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1 IntroductionA decade ago, databases were applications used by a relatively small numberof users in highly structured, corporate data processing environments. Now,databases are a central application of mainstream computing. This occurredin large part because of the decade's striking advances in connectivity. Themid-eighties' emphasis on local area networks has been replaced with theworld Internet. At the same time, the community of users accessing data-bases has grown from a somewhat homogeneous and geographically localizedcollection, to a highly diverse group spanning the globe and speaking manylanguages. This paper describes the LikeIt software facility which addressesa central problem that has emerged as a result of these changes, namely thatof robust semistructured text retrieval for small and medium size databases.Semistructured text lies between fully structured databases and uncon-strained text streams. A fully structured database might, for example, rep-resent a person's name using as many �elds as the name has parts. Thesemistructured approach might represent a name in a less formal way usinga single text �eld. Other examples of semistructured text �elds are companyor institution names and addresses (as in a directory of businesses), itemnames and descriptions (as in an online catalog), author names and book orpaper titles (as in a bibliographic database). Several related �elds might becombined into one, as in �gure 1, which illustrates a bibliographic recordimplicitly containing author, title, journal, volume, and year �elds.Considerable variation is possible in the description of an item using asemistructured record. A person's last name might be listed �rst or last.The middle name might be excluded or abbreviated. The ordering of a com-plex name's parts is not always well determined. Some information may bemissing from a given record, or extra information may be present. In prin-ciple, policies can be established to try to regularize representations, but inpractice, such policies rapidly become complex and confusing. Moreover, anyunforeseen exceptional cases, variations, or errors, either in the database it-self or (perhaps more commonly) in a user's query, can easily defeat searchand retrieval operations that are predicated on an enforced regularity.The World Wide Web places an enormous amount of information at thedisposal of the ordinary user equipped with PC, modem, and Internet con-nection. Much of this information is unstructured beyond the level of simpleparagraphs or list items, and the timely and ephemeral nature of the inform-ation makes it unreasonable to expect otherwise. Furthermore, much of this1



Query: problmoptimldictionryRecord: Andersson, Optimal Bounds on the Dictionary ProblemLNCS, 401, 1989Figure 1: All three words of this query are misspelled, they occur in thewrong order, and there is no space separating them. Nevertheless the desiredrecord is identi�ed using the LikeIt facility from a listing of 50,360 paperdescriptions in the �eld of theoretical computer science. Author(s) name,paper title, and related information are combined into a single database text�eld.information is directly human-generated, so errors are relatively abundant|the data is certainly never as clean as a corporate database.We address the problems of variation and error in semistructured data byincreasing the sophistication of the software that is used to compare querieswith semistructured records. The heart of the LikeIt facility is a functionthat compares two text strings, and returns a numerical indication of theirsimilarity. Typically one of these strings is the user's query and the other isa record from a database. Because this function is very fast, it is possible tocompare the query with thousands or even hundreds of thousands of databaserecords while still delivering acceptable response time. Also included is ahigh-speed heap data structure used to track the best matches encounteredduring a search.An important bene�t of the LikeIt approach is that the queries are simplefree-form expressions of what the user is looking for. There is no querylanguage, and the comparison function is rather robust with respect to typ-ical errors, missing or extra information, and overall ordering (see �gure 1based on the database of [13]). Also, the LikeIt facility includes no naturallanguage-speci�c considerations. It operates on byte strings and as such maybe used across languages and perhaps for applications that have nothing todo with language (such as DNA sequence comparison).The contribution of LikeIt is a particularly simple and time/space-e�cient implementation of intelligent string comparison based on bipartitematching. Using a 200Mhz Pentium Pro processor, processing one byte ofdatabase information typically requires roughly 0:5�S. So 100,000 records of30 characters each can be processed in 0:15 seconds. LikeIt is in some sensea fourth generation implementation of the following general approach:2



