Necessary and Sufficient Conditions for Collision-Free Hashing

Alexander Russell”
Laboratory for Computer Science
545 Technology Square
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

acr@theory.lcs.mit.edu

November 15, 1995

Abstract

This paper determines an exact relationship between collision-free hash functions
and other cryptographic primitives. Namely, it introduces a new concept, the pseudo-
permutation, and shows that the existence of collision-free hash functions is equivalent
to the existence of claw-free pairs of pseudo-permutations. We also give a simple con-
struction of collision-free hash functions from everywhere-defined claw-free (pseudo-)
permutations.

1 Introduction

Hash functions with various cryptographic properties have been studied extensively, espe-
cially with respect to signing algorithms (see [2, 3, 4, 10, 12, 14, 15]). We focus on the most
natural of these functions, the collision-free hash functions. A function h is a collision-free
hash function if |h(z)| < |¢| — 1 and it is infeasible, given h and 1*, to find a pair (z,¥) so
that |z| = |y| = k and h(z) = h(y). These functions were first carefully studied by Damgard
[2] and have found several applications. In particular, they have been used to improve the
efficiency of digital signature schemes by hashing messages prior to signing (which reduces
the size of the object operated upon the often costly signing algorithm). They have also
been applied in the construction of efficient zero-knowledge arguments [9]. Given the in-
terest in these functions, we would like to determine necessary and sufficient conditions for
their existence in terms of other, simpler, cryptographic machinery.

There has been recent attention given to the minimal complexity-theoretic requirements
for other cryptographic primitives. Rompel [12], improving a construction of Naor and Yung
[10], shows that the existence of secure digital signing systems (in the sense of [5]) is equiv-
alent to the existence of one-way functions. Impagliazzo, Levin, and Luby [7] and Hastad
[6] demonstrate the equivalence of the existence of pseudo-random number generators (see
[1, 13]) and the existence of one-way functions.

*Supported by a NSF Graduate Fellowship, NSF grant 92-12184, AFOSR F49620-92-J-0125, and DARPA
N00014-92-J-1799

Damgard [2], distilling arguments of Goldwasser, Micali, and Rivest [5], shows that the
existence of another cryptographic primitive, a claw-free pair of permutations, is sufficient
to construct collision-free hash functions. A pair of permutations (f,g) of ® C ¥* is claw-
free if it is infeasible, given (f,g) and 1%, to find a pair (z,y) so that |z| = |y| = k and
f(z) = g(y). Comparing the definitions of collision-free hash functions and claw-free pairs of
permutations, there is reason to suspect that the existence of claw-free pairs of permutations
is not necessary for the existence of collision-free hash functions because the hash functions
have no explicit structural properties that reflect the one-to-one property of the claw-free
pairs of permutations. Qur paper relaxes this one-to-one property and defines a natural
object the existence of which is necessary and sufficient for the existence of a family of
collision-free hash functions.

We define a new concept, the pseudo-permutation. A function f: D — D is a pseudo-
permutation if it is computationally indistinguishable from a permutation. For this “indis-
tinguishability” we require that it be infeasible, given the function f and 1%, to compute
a quickly verifiable proof of non-injectivity, i.e. a pair (x,y) where |z| = |y| = k,z # v,
and f(z) = f(y). The main contribution of our paper is that the existence of a collection
of claw-free pairs of pseudo-permutations is equivalent to the existence of a collection of
collision-free hash functions. This fact shows that claw-freedom of some variety is essential
for collision-free hashing and also weakens the assumptions necessary for the existence of
collision-free hash functions.

We also consider claw-free pairs of pseudo-permutations defined on all of ¥* which we
call claw-free pairs of simple pseudo-permutations. We show that that the existence of claw-
free pairs of simple pseudo-permutations is also equivalent to the existence of collision-free
hash functions.

