
A Sound and Complete Axiomatization of OperationalEquivalence between Programs with Memory yIan MasonUniversity of EdinburghIAM@SAIL.STANFORD.EDU Carolyn TalcottStanford UniversityCLT@SAIL.STANFORD.EDUCopyright c 1989 by Ian Mason and Carolyn Talcott1. IntroductionIn this paper we present a formal system for deriving assertions about programs withmemory. The assertions we consider are of the following three forms: (i) e diverges (i.e. failsto reduce to a value), written " e; (ii) e0 and e1 reduce to the same value and have exactlythe same e�ect on memory, written e0 � e1; and (iii) e0 and e1 reduce to the same valueand have the same e�ect on memory up to production of garbage (are strongly isomorphic),written e0 ' e1. The e, ej are expressions of a �rst-order Scheme- or Lisp-like languagewith the data operations atom ; eq; car ; cdr ; cons; setcar; setcdr , the control primitives letand if, and recursive de�nition of function symbols.The formal system we present de�nes a single-conclusion consequence relation � ` �where � is a �nite set of constraints and � is an assertion. A constraint set is a �nite subsetof atomic and negated atomic formulas in the �rst-order language consisting of equality, theunary function symbols car and cdr , the unary relation atom , and constants from the setof atoms, A . Constraints have the natural �rst-order interpretation. The semantics of theformal system is given by a semantic consequence relation � j= � which is de�ned in termsof a class of memory models for assertions and constraints. The main results of this paperareTheorem (Soundness): The deduction system is sound: � ` �) � j= �.Theorem (Completeness): The deduction system is complete for � not containingrecursively de�ned function symbols: � j= �) � ` �.Operational equivalence [Morris 1969, Plotkin 1975] abstracts the operational seman-tics of programs and is the basis for soundness results for program calculi and programtransformation theories. Two expressions are operationally equivalent if they are indistin-guishable in all program contexts. The importance of the strong isomorphism relation isthat strong isomorphism relative to the empty set of constraints is the same as operationalequivalence. Thus the formal system can be used for proving operational equivalence, andis complete for expressions which do not contain recursively de�ned function symbols.From the rules of the formal system and the proof of completeness we obtain a deci-sion procedure for the semantic consequence relation. This is an important step towardsdeveloping computer-aided deduction tools for reasoning about programs with memory.[Oppen 1978] gives a decision procedure for the �rst-order theory of pure Lisp, i.e.the theory of atom , car , cdr , cons over acyclic list structures. [Nelsen and Oppen 1977]y This research was partially supported by DARPA contract N00039-84-C-0211

2treats the quanti�er-free case over possibly cyclic list structures. Neither treats updatingoperations. [Boehm 1985] de�nes a �rst-order theory for reasoning about programs in thelanguage Russell which includes facilities for allocating and modifying memory. Programconstructs are de�ned by two classes of axioms: (1) axioms about the value returned and (2)axioms giving the e�ect on memory. Some relative completeness results are given, but nodecidable fragments are considered. Russell is strongly typed and hence prohibits many Lispprograms. The semantics of the full �rst-order Lisp-like language was studied in [Mason1986, 1986a]. Here the model-theoretic equivalence strong isomorphism (') was introducedand used as the basis for studying program equivalence. Many examples of proving programequivalence can be found in [Mason and Talcott 1985, Mason 1986, 1988]. [Felleisen 1987]develops a calculus for reasoning about programs with memory, function abstractions andcontrol abstractions. [Mason and Talcott 1989a] gives an alternative approach to treatingprograms with memory and function abstractions and develops the theory of operationalequivalence for this case. More complete surveys of reasoning about programs with memorycan be found in [Mason 1986, 1986a, 1988] and [Felleisen 1987, 1988].The remainder of this paper is organized as follows. We �rst de�ne our languageand its operational semantics. We then present the axioms and rules of the formal system.Following that we de�ne memory models and semantic consequence and prove the soundnesstheorem. Finally we prove the completeness theorem. To do this we develop a syntacticrepresentation of the operational semantics which is also useful for reasoning about programsin general.We conclude this section with a summary of notational conventions. We use the usualnotation for set membership and function application. Let Y; Y0; Y1 be sets. Y n is the setof sequences of elements of Y of length n. Y � is the set of �nite sequences of elements ofY . [y1; : : : ; yn] is the sequence of length n with ith element yi. P!(Y) is the set of �nitesubsets of Y . [Y0 ! Y1] is the set of functions f with domain Y0 and range containedin Y1. We write Dom(f) for the domain of a function and Rng(f) for its range. For anyfunction f , ffy := y0g is the function f 0 such that Dom(f 0) = Dom(f) [fyg, f 0(y) = y0,and f 0(z) = f(z) for z 6= y; z 2 Dom(f). N = f0; 1; 2; : : :g is the natural numbers andi; j; n; n0; : : : range over N.2. The Operational SemanticsIn existing applicative languages there are two approaches to introducing objects withmemory. We shall call these the Lisp approach and the ML approach. In the Lisp approachthe semantics of lambda abstraction is modi�ed so that upon application lambda variablesare bound to newly allocated memory cells. Reference to a variable returns the contents ofthe cell and there is an assignment operation (setq or set!) for updating the contents of thecell bound to a variable. With this modi�ed semantics one can no longer use beta-conversionto reason about program equivalence. For example in the program ((�x : : :setq(x; n +1) : : :)v) beta-conversion is not even meaningful, x cannot be substituted for by a value.Instead a cell must be allocated and x replaced by the cell name or labeled value. In theML approach cells are added as a data type and operations are provided for creating cellsand for accessing and modifying the contents. Reference to the contents of a cell must bemade explicit. The semantics of lambda application is preserved and beta-value conversionremains a valid law for reasoning about programs. The Lisp approach provides a natural

3syntax since normally one wants to refer to the contents of a cell and not the cell itself.However the loss of the beta rule poses a serious problem for reasoning about programs.This approach also violates the principle of separating the mechanism for binding from thatof allocation of memory [Mosses 1984]. Following the Scheme tradition, [Felleisen 1987]takes the Lisp approach to provide objects with memory. In order to obtain a reasonablecalculus of programs, the programming language is extended to provide two sorts of lambdabinding and an explicit dereferencing construct. There have been recent improvements inthis calculus, but the problem of mixing binding and allocation is inherenent in the approach.We take the ML approach to introducing objects with memory, adding primitive op-erations that create, access, and modify memory cells to the call-by-value lambda calculus.Since we are working in the �rst-order case, memories with cells that contain only a singleatom or cell are not adequate for representing general list structures. Thus we treat memo-ries with binary cells. In the higher-order case when cells can also contain function objectsunary cells are su�cient. For brevity, we restrict our attention to expressions not containingrecursively de�ned function symbols. The de�nitions and many of the intermediate resultslift naturally to the full �rst-order language (see [Mason 1986]).We �x a countably in�nite set of atoms, A , with two distinct elements playing the roleof booleans, T for true and Nil for false. We also �x a countable set Xof variables disjointfrom A .De�nition (U,E): The set of value expressions, U, and the set of expressions, E, arede�ned byU=X[AE = U[letfX:= EgE [if(E; E ; E) [F1(E) [F2(E; E)where the unary memory operations are F1 = fatom ; car ; cdrg and the binary memoryoperations are F2 = feq; cons; setcar ; setcdrg. The equation for E is just compact notationfor a standard inductive de�nition de�ning E to be the least set containingUand such that ifx 2X, ej 2 E for j < 3, �1 2 F1 , and �2 2 F2 then letfx := e0ge1, if(e0; e1; e2), �1(e1), and�2(e1; e2) are in E. We let a; a0; : : : range over A , x; x0; y; z; : : : range overX, u; u0; : : : rangeover U, and e; e0; : : : range over E. The variable of a let is bound in the second expression,and the usual conventions concerning alpha conversion apply. We write FV(e) for the setof free variables of e. seq(e0; : : : ; en) abbreviates if(e0; seq(e1; : : : ; en); seq(e1; : : : ; en)).Expressions describe computations over S-expression memories | �nite maps from(names of) cells to pairs of values, where a value is an atom or a cell. We call the value ofa cell in a memory its contents. The memory operations are interpreted relative to a givenmemory as follows. atom is the characteristic function of the atoms, using the booleansT and Nil; eq tests whether two values are identical. cons takes two arguments, createsa new cell (extending the memory domain) whose contents is the pair of arguments, andreturns the newly created cell. car and cdr return the �rst and second components of a cell.setcar and setcdr destructively alter an already existing cell. Given two arguments, the �rstof which must be a cell, setcar updates the given memory so that the �rst component ofthe contents of its �rst argument becomes its second argument. setcdr similarly alters thesecond component. Thus memories can be constructed in which one or both componentsof a cell can refer to the cell itself.

