succinctly in his forward to [1]: \Theadvantage of representing the system by structural equations that describe the direct causalmechanisms is that if we obtain some knowledge that one or more of these mechanisms hasbeen altered, we can use the remaining equations to predict the consequences { the newequilibrium." Here, by \mechanism" Simon means any stable relationship between two ormore variables that remains invariant to external in
uences until it falls directly under suchin
uences.This mechanism-based model was adapted in [7] for de�ning probabilistic causal theories;each child-parent family in a DAG � represents a deterministic function Xi = fi(pai; �i),where pai are the parents of variable Xi in �, and �i; 0 < i < n, are mutually independent,arbitrarily distributed random disturbances. Characterizing each child-parent relationshipas a deterministic function, instead of the usual conditional probability P (xi j pai), imposesequivalent independence constraints on the resulting distributions and leads to the samerecursive decomposition P (x1; :::; xn) =Yi P (xi j pai) (1)that appears in Eq. (1) of Spiegelhalter etal.'s article. However, the functional character-ization also speci�es how the resulting distribution would change in response to externalinterventions, since, by convention, each function is presumed to remain constant unlessspeci�cally altered.3 Moreover, the non-linear character of fi permits us to treat changes inthe function fi itself as a variable, Fi, by writingXi = f 0i(pai; Fi; �i) (2)where f 0i(a; b; c) = fi(a; c) whenever b = fi:Thus, any external intervention Fi that alters fi can be represented graphically as an addedparent node of Xi, and the e�ect of such an intervention can be analyzed by Bayesianconditionalization, that is, by simply setting this added parent variable to the appropriatevalue fi.The simplest type of external intervention is one in which a single variable, say Xi, isforced to take on some �xed value x0i. Such intervention, which we call atomic, amountsto replacing the old functional mechanism Xi = fi(pai; �i) with a new mechanism Xi = x0igoverned by some external force Fi that sets the value x0i. If we imagine that each variableXipotentially could be subject to the in
uence of such an external force Fi, then we can viewthe causal network � as an e�cient code for predicting the e�ects of atomic interventionsand of various combinations of such interventions.3This formulation is merely a non-linear generalization of the usual structural equation models, wherefunction constancy (or stability) is implicitly assumed.2
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XiFigure 1: Representing external intervention, Fi, by an augmented network�0 = � [ fFi ! Xig.The e�ect of an atomic intervention set(Xi = x0i) is encoded by adding to � a linkFi �! Xi (see Figure 1), where Fi is a new variable taking values in fset(x0i); idleg, x0iranges over the domain of Xi, and idle represents no intervention. Thus, the new parent setof Xi in the augmented network is pa0i = pai[fFig; and it is related to Xi by the conditionalprobability P (xi j pa0i) = 8><>: P (xi j pai) if Fi = idle0 if Fi = set(x0i) and xi 6= x0i1 if Fi = set(x0i) and xi = x0i (3)The e�ect of the intervention set(x0i) is to transform the original probability function P (x1; :::; xn)into a new function Px0i(x1; :::; xn), given byPx0i(x1; :::; xn) = P 0(x1; :::; xn j Fi = set(x0i)); (4)where P 0 is the directed Markov �eld dictated by the augmented network �0 = �[fFi ! Xigand Eq. (3), with an arbitrary prior distribution on Fi. In general, by adding a hypotheticalintervention link Fi ! Xi to each node in �, we can construct an augmented probabilityfunction P 0(x1; :::; xn;F1; :::; Fn) that contains information about richer types of interven-tions. Multiple interventions would be represented by conditioning P 0 on a subset of the Fi's(taking values in their respective set(x0i)), while the pre-intervention probability function Pwould be viewed as the posterior distribution induced by conditioning each Fi in P 0 on thevalue idle.This representation yields a simple and direct transformation between the pre-interventionand the post-intervention distributions4:Px0i(x1; :::; xn) = ( P (x1;:::;xn)P (xi j pai) if xi = x0i0 if xi 6= x0i (5)The transformation exhibits the following properties:1. An intervention set(x0i) can a�ect only the descendants of Xi in �.4This transformation re
