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Abstract

This paper deals with self-localization of a mobile robot
on the condition that no a-priori knowledge about the envi-
ronment is available. The applied method features to be ac-
curate, robust, independent of any artificial landmarks and
feasible with such a moderate computational effort that all
necessary tasks can be executed in real-time on a standard
PC. The perception system used is a panorama laser range
finder (PLRF) which takes scans of its present environment.
A modified Dynamic Programming (DP) algorithm provides
pattern matching and pattern recognition on the prepro-
cessed panorama scans and thereby renders a qualitative
fusion of the sensory data. For an exact quantitative esti-
mate of the robot’s current position, a robust localization
module is employed. The knowledge gained about the envi-
ronment along that way is stored in a self-growing, graph
based map which combines geometrical information and
topological restrictions. Preliminary experiments in a com-
mon office environment proved the reliability and efficiency
of the system.

1. Introduction

A mobile robot should be able to travel through its envi-
ronment safely and systematically with as little human in-
struction and intervention as possible. This requires that it
is capable to perform the high level tasks of path planning,
navigation and exploration in a reliable way. The achieve-
ment of this goal basically depends on the accuracy and ef-
ficiency of the robot’s self-localization system which has to
solve a great deal of time-critical and challenging problems.
In order to obtain an up to date position estimate during
robot motion, the self-localization module has to perform
real-time processing of the data delivered from internal and
external sensors. Further, it needs to cope with the errors

induced by imprecise or erroneous sensor readings and has
to establish correspondences among the single sensory per-
ceptions in order to fuse the gathered information. Finally
the acquired knowledge is to be archived in a convenient
representation. This is done to provide a working basis for
the above mentioned high level tasks and to give support in
treating the so-called re-entry problem. This becomes an
extremely demanding challenge if no or only little a-priori
knowledge about the environment is available.

On the other hand, one has to take into account that it
is not necessary for an efficient self-localization to know
alwaysthe precise geometrical location of the robot. E. g.
when traveling along a corridor containing no ‘distinctive
places’, the exact position of the robot within the corridor is
of no relevance. The only thing that matters in this situation
is that the robot knows in which direction it has to go and
recognizes the place at the end of the corridor in order to
re-localize exactly again [6, 7]. So one can conclude that
a geometrically exact localization is only required when ar-
riving at or moving within such a ‘distinctive’ place. There-
fore, instead of an environmental map referring to a global
coordinate system, a map handling several local coordinate
systems linked to each other only by topological informa-
tion is employed in this approach.

In this paper a complete self-localization system is intro-
duced which solely utilizes a panorama laser range finder
(PLRF) for obtaining information about the robot’s position
in the environment. A general view of the over-all structure
can be gained from figure 1.

The paper is organized as follows: The next section gives
a rough survey of the PLRF and the range data acquisition.
Section 3 deals with the preprocessing unit which extracts
line segments from the PLRF raw data. These line segments
are passed to the Dynamic Programming (DP) based recog-
nition and matching unit (section 4). The determination of
the robot’s exact location from the qualitative output of the
matching unit is done by a localization module which is ad-
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Figure 1. Structure of the self-localization system

dressed in section 5. Section 6 describes the organization
and construction of the self-growing, graph based environ-
mental map. In section 7 preliminary experimental results
validate the presented approach.

2. Range data acquisition

The PLRF used here consists of an Acuity AccuRange
4000 laser range finder (LRF) together with a mirror/motor
combination which generates a nearly360� panorama line
scan of the current environment at the height at which the
sensor is mounted. The LRF does not deliver complete
range measurements, but just provides raw data which is
received by the AccuRange High Speed Interface board
on which the information is intermediately stored and seg-
mented into single scans. Transferring the data from the
interface board to the host’s memory, eliminating the de-
pendencies on temperature, ambient light and target reflec-
tivity as well as computing the actual range values is done
on a standard i586 PC running under the Linux operating
system. As memory on the interface board is limited, the
data transferring task turned out to be the most time-critical
and is therefore executed within a high priority interrupt ser-
vice routine under control of a driver programme running in
Linux kernel mode. Along this way, the system features a
sampling rate of up to50; 000 range samples per second
which means that even if the scanning motor is running
with its maximum rotational speed of about3; 000 r:p:m:
the angular resolution is still finer than0:5�. The range
of the LRF reaches from0:25 m up to 16 m; the mea-
surement error which was observed to be independent of
the present distance is Gaussian distributed, and can there-
fore be expressed by its standard deviation which amounts
to � = 2:5mm.