4To de�ne the operational semantics we �x a countable set of (names of) cells, C , disjointfrom A and X. V= A [C is the collection of storable memory values. The set of memories,M , consists of �nite maps from cells to pairs of values. Cells which appear in the range ofa memory are assumed to lie in its domain. For each n 2 N we also de�ne a collection ofn-ary memory objects, O(n) � Vn � M , (elements of O(1) are called objects, and we omitthe superscript). The cells in the n-tuple component of a memory object must lie in thedomain of its memory component. The set of environments or bindings, B , is the collectionof �nite functions from X to V. The set of descriptions of computations, D , is a subset ofE � B � M . In a description the free variables of the expression must be in the domain ofthe environment, and cells in the range of the environment must be in the domain of thememory. This is all summed up in the following de�nition.De�nition (Semantic Domains):Memories: M = f� 2 [Z ! (Z [A)2] Z 2 P!(C)gObjects: O(n) = f[v0; : : : ; vn�1];� � 2 M ; vi 2 Dom(�) [A ; i 2 ngBindings: B = f� 2 [X ! V] X 2 P!(X)gDescriptions: D = fe; �;� FV(e) � Dom(�);Rng(�) � Dom(�) [A ; � 2 M gWe let c; c0; : : : range over C , v; v0; : : : range over V, �; �0; : : : range over M , u;�; u0;�0; : : :range over O, �; �0; : : : range over B , and e; �;�; e0; �0;�0; : : : range over D . We use \;" insome notations, for example objects and descriptions, since some components of the thesetuples are also collections (sets or tuples) and we wish to emphasize the outer level tuplestructure. We extend environments to value expressions by adopting the convention that�(a) = a when a 2 A .The operational semantics of expressions is given by a reduction relation �7! on de-scriptions. It is generated in the following manner. �7! is the reexive transitive closure ofthe single-step relation 7! which is de�ned in terms of reductions of primitive expressionsand reduction contexts. The single-step reduction relation, 7!, is a subset of (D � D), as is�7!. The action of the memory operations is given by the primitive reduction relation, +,which is a subset of (F1(O)�O)[(F2(O(2))�O). Finally, the evaluation relation, ,!, is asubset of (D � O). Evaluation is reduction composed with the operation converting valuedescriptions (u; �;�) into memory objects.Computation is a process of applying reductions to descriptions. The reduction toapply is determined by the unique decomposition of a non-value expression into a reductioncontext �lled by a primitive expression.De�nition (Eprim): The set of primitive expressions, Eprim, is de�ned asEprim = if(U; E; E) [letfX:= UgE [F1(U)[F2(U;U)De�nition ("E): The set of contexts, "E , is de�ned inductively using the special symbol" for holes:"E = f"g [X[A [letfX:= "Eg"E [if("E ; "E ; "E) [F1("E)[F2("E ; "E)

5De�nition (R): The set of reduction contexts, R, is the subset of "E de�ned byR= f"g [letfX:= RgE [if(R;E; E) [F1(R)[F2(U;R)[F2(R;E)We let E, E 0 range over "E and R range over R. E[[e]] denotes the result of replacingany holes in E by e. Free variables of e may become bound in this process. We oftenadopt the usual convention that [[]] denotes a hole. To avoid proliferation of brackets whendealing with composition of contexts we write E;E 0[[e]] for E[[E 0[[e]]]] and similarly for longercomposition chains.Lemma (Decomposition): If e 2 E then either e 2 U or e can be written uniquely asR[[e0]] where R is a reduction context and e0 2 Eprim.De�nition (7!): The single-step reduction relation 7! on D is de�ned by(beta) R[[letfx := uge]]; �;� 7! R[[e]]; �fx := �(u)g;�(if) R[[if(u; e1; e2)]]; �;� 7! �R[[e1]]; �;� if �(u) 6= NilR[[e2]]; �;� if �(u) = Nil(delta) R[[�(u1; : : : ; un)]]; �;� 7! R[[x]]; �fx := v0g;�0where in the (beta) clause x 62 Dom(�) and in the (delta) clause x 62 Dom(�), � 2Fn ; �([v1; : : : ; vn];�) + v0;�0, and vi = �(ui) for 1 � i � n. The primitive reductionrelation, +, in (delta) is de�ned by cases according to the nature of � 2 Fn .De�nition (+): The primitive reduction relation �([v0; : : : ; vn�1];�)+ v0;�0 is the leastrelation satisfying the following conditions.atom(v;�)+ � T;� if v 2 ANil;� otherwisecar(c;�)+ v0;�cdr(c;�)+ v1;�eq([v0; v1];�)+ � T;� if v0 = v1Nil;� otherwisecons([v0; v1];�)+ c;�fc := [v0; v1]g for any c such that c 62 Dom(�)setcar([c; v];�)+ c;�fc := [v; v1]gsetcdr([c; v];�)+ c;�fc := [v0; v]gwhere in the cases for car ; cdr ; setcar and setcdr we assume that c 2 Dom(�) and �(c) =[v0; v1].Although formally cons is multi-valued, the values di�er only by renaming of cells andgenerally we will not distinguish them. De�ning cons as a relation rather than a functionwhich makes an arbitrary choice is the semantic analog of alpha conversion and greatlysimpli�es many de�nitions and proofs. If � is a memory and # 2 fcar ; cdrg, then thefunction #� 2 [Dom(�)! V], is de�ned bycar�(c) = v , (9v0)(�(c) = [v; v0]) and cdr�(c) = v , (9v0)(�(c) = [v0; v])

6De�nition (,!,#,"): A description e; �;� 2 D evaluates to the object v;�0 2 O, if itreduces to a value description denoting that object.e; �;� ,! v;�0 , (9u; �0;�0)(e; �;� �7! u; �0;�0 ^ �0(u) = v)As for primitive reductions, single-step reduction and evaluation are single-valued rela-tions modulo renaming of cells. A description is de�ned, written # e; �;�, just if (9v;�0 2O)(e; �;� ,! v;�0). A description is unde�ned, written " e; �;�, just if :(# e; �;�). Weidentify a closed expression with the description consisting of it, the empty environmentand the empty memory. Thus " e abbreviates " e; ;; ;. In the absence of recursively de�nedfunctions reduction sequences are �nite. In this case a description is unde�ned only if re-duction terminates in attempting to access or update the contents of an atom. In the full�rst-order case unde�nedness also includes divergence.We de�ne operational equivalence following [Plotkin 1975].De�nition (�=): Two expressions are said to be operationally equivalent, written e0 �= e1,if and only if for any closing context E, E[[e0]] and E[[e1]] are either both de�ned or bothunde�ned.(8E 2 "E FV(E[[e0]]) = FV(E[[e1]]) = ;)((î<2 "E[[ei]]) _ (î<2 #E[[ei]]))By de�nition operational equivalence is a congruence relation on expressions. However itis not necessarily the case that instantiations of equivalent expressions are equivalent evenif the instantiation is de�ned. Note that T and Nil are not operationally equivalent. Moregenerally, de�ne two closed expressions to be trivially equivalent if both are unde�ned, bothreturn the same atom or both return cells, then two expressions are operationally equivalentjust if they are trivially equivalent in all closing contexts. This is the usual characterizationof operational equivalence in the presence of basic data. Both de�nitions are equivalent inthis setting since equality on basic data is computable. These observations are summarizedin the following lemma.Lemma (Congruence):1. e0 �= e1 , (8E 2 "E)(E[[e0]] �= E[[e1]])2. It is not the case that # e ^ e0 �= e1 implies e0fx := eg �= e1fx := eg for arbitraryvariable x and expressions e, e0, e1.3. :(T �= Nil)4. e0 �= e1 , (8E 2 "E FV(E[[e0]]) = FV(E[[e1]]) = ;)(E[[e0]] �=0 E[[e1]]) where for closedexpressions e00; e01 e00 �=0 e01 i�(î<2 " e0i) _ (9v0;�0; v1;�1)((î<2 e0i ,! vi;�i) ^ ((v0 = v1 ^ v0; v1 2 A) _ (v0; v1 2 C)))Proof (congruence):(1) For the if direction take E = [[]]. For the other direction note that for any E if E 0 isany closing context for E[[ej]] for j 2 2 then E 0[[E]] is a closing context for ej for j 2 2.(2) As a counter-example we have eq(x; x) �= T but eq(cons(T; T); cons(T; T)) �= Nil.