Collision-free hash functions are suspected to be quite different from wuniversal one-
way hash functions [10]. A universal one-way hash function is an element of a family of
functions {h, : ¥" — X*} such that |hy(2)| < |2| — 1 and it is infeasible to choose an
element @ € X" so that, given h, selected at random from {h, }, it is feasible to generate an
element y € X" so that hy(2) = ho(y). Although it is easy to see that any collision-free hash
function is a universal one-way hash function, it is unknown if collision-free hash functions
can be constructed from universal one-way hash functions. These universal one-way hash
functions were introduced because their existence is equivalent to the existence of secure
digital signature schemes [10]. Rompel [12] then showed that the existence of these universal
one-way hash functions is equivalent to the existence of one-way functions.

In §2 we describe our notation and define some cryptographic machinery. In §3 we
present our main theorem. In §4 we present some comments on the main theorem and a
dual theorem for simple functions. Finally, in §5, we conclude with an open problem and
the motivation for this research.

2 Notation and Definitions

We adopt the following class of expected polynomial-time Turing machines as our standard
class of “efficient algorithms.”

Definition 1 Let EA, our class of efficient algorithms, be the class of probabilistic Turing
machines (with output) running in expected polynomial time. We consider these machines,
given an input, to compute a probability distribution over ¥*. For M € E£A we use the
notation M[w] to denote both the probability space defined by M on w over ¥* and an
element selected according to this space.

For simplicity, let us fix a two letter alphabet ¥ = {0,1}. We denote the empty string
of ¥* by A. 1* denotes the concatenation of k 1’s. For # € ¥* of length n and for i < n, z;
denotes the ith character of 2. Z[z] denotes the set of polynomials over the integers. For a
function f:® — R, we write dom f 19 and im f def {f(z)]|z €D} CR. Borrowing
notation from [5], if S is a probability space, «— S denotes the assignment of 2 according to
S. If p(x1,...,21) is a predicate, then Prlzy < S1,..., 25 — Sk : p(21,...,2x)] denotes the
probability that p will be true after the ordered assignment of z; through xx. A collection
of events { £} is said to occur with non-negligible probability if 3P € Z[x],Vko, Ik > ko,

1

Pr[Ex] > Z0)

2.1 Claw-free Pairs of Functions

Definition 2 A collection of claw-free functions is a collection of function tuples
{(SN ie I} Jor some index set I C ¥* where f! : D; — D; for some D; C yli
such that:

CF1. [accessable] there exists a generating algorithm G € EA so that G[1"] € {0,1}" N I.

CF2. [sampleable] there exists a sampling algorithm S so that S[i] is the uniform distribution
on®;.

CF3. [efficiently evaluable] there exists an evaluating algorithm E € EA so that for i €
1,5€{0,1}, and x € D;, E[i,j,2] = fl(2).

CFJ. [claw-free] for all claw finding algorithms A € EA, VP € Z[z], Fko, Yk > ko,

Pr|i — G, (2, y) — Ali]: f(2) = fl(y)| < 20

A collection of such functions is called simple if Vi € I,9; = Sl

If (f°, f1) is a member of a collection of claw-free pairs, then (f°, f1) is called a claw-free
pair and a pair (z,y) so that fO(2) = fl(y) is called a claw of (f°, f1).

This definition, from a cryptographic perspective, requires nothing of the function pairs
involved unless they have overlapping images. One way to require that the functions have
overlapping images is to require that the functions be permutations. This yields the follow-
ing object, originally defined in [5] and then in this form by [2].

Definition 3 A collection of claw-free permutations is a collection of claw-free func-
tions { (f, f1) | i € I} where each f! is a permutation.

Although the intractability of certain number theoretic problems implies the existence
of a collection of claw-free pairs of permutations!, the existence of one-way permutations is
not known to be enough.?

Definition 4 A collection of pseudo-permutations is a collection of functions
{fili€l} for some index set I C X* where f; : ©; — D; for some D; C Yl such
that:

¥ P1. [accessable] there exists a generating algorithm G € EA so that G[1"] € {0,1}" N 1.