1. Algorithms of the general type used by LikeIt were introduced in [15],and were later used in the commercial spelling correctors of ProximityTechnology, Inc., and Franklin Electronic Publishers. The linguisticsoftware components developed by these companies were used underlicense in word-processing programs from hundreds of publishers, intypewriters, and in tens of millions of hand-held spelling devices.2. The PF474 VLSI chip was a special purpose pipelined processor [16, 11]that implemented the algorithm of [15]. Today's software matches andeven exceeds the performance of this device, although the comparison isnot entirely fair, since the PF474 was clocked at only 4 Mhz. The samedesign implemented today would still result in a 1{2 order of magnitudehardware advantage.3. The Friendly Finder software utility [10, 9], �rst introduced in 1987by Proximity Technology, implemented the algorithm together withsoftware accelerations and special treatment for bigrams. The resultwas that small database could be searched on early personal computerswithout using the PF474 chip. The computational heart of FriendlyFinder was also made available under license, and named \P2."4. A transition to the bipartite matching viewpoint took place with [1, 2],the algorithms being improved and in some cases simpli�ed. The resultis entirely new algorithms that are still of the same family. The LikeItfacility is the �rst implementation based on these new developments.The algorithms of [1] lead to linear time algorithms for a large class ofgraph cost functions, including the simple linear costs used by LikeIt.Linear time matching algorithms for this particularly simple special casewere �rst presented in [6].The LikeIt approach, used in e�ect by Friendly Finder [10], is to buildan optimal weighted matching of the letters and multigraphs in the query, andthose in each database record. Words as such receive no special treatment.In this sense it is related to the document retrieval approach of [3, 5].An alternative approach to string comparison computes edit distance [4,12], i.e., the minimum-cost transformation of one string into another via someset of elementary operations. Most commonly, weighted insertion, deletion,and substitution operations are used, and the edit distance computation is astraightforward dynamic program. However, edit distance su�ers from two3



problems that led to our own approach. First, the dynamic program runsin O(m � n) time, where m;n are the string lengths, whereas LikeIt runsin O(m + n) time. Second, the edit distance approach is highly sensitive toglobal permutation, e.g., changing word order. Humans frequently are not,and LikeIt deals well with this issue.The automaton-based approach to fast string matching introduced in [7]deals with exact matches only. A natural generalization relaxes the require-ment of exact equality and allows a bounded (and in practice small) numberof errors. Each such error is typically restricted to be either an insertion, de-letion, substitution, or sometimes a transposition of adjacent symbols. Givena query string, it is then possible to build an automaton to detect it, orany match within the error bounds, within a second string. The recent workof [8, 14] demonstrates that text can be scanned at very high speeds withinthis framework for comparison. The LikeIt framework, on the other hand,can satisfy queries that do not fall within the practical capabilities of theautomaton approach because they are too di�erent from the desired databaserecord.The LikeIt facility searches by brute force. It compares the query withevery database record. With today's CPUs, this limits its applications to tensof thousands or perhaps hundreds of thousands of records. We see LikeItand related approaches as important and e�ective tools for medium-size tex-tual databases|still small enough to scan in their entirety for each query.Organizing a database so that not every record needs to be considered rep-resents an interesting area for future work. Techniques such as vantage-pointtrees [17] might be used for this purpose even through the similarity valuecomputed by LikeIt is not strictly a mathematical metric.Section 2 of this paper describes the ANSI-C subroutine-level interface(API) to the LikeIt facility. The reader interested in quickly applyingLikeIt to a problem may read this section and skip directly to appendix A,which describes each �le in our standard distribution and explains how tomake it. Two user-level utility programs are described in section 3, whichprovide command-line and Web interfaces to the facility. In this way, simpleline-oriented databases may be accessed using LikeIt without any program-ming requirement at all. These simple utilities read the entire database fromdisk each time they are invoked. A more sophisticated Web solution is de-scribed in section 4. Here, a daemon preloads one or more databases and iscontacted by a CGI stub program to resolve queries. The daemon may beinvoked manually or via inetd, and includes a facility for returning HTML4



links corresponding to matching records. Section 5 gives details of the internaldesign of LikeIt, and the advanced user may customize certain aspects ofits behavior using the interface described in section 6.2 User's View of the FacilityThe primary interface consists of a single function:int likeit(unsigned char *query, unsigned char *(*recfunc)(int),void *expert, int num_matches, int *matches,double *scores );Processing begins by translating the null-terminated query string, charac-ter by character to an internal alphabet. Default operation collapses ASCIIconsiderably by mapping all non-alphanumeric values to space and upper-case letters to their lower-case equivalents. This front end translation maybe customized as described in section 6. This translation process and certainother behavioral characteristics are speci�ed via the expert parameter. Forconvenience a NULL value for this parameter selects default operation1.The query is compared with a sequence s1; : : : ; sn of database strings thatlikeit() accesses by calling the user-supplied recfunc() slave function. Asingle integer argument is supplied to select an element of the sequence, anda pointer to that element is returned. The recfunc() function must returnNULL if its argument is less than 1 or greater than n, and support randomaccess of the sequence. Using the default expert value of NULL, the length ofqueries and database strings should be limited to 1; 024.The result of each comparison is a numerical indication of similarity, andlikeit() keeps track of the num matches most similar database strings en-countered. Their indices are written into the user-allocated integer vectormatches. The corresponding double similarity values are written into theuser-allocated scores vector. These are actually nonnegative graph matchingcosts so that lower values correspond to increased similarity. The likeit()function returns the actual number of values written into these vectors|avalue less than or equal to num matches.1Default operation is also selected by specifying the constant LKT DEFAULT EXPERT5