7(3) The context if("; car(T); T) will distinguish T and Nil.(4) The if direction is trivial. For the other direction suppose (Vi<2E[[ej]] ,! vj ;�j).If v0; v1 2 A and v0 6= v1 then the context if(eq(v0; E); car(T); T) will distinguish theexpressions. Similarly, if v0 2 A and v1 2 C then the context if(atom(E); car(T); T) willdistinguish the expressions.congruence3. The Formal SystemIn this section we present the language and rules of our formal system. The assertionlanguage L and the constraint language L are de�ned as follows:De�nition (L):L = (E ' E) [(E � E) [("E)De�nition (L):L = (car(U) = U)[(cdr(U) = U)[(U= U)[:(U= U)[(atom(U))[:(atom(U))We let '; : : : range over L �; : : : range over L, and �;�0;�; : : : range over P!(L).The set of constraints L is a subset of the atomic and negated atomic formulas in the�rst-order language consisting of equality, the unary function symbols car and cdr , theunary relation atom , and constants from A . We will freely use standard notions such as�rst-order satisfaction, j=.De�nition (Th(A)): The theory Th(A) is de�ned byTh(A) = fatom(a);:(a = a0) a; a0 2 A ; a 6= a0gTo state the rules, as well as the side conditions on rules, we use the following notation.The result of pushing a context E through an assertion � is de�ned byE[[�]] = 8<: "E[[e]] if � = " eE[[e0]] � E[[e1]] if � = e0 � e1E[[e0]] ' E[[e1]] if � = e0 ' e1.For # 2 fcar ; cdrg, x is #-less in � just if :(9u 2 U)(� j= #(x) = u) and (8y 2 X)((#(y) =u) 2 �) � j= :(x = y)). If x is #-less in � then the only way to consistently addinformation concerning #(x) is by adding an assertion of the form #(x) = u. Furthermore,if x is #-less in � then we can add #(x) = u to � without changing equality consequences of�. Dom(�) is the subset of FV(�) de�ned by Dom(�) = fx 2 FV(�) � j= :atom(x)g.If x 2 Dom(�) then x must be interpreted as a cell. For each constraint ' 2 L there is acorresponding assertion T (') 2 L de�ned byT (') = 8>>><>>>:#(x) � u if ' is #(x) = u and # 2 fcar ; cdrgeq(u0; u1) � T if ' is u0 = u1eq(u0; u1) � Nil if ' is :(u0 = u1)atom(x) � T if ' is atom(x)atom(x) � Nil if ' is :atom(x).

83.1. The RulesDe�nition (� ` �): The consequence relation, `, is the smallest relation that is closedunder the rules given below.The rules are partitioned into several groups of related rules. Each group of rules isgiven a label for future reference and members of the group are numbered. For example(S.i) refers to the �rst rule in the group of structural rules (the �rst group below). Arule has a (possibly empty) set of premisses and a conclusion. In the case that the set ofpremisses is non-empty the rule is displayed with a horizontal bar separating the premissesfrom the conclusion. A pair of rules that di�er by interchanging premiss and conclusion ispresented as a single rule with a double bar.Most of the rules are solely concerned with �. Of the rest those that concern allassertions are (S.ii, L, R.i). The structural rule (S.ii) is used to put constraint sets into aform necessary for application of another rule | for example (set.vii). It also incorporatestrivial facts concerning equality and the nature of the atoms. The left elimination rules,(L.i, L.ii), enable one to reason by cases while (L.iii) allows one to eliminate vacuousconstraints. (R.i) states the key property of reduction contexts.The rules concerning divergence are (D, cons.iii, set.vii). The latter two concernboth " and � and allow memory descriptions encoded in a constraint set to be representedsyntactically. The rules concerning ' are (E.i,ii,iii,G). The �rst three simply assert thatit is an equivalence relation weaker than �. The garbage collection rule allows for theelimination of garbage | cons cells no longer accessible.Structural rules (S).(i) � [f'g ` T (')(ii) �[f'g ` �� ` �where in (ii) � [Th(A) j= '.Left elimination (L).(i) � [fatom(x)g ` � � [f:atom(x)g ` �� ` �(ii) �[f:(u0 = u1)g ` � � [fu0 = u1g ` �� ` �(iii) � [f#(x) = zg ` �� ` �where in (iii) # 2 fcar ; cdrg; x 2 Dom(�), and z 62 FV(�)[FV(�).Equivalence rules (E).(i) � ` e0 � e1� ` e0 ' e1 (ii) � ` e0 ' e1 � ` e1 ' e2� ` e0 ' e2 (iii) � ` e0 ' e1� ` e1 ' e0(iv) � ` e0 � e0 (v) � ` e0 � e1 � ` e1 � e2� ` e0 � e2 (vi) � ` e0 � e1� ` e1 � e0

9Rule concerning eq (eq).(i) � ` eq(x; y) � T� ` x � yDivergence rules (D).(i) � ` " e0 � ` " e1� ` e0 � e1 (ii) � ` " e0 � ` e0 � e1� ` " e1(iii) � ` atom(x) � T� ` "#(x) (iv) � ` atom(x) � T� ` " set#(x; y)where in (iii,iv) # 2 fcar ; cdrgReduction context rules (R).(i) � ` �� ` R[[�]](ii) � ` R[[if(e0; e1; e2)]] � if(e0; R[[e1]]; R[[e2]])(iii) � ` R[[letfx := e0ge1]] � letfx := e0gR[[e1]]where in (iii) x 62 FV(R).Rules concerning let (let).(i) � ` e � letfx := egx (ii) � ` efx := ug � letfx := ugeRules concerning if (if).(i) � ` seq(e0; e1) � letfx := e0ge1(ii) � ` if(Nil; e0; e1) � e1 (iii) � ` eq(u; Nil) � Nil� ` if(u; e0; e1) � e0where in (i) x 62 FV(e1).Rules for cons (cons).(i) � ` letfx0 := cons(T; T)gletfx1 := cons(T; T)ge� letfx1 := cons(T; T)gletfx0 := cons(T; T)ge(ii) � ` seq(e0; letfx := cons(u0; u1)ge1) � letfx := cons(u0; u1)gseq(e0; e1)(iii) � [� ` �� ` letfx := cons(ua; ud)g[[�]]where in (ii) x 62 FV(e0), and in (iii) � 2 (E � E) [("E); x 62 (FV(�)[fua; udg) = Z and� = f:atom(x); car(x) = ua; cdr(x) = ud;:(x = y) y 2 Z [FV(�)� fxgg

10Rules for setcar and setcdr (set).(i) � ` eq(x0; x2) � Nil� ` seq(set#(x0; x1); set#(x2; x3); e) � seq(set#(x2; x3); set#(x0; x1); e)(ii) � ` seq(set#(x; y0); set#(x; y1)) � set#(x; y1)(iii) � ` seq(set#(x; y); x)� set#(x; y)(iv) � ` seq(setcdr(x0; x1); setcar(x2; x3); e) � seq(setcar(x2; x3); setcdr(x0; x1); e)(v) � ` setcar(cons(z; y); x)� cons(x; y)(vi) � ` setcdr(cons(x; z); y)� cons(x; y)(vii) � [f#(x) = u0g ` ��[f#(x) = u1g ` seq(set#(x; u0); [[�]])where # 2 fcar ; cdrg and in (vii) � 2 (E � E) [("E), x 2 Dom(�), and x is #-less in �.Garbage collection rule (G). If � is a context of the formletfz1 := cons(T; T)g : : :letfzn := cons(T; T))gseq(setcar(z1; ua1); setcdr(z1; ud1); : : : ; setcar(zn; uan); setcdr(zn; udn); "):and fz1; : : : ; zng \ FV(e) = ;, then� ` �[[e]] ' e:3.2. ConsequencesThe following are some consequences of the rules de�ning � ` �.Lemma (Equiv): If �[Th(A) and �0 [Th(A) have the same �rst-order consequencesthen � ` � , �0 ` �.Proof (Equiv): By (S.ii). EquivLemma (Mon): If � ` � then � [�0 ` �.Proof (Mon): By induction on the length of proof and cases on the last rule applied.We consider the two most interesting cases.(cons.iii) Assume that x 62 FV(�0) and that we have derived� ` letfx := cons(ua; ud)g[[�]]where the last rule applied is (cons.iii). Then by induction hypothesis � [�0 [�0 ` �where �0 = � [f:(x = y) y 2 FV(�0)g. Hence by (cons.iii) we are done. cons:iii(set.vii) Assume we have derived � [f#(x) = u1g ` seq(set#(x; u0); [[�]]) and the lastrule applied is (set.vii) in the forward direction. Thus x 2 Dom(�), x is #-less in �, and