3. Range data preprocessing

The task of the preprocessing unit is to extract line seg-
ments from the acquired range data. In other approaches
classical clustering techniques [10], histograms [11] or the
Hough transform [4] are used to solve this problem. All
of these methods have the property that the range data has
to be transformed into a feature space. This requires that

from each range sample to e. g. its direct successor a con-
nection line is drawn of which the Hesse normal represen-
tation with angle� and distanced is computed. The(�; d)
parameter pairs are then clustered or histogrammed in the
feature space. This procedure has the serious drawback that
if the sampling density is high due to a small range from the
sensor, the(�; d) pairs are significantly distorted although
the range measurement error is quite moderate (fig. 2). Of
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Figure 2. Parameter distortion in feature space

course, there are techniques to compensate for this handi-
cap (averaging over several samples, range weighting etc. ).
On the other hand a strategy which preprocesses data in the
original space itself seems to be much more straightforward.

The method presented in this paper is two-stage: First,
the whole laser scan is segmented into piecewise linear sec-
tions. This is achieved by an iterative algorithm which orig-
inates from image processing and for which an effort min-
imized implementation exists [9]. It is therefore capable to
process the rather few sampling points of a laser scan (com-
pared to the large amount of pixels in an image) faster than
e. g. a cluster algorithm – even if the simplifications induced
by the successive order of range samples is considered dur-
ing clustering. Another advantage is that the criterion for
a valid line segment can directly be derived from geometri-
cal considerations: Two arbitrary samples which are located
not too closely to each other, are connected by a line. For
all samples lying between this start and end point the rect-
angular distances to the line are computed. If the maximum
distance exceeds a given threshold, the segment is split at
that point into two subsegments. For each of these, the pro-
cedure is applied again. If the maximum distance keeps
below that threshold and if the number of sampling points
associated with that segment does not fall short of a speci-
fied minimum, the line segment is established (fig. 3). As
can easily be seen, a high sampling density will not affect
the accuracy of the segmentation algorithm.

The second step is fitting the segmented range measure-
ments to lines. As possibly outlying samples were already
removed by the above procedure, the classical least squares
method is utilized which provides a robust and mathemati-
cally qualified solution for this problem.

The output of the preprocessing unit is one set of line
segments per panorama scan. Each of these segments is
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specified by the(�; d) tuple of the Hesse normal represen-
tation, the angle' and the angle sector�', all with respect
to the robot’s coordinate system as it is illustrated in fig-
ure 4.
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Figure 4. Representation of a line segment

4. Matching and recognition

This module performs the matching between present pre-
processed scans and already stored scan data (see section 6)
as well as recognition of the places in which the scans were
taken. In contrast to related work in which neural net-
work models [10], correlation of the laser scans [11] or least
squares methods [2] fulfil these tasks, a Dynamic Program-
ming (DP) [1] technique is proposed here.

When comparing matching algorithms, the computa-
tional effort is always a very decisive criterion. The DP
algorithm is of orderO(n2) and can therefore be put on
the same level with the correlation and the least squares ap-
proaches. However, what makes DP superior to those is
that it can be massively accelerated, which of course does
not mean decreasing its order, but can reduce the de facto
processing effort in a very significant way [8].

The DP is a classical pattern matching algorithm which
establishes and evaluates correspondences between a ref-
erence and a test pattern. In this context the termpattern
denotes the set of line segments obtained from the pre-
processing unit. The actual matching of two patterns is
done by finding the optimal path through a matrix of grid
points which is spanned by the similarity measures between
line segments of the reference set and line segments of the

presently preprocessed, so-called test set. Since the sets of
line segments are gained from panorama scans, the patterns
to be handled by the DP are cyclic, which requires a modi-
fication of the original algorithm.

The output of the DP is a qualitative mapping between
line segments of the reference scan and line segments of the
test scan, as well as a measure which values the similarity
between these. Therefore it is possible to offer not only a
single, but several reference scans and determine the one
which fits best to the present test scan. Along that way,
recognition of scans can be realized.

4.1. Boundary conditions

Normally, the start point of the optimal path through the
matrix of grid points is fixed to the lower left, the end point
to the upper right corner. This is not allowed if patterns are
cyclic because reference and test patterns may be rotated
against each other, which implicates that the start and end
point of the optimal path is located anywhere in the first and
last column of the matrix, respectively. For the algorithm
this results in admitting any grid point in the first column as
a valid start and accordingly any point in the last column as
a valid end point. A further consequence is that the optimal
path has to perform a wrap-around. This means that it must
be possible to jump from the last row back into the first row
of the matrix.