2.1 User-supplied preprocessingOur experience is that simple preprocessing of queries and database stringsbefore they are passed to likeit() improves results. Leading and trailingwhite space is deleted, repeated white space is collapsed to a single spacecharacter, and �nally, a single leading and trailing space character is inserted.2Combining these steps with the default translation described above we have,for example:OPtimal  (Dictionary), ..  !  optimal  dictionary    where the repeated spaces in the �nal result arise from the translation process.We have found this combined processing to be an e�ective general purposesolution, and it is performed by the utilities described in section 3. Otherpreprocessing schemes and translation mappings may be more suitable forparticular applications.Ideally preprocessing is performed in advance for each database string sothat recfunc() can operate by simply returning the address of an alreadyedited string.2.2 Facility Self-TestIt can be di�cult to ensure that intelligent functions such as LikeIt areoperating correctly. For this reason the facility includes a self-test operation:int likeit_self_test(int test_type);The test type is either 0 or 1, selecting a little or a big test, respectively.The return is a boolean value indicating success. A little test takes very littletime and is performed internally and automatically every time likeit() iscalled. A big test takes much more time, and may be run by calling thisfunction with an argument of 1, or by running the likeit utility programdescribed in section 3 with the -t command-line 
ag.Both tests generate random queries and database records over a �xed sizealphabet. The ASCII-based default translation above does not apply. A hashof the information returned by likeit() is checked against a recorded value.The test characteristics are:2In the user-level utility programs provided, the leading and trailing single spaces areadded to database records at search time, resulting in a small time penalty.6



Query # Queries DB record # records AlphabetLength length SizeLittle < 8 5 < 32 10 7Big < 32 100 < 128 1000 1273 UtilitiesThis section describes a simple multipurpose application program that usesthe LikeIt facility to provide both command-line search services, and acommon gateway interface (CGI) for Web environments. A single execut-able serves both purposes|its �lename selects the mode. Filename likeitprovides command-line operation and likeit.cgi causes the program toenter CGI mode.Both modes of the utility read a simple line-oriented database. Verticalbars `|' may be used to separate �elds within a record, but these separatorshave no e�ect on the comparisons made by LikeIt3|they only a�ect theappearance of the output in CGI mode (see below). That is, each line inthe database is treated as a single string, so that information in one �eld canmatch that in another. The database is �rst read into an array of structures,and the whitespace preprocessing described in section 1 is performed. Asimple recfunc() is implemented that delivers records by indexing into thisstructure.Command-line usage is:likeit [-n <nmatches>] <database> '<query>'The optional -n argument requests display of a speci�c number of matches.The default is 25 and the maximum is 1000. The <database> argument namesthe database �le formated as described above. The �nal argument '<query>'provides the search query, and must be enclosed in single or double quotes ifit contains whitespace. A facility self-test (\big") may be run by the specialusage: likeit -t. The following example using the sample database [13]provided with the LikeIt distribution illustrates command-line mode:% likeit -n 2 rochester.lst "optimldictionryproblm"6263703.0 Andersson, Optimal Bounds on the Dictionary3In fact, they are mapped to space characters like other non-alphanumerics.7



Problem|LNCS|401|19896272296.0 Li & Probst, Optimal VLSI Dictionary MachinesWithout Compress Instructions|IEEETC|39|1990% The numeric value at the beginning of each line is the score returned fromlikeit(). It is important to note that these include what amounts to a largepositive bias arising from the technical details of our implementation. Assuch they are not directly proportional to a similarity or distance.The CGI executable named likeit.cgi reads three HTML form para-meters: database, nmatches, and query, which are self-explanatory. A ho-rizontal rule separates records in the HTML output. If �eld separators areused in the database, each �eld of a record appears on a separate line.While likeit.cgi may be useful for demonstration purposes and smallapplications, it is far from optimal since the database is reread with eachquery. In some cases this performance problem is reduced by operating system�le system caching. A more sophisticated implementation is described nextinvolving a search daemon to which a very small CGI stub connects to resolvequeries.4 A LikeIt daemonThe likeit.cgi program described in the previous section is useful fordemonstration purposes, for one-time queries, or for small applications. Inthis section we describe a solution suitable for more general use.A daemon is invoked which preloads one or more databases. HTML quer-ies are communicated to it via a small CGI stub program likeitstub.cgi.The daemon responds with a list of matching records which the stub formatsas HTML and returns to its client. The preloaded records are fully prepro-cessed by the daemon, including the addition of leading and trailing spacecharacters. The result is that search times are slightly faster than those re-ported elsewhere in this paper. Three arguments database, nmatches, andquery are used. The value of the �rst is a zero-based integer selecting one ofthe preloaded databases. The meaning of the others is clear.Communication between the stub and daemon is line-oriented. After theconnection is established a simple handshake veri�es that the versions of thesetwo programs agree. The integral database identi�er, requested number of8