11� [f#(x) = u0g ` �. By (L) we may assume that for #(z) = u 2 �0 we have either� [�0 j= z = x or � [�0 j= :(z = x). Let�x = fu = u1 (9z)(#(z) = u 2 �0 ^ � [�0 j= z = x)g�0 = �0 � f#(z) = u 2 �0 � [�0 j= z = xg:Then� [�0 [�x [f#(x) = u0g ` � by induction hypothesis� [�0 [�x [f#(x) = u1g ` seq(set#(x; u0);�) by (set.vii)� [�0 [f#(x) = u1g ` seq(set#(x; u0);�) by (S):The proof for application of (set.vii) in the reverse direction is similar. set:viiMonLemma (Equality): � j= x = y ^ � ` �) � ` �fx := ygProof (Equality): By induction on the length of proof. Again we consider only theinteresting cases.(S.i) If � j= x = y then � [f'g j= 'fx := yg.(S.ii) If � j= ' then � [f'g j= x = y , � j= x = y.(set.vii) Note that if � [f#(z) = ug j= x = y and � is #-less for z then � j= x = y anduse (Equiv) in the case z 2 fx; yg.EqualityLemma (Examples):(i) f:atom(x)g ` setcar(x; car(x)) � x(ii) � ` cdr(cons(x; y)) ' y(iii) � ` seq(seq(e0; e1); e2) � seq(e0; seq(e1; e2))(iv) � ` eq(x; y) � eq(y; x)(v) � ` eq(x; x) � T(vi) � ` atom(a) � T(vii) � ` a0 6= a1� ` eq(a0; a1) � Nil(viii) � ` atom(x) � Nil � ` atom(y) � T� ` eq(x; y) � Nil(ix) � ` letfx0 := cons(ua0 ; ud0)gletfx1 := cons(ua1 ; ud1)ge� letfx1 := cons(ua1; ud1)gletfx0 := cons(ua0 ; ud0)geprovided fx0; x1g \ FV(ua0 ; ud0; ua1; ud1) = ;(x) � ` letfy := e0gletfx := e1ge2 � letfx := letfy := e0ge1ge2 if y 62 FV(e2)

12Proof (Examples):(i) Let �0 = f:atom(x); car(x) = yg then by (set.ii,iii) we have�0 ` seq(setcar(x; y); setcar(x; y)) � seq(setcar(x; y); x)and by (set.vii) we have �0 ` setcar(x; y) � x. Now, using (L,S,E,R) we obtain � `setcar(x; car(x)) � x.(ii) � ` letfz := cons(x; y)gcdr(z) � letfz := cons(x; y)gy by (S.i, cons.iii). Thus� ` cdr(cons(x; y)) � letfz := cons(x; y)gy by (R.iii,let.i). The result now follows by(E,G) and the simple exercise showing thatletfz := cons(x; y)gy � letfz := cons(T; T)gseq(setcar(z; x); setcdr(z; y); y):(iii) By (R.ii) and the de�nition of seq.(iv) By (L.ii,S,E).(v,vi,vii) By (S).(viii) To show that � ` eq(x; y) � Nil it su�ces by (L.ii, S.i) to show that � [fx =yg ` eq(x; y) � Nil. By (Equality, E, S.i) and the assumptions we have that � [fx =yg ` T � Nil. The result now follows by (S.i, E).(ix) This is left to the reader. A similar derivation can be found in the proof of com-pleteness.(x) This is an instance of (R.iii).Examples4. SoundnessIn this section we present the semantics of our formal system. We begin by de�ningwhat it means for a model to satisfy an assertion or a constraint set. The semantic conse-quence relation between constraint sets and assertions is de�ned naturally in terms of thesesatisfaction relations.De�nition (model): A model is an environment-memory pair such that cells in therange of the environment are in the domain of the memory. We let �;�, �0;�0, : : :rangeover models.De�nition (�): Two descriptions with the same model are de�ned to be equi-valued,written e0; �;� � e1; �;�, if both diverge or both evaluate to the same object:1. " e1; �;� and " e2; �;�, or2. (9v;�0)(e1; �;� ,! v;�0 ^ e2; �;� ,! v;�0)De�nition ('): Two descriptions with the same model are strongly isomorphic, writtene0; �;� ' e1; �;�, if both diverge or both evaluate to the same object up to production ofcells not accessible from the value:1. " e1; �;� and " e2; �;�, or

132. (9v;�0 2 O Dom(�) � Dom(�0))(Vi<2(9�i �0 � �i)(ei; �;� ,! v;�i))The model-theoretic equivalence strong isomorphism (') was introduced in [Mason1986] and used as the basis for studying program equivalence. The relation between strongisomorphism and operational equivalence is given by the following theorem. [This theoremholds for the full �rst-order language, not just the fragment with no recursively de�nedfunctions.]Theorem (Strong Isomorphism): If e0; e1 2 E, then e0 �= e1 if and only if for every�;� such that FV(e0; e1) � Dom(�) we have that e0; �;� ' e1; �;�.Proof (Strong Isomorphism): The key idea is to show that if there is a contextthat distinguishes two expressions then there is a simple memory context, see section 5for the de�nition, that distinguishes them. See [Mason 1986] for further analysis of strongisomorphism. StrongIsomorphismDe�nition (j=L): The notion of a model satisfying an assertion, �;� j=L �, is de�nedfor FV(�) � Dom(�) by�;� j=L � , (" e; �;� if � = " ee0; �;� � e1; �;� if � = e0 � e1e0; �;� ' e1; �;� if � = e0 ' e1.The notion of a model satisfying a set of constraints �;� j=L � is simply �rst-ordersatisfaction adapted to the memory structure framework. For any memory � we de�ne thecorresponding �rst-order structure M� byM� = <Dom(�) [A ; car �; cdr�; atom>where Dom(�) [A is the domain of M�, car�; cdr� are treated as binary relations, andatom is a unary relation. For � 2 B , ' 2 L such that FV(') � Dom(�) and Rng(�) �Dom(�)[A we writeM� j= ' [�] for the usual �rst-order satisfaction relation where ' [�] isthe interpretation of ' relative to the environment �, thought of as a Tarskian assignment.Thus M� j= '[�] , 8>>><>>>: �(x) 2 A if ' is atom(x)�(x) 2 Dom(�) if ' is :atom(x)�(u0) = �(u1) if ' is u0 = u1�(u0) 6= �(u1) if ' is :(u0 = u1)#�(�(x)) = �(u) if ' is #(x) = u and # 2 fcar ; cdrgDe�nition (j=L): �;� j=L � if there is a �0 � � with FV(�) � Dom(�0) and Rng(�0) �A [Dom(�) such that M� j= ' [�0] for ' 2 �.De�nition (� j= �): The semantic consequence relation � j= � is de�ned by� j= � , (8�;� FV(�) � Dom(�))(�;� j=L �) �;� j=L �):A constraint set � is consistent just if �;� j=L � for some model �;�. In order tomake explicit the consequences of the above de�nition of satisfaction, we state the followingde�nition and lemma.

