
Revised version of T. F. Melham, `A MechanizedTheory of the�-calculus in HOL', Technical Report No. 244, University ofCambridge Computer Laboratory (January 1992). Submittedfor publication in the Nordic Journal of Computing.A Mechanized Theoryof the �-calculus in HOLT. F. MelhamDepartment of Computing ScienceUniversity of GlasgowGlasgow, Scotland, G12 8QQAbstract: The �-calculus is a process algebra for modelling concurrent systems in which thepattern of communication between processes may change over time. This paper describes theresults of preliminary work on a de�nitional formal theory of the �-calculus in higher order logicusing the HOL theorem prover. The ultimate goal of this work is to provide practical mechanizedsupport for reasoning with the �-calculus about applications.IntroductionThe �-calculus [17, 18] is a process algebra proposed by Milner, Parrow and Walker for modellingconcurrent systems in which the pattern of interconnection between processes may change overtime. This paper describes work on a mechanized formal theory of the �-calculus in higher orderlogic using the HOL theorem prover [8]. The main aim of this work is to construct a practical andsound theorem-proving tool to support reasoning about applications using the �-calculus, as wellas metatheoretic reasoning about the �-calculus itself.Four general principles have been adopted in this project. First, a purely de�nitional approachis taken to describing the �-calculus in logic. New notation concerned with the �-calculus is addedto the logic not by postulating arbitrary axioms to give meaning to it, but rather by de�ning it interms of existing expressions of the logic that already have the required semantics. Second, proofsin the �-calculus are automated wherever feasible, with a view to eventually using the system toreason about applications. In practice, this means writing e�cient derived inference rules in HOLfor proving decidable classes of propositions, such as the �-equivalence of two terms in the calculus.The third principle is to make the HOL proofs as robust as possible, in the sense that they shouldrun without major modi�cation even when minor changes are made to the �-calculus itself. Thehope is that this will facilitate experimental investigations in HOL of minor variants of the calculus.Finally, the �-calculus as mechanized in HOL is intended to be as nearly identical as possible to thecalculus as described in the papers [17, 18]. The aim is to avoid simplifying the calculus merely inorder to make the job of mechanizing it easier. One point at which we have compromised this lastprinciple is discussed in section 4.3.1 The HOL systemThe HOL system [8] is a mechanized proof-assistant for generating proofs in higher order logic.HOL is based on the LCF approach to interactive theorem proving and has many features in com-mon with the LCF systems developed at Cambridge [21] and Edinburgh [9]. Like LCF, the HOL1

system supports secure theorem proving by representing its logic in the strongly-typed functionalprogramming language ML. Propositions and theorems of the logic are represented by abstractdata types, and interaction with the theorem prover takes place by executing ML procedures thatoperate on values of these data types. Because HOL is built on top of a general-purpose program-ming language, the user can write arbitrarily complex programs to implement proof strategies.Furthermore, because of the way the logic is represented in ML, such user-de�ned proof strategiesare guaranteed to perform only valid logical inferences.1.1 Higher order logicThe version of higher order logic supported by the HOL theorem prover is based on Church'sformulation of simple type theory [4]. For the purposes of this paper, the logic can be viewed as atyped extension of the conventional syntax of predicate calculus in which functions may be curriedand one may quantify over functions. The notation is illustrated by the theorem shown below.` 8x f: 9fn: (fn 0 = x) ^ 8n: fn:num!num (n+1) = (f (fn n)) nThis says that functions can be de�ned on the natural numbers such that they satisfy primitive-recursive de�ning equations (the quanti�ed variables f and fn range over