matches, query length, and query are then communicated to the daemon {each on a separate line.The daemon responds with a series of lines. The preamble contains anintegral database type indicator. Currently two types, line and line-url, aresupported. These correspond to indicators 0 and 1 respectively. The �rstselects a database format identical to that described earlier in this paper.Vertical bar symbols `|' mark line breaks in the HTML output. In the secondformat a URL is provided on a separate line following each database record.The HTML output then displays the record as a link to this URL. A blankURL is allowed.The daemon then responds with the number of matches returned (maydi�er from the number requested). Next the matching records are returned.Each begins with a score. The stub ignores this in the present implementa-tion. The matching record is then returned followed by a URL (for line-urldatabase).All HTML formating is performed by the stub, so the appearance of thereturned document may be altered by editing its source code.The daemon may be invoked manually or via inetd. The executable'sname di�ers in these two cases and must be The likeitd or in.likeitdrespectively. In both cases the daemon accepts a single argument naming acon�guration �le. Each line of this �le speci�es a database and consists oftwo white space delimited �elds. The �rst is either line or line-url andselects type. The second gives the �lename.5 InternalsThe LikeIt facility reads database records and outputs those that it regardsas the most similar matches to the query provided. A weighted bipartitegraph matching approach is taken to the problem of quantifying similarity.The query string is imagined to be positioned above the database stringand the matching problem is to correspond features using edges of minimumtotal weight. In the simplest case the features consist of single letters, andthe weight of an edge is the distance (in units of string position) betweenoccurrences in the top and bottom string.Our own sense of string similarity fairly clearly depends on higher levelfeatures such as digraphs, trigraphs, and ultimately entire words. TheLikeIt facility captures this e�ect by e�ciently constructing several match-9



ing problems|one for single letters, another for letter pairs (digraphs), etc.Its sense of similarity is then a composite of these solutions.The particular alignment of the query above the database string clearlya�ects the cost of a matching. For this reason LikeIt treats this alignment asa variable and attempts to minimize total matching cost over it. That is, thequery is imagined to slide left or right until a position resulting in minimumtotal matching cost is found.The result is a rather complicated process, and despite our emphasis one�ciency, a time consuming one. For this reason the LikeIt facility is im-plemented as a three stage �lter (�gure 2) in which the computation above isthe �nal stage designated F3. The two earlier stages F1 and F2 approxim-ate the similarity judgment of F3 using far less time. The F2 stage crudelyapproximates the optimization over query alignment as described later inthis section. The �rst stage F1 approximates the matching process itself bycounting matching polygraphs|taking no account of their position.Each of these stages acts as a �lter outputting fewer records than areinput. The number of records output from the �rst �lter is denoted Y andthe number delivered by the last is denoted X. The LikeIt facility sets Yto the greater of 10 � X and 1000. The e�ect of this tapered �lter approachis that the �nal output is (in practice) as though the full algorithm, F3 wereapplied to every database record. The records output from each �lter stageare maintained in a binary heap. Our implementation is simple and fast. Asa result heap operations represent a negligible portion of the overall CPUtime.5.1 Front End AutomatonEach of the three �lter stages operate on the query and database strings asa series of polygraphs of various lengths (single letters are 1-polygraphs).Matching edges can exist only between polygraphs that occur in both thequery and the database string under consideration. Thus, all other data recordpolygraphs may be disregarded.Our approach is to build a �nite state machine (FSM) based on the querywhich detects all polygraphs (up to some �xed length) in a database recordthat also occur in the query. The machine changes state as each databaserecord character is presented. It's states correspond to the longest trailingpolygraph that is also present in the query.10
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ZFigure 2: The LikeIt process consists of three stages (F1, F2, and F3)that �lter an input database of Z records down to the desired number Xof maximally similar output records. Each stage computes an increasinglye�ective but also increasingly CPU-intensive notion of similarity. Stage F1outputs Y records where Z � Y � X. The size of stage F2's outputinterpolates between Y and X.