14De�nition (�m): The memory structure theory, �m, corresponding to � is de�ned by�m = �[Th(A) [f:atom(x) (9u 2 U)((car(x) = u) 2 � _ (cdr(x) = u) 2 �)gLemma (Sat): For ' 2 L we have �m j= ' , � j= T (').Proof (Sat): This is an easy consequence of properties of �rst-order satisfaction andthe fact that if ' has a model then it has a model with the same L consequences thatcorresponds to a memory structure. SatTheorem (Soundness): If � ` � then � j= �.Proof (Soundness): It su�ces to show that each rule preserves soundness, i.e. sound-ness of the premisses implies soundness of the conclusion. We restrict our attention to thoserules for which this result is non-trivial. The proofs for the remaining rules are either trivialor else minor variations on the ones given.Lemma (S): � [f'g j= T (') for ' 2 L.Proof (S): Suppose �;� j=L �[f'g and without loss of generality that FV(�[f'g) �Dom(�). Then by de�nition �;� j=L '. This together with the de�nition of T is su�cientto force that �;� j=L T ('). SLemma (L): Suppose that # 2 fcar ; cdrg; x 2 Dom(�); and z 62 FV(�)[FV(�). Then� [f#(x) = zg j= �� j= �Proof (L): Suppose that :(� j= �). Then without loss of generality we may assumethat there is a �;� such that Dom(�) = FV(�)[FV(�) with �;� j=L � and :(�;� j=L �).Since z 62 FV(�) [FV(�) we have that �fz := #�(�(x))g;� j=L � [f#(x) = zg and:(�fz := #�(�(x))g;� j=L �). Thus :(� [f#(x) = zg j= �). LLemma (cons): Suppose that � 2 (E � E) [("E); x 62 (FV(�)[fua; udg) = Z and� = f:atom(x); car(x) = ua; cdr(x) = ud;:(x = y) y 2 Z [(FV(�)� fxg)g:Then � [� j= �� j= letfx := cons(ua; ud)g[[�]]Proof (cons): Suppose that FV(�) � �, x 62 Dom(�) and that �;� j=L �. Furthermoreassume that :(�;� j= letfx := cons(ua; ud)g[[�]]). Thus choosing c 62 Dom(�) and letting�0;�0 = �fx := cg;�fc := [�(ua); �(ud)]g we have that :(�0;�0 j= �). Consequently itsu�ces to show that �0;�0 j=L �[�. This is routine. consLemma (set): Suppose that � 2 (E � E) [("E); x 2 Dom(�) and x is cdr -less in �:Then � [fcdr(x) = u0g j= �� [fcdr(x) = u1g j= seq(setcdr(x; u0); [[�]])

15Proof (set): Pick �;� such that �;� j=L �, FV(�) [FV(�) [fx; uig � Dom(�),�(x) = c and for i < 2 put�i = � [fcdr(x) = uig�i = �fc := [car�(c); �(ui)]g�0 = ��1 = seq(setcdr(x; u0); [[�]]):Furthermore, without loss of generality, assume that FV(�i) � Dom(�). We show that�;�0 j=L �0 i� �;�1 j=L �1. The result then follows by observing that �;�0 j= �0 i��1;�1 j= �1. Clearly �;�i j=L fcdr(x) = uig since by construction cdr�i(c) = �(ui). Thusit su�ces to show that for any ' 2 �, M�0 j= '[�] , M�1 j= '[�]. This is triviallytrue if ' is of the form atom(y);:atom(y); u0 = u1;:(u0 = u1) or car(y) = u, so supposethat (cdr(y) = u) 2 �. Since x is cdr -less in � we have that � j= :(x = y), consequentlycdr�0(�(y)) = cdr�1(�(y)). Thus M�0 j= (cdr(y) = u)[�] i� M�1 j= (cdr(y) = u)[�]. setSoundness5. CompletenessIn this section we state and prove the completeness theorem.Theorem (Completeness): � j= � implies � ` �.The proof of the completeness theorem is essentially an elaborate normal form theorem.Suppose � j= e0 ' e1. We de�ne two forms of contexts which feature in the normal formproof: syntactic memory contexts, �, and modi�cations,M . Using these contexts we de�ne,relative to �, a form of syntactic reduction, �7!�. It is de�ned in such a way that(e �7!� e0)) (� ` e ' e0)and if � contains enough information concerning the nature of the free variables of ei, thenei �7!� �i;Mi; e0i;and either e0i 2 fR[[#(ui)]]; R[[set#(ui; u0i)]]g; # 2 fcar ; cdrg and �[Th(A) j= atom(ui) or elsee0i = ui. In the latter case the normal form of ei is then de�ned simply to be �i;Mi; ui: Weshow that one can use the introduction on the left rules to force � to contain the necessaryinformation. Consequently suppose, for arguments sake, that � does contain su�cientinformation and that the normal form of ei is �i;Mi; ui: Then we have � ` ei ' �i;Mi; ui:Thus by soundness � j= ei ' �i;Mi; ui: Consequently � j= �0;M0; u0 ' �1;M1; u1: Thecompleteness result then follows by showing that equivalent normal forms are provablyequivalent.To obtain additional insight, consider the semantic question of deciding for any � and� whether � j= �. Since all computations terminate we can decide for any �;� such thatFV(�) � Dom(�) whether �;� j= �. We say � is complete for � if � determines thestructure of its models upto depth the size of �. If FV(e) � Dom(�), the size of e is � n,and �;�0 and �;�1 are the same to depth n | agree on cells reachable from Rng(�) by

16paths of length � n| then e; �;�0 and e; �;�1 have the same computation sequences. Thusif � is complete for �, to decide � j= � we need only pick some �;� such that �;� j= �and FV(�) � Dom(�) and check whether �;� j= � (For consistent � it is easy to �ndsuch models). Finally we note that for any �, � we can �nd a �nite set of constraintsf�i i < Ng such that� for i < N , �i is complete for �,� for i < N , any model of �i is a model of �, and� any model of � is a model of �i for some (unique) i < N .Thus � j= � , (8i < N)�i j= � and we have seen how to decide the righthand side of theequivalence.The completeness proof parallels the decidability argument using syntactic representa-tions of memories and reduction. We begin by developing these representations. We thenpresent the key lemmas for the proof of completeness and the proof itself. Finally we provethe lemmas.5.1. Memory contexts and Modi�cationsDe�nition (Memory contexts): The syntactic analog of a memory is a memory con-text, �, which is a context of the formletfz1 := cons(T; T)g : : :letfzn := cons(T; T)gseq(setcar(z1; ua1); setcdr(z1; ud1); : : : ; setcar(zn; uan); setcdr(zn; udn); "):where zi 6= zj when i 6= j. In analogy to the semantic memories, we de�ne the domainof � to be Dom(�) = fz1; : : : ; zng. For � as above we de�ne the functions car�; cdr� 2[Dom(�) ! U] by car�(zi) = uai and cdr�(zi) = udi . Two memory contexts are consideredthe same if they have the same domain and contents. Thus a memory context is determinedby its domain and selector functions. We also de�ne extension and updating operations onmemory contexts. �fz := [ucar ; ucdr]g is de�ned for z 62 Dom(�) to be the memory context�0 such that Dom(�0) = Dom(�) [fzg and for # 2 fcar ; cdrg,#�0(z0) = � u# if z0 = z#�(z0) otherwise.�fcar(z) = ug is de�ned for z 2 Dom(�) to be the memory context �0 such that Dom(�0) =Dom(�) and car�0(z0) = � u if z0 = zcar�(z0) otherwise and cdr�0(z0) = cdr�(z0):Similarly for �fcdr(z) = ug.To express the constraints implicit in a memory context � we de�ne for any � theextension of � by � relative to a given set of variables X .

17De�nition (�X�): If X 2 P!(X� Dom(�)) and FV(�) \ Dom(�) = ;, then we de�ne�X� as follows�X� = � [�ad [�ne�ad = [z2Dom(�)f:atom(z); #(z) = u# u# = #�(z); # 2 fcar ; cdrgg�ne = [z2Dom(�)f:(z = y) y 2 FV(�)[X [(Dom(�)� fzg)g:It is natural and convenient to extend memory contexts by sequences of assignmentsto variables that are not in the domain of the memory context, but are assumed to be cells.We call such extensions modi�cations.De�nition (Modi�cations): A modi�cation, M , is a context of the formseq(set#1(z1; u1); : : : ; set#n(zn; un); ")where set#i 2 fsetcar ; setcdrg and zi = zj implies i = j or set#i 6= set#j . We de-�ne Dom(M) = fz1; : : : ; zng and #M(zi) = ui if set#i = set# for # 2 fcar ; cdrg. ThusDom(#M) = fzi 2 Dom(M) set#i = set#g for # 2 fcar ; cdrg.5.2. �-ReductionIn analogy to the semantic reduction relations we de�ne the relations +�, 7!�, and�7!�. In order to ensure that de�nitions are meaningful we introduce the notion of coher-ence. Roughly a constraint set and a memory-modi�cation context are coherent (writtenCoh(�;�;M)) if Dom(�) \ FV(�) = ;, modi�cations in M are to elements of Dom(�), �decides equality on Dom(�), distinct elements of Dom(M) are provably distinct in � and� contains at most one car or cdr assertion for any z in Dom(�). (The last condition is atechnicality to make various de�nitions and proofs simpler.) Note that coherence ensuresthat #M is single{valued modulo � equivalence.De�nition (Coherence): If � is a memory context and M is a modi�cation as abovethen we say (�;�;M) is coherent, written Coh(�;�;M), if the following �ve conditionshold:(1) Dom(�) \ FV(�) = ;(2) Dom(M) � Dom(�)(3) If x0; x1 2 Dom(#M) are distinct, then � j= :(x0 = x1) for # 2 fcar ; cdrg.(4) If x0; x1 2 Dom(�) then � j= (x0 = x1) or � j= :(x0 = x1).(5) If x 2 Dom(�) and # 2 fcar ; cdrg, then there is at most one formula (#(z) = u) 2 �with � j= (z = x).We write Coh(�;M) for Coh(�;�;M) when Dom(�) = ;; Coh(�;�) for Coh(�;�;M)when Dom(M) = ;. and Coh(�) for Coh(�;�;M) when Dom(�) = Dom(M) = ;.