Since reference and test patterns are to be matched
against each other as completely as possible, a path through
the matrix is only considered valid if it ends in the same
row it has started (a loosening of this harsh rule is discussed
in paragraph 4.3). Of course the optimal path is not guar-
anteed to obey these boundary conditions. In case of such
a failure, the optimal path is dismissed in favour of a path
which meets the requirements. However, this only happens
if similarity between patterns is low. In addition, the path
taken instead of the optimal one still performs a very good
and reasonable assignment between the line segments, so
that the practical benefit is not affected (fig. 5).
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Figure 5. Paths through the matrix of grid points



4.2. Similarity measure

The similarity measure between two line segments is in-
troduced as a cost function consisting of two additive com-
ponents, which are referred to asmatching scoreandtrans-
ition score. The matching score represents the costs which
are incurred by the immediate relation of two line segments.
The transition score is a differential measure which esti-
mates the costs which accrue from two successive assign-
ments of line segments. Along this way, the history of al-
ready matched line segments can be taken into account.

The cost functions itself is heuristically determined and
calculates as follows:s(i; j; k; l) = s1(i; j) + s2(i; j; k; l)
with matching score:s1(i; j) = c1 (dj � di)2+c2 [(('j � �j)� ('i � �i))mod 2�]2 +c2 [(('j +�'j � �j)� ('i +�'i � �i))mod 2�]2
and transition score:s2(i; j; k; l) = c3 [((�j � �i)� (�l � �k))mod 2�]2
Indicesi andk refer to line segments in the test pattern,
whereas indicesj andl apply to line segments in the refer-
ence pattern.

As can be seen from the above formulae, the matching
score only considers the absolute differences in distancesd
as well as in angles' and('+�'). In contrast, the transi-
tion score evaluates a differential deviation in angle�. The
coefficientsc1; c2 andc3 ensure that each addend makes an
equal contribution to the over-all cost functions. This is
achieved by separately histogramming the addends and then
setting the values of the coefficients to the reciprocal values
of the histograms’ variances.

4.3. Local recombination

The local recombination of paths during the DP forward
search is determined by the transitions allowed between the
matrix grid points. A typical transition diagram consists of
a diagonal, a horizontal and a vertical transition. This impli-
cates that one, two or more line segments of the test pattern
are allowed to be associated with one line segment of the
reference pattern and vice versa. As an extension to this,
it is useful that not every single line segment needs to be
related to another one, which means that line segments are
allowed to be skipped. This procedure has its real world
analogue in the fact that it is quite possible that due to shad-
owing effects some line segments can only be seen in one of
two laser scans, which feature quite a good similarity beside

1
min

5 4 3 2
2

3

4

5

1

1

Figure 6. DP transition diagram

of these differences. For that reason, the transition diagram
as illustrated in figure 6 is employed. As can also be seen in
figure 6, there is an additional weighting factor associated
with each transition. According to the number of line seg-
ments skipped, the value of the cost functions is multiplied
by this coefficient in order not to disadvantage a complete
assignment of the line segments. Local recombination of
paths is realized then by taking the path which involves the
least accumulative costs.

5. Localization

The DP algorithm gives a qualitative assignment be-
tween the line segments of the test scan and the line seg-
ments of the best matching reference scan. In the local-
ization unit this information is used to determine the exact
deviation(�x;�y;�')T of the current position from a ref-
erence position on which a previous scan has been taken.

The procedure is as follows: Every related pair of line
segments forms an equation like:cos�h� ��x+ sin�h� ��y = �dh� � dg��
Indexh� refers to a line segment in the reference pattern,
indexg� to the related line segment in the test pattern, re-
spectively.

Since many pairs of related line segments are delivered
by the DP, a linear equation system can be set up:26666664 r1 cos�h1 r1 sin�h1

...
...r� cos�h� r� sin�h�

...
...rn cos�hn rn sin�hn

37777775| {z }A �x�y � = r1 (dh1 � dg1 )
...r� �dh� � dg��
...rn (dhn � dgn)

37777775| {z }b
with

Pn�=1 r� = 1.
The coefficientsr1; : : : ; rn introduced in the above equa-

tion consider that the line segments consist of a different
number of range samples. According to this, a matched
line segment containing more sampling points will obtain
a higher valued factorr� than a matched segment including
only a few range samples.



If the matrixA were square, the factorsr� would exe-
cute an identical operation with no effect at all. But since
in most casesA has much more rows than columns, which
means that the equation system is overdetermined, the fac-
tors fulfil their purpose of a different weighting of the sin-
gle equations [5]. The so-called pseudo-inverse is involved
then to solve the above equation system which results in
a least squares solution for the translatory deviation vector(�x;�y)T . The computational effort associated with this
operation is very low because the pseudo-inverse is always
just a(2� 2)-matrix.