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The machine's construction is straightforward but involved, and is de-scribed in the distribution �le fsm.doc. We considered processing the data-base once using this machine, and saving the result. But because far fewerrecords are considered by F2; F3 than by F1, and because the machine isvery fast when compared with F2; F3, we instead re-process the records foreach �lter stage.5.2 MatchingThe matching �lters F1; F2; F3 operate on polygraphs identi�ed by the FSM.Default operation limits attention to polygraphs of lengths 3{6 for �lter F1,and lengths 1{6 for F2; F3.In all �lters a form of normalization is required, so that matching scores arecomparable in the presence of variable-length queries and database strings.This normalization may be regarded as padding both query and databasestring to some large length L that in the default case is 1024. In all cases, thee�ect of padding on the matching score is easily computed, and the paddingis never actually performed.Filter F1 counts matching polygraphs. Initialization identi�es all poly-graphs in the query within the requested range (3{6 by default). The countof each polygraph within the query is recorded. As the FSM processes data-base string characters and polygraphs are identi�ed, F1 tallies matches up tothe limit imposed by each polygraph's multiplicity in the query. For example,if \ing" occurs three times in the query, then only the �rst three occurrences inthe database string contribute to the match tally. Database-string polygraphsthat do not occur in the query are unmatched by de�nition. Unmatched poly-graphs also include those that were not counted because they exceeded thequery multiplicity limit.Filter F1 takes no account of the relative position of matching polygraphs.It assigns a constant cost 0:5L to matching polygraphs, and cost L to eachpair that does not match. As such, it can be thought of as a relaxation of thelater matching stages to trivial constant cost functions. Because position isirrelevant, the mutual alignment of query and database record is not an issuefor F1. The �nal scores computed by F1; F2; F3 combine scores for eachpolygraph length and weight them linearly, i.e., polygraph lengths 1; � � � ; 6receive weights 1; � � � ; 6, respectively.The next stage, F2, begins with a left-aligned query, and decomposes thematching problem into subproblems for each level as de�ned in [1]. Each such12



level consists of polygraph occurrences that alternate between the query anddatabase string. If the number of occurrences is even, the matching is uniquelyde�ned. If odd, then LikeIt approximates the optimal matching by omittingeither the �rst or last occurrence. The entire process is implemented withoutactually recording the matching edges|only costs are propagated online asdatabase characters are processed. Investing only a little additional timeyields the optimal matching [2]|also in an online fashion|but this is notimplemented in LikeIt.Having produced a matching, a single approximate realignment step isperformed. This is accomplished by keeping track of the average edge lengthduring processing, and mathematically repositioning the query so that theaverage length is as near as possible to zero. It is important to note thatthe matching itself is unchanged|edges are simply expanded or contractedto account for the realignment. For this reason we refer to this as a freerealignment.The �nal �lter F3 begins as does F2 but after each realignment a newmatching solution is constructed. This realignment/rematching step is per-formed three times, or until the score fails to improve. The mean-lengthapproach to realignment taken by LikeIt is easily implemented, but we re-mark that the proper computation instead focuses on median length [2].6 A More Detailed InterfaceThe operation of LikeIt is customized via the expert parameter to thelikeit() function. This argument is of type struct likeit expert *, andit is by �lling in this structure that customization is e�ected:struct likeit_expert {int (*char_map)(int); /* Character mapping function */int max_record_len; /* Max record len */int num_filters; /* Number of filters *//* Sequence of filters */struct likeit_filter filters[LKT_MAX_FILTERS];};The header �le likeit expert.h is included by applications that performsuch customization. Passing NULL (or LKT DEFAULT EXPERT) for expert se-lects default operation. 13