18De�nition (Mf#(z) = ug�): Suppose that M is a modi�cation, Coh(�;M) and z 2Dom(�). Then Mfcar(z) = ug� is de�ned to be the modi�cation M 0 with Dom(carM0) =Dom(carM) [fzg, Dom(cdrM0) = Dom(cdrM), and for z0 2 Dom(#M0)carM0(z0) = � carM(z0) if � j= :(z = z0)u if � j= (z = z0) and cdrM 0(z0) = cdrM(z0):Similarly for Mfcdr(z) = ug�.De�nition (+�): For � and �;M such that Coh(�;�;M) we de�ne the relation�;M [[e]]+� �0;M 0[[e0]] as follows (letting X = FV(�;M [[e]]) and # 2 fcar ; cdrg)�;M [[atom(u)]]+� ��;M [[T]] if � [Th(A) j= atom(u)�;M [[Nil]] if �X� j= :atom(u)�;M [[#(u)]]+� 8<:�;M [[#�(u)]] if u 2 Dom(�)�;M [[#M(u)]] if (9u0 2 Dom(#M))(� j= (u0 = u))�;M [[u0]] otherwise if u 2 Dom(�) ^ � j= (#(u) = u0)�;M [[eq(u0; u1)]]+� ��;M [[T]] if � [Th(A) j= u0 = u1�;M [[Nil]] if �X� [Th(A) j= :(u0 = u1)�;M [[cons(u0; u1)]]+� �fz := [u0; u1]g;M [[z]] if z 2X� (Dom(�) [FV(�) [X)�;M [[set#(u; u0)]]+� ��f#(u) = u0g;M [[u]] if u 2 Dom(�)�;Mf#(u) = u0g�[[u]] if u 2 Dom(�)For general use in reasoning about programs one would want to strengthen the de�nitionof syntactic reduction by using full semantic satisfaction rather than �rst{order satisfactionin the side conditions. The weaker de�nition is adequate for proving completeness andsimpli�es the proof.De�nition (7!�): For � and �;M such that Coh(�;�;M) we de�ne the relation�;M ;R[[e]] 7!� �0;M 0;R[[e0]] as follows. Let X = FV(�;M ;R[[e]]). Then(if) �;M ;R[[if(u; e1; e2)]] 7!� ��;M ;R[[e1]] if �X� [Th(A) j= :(u = Nil)�;M ;R[[e2]] if � j= (u = Nil)(beta) �;M ;R[[letfx := uge]] 7!� �;M ;R[[efx := ug]](delta) �;M ;R[[�(u1; : : : ; un)]] 7!� �0;M 0;R[[u0]]where in (delta) we assume that � 2 Fn , �;M [[�(u1; : : : ; un)]]+� �0;M 0; u0 and Dom(�0)�Dom(�) is disjoint from FV(�;M ;R[[�(u1; : : : ; un)]]).Lemma (Coherence): Coherence is preserved by syntactic reduction.If a modi�cation M is coherent with a constraint set � then the modi�cation of �implicit in M is carried out explicitly in de�ning �M .De�nition (�M): For Coh(�;M) we de�ne �M as follows�M = (���forgetM) [�assignM�assignM = f#(z) = u# u# = #M(z); z 2 Dom(#M); # 2 fcar ; cdrgg�forgetM = f(#(x) = u) 2 � (9z 2 Dom(#M))(� j= x = z); # 2 fcar ; cdrgg

19The Context Modi�cation Introduction lemma combines and generalizes the cons andset# introduction rules to arbitrary memory{modi�cation contexts.Lemma (CMI): If Coh(�;�;M), � 2 (E � E) [("E), and X = FV(�;M ;R[[�]]) then(�X�)M ` �� ` �;M ;R[[�]]is derivable.Proof (CMI): This is a simple consequence of the introduction rules (cons.iii) and(set.vii), together with the congruence rules and the de�nition of coherence (particularlythe �fth condition). The only point to observe is that if � is the disjoint union of �0 andfcar(zi) = wai ; cdr(zi) = wdi gzi2Dom(M), then each zi is car -less and cdr -less in �0. CMI5.3. Proof of CompletenessBefore we state the key lemmas, we require one last set of de�nitions. The rank ofan expression r(e) is just its size. The rank of an assertion r(�) is the maximum rankof the expressions occurring in �. At(X) is the set of atoms occuring in X . A car -cdrchain of length � n is a reduction context of the form � = #0(#1(: : :#k(") : : :)) where#j 2 fcar ; cdrg; j � k, and k < n. Finally we de�ne the notion of n-completeness forconstraint sets relative to a �nite set of variables and atoms. The idea is that such aconstraint set contains su�cient information to completely determine the evaluation of anyexpression of size less than n built from the given variables and atoms.De�nition (n-Complete w.r.t. [�x;A]): � is n-complete w.r.t. [�x;A] if for every �;�0,car -cdr chains of length � n, and y; y0 2 �x, if � j= �[[y]] = u and � j= �0[[y0]] = u0, then(� j= atom(u)) _ (� j= :atom(u))(� j= u = �) _ (� j= :(u = �)) � 2 A [fT; Nil; u0g(� j= :atom(u))) (9ua; ud 2 U)((� j= car(u) = ua) ^ (� j= cdr(u) = ud))(� j= atom(u))) :(9ua; ud 2 U)((� j= car(u) = ua) _ (� j= cdr(u) = ud))The following �ve lemmas enable a straightforward proof of the completeness theorem.Lemma (0): If � is inconsistent, then � ` �, for any � 2 L.Lemma (1): If e �7!� e0, then � ` e � e0.Lemma (2): If � is r(e)-complete w.r.t. [FV(e);At(�; e)] and Coh(�), then there exists�;M and an e0 such that e �7!� �;M [[e0]] and exactly one of the following holds:1. e0 = R[[#(u)]]; # 2 fcar ; cdrg and � [Th(A) j= atom(u).2. e0 = R[[set#(u0; u1)]]; set# 2 fsetcar ; setcdrg and � [Th(A) j= atom(u0).3. e0 = u, and Coh(�;�;M).Lemma (3): For any consistent �; �x, � 2 L, and n 2 N there exists N 2 N and a familyof constraint sets f�igi<N such that1. Each �i is n-complete w.r.t. [�x;At(�i;�)], and Coh(�i).