1 P2. [sampleable] there exists a sampling algorithm S so that S[i] is the uniform distribution
on®;.

P3. [efficiently evaluable] there exists a evaluation algorithm E € EA so that fori € I and
x €D, L[i,z] = filz).

wPJ. [collapse-free] for all collapse finding algorithms A € EA, VP € Z[x], ko, Yk > ko

Pr|i = G, (2. y) = Ali] = fi(z) = fi(y) Ao £ y] < %

A collection of such functions is called simple if Vi € I,9; = Sl

If a function f is a member of a collection of pseudo-permutations it is called a pseudo-
permutation and a pair (z,y) where f(z) = f(y) and # y is called a collapse of f.
Property 1 P/ means that it is infeasible to produce a collapse of f (which may be thought
of as a quickly verifiable proof that f is not a permutation). Like the definition for
claw-free functions, the above definition requires nothing cryptographically of the functions
involved unless |im f;| < |dom f;|: if the functions in the collection are injective, then P4
is vacuously true.

Pseudo-permutations are a reasonable replacement for permutations in a cryptographic
setting; for example, the entire signing algorithm of Naor and Yung [10] may be implemented
with one-way® pseudo-permutations rather than one-way permutations.

Definition 5 A collection of claw-free pseudo-permutations is a collection of claw-
free functions { (f2,f}) i €1} so that both { f0|ie€ I} and { f} |i €I} are collections
of pseudo-permutations. A collection of such functions is called simple if Vi € I,D; = Sl

Collections of claw-free pseudo-permutations gather their cryptographic strength from
the tension between two otherwise weak definitions. If the pseudo-permutations lack crypt-
ographic richness (so that they are very close to permutations) then the intersection of
their images must be large and there must be many claws, imparting richness by virtue of
claw-freedom. If, instead, the pair has few claws, then the images of the two functions must
be nearly disjoint (and so, small) so that the functions themselves are cryptographically
rich by virtue of their many collapses.

'In [5] the intractability of factoring is shown to be sufficient. In [2], the construction of [5] is extended
and the intractability of the discrete log is also shown to be sufficient.

2[11] discusses algebraic forms of one way permutations sufficient for claw-free permutations.

®This is a collection of pseudo-permutations which are hard to invert in the sense of one-way functions.

2.2 Collision-free Hash Functions

We now formally define collision-free hash functions. We will concentrate on one-bit con-
tractors: hash functions from Y*+' — Y%, Tt is not hard to show that by composition these
collections of hash functions can be used to construct families of collision-free hash functions
{h; i € I'} where h; : 2P — Sl for any polynomial P € Z[z] where Vo € N, P(z) > z.

Definition 6 A collection of collision-free hash functions is a collection of functions
{h;|i €I} for some index set I C X* where h; : LI+ — Bl gnd:

HI. [accessible| there exists a generating algorithm G € EA so that G[1"] € {0,1}" N I.

H2. [efficiently evaluable] there exists a evaluation algorithm E € EA so that for i € I,
and w € S Eli w] = hi(w).

H3. [collision-free| for all collision generating algorithms A € EAYP € Z[x], Iko, VEk > ko

1
Pr|i — G[17], (2,y) — A[i] : hi(z) = hi(y) Ax # y| < =
P(k)
If A is a member of a collection of collision-free hash functions then A is called a collision-

free hash function and a pair (z,y) where h(z) = h(y) and @ # y is called a collision of
h.

3 Main Result

The notion of a polynomial separator will be used in the following proof. For the purposes
of this paper, a separator is a pair of injections from X* into ©*t1 so that their images have
no intersection. (Because |X| = 2, their images cover L/+1.)

Definition 7 A collection of polynomial separators is a collection of function pairs
{(0%,a}) | i€ I} for some index set I C ¥* where o : LIl — SEF for 5 € {0,1} and:

1771

PS1. [accessible] there exists a generating algorithm G € EA so that G[1"] € {0,1}" N 1.
PS2. [injective] 0¥ and o} are injective.
PS3. [disjoint] im ¢? Nim o} = 0

PSJ. [efficiently evaluable] there exists an evaluating algorithm E € EA so that for i €
Iowe S and j € {0,1}, E[i,j,w] = ol(w).