Furthermore, the error vectorw is calculated:w = A � � �x�y �� b
The absolute values of the components ofw, jw� j, repre-
sent how well the correlating equation fits into the equation
system. Ifjw� j exceeds a threshold, e. g.jw� j2 > 1n � kwk2
the according equation is eliminated. Along this way, the
equation system is relieved from inaccurate equations and
can then be solved again with a significant gain of accu-
racy. This procedure is motivated by the fact that the im-
plemented transition diagram (fig. 6) does not allow every
conceivable assignment between line segments in order to
save processing time. As this might lead to a path which
includes some unfavourable relations, it is justified to elim-
inate these by omitting the according equations.

For the determination of the angle deviation�' the av-
erage over all differences in angle� is computed:�' = nX�=1 r� ���h� � �g��mod 2��
It is obvious that the above method for increasing the ac-
curacy influences the previous equation (less addends, new
coefficientsr�), which implicates that the estimate for the
angle deviation is also improved.

Since the deviation vector(�x;�y;�')T from a ref-
erence position as well as the reference position itself with
respect to the local coordinate system are known, the new
position with respect to the local coordinate system is deter-
mined by a simple coordinate transformation.

6. Mapping

The information obtained about the surroundings by in-
terpreting the PLRF data is now used to build a map of the
robot’s environment. The structure of the map presented in
this approach is chosen in a way that the panorama scans

can easily be added to the map’s database when performing
exploration, and can also be quickly accessed when local-
ization or high level tasks are to be executed.

To achieve this, a graph with nodes and edges is used as
the body of the map. Up to this stage of implementation a
node represents a single scan which is specified by the set
of line segments obtained from the preprocessing unit and,
secondly, by the position on which the scan has been taken
with respect to the current local coordinate system. An edge
refers to a direct neighbourhood relation between two stored
scans.

In order to gain and to preserve a useful database, the
map needs to be updated and extended continuously. This
is done by the mapping unit that shows the following be-
haviour which is different from what can be found in [3]:
If it is possible to match a presently taken and preprocessed
scan with an already stored scan, producing costs that fall
below a given threshold, which means that the similarity
measure exceeds a certain threshold, the robot is considered
to be located inside the catchment area of an already exist-
ing node. Therefore, no new node will be established in the
map. It is only checked if a new edge needs to be intro-
duced. This would be the case if the robot had traveled into
the catchment area of another node and if no edge already
existed from the previous node to this node. If the costs are
too high or the similarity measure is too low, respectively, a
new node containing the set of line segments and the present
position as well as a new edge going out from the previous
node leading to the new one are established in the map.

As establishing a new node means entering unknown
terrain, the plausibility of the position delivered by the lo-
calization module has to be checked. E. g. when traveling
along a corridor with only two visible, parallel walls, the
localization unit might give the misleading information that
the robot stands still. In case of such a discrepancy which
can easily be detected, the current local coordinate system is
abandoned and a new local coordinate system is instantiated
for the new node. The topological description how to get
from a node of one local coordinate system to a node within
another local coordinate system can be stored together with
the according edge data. If the position estimate given by
the localization unit is determined to be reliable, the current
local coordinate system is kept and the position as it is cal-
culated by the localization unit is stored together with the
new node.

7. Experimental results

The self-localization system has been implemented as
specified, and first experiments in a common office envi-
ronment have been realized. The results presented below
originate from an experiment in which the localization sys-
tem acted as substitute for the robot’s odometry. Since no



a-priori knowledge about the environment was available,
which means that in the beginning the environmental map
was empty, the PLRF was in fact the only source of infor-
mation. The test drive illustrated in figure 7 started in an
office, led through a doorway into a corridor and ended in
front of the door of another office. The total distance trav-
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Figure 7. Self-localization experiment

eled amounts to about8m; the number of scans which were
taken and processed adds up to53. In this experiment the
threshold for the acceptable matching costs was chosen that
low that every acquired scan was stored as a new node in
the map which resulted in a graph containing53 nodes and52 edges, respectively. This was done here to quantify the
processing time per scan which was evaluated to be about200ms on a i586 PC. As can be seen the scans could prop-
erly be superimposed although a doorway had to be passed,
which implicated a significant change of the surroundings.

8. Conclusion and future work

In this paper the problems of self-localization of a mo-
bile robot and map building in an a-priori unknown environ-
ment are addressed. The self-localization system presented
in this approach utilizes a panorama laser range finder as
the environment sensor and is composed of the modules
preprocessing, matching and recognition, localization and
mapping. As could be shown from experiments executed
in a real world office environment, the interaction of these
components provides an accurate and robust estimate of the
current robot’s position in real-time.

Future work will focus on enhancing the map building
mechanism in such way that the topological description as-
sociated with an edge will be based on a formalism which is

on the one hand powerful enough to explain difficult topo-
logical relations and, on the other hand, can easily be trans-
formed into robot’s driving commands. Furthermore it will
be examined if and how the catchment areas of the nodes
stored in the map can be enlarged.
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