ects the removal of the term P (xi j pai) from the product decomposition of Eq.(1), since pai no longer in
uence Xi. Transformations involving conjunctive and disjunctive actions can beobtained by straightforward applications of Eq. (4) [10, 2, 5].3



2. For any set S of variables, we havePx0i(S j pai) = P (S j x0i;pai): (6)In other words, given Xi = x0i and pai, it is super
uous to �nd out whether Xi = x0iwas established by external intervention or not. This can be seen directly from theaugmented network �0 (see Figure 1), since fXig [ pai d-separates Fi from the rest ofthe network, thus legitimizing the conditional independence S k Fi j (Xi;pai).3. A necessary and su�cient condition for an external intervention set(Xi = x0i) to havethe same e�ect on Xj as the passive observation Xi = x0i is that Xi d-separates paifrom Xj , that is, Px0i(xj) = P (xj j x0i) i� Xj k pai j Xi: (7)Eq. (4) explains why randomized experiments are su�cient for estimating the e�ect ofinterventions even when the causal network is not given: because the intervening variableFi enters the networks as a root node (i.e., independent of all other ancestors of Xi) it isequivalent to a treatment-selection policy governed by a random device.The immediate implication of Eq. (5) is that, given the structure of the causal network�, one can infer post-intervention distributions from pre-intervention distributions; hence,we can reliably estimate the e�ects of interventions from passive (i.e., non-experimental)observations. Of course, Eq. (5) does not imply that we can always substitute observationalstudies for experimental studies, as this would require an estimation of P (xi j pai). Themere identi�cation of pai (i.e., the direct causal factors of Xi) requires substantive causalknowledge of the domain which is often unavailable. Moreover, even when we have su�cientsubstantive knowledge to structure �, some members of pai may be unobservable, or latent.Fortunately, there are conditions for which an unbiased estimate of Px0i(xj) can be obtainedeven when the pai variables are latent and, moreover, a simple graphical criterion can tellus when these conditions are satis�ed.Assume we are given a causal network � together with non-experimental data on asubset Xo of observed variables in � and we wish to estimate what e�ect the interventionset(Xi = x0i) would have on some response variable Xj . In other words, we seek to estimatePx0i(xj) from a sample estimate of P (Xo). Applying Eq. (4), we can writePx0i(xj) = P 0(xj j Fi = set(x0i))= XS P 0(xj j S;Xi = x0i; Fi = set(x0i))P 0(S j Fi = set(x0i)); (8)where S is any set of variables. Clearly, if S satis�esS k Fi and Xj k Fi j (Xi;S); (9)then Eq. (8) can be reduced toPx0i(xj) = XS P (xj j S; x0i)P (S)= ES[P (xj j S; x0i)]: (10)Thus, if we �nd a set S � Xo of observables satisfying Eq. (9), we can estimate Px0i(xj)by taking the conditional expectation (over S) of P (xj j x0i), and the latter can easily be4



estimated from non-experimental data. It is also easy to verify that Eq. (9) is satis�ed byany set S that meets the following back-door criterion:1. No node in S is a descendant of Xi, and2. Si d-separates Xi from Xj along every path containing an arrow toward Xi.In Figure 2, for example, the sets S1 = fX3;X4g and S2 = fX4;X5g would qualifyunder the back-door criterion, but S3 = fX4g would not because X4 does not d-separateXi from Xj along the path (Xi;X3;X1;X4;X2;X5;Xj). Thus, we have obtained a simplegraphical criterion for �nding a set of observables for estimating (by conditioning) the e�ectof interventions from purely non-experimental data.