With each such collection, we associate a collection of inverses {v; |1 € I} where ¢; :
Sl — Sl and ;0 09 = 15 0 0! = idgy and a collection of image deciders {é; |i¢€ I}
where §; : ST — 10,1} and Yw € B §(w) = j iff w € im Uf.

The collection is said to have a polynomial inverse if the collection of inverses is so
that IE~' € EA,Vw € Xl Vi € T, E-'i,w] = w;(w). If a collection is so endowed, then

it 1s clear that the image deciders may also be efficiently evaluated.

Construction of a family of polynomial separators with a polynomial inverse is easy: the
appendg : x — x0 and append; : © — z1 functions, for example. Unless explicitly stated
otherwise, wherever in this paper collections of such separators are required, it will sufficient
to use these functions.

Theorem 1 The following statements are equivalent:
1. There exists a collection of collision-free hash functions.
2. There exists a collection of claw-free pairs of simple pseudo-permutations.

3. There exists a collection of claw-free pairs of pseudo-permutations.

Proof: Since we are particularly interested in the construction of collision-free hash
functions, we arrange this proof in order to give two different constructions: one from claw-
free pairs of simple pseudo-permutations (2 = 1) and one from arbitrary claw-free pairs of
pseudo-permutations (3 = 1). The construction from the simple functions is simpler and
more efficient. We begin by showing that 1 & 2:

(1 = 2) Let {h; |t €1} be a collection of collision-free hash functions. We construct a
family of claw-free pairs of simple permutations. Let { (6. 0l)|ie I} be a collection

of polynomial separators (unrelated to the hash functions, but over the same index
set). Define the collection { (f2, f!)|i €1} so that

f]—hOU]fOIJE{O 1}

We show that the collection of functions so defined is a collection of claw-free pseudo-
permutations. Properties C'F1, CF2, and CF3 are immediate. Assume that property
CF/ does not hold, that is 3A € EA,IP € Z[z],YVko, Ik > ko,

1
i = G (o) = AL AP0 =)] 2 55
Let () be a claw for (f2, f1), then f2(x) = f}(y) implies h; (6¥(z)) = hi (6}(y)),
but im o? Nim o} = 0 so that ¢?(2) # ol(y) and a collision has been found for h;.
Then, given this claw generating algorlthm A we can construct a collision generating
algorithm A’ succeeding with identical probability as A, violating H3. Therefore, CF/
holds.

To show that { fZ] |1 € I} for each j € {0, 1} are collections of pseudo-permutations,

we verify properties 1 P1 — 1 P4 for each. 1 P1, 1 P2, and 1 P§ are immediate. Suppose,
for contradiction, that property ¢ P/ is not satisfied, so that (35 € {0,1},) A €
EA,AP € Z[z],Yko, Tk > ko

1

Pr[i — GM, (2, y) — Ali]: f(2) = fi(y)] > 0

Let (x,y) be a collapse of f] so that f](x) () and # y. Then O'j($) # Uf(y)
J

because o} is injective, so that (I(z), Uf(y) is a nontrivial collision of h; (because

fZ] = h; o o). Then, given this collapse generating algorithm A we can construct a

collision generating algorithm A’ succeeding with identical probability as A, violating

H3. Therefore, 1 P3 holds.

(2 = 1) Let {(Y fhie I} be a collection of claw-free pairs of simple pseudo-
permutations. We construct a collection of collision-free hash functions. Let
{(0%,0})| i€ I} bea collection of polynomial separators with inverses {¢; | i € I}

and image deciders {6; | ¢ € I }. Then define { h; | ¢ € I } so that

hi(e) € (14())

We show that { h; | ¢ € I } is a collection of collision-free hash functions. Properties H1
and H2 are immediate. Assume, for contradiction, that property H3 is not satisfied,

that is 34 € £A,3P € Z[z], Yko, 3k > ko

Pr i — G[1¥], (2, y) — Ali] s hi(z) = hi(y) N # y| > ﬁ

We encounter at least one of two possibilities:

1. Vko,zlk > ko
Pr {2 - G[lk],(w,y) — Ali] thi(z) = hi(y)Ne £y ANd(x) = 2(3/)} 2 2P1(k)
2. Vko,zlk > ko

Pr {z — G[1%], (z,y) — A[t] s hi(z) = hi(y) N £y AN di(z) # 52(3/)} >

(
In the event of 1 above, the algorithm A generates collisions (x,y) where 6;(z) = 6;(y).
In this case, for at least one j € {0, 1}, Yko, 3k > ko

Pr {z — G, (2, y) — A[i) : hi(w) = hi(y) Aw £y Aj = 8i(w) = 52'(3/)} 2 4P1(k)

Given a collision of this sort, # y = w;(x) # ;(y) because ¢; is injective so that
hi(x) = hi(y) implies f! (v;(2)) = f! (1i(y)) shows that the pair (¢;(2),(y)) is a
collapse of fZ] . Then, given algorithm A, we may produce another algorithm A’ which
produces a collapse of fZ] with non-negligible probability, violating 1 P3.

In the event of 2 above, the algorithm A generates collisions (x,y) where 6;(y) # 6;(z).
A collision of this sort produces a claw because h;(2) = h;(y) implies foSi(gU) (i(x)) =
fzfsi(y) (¢4(y)). Then, with algorithm A, we may construct a claw generating algorithm
A’ which produces claws with non-negligible probability, violating CF3.

To complete the proof we show that (2 = 3) and (3 = 1):

(2 = 3) A collection of claw-free pairs of simple permutations is a collection of claw-free
pairs of permutations, so this implication is clear.

(3 = 1) This proof follows [2]. Let {(f°, f!)|i € I} be a collection of claw-free pairs of
pseudo-permutations. We construct a collection of collision-free hash functions. Given

these fZ] :D; — D;, define

sl b el gor b e (0,1}, w € {0,1}

Let a € ©;. Define
def ,[w
Hiaw) € £ a)
We show that the set { H; , |7 € I,a € D; } is a family of collision-free hash functions.

Properties H1 and H2 are clear. Assume, for contradiction, that property H3 does not
hold so that there is a collision generating algorithm A so that 3P € Z[x],Vko, Ik > ko

1

Pr (i,a)HG[lk],(x,y)HA[i,a]:hi7a(9€):h JYNT#£y| > P(k)

We partition the set of collisions into three varieties. Consider (x,y), a collision for
H; ., so that fi[x](a) = fi[y](a). The first variety are those which never diverge:

VE W (Lo lil+ 7) = 2)

In the event that a collision does not fall into variety VI, we must have that

A {1, |il + 1}, £) ¢ gl

In this case, define p to be the least member of {1,...,|i|+ 1} so that fi[anth](a) #+
fi[l/u"'l/liHl](a) (since (2,) is a collision, fi[m—1~~x|i|+1](a) _ fi[l/u—l"'l/liHl](a))‘ The last
two varieties depend on z, < Yy

V2. V1 has not occured and y,, # z,

V3. V1 has not occured and y, =z,

If a collision falls into variety Vi, we write (x,y) € Vi. Since these varieties cover the
space of collisions, for at least one variety, Vi, we have that Yk, 3k > kg

1
Pr((i,a) — G[1*], (z,y) — Ali,a] s hio(2) = hin(y) Az £ y A (2,y) € Vi| > 3P(k)
We show that, regardless of which V2 has this property, either the claw-freedom of
(f2, f1) or the collapse-freedom of f? or f!is compromised:

1. Suppose A produces collisions of variety VI with non-negligible probability. Let
(z,y) be a collision of variety V1 so that VI € {1,...,]i] + 1},fi[xlmx|”+1](a) =
fi[ylmyl”ﬂ](a). Choose p so that z, # y,. Since (z,y) € VI, we define z =

f»[xp+1"'x|i|+1](a) = fi[ypH'"y'”H](a) and we have that f7(z) = f/"(z) so that

(since , # y,) (2,2) is a claw for f2 and f!. A may, then, be converted into
an algorithm which produces claws for (2, f!) with non-negligible probability,

violating CFJ.