202. (8�;�)(�;� j=L � , (9i < N)(�;� j=L �i))3. �i ` � i < N� ` � is a derived rule.Lemma (4): Let ei = �i;Mi[[ui]] with Coh(�;�i;Mi) for i < 2. If � j= e0 � e1 then� ` e0 � e1. Similarly if � j= e0 ' e1 then � ` e0 ' e1.Proof (Completeness): Assume � j= �. By lemma 0 we may assume that � isconsistent. By lemma 3 it su�ces to prove that � ` � under the added assumptions thatCoh(�) and � is r(�)-complete w.r.t. [FV(�);At(�;�)]. By lemma 2 we have that foreach ei in � there exists �i;Mi and an e0i such that ei �7!� �i;Mi[[e0i]] and exactly one of thefollowing holds:1. e0i = Ri[[#i(ui)]], #i 2 fcar ; cdrg, and � [Th(A) j= atom(ui).2. e0i = Ri[[set#i(ui; u0i)]], set#i 2 fsetcar ; setcdrg and � [Th(A) j= atom(ui).3. e0i = ui, and Coh(�;�i;Mi).By lemma 1 we have � ` ei � �i;Mi[[e0i]] and by soundness we have � j= ei � �i;Mi[[e0]].We consider three cases, depending on the nature of �.(� = " e) Since � is consistent e0 2 U is impossible.In the other two cases we use (D) and (CMI) to show that � ` "�;M [[e0]], and hence that� ` " e.(� = (e0 � e1)) We may assume that :(� j= " ei) since the case when � j= " ei followsdirectly from the previous case. Hence we have � ` ei � �i;Mi[[ui]] and � j= ei ��i;Mi[[ui]] for i < 2. Thus � j= �0;M0[[u0]] � �1;M1[[u1]] and by lemma 4 � ` �0;M0[[u0]] ��1;M1[[u1]]:(� = (e0 ' e1)) similar.Completeness5.4. Proofs of the LemmasLemma (0): If � is inconsistent, then � ` �, for any � 2 L.Proof (0): If � is inconsistent then by (Sat) either � j= T = Nil in the usual �rst-orderinterpretation, or else � j= atom(x) and � j= #(x) = z for some x; z 2 U. In the former casethe result follows by the structural rules and properties of if. In the later case it su�cesto observe that � ` " z and so since � ` efy := zg � letfy := zge we can conclude, bychoosing y new, that � ` " e for any e. The result follows without much e�ort. 0Lemma (1): If e �7!� e0, then � ` e � e0.Proof (1): It su�ces to show that if Coh(�;�;M), then�;M [[e]] 7!� �0;M 0[[e0]]) (� ` �;M [[e]] � �0;M 0[[e0]]):Let X = FV(M [[e]]), �0 = (�X�)M , and note that the proof naturally divides up into threecases depending on the decomposition of e into R[[ep]].

21(if) In this case e = R[[if(u; e1; e2)]] and by hypothesis either � j= (u = Nil) or �X� [Th(A) j= :(u = Nil). Thus either �0 ` u � Nil or �0 ` eq(u; Nil) � Nil, by (S.i). In theformer case �0 ` if(u; e1; e2) � e2 by (if.ii,R.i,E), and so by (CMI)� ` �;M ;R[[if(u; e1; e2)]] � �;M ;R[[e2]]:In the latter case �0 ` if(u; e1; e2) � e1 by (if.iii) so again by (CMI)� ` �;M ;R[[if(u; e1; e2)]] � �;M ;R[[e1]]:(beta) In this case e = R[[letfx := uge0]], and by (let.ii) �0 ` letfx := uge0 � e0fx :=ug. Hence by (CMI)� ` �;M ;R[[letfx := uge0]] � �;M ;R[[e0fx := ug]]:(delta) In this case e = �(�u) and consequently we may assume that�;M [[�(�u)]]+� �0;M 0[[u0]]and (Dom(�0)�Dom(�))\FV(�;M ;R[[�(�u)]]) = ;. The proof naturally divides up into sevencases, depending on �: In four of these cases, corresponding to when # 2 fatom ; car ; cdr ; eqg,we have that � = �0 and M = M 0. Consequently in these cases we need only show that�0 ` #(�u) � u0 and invoke (CMI) to obtain the result. We begin by considering these fourcases.(�(�u) = atom(u)) In this case there are two possiblities, either u0 = T or u0 = Nil. In theformer case we have that � [Th(A) j= atom(u) and so �0 [Th(A) j= atom(u). Hence by(S.i) we have that �0 ` #(�u) � u0. Similarly in the latter case we have that �X� j= :atom(u)and so �0 j= :atom(u). Hence again by (S.i) we have that �0 ` #(�u) � u0.(�(�u) = eq(u0; u1)) Again there are two possiblities, either u0 = T or u0 = Nil: In theformer case we have that �[Th(A) j= u0 = u1 and so by construction of �0 and (S.i) we havethat �0 ` eq(u0; u1) � T. In the case where u0 = Nil, we have that �0 [Th(A) j= u0 6= u1and so by (S.i) �0 ` eq(u0; u1) � Nil.(�(�u) = car(u)) In this case we have that �0 j= car(u) = u0 and hence by (S.i) �0 `car(u) � u0.(�(�u) = cdr(u)) This case is a trivial variation on car .(�(�u) = cons(u0; u1)) In this case we have that �0 = �fu0 := [u0; u1]g and that u0 62Dom(�) [X . Now note that�0 ` cons(u0; u1) � setcdr(cons(u0; T); u1) by (set.vi)� setcdr(setcar(cons(T; T)); u0); u1) by (set.v,R.i)� letfu0 := cons(T; T)gsetcdr(setcar(u0; u0); u1) by (let.i,R.iii)� letfu0 := cons(T; T)gsetcdr(seq(setcar(u0; u0); u0); u1) by (set.iii,R.i,CMI)� letfu0 := cons(T; T)gseq(setcar(u0; u0); setcdr(u0; u1)) by (R.ii,CMI)� letfu0 := cons(T; T)gseq(setcar(u0; u0); setcdr(u0; u1); u0) by (set.iii,CMI)

22Thus we have shown that �0 ` cons(u0; u1) � fu0 := [u0; u1]g; u0 and so by (CMI)� ` �;M ;R[[cons(u0; u1)]] � �;M ;R[[fu0 := [u0; u1]g; u0]]� �;M ; fu0 := [u0; u1]g;R[[u0]] by (Rii,Riii,CMI)� �fu0 := [u0; u1]g;M ;R[[u0]]by (Rii,Riii,cons.ii,cons.iii,CMI) and (Example.iii)(�(�u) = setcar(u0; u1)) In this case u0 = u0 and there are two possibilities, either u0 2Dom(�) or u0 2 Dom(�). In the latter case, assuming that �(u0) = [ua0 ; ud0] we have that�0 = �fu0 := [u1; ud0]g: Now by (set.iii) �0 ` setcar(u0; u1) � seq(setcar(u0; u1); u0) andso by (CMI)� ` �;M ;R[[setcar(u0; u1)]] � �;M ;R[[seq(setcar(u0; u1); u0)]]� �; seq(setcar(u0; u1);M ;R[[u0]]) by (S.i,Rii,set.i,set.iv,CMI)� �0;M ;R[[u0]] by (S.i,Rii,set.ii,set.iv,CMI)while in the former case, assuming that u0 2 Dom(M) we have thatM 0 =Mfcar(u0) = u1g:Now by (set.iii) �0 ` setcar(u0; u1) � seq(setcar(u0; u1); u0) and so by (CMI)� ` �;M ;R[[setcar(u0; u1)]] � �;M ;R[[seq(setcar(u0; u1); u0)]]� �;M ; seq(setcar(u0; u1); R[[u0]]) by (S.i,Rii,set.i,set.iv,CMI)� �;M 0;R[[u0]] by (S.i,Rii,set.ii,set.iv,set.ii,CMI)The case when (9z)(� j= z = u0 ^ z 2 Dom(M)) is almost identical to the above argument.(�(�u) = setcdr(u0; u1)) This case is a trivial variation on setcar .1Lemma (2): If � is r(e)-complete w.r.t. [FV(e);At(�; e)] and Coh(�), then there exists�;M and an e0 such that e �7!� �;M [[e0]] and exactly one of the following holds:1. e0 = R[[#(u)]]; # 2 fcar ; cdrg and � [Th(A) j= atom(u).2. e0 = R[[set#(u0; u1)]]; set# 2 fsetcar ; setcdrg and � [Th(A) j= atom(u0).3. e0 = u, and Coh(�;�;M).Proof (2): This follows from the simple observation that if e 7!� e0 and � is r(e)-complete w.r.t. [FV(e);At(�; e)] then � is r(e0)-complete w.r.t. [FV(e0);At(�; e0)]. Conse-quently the three cases above are the only ones in which further reduction is not possible.2Lemma (3): For any consistent �; �x, � 2 L, and n 2 N there exists N 2 N and a familyof constraint sets f�igi<N such that1. Each �i is n-complete w.r.t. [�x;At(�i;�)], and Coh(�i).2. (8�;�)(�;� j=L � , (9i < N)(�;� j=L �i))