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X6Figure 2It is interesting that the conditions formulated in Eq. (9) are equivalent to those knownas strongly ignorable treatment assignment (SITA) conditions in Rubin's model5 for causale�ect [8, 6]. Reducing the SITA conditions to the graphical back-door criterion facilitates thesearch for an optimal conditioning set S and signi�cantly simpli�es the judgments requiredfor ratifying the validity of such conditions in practical situations.Eq. (4) was derived under the assumption that the pre-intervention probability P isgiven by the product of Eq. (1), which represents a joint distribution prior to making anyobservations. To predict the e�ect of action Fi after observing C, we must also invokeassumptions about persistence, so as to distinguish properties that will terminate as a resultof Fi from those that will persist despite of acting Fi. Such a model of persistence wasinvoked in [5]; there, it was assumed that only those properties should persist that are notunder any causal in
uence to terminate. This assumption yields formulas for the e�ect ofconditional interventions (conditioned on the observation C) which, again, given �, can beestimated from non-experimental data.A more ambitious task has been explored by Spirtes, Glymour, and Scheines [10] {estimation of the e�ect of intervention when the structure of � is not available and must alsobe inferred from the data. Recent developments in graphical models [7, 10] have producedmethods that, under certain conditions, permit us to infer plausible causal structures from5The graphical translation of Rubin's model invokes the mechanism Xi ! Xj  r, where Xi representsthe treatment-assignment, Xj the observed response, and r represents the causal-e�ect variable. Indeed,following the counterfactual interpretation of r, Xj is a deterministic function of Xi and r, and r plays therole of fi in Eq. (2). 5



non-experimental data, albeit with a weaker set of guarantees than those obtained throughcontrolled randomized experiments. These guarantees fall into two categories: minimalityand stability [7]. Minimality guarantees that any other structure compatible with the data isnecessarily more redundant, and hence less trustworthy, than the one(s) inferred. Stabilityensures that any alternative structure compatible with the data must be less stable thanthe one(s) inferred; namely, slight 
uctuations in the distributions of the disturbances �i(Eq. (2)) will render that structure no longer compatible with the data.When the structure of � is to be inferred under these guarantees, the formulas governingthe e�ects of interventions and the conditions required for estimating these e�ects becomerather complex [10]. Alternatively, one can produce bounds on the e�ect of interventions bytaking representative samples of inferred structures and estimating Px0i(xj) according to Eq.(10) for each such sample.In summary, I hope my comments convince the reader that DAGs can be used notonly for specifying assumptions of conditional independence but also as a formal languagefor organizing claims about external interventions and their interactions. I hope to havedemonstrated as well that DAGs can serve as an analytical tool for predicting, from non-experimental data, the e�ect of actions (given substantive causal knowledge), for specifyingand testing conditions under which randomized experiments are not necessary and for aidingexperimental design and model selection.BIBLIOGRAPHY[1] Glymour, C., Scheines, R., Spirtes, P., and Kelly, K., Discovering Causal Structure,Academic Press, Orlando, FL, 1987.[2] Goldszmidt, M., and Pearl, J., \Default ranking: A practical framework for evidentialreasoning, belief revision and update," in Proceedings of the Third International Con-ference on Knowledge Representation and Reasoning, Cambridge, MA, 661-672, April1992.[3] Lauritzen, S.L., and Spiegelhalter, D.J., \Local computations with probabilities ongraphical structures and their applications to expert systems," Proceedings of the RoyalStatistical Society, Series B., 50, 154-227, 1988.[4] Pearl, J., \Belief networks revisited," Arti�cial Intelligence, 59, 49-56, 1993.[5] Pearl, J., \A calculus of pragmatic obligation," Proceedings of the AAAI Spring Sym-posium on Reasoning about Mental States, Stanford, CA, March 1993.[6] Pearl, J., \Aspects of graphical models connected with causality," Proceedings of 49thSession, International Statistical Institute: Invited papers, Florence, Italy, August 1993.[7] Pearl, J., and Verma, T., \A theory of inferred causation," in Allen, J.A., Fikes, R.,and Sandewall, E. (Eds.), Principles of Knowledge Representation and Reasoning: Pro-ceedings of the Second International Conference, Morgan Kaufmann, San Mateo, CA,441-452, April 1991. 6
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