2. Suppose A produces collisions of variety V2 with non-negligible probability. Let
(z,y) be a collision of variety V2 and p as above. Then define

(s.0) & (e, gheiedia)

We have that f*7'(s) = f/*7'(¢) so that (since z, # y,) (s,t) is a claw for
(f2, f1). A may, then, be converted into an algorithm which produces claws for
(f2, f1y with non-negligible probability, violating CFj.

3. Suppose A produces collisions of variety V3 with non-negligible probability. Let
(z,y) be a collision of variety V3 and p as above. Again define

(s.0) & (e, gheiedia)

From the definition of y we have that s # ¢ and f;*7'(s) = f/*7'(t) so that
(since j def x, = y,) the pair (s,1) is a collapse for fZ] A may, then, be converted

into an algorithm which produces collapses for fZ] with non-negligible probability,
violating 1 P4.

Hence CFJ is satisfied.

4 Comments

The construction of collision-free hash functions given in (2 = 1) of Theorem 1, aside from
its simplicity, has two favorable properties:

1. In order to compute h;(x), one must evaluate a claw-free function at only a single
value. The construction in (3 = 1) of Theorem 1 requires |z| such evaluations.

2. Due to the simple construction, hash functions built in this fashion are likely to inherit
structural properties from the underlying simple claw-free functions. For example, if
the simple claw-free functions are trapdoor functions, it is easy to see that the hash
functions constructed are also trapdoor in an appropriate sense*. It is unclear if the
functions constructed in (3 = 1) of Theorem 1 offer inheritance of this sort.

4.1 Extensions

In the constructions and discussions above, we have restricted our attention to one-bit
contractors: hash functions which shorten their input by a single bit. It is often desirable
to have hash functions which, for polynomial P, contract words of length P(k) to words of
length k. Such functions may, naturally, be constructed by composition of P(k)— k one-bit

*In this framework, trapdoor means that there is a (probabilistic) polynomial-time algorithm which, given
the trapdoor information, i, and y € im h; can, with non-negligible probability, produce ¢ € £'*! so that

hi(z) = y.

. . . . P(k) .
contractors. The hash functions constructed in this manner require Ez:(kll ¢ evaluations

of the underlying claw-free functions to compute (assuming that the one-bit contractors
used are those of (3 = 1) of Theorem 1). As in [2], however, one can construct these
hash functions directly to obtain a more efficient construction. For example, following the

construction in (3 = 1) of Theorem 1, choose |¢| = k and again define h; o(2) = f»[gg](a).

K3

The proof goes through as before and evaluating this hash function requires only P(k)
evaluation of the claw-free pairs (rather than the 251(2_1 1 evaluations required by the hash
function constructed by composition).

In [2], Damgard shows that by using claw-free tuples of functions (in the (3 = 1)
construction) one can reduce the number of required claw-free function evaluations by a
multiplicative constant factor. This is accomplished by rewriting the input string z € ¥*

as a string # € T where T; = {sz} is the tuple of claw-free functions so that |#| = 1—0g|x||T|.
2

Then define h; ,(z) = Ti[i](a). Evaluation then requires || = % claw-free evaluations.
This same procedure is applicable to the construction of (2 = 1).

4.2 A Dual Result

A pair of separators partitions ¥**! into two equal sized subsets (the images of the sepa-
rators). We now couple the definition of collision-free hash functions with the definition of
polynomial separators to define a class of hash functions where every collision occurs across
the partition boundary: whenever h(z) = h(y) we have that # and y are in the images of
different separators. By adding this artificial constraint to the collision-free hash functions,
one can define a class of hash functions the existence of which is equivalent to the existence
of simple claw-free permutations. We call these separated collision-free hash functions:

Definition 8 A collection of separated collision-free hash functions is a collection of
function tuples { (hi,0?,0}) | i€ I} sothat {h; | i€ 1} forms a collection of collision-free
hash functions, {(U?, olylie I} forms a collection of polynomial separators, and

SH. [separated] Vj € {0,1}, h; | s, the restriction of h; to im Uf, is bijective. Equiv-
alently, hi(z) = hi(y) implies 6;(x) # 6,(y), where {6; |i € I} is the collection of
image deciders for the separators.

Theorem 2 There exists a collection of claw-free simple permutations iff there exists a
collection of separated collision-free hash functions.

Proof:

(=) Notice that the construction of (2 = 1) of Theorem 1 yields hash functions with
property SH, proving this implication also.

<) Use the separator supplied wi e separated hash functions in the construction o

Use th £ lied with th ted hash functi in th tructi f
(1 = 2)of Theorem 1 (which calls for an arbitrary separator). Property SH implies
that the resulting claw-free functions are (simple) permutations.

10

Itoh [8] has pointed out that in Theorems 1 and 2 above, the requirement of claw-freedom
can be replaced in an appropriate way with the requirement of distinction intractability as
defined in [14].

5 Conclusion

The motivation for this research is the following open problem: is the existence of one-way
functions sufficient for the existence of collision-free hash functions? This paper shows,
at least, that answering this question in the affirmative need not imply the equivalence of
one-way functions and one-way permutations. We hope that this presentation of machinery
the existence of which is equivalent to the existence collision-free hash functions will aid the
development toward complete understanding of these functions.

6 Acknowledgements

We gratefully acknowledge the keen guidance of Silvio Micali, who originally suggested this
problem. We also acknowledge Ravi Sundaram for several helpful discussions. Finally, this
paper has benefitted immensely from the comments of Oded Goldreich.

References

[1] Manual Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal of Computing, 13(4):850-864, November 1984.

[2] Ivan Damgard. Collision free hash functions and public key signature schemes. In
Proceedings of FUROCRYPT ’87, volume 304 of Lecture Notes in Computer Science,
pages 203-216, Berlin, 1988. Springer-Verlag.

[3] Alfredo De Santis and Moti Yung. On the design of provably-secure cryptographic
hash functions. In Proceedings of FUROCRYPT °90, volume 473 of Lecture Notes in
Computer Science, pages 412 — 431, Berlin, 1990. Springer-Verlag.

[4] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792-807, October 1986.

[5] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attack. SIAM Journal of Computing, 17(2):281-308,
April 1988.

[6] J. Hastad. Pseudo-random generators under uniform assumptions. In Proceedings of
the Twenty Second Annual ACM Symposium on Theory of Computing, pages 395-404.
ACM, 1990.

11

[7] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the Twenty First Annual ACM Symposium
on Theory of Computing, pages 12-24. ACM, 1989.

[8] Toshiya Itoh. Personal comminucation, August 1992.

[9] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of
the Twenty Fourth Annual ACM Symposium on Theory of Computing, pages 723-732.
ACM, 1992.

[10] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the Twenty First Annual ACM Symposium on Theory
of Computing, pages 33-43. ACM, 1989.

[11] Wakaha Ogata and Kaoru Kurosawa. On claw free families. In Proceedings of ASI-
ACRYPT ’91, 1991.

[12] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing,
pages 387-394. ACM, 1990.

[13] Andrew Yao. Theory and applications of trapdoor functions. In Proceedings of the
Twenty Third Symposium on Foundations of Computer Science, pages 80-91. IEEE,
1982.

[14] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. Duality between two crypto-
graphic primitives. In Proceedings of the Fighth International Conference on Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 508 of Lecture Notes
in Computer Science, pages 379-390, Berlin, 1990. Springer- Verlag.

[15] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. Structural properties of one-
way hash functions. In Proceedings of CRYPTO ’90, volume 537 of Lecture Notes in
Computer Science, pages 285-302, Berlin, 1990. Springer-Verlag.

12