233. �i ` � i < N� ` � is a derived rule.Proof (3): This is a simple consequence of the introduction on the left rules. 3Lemma (4): Let ei = �i;Mi[[ui]] with Coh(�;�i;Mi) for i < 2. If � j= e0 � e1 then� ` e0 � e1. Similarly if � j= e0 ' e1 then � ` e0 ' e1.Proof (4): By lemma 0 we may assume that � is consistent. Using a simple constructionfrom constants one can show that for any consistent � there is a �;� such that1. Dom(�) = FV(�) and �;� j=L �,2. �(x) = �(y) i� � j= x = y.Given such a �;� we show that if e0; �;� � e1; �;� then � ` e0 � e1. First observe thatby e0; �;� � e1; �;� and lemma 2 we can construct a bijection f : Dom(�0) ! Dom(�1)such that (extending f as the identity o� Dom(�0)) � j= f(#�0(x)) = #�1(f(x)) for allx 2 Dom(�0) and # 2 fcar ; cdrg and � j= f(u0) = u1. Consequently �0; u0 and �1; u1di�er only upto �-conversion and �-equality and hence we may assume they are the same.For y 2 Dom(#M0)\Dom(#M1) we have � j= #M0(y) = #M1(y) and we may assume they arethe same. If y 2 Dom(#M0)�Dom(#M1) then there must be some u such that � j= #(y) = uotherwise we could choose � such that #�(�(y)) is not the value assigned by M0. Usingthe derived rule (Example.i), f:atom(x)g ` setcar(x; car(x)) � x, we can remove y fromDom(M0). Repeating this we can transformM0 and M1 into the same modi�cation. Hence� ` e0 � e1. �Now we show that e0; �;� ' e1; �;�) � ` e0 ' e1:If e0; �;� ' e1; �;� then there exists v;�0 with Dom(�) � Dom(�0), �0; �1 with �0 � �i,and �i � � with �i(ui) = v such that ei; �;� �7! ui; �i;�i: Now putGi = fx 2 Dom(�i) �i(x) 2 Dom(�i)� Dom(�0)gThen by construction ui 62 Gi and if x 2 Dom(�i)�Gi then #�i(x) 62 Gi, for # 2 fcar ; cdrg.Similarly if x 2 Dom(Mi) then #Mi(x) 62 Gi for # 2 fcar ; cdrg. Consequently we can showthat � ` �i;Mi[[ui]] � �Gi ; �0i;Mi[[ui]]for �Gi and �0i memory contexts with the property that Dom(�Gi) = Gi andGi \ FV(�0i;Mi[[ui]]) = ;:Also note that, putting e0i = �0i;Mi[[ui]], that e00; �;� � e01; �;�. Thus by the previousargument � ` e00 � e01, the result now follows from the garbage collection axioms (�Gi ; e0i) 'e0i for i < 2. ' 4

246. Summary and ConclusionsWe have presented a formal system for reasoning about equivalence of �rst-order Lisp-or Scheme-like programs that act on objects with memory. The semantics of the systemis de�ned in terms of a notion of memory model derived from the natural operationalsemantics for the language. Equivalence is de�ned relative to classes of memory modelsde�ned by sets of constraints. The system is complete for programs that use only memoryoperations (no recursively de�ned functions, arithmetic operations, etc.). Thus the systemcan be seen to adequately express the semantics of memory operations. Presumably thiscould be extended to a relative completeness result for expressions built from memory andother algebraic operations, or for the full language, but we have not explored this possibility.Equivalence in all models is the same as operational equivalence. Thus we have a meansfor reasoning about operational equivalence of programs. The formal system provides aricher language than operational equivalence since it provides a method for reasoning aboutconditional equivalence and equivalence with respect to restricted sets of contexts. This isessential for developing a theory of program transformations, since most of the interestingtransformations are based on having additional information, i.e. on being able to restrictthe contexts of use.We could have omitted mentioning the equi-value relation � and simply formalizedunde�nedness and strong isomorphism (see [Mason and Talcott 1989a]). However, equi-valuedness is an interesting relation in its own right and we have the stronger result givingsoundness and completeness for all three relations. Our formal system also directly reectsthe informal characterization of strong isomorphism as equi-valuedness modulo garbagecollection.Implicit in the proof of completeness is a decision procedure for deciding when anexpression is de�ned and whether two expressions are equivalent for all models of a set ofconstraints. There are three key algorithms. The �rst algorithm is an algorithm for deciding�rst-order consequence for constraints by a simple extension of an algorithm for putting aset of equations and inequations into a canonical form. The second algorithm generatesa set of r(e)-complete constraints each of which completely determines the computationalbehavior of the expressions in question. The third algorithm �nds a renaming of boundvariables of a memory context that transforms one object expression into another that isequivalent modulo a set of constraints, or proves that no such bijection exists. Mindlessapplication of these algorithms of course results in combinatorial explosion. An interestingopen problem is to �nd strategies that are reasonably e�cient for a useful class of queriesand to incorporate this into a system for reasoning about programs.Work is in progress to extend the formal system to a full higher-order Scheme-likelanguage (with untyped lambda abstraction). [Felleisen 1987, 1988] gives an equationalcalculus for reasoning about Scheme-like programs but such calculi do not deal adequatelywith conditional equivalence. The success of our approach in the �rst-order case dependedon being able to de�ne a semantics for conditional equivalence. In this case there is a naturalmodel-theoretic equivalence (strong isomorphism) such that equivalence in all models is thesame as operational equivalence. The existence of such a model-theoretic equivalence in thehigher-order case remains an open question. The naive extension of the notion of strongisomorphism to the higher-order case does not work. Also operational equivalence in the

25�rst-order fragment does not imply equivalence in the higher-order language since non-atomsare no longer necessarily cells. Thus some re�nement of the rules will be required.AcknowledgementsWe would like to thank the following people for carefully reading earlier versions ofthis paper, and pointing out numerous mistakes and confusions: Louis Galbiati, MatthiasFelleisen, Furio Honsell, Jussi Ketonen, and Elizabeth Wolf.7. ReferencesBoehm, H.{J.[1985] Side e�ects and aliasing can have simple axiomatic descriptions, ACM TOPLAS,7(4), pp. 637{655.Felleisen, M.[1987] The calculi of lambda-v-cs conversion: A syntactic theory of control and state inimperative higher-order programming languages, Ph.D. thesis, Indiana University.[1988] �-v-CS: An extended �-calculus for Scheme, Proceedings of the 1988 ACM confer-ence on Lisp and functional programming, pp. 72{85.J�rring, U. and Scherlis, W. L.[1986] Deriving and using destructive data types, IFIP TC2 working conference on pro-gram speci�cation and transformation, (North{Holland).Mason, I. A.[1986a] Equivalence of �rst order Lisp programs: proving properties of destructive pro-grams via transformation, First Annual Symposium on logic in computer science,(IEEE).[1986] The semantics of destructive Lisp, Ph.D. Thesis, Stanford University. CSLI Lec-ture Notes No. 5, Center for the Study of Language and Information, StanfordUniversity.[1988] Veri�cation of programs which destructively alter data, Science of Computer Pro-graming, 10, pp. 177{210.Mason, I. A. and Talcott, C. L.[1985] Memories of S-expressions: Proving properties of Lisp-like programs that destruc-tively alter memory, Department of Computer Science, Stanford University ReportNo. STAN-CS-85-1057[1989a] Axiomatizing Operational Equivalence in the presence of Side E�ects. FourthAnnual Symposium on logic in computer science, (IEEE).[1989b] Programming, Transforming, and Proving with function abstractions and memo-ries. Proceedings of the 16th EATCS Colloquium on Automata, Languages andProgramming. Stresa. 1989.

26Morris, J. H.[1968] Lambda calculus models of programming languages, Ph.D. thesis, MassachusettsInstitute of Technology.Mosses, P.[1984] A basic abstract semantic algebra, in: Semantics of data types, international sym-posium, Sophia-Antipolis, June 1984, proceedings, edited by G. Kahn, D. B. Mac-Queen, and G. Plotkin, Lecture notes in computer science, no. 173 (Springer,Berlin) pp. 87{108.Nelson, C. G. and Oppen, D. C.[1977] Fast decision procedures based on congruence closure, Computer Science Depart-ment Report STAN{CS{77{647, Stanford University.Plotkin, G.[1975] Call-by-name, call-by-value and the lambda calculus, Theoretical Computer Sci-ence, 1, pp. 125{159.Oppen, D. C.[1978] Reasoning about recursively de�ned data structures, Computer Science Depart-ment Report STAN{CS{78{678, Stanford University.