The front-end character mapping is speci�ed by char map. This functionmaps input character codes to the values (range 1{255) that will be usedby likeit. Common uses are to fold case, ignore most punctuation, andcorrespond foreign symbols with English letters. A sample implementationthat folds upper to lower case and reduces all non-alphanumeric charactersto space would be the following:int likeit_default_char_map( int c ){ if (!isalnum(c))return ' ';elsereturn tolower(c);}If char map is set to LKT DEFAULT CHAR MAP, a default character mappingfunction is used which adds to the above functionality the mapping of accentedISO Latin-1 characters to their unaccented lower case form.4The max record len value should be set to a value larger than the longeststring one expects to encounter. Value LKT DEFAULT MAX RECORD LEN de�nedas 1024 is assigned in the default structure. The result of processing stringslonger than max record length is not speci�ed.The �lter structure of LikeItmay be customized via the num filters andfilters structure elements. If num filters is set to LKT DEFAULT FILTERSthe default �lter con�guration described earlier is selected and filters[]need not be speci�ed. If num filters is set to a positive integer, then as manyentries must be present in vector filters[]. The default structure speci�es 3corresponding to F1; F2; F3. Each vector entry is a struct likeit filter:struct likeit_filter {int type; /* Filter type */int gmin; /* Min polygraph length */int gmax; /* Max polygraph length */int hmax; /* Max # of records on filter output heap */};Structure element type is set to one of:4This default character mapping function is actually implemented as a table lookup.14



enum {LKT_FILTER_POLYCOUNT=0,LKT_FILTER_QCONVEX_1,LKT_FILTER_QCONVEX_2,LKT_FILTER_NUM_TYPES};corresponding to the three �lter types described in section 5. For each, thegmin and gmax values are set to limit the polygraphs considered. The defaultcon�guration sets gmax to 6 for all three �lter stages, gmin to 1 for the secondtwo (F2; F3), and to 3 for the �rst (F1). Entry hmax determines the size ofthe corresponding �lter output heap. Typically the �nal stage is con�gured tooutput exactly the number of matches requested by the user, and the outputsize of each stage is less than its predecessor's.In addition to supporting customization using the �lter types includedwith the distribution, this architecture anticipates the creation of new types.7 TimingsWe measure the facility's time performance by applying the likeit programto the database of [13]. This database is a listing of 50,360 papers in theoret-ical computer science. Each line gives the authors, title, journal or conference,and date. We reordered �elds to match this description and added `|' betweenthem. The resulting �le is 4,278,967 bytes.Our timings are made using an Intel Pentium Pro 200MHz processor witha 512K L2 cache under Linux version 2.0.27. The distribution was compiledusing gcc -O3 version 2.7.2.1.We focus on the time required to process a single character of databasetext, since this statistic enables application designers to quickly compute re-sponse time. This time, however, is not constant; the primary variablesa�ecting it are the query's length and the number of best matches reques-ted. Experiments verify that there is in practice much less sensitivity to thequery's particular value, or the database's speci�c content.We report results in table 1 for three queries of increasing length andrequests for between 1 and 500 best matches. For example, 413ns per data-base character are required for query Q2 applied to our test database, where25 best matches are requested. The response time for this query is then15



413ns � 4; 278; 967 � 1:77 seconds. It is also convenient to compute theprocessing rate 1=413ns � 2:4 million characters per second.The table also gives times for the three �lter stages in the LikeIt process(described in section 5). The patterns evident in this table are consistent withthe algorithm's design and we now remark on the qualitative nature of thetimings. Notice that the F1 time is essentially constant for each query andvaries little between them. We expect this because the role of F1 amounts tocounting polygraphs in database records and there is very little dependencyon the query. Filter 2 time depends rather strongly on query length since verysimilar processing takes place for each character of the database and querystrings. For a �xed query F2 is essentially constant through 100 requestedmatches|but has increased considerably at 500. This is explained by ourchoice to set the number of matches output by F1 to the greater of ten timesthe number of requested matches, and 1000. So up to 100 requested matches,F1 always outputs 1000 candidates for consideration by F2. Requesting 500matches forces F1 to output 5000 candidates, thus increasing almost linearlythe F2 time required. For a �xed query we expect F3 time to increase withthe number of candidates output by F2. For table values of 1, 5, 25, 100,and 500, �lter F2 outputs 31, 70, 125, 316, and 1581 records, respectively, asdetermined by �gure 2. Analysis of F3 time is complicated by the variablenumber of realignment steps performed. We expect, however, fewer suchsteps to be necessary as query length approaches the length of the databasestring. The table's F3 times are consistent with these two observations.In summary, for each query the time varies by roughly 2:1 as the numberof requested matches ranges from 1 to 500. The variation is somewhat lessthan this within columns. The corner-to-corner variation is just above 3:1.Excluding the 500 matches column the variation is much smaller. We thereforesuggest that application designers can approximate performance well, at leastfor budgetary estimation purposes, by simply assuming:Each database character requires � 400ns to process, correspond-ing to a rate of 2.5 MB/second.Having said this, we must remark that this assumption breaks down in ex-treme cases such as databases consisting of very short records. Here, per-record overhead dominates.
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# Matches ReturnedQuery Filter 1 5 25 100 500Q1 F1 285 283 283 280 287F2 40 42 42 42 168F3 2 5 12 23 164Total 327 330 337 345 619Q2 F1 301 299 299 301 306F2 68 70 70 68 301F3 12 21 44 108 285Total 381 390 413 477 892Q3 F1 337 337 334 339 346F2 98 98 96 98 437F3 14 26 54 108 285Total 449 461 484 545 1068Q1: OptimalQ2: Optimal Dictionary ProblemQ3: Andersson, Optimal Bounds on theDictionary ProblemTable 1: Processing time (nanoseconds) per character of database text forthree queries of increasing length and requests for between 1 and 500 bestmatches. The total time as well as times for each �lter stage are shown.Measurement error is approximately �2 ns for each �lter.
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8 Future WorkBecause the similarity values computed by LikeIt arise from a graph match-ing computation it should be possible to visualize the system's judgment. Theedges themselves might be shown, or, matching letters and polygraphs some-how highlighted. We view this as an important aspect of intelligent userinterfaces because the user who better understands the machine's judgmentwill, we believe, be better equipped to employ it.We also intend to modify F3 to exactly solve each subsidiary matchingproblem, and use median-based realignment as described in [2].Two interesting areas for theoretical work are evident. First, an additional�lter stage before F1 might be added to prune the search without examiningevery record. Second, online forms of our matching-based approach suggesta system similar to LikeIt for searching text databases that are not record-delimited. Some progress towards this goal is described in [2]. We remark,however, that the LikeIt system as described in this paper can be used e�ect-ively for such databases by simply introducing record divisions periodically,or at appropriate locations such as sentence or paragraph boundaries.References[1] S. R. Buss and P. N. Yianilos, Linear and o(n logn) time minimum-cost matching algorithms for quasi-convex tours, in Proceedings of the5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994,pp. 65{76. To appear SIAM Journal on Computing.[2] , A bipartite matching approach to approximate string comparisonand search, tech. rep., NEC Research Insitute, 4 Independence Way,Princeton, NJ, 1995.[3] M. Damashek, Gauging similarity with n-grams: Language-independent categorization of text, Science, 267 (1995), pp. 843{848.[4] P. A. V. Hall and G. R. Dowling, Approximate string matching,Computing Surveys, 12 (1980), pp. 381{402.[5] S. Huffman and M. Damashek, Acquaintance: A novel vector-spacen-gram technique for document categorization, in Proceedings Text RE-18
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A The Distributed SoftwareAfter unpacking the distribution, you will need to make sure that the fol-lowing parameters are set properly in the Makefile: CC, CFLAGS, RANLIB,OS TYPE, SERVERADDR, SERVERPORT, and TIMEOUT VALUE. See the associatedexplanatory comments in the Makefile. The last three of these parametersare only critical if you plan to run the LikeIt daemon and CGI stub.The Makefile is con�gured for Linux. Solaris users will need to editthe de�nitions at the top of the Makefile. Now type make. This makestargets liblikeit.a, likeit, likeit.cgi, likeitd, in.likeitd, andlikeitstub.cgi. Library liblikeit.a is derived from the following dis-tributed �les:likeit.c : : : : Top-level module implementing the likeit() routinelikeit sys.h Private top-level header �lefsm.c : : : : : : Search query automatonfsm.h : : : : : : Private header �le associated with fsm.cinvtab.c : : : : Inverted table of query polygraph occurrencesinvtab.h : : : : Private header �le associated with invtab.cheap.c : : : : : Fast binary heapheap.h : : : : : Private header �le associated with heap.cpolycount.c Polygraph counting �lterqconvex.c : : : Quasi-convex �lterscharmap.c : : : Default character mapping functionarray.c : : : : Multi-dimensional arrays, used by fsm.carray.h : : : : Private header �le associated with array.ccommon.h : : : : Private header �le containing common de�nitionsmem.c : : : : : : Storage allocation routinestimer.c : : : : : Timer routineutils.c : : : : : Miscellaneous utilitiesUsers of liblikeit.a include:likeit.h Contains the likeit() function prototypelikeit expert.h De�nitions for expert con�gurationThe likeit and likeit.cgi programs are derived from:
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cgi.c Top-level CGI search codedata.c Database management routinesdisplay.c Match display routineslikeit prog.c Main program modulelikeit prog.h Top-level header �lestate.c Routines for modifying program stateThe likeitd, in.likeitd, and likeitstub.cgi programs are derived from:svr main.c Main daemon program modulesvr data.c Database management routinescli main.c Main stub program moduleclisvr.h Common de�nitions for daemon and stubsystemtype.h OS type-dependent de�nitionsipc.c Socket communication routinesipc.h Socket communication header �leipcutils.c Communications utilitieserror.c Error reporting routineserror.h Error reporting header �leTo try the Web-based demonstration software, install likeit.cgi in thetypical fashion, i.e., copy it into the cgi-bin directory of your local HTTPserver. You'll need to edit likeitform.html so that the absolute path-names for �les rochester.lst and catalog.lst are correct for your sys-tem, and so that likeit.cgi is properly pointed to. Two sample databasesrochester.lst and catalog.lst are provided.To install the daemon and CGI stub programs, copy likeitstub.cgiinto the cgi-bin directory of your local HTTP server. The HTML formlikeitd.html is used to invoke the stub, and you will need to edit it sothat it points at the stub program correctly. Note that the option valuescorresponding to the database selections are integers rather than pathnames.These integers correspond to the order in which the databases are listed in thedaemon con�guration �le likeitd.config. Make sure that the pathnamesfor these databases are correct, absolute pathnames in the con�guration �le.If you wish to start the daemon manually, typelikeitd <path>/likeitd.config &where the path is the absolute pathname of the con�guration �le. The daemondetaches from the controlling terminal, so its execution can only be terminated21



with kill. Make sure that the daemon is running on the host you speci�edin the Makefile via the SERVERADDR parameter!If you wish the inetd Internet superserver to start the LikeIt daemon,you must have your system administrator modify two systems �les. First, aline similar to the following must be added to the �le /etc/services:likeit 5000/tcp # likeit daemonIn place of the number 5000, use the port number you decided on for theSERVERPORT parameter in the Makefile. This is the port the LikeIt daemonwill listen on.Next, a line similar to the following must be added to the �le/etc/inted.conf:likeit stream tcp wait <user> <path>/in.likeitd <path>/likeitd.configThe LikeIt daemon in.likeitd will run as user Paths should be cor-rect for the executable in.likeitd, and the daemon con�guration �lelikeitd.config. These must be absolute pathnames. The inetd super-server will start the LikeIt daemon at the �rst attempt of the stub programto connect. The daemon will read in the databases speci�ed in the con�g-uration �le, and then begin to accept queries. Error messages generatedby stub and daemon are written to the �les /tmp/likeitstub.console and/tmp/likeitd.console, respectively.File likeit.ps contains Postscript for this paper and LICENSE gives thenoncommercial license under which the distribution is made. File fsm.docprovides details regarding the �nite state machines used to detect polygraphsin the LikeIt �lters. A simple README �le directs the reader to this paper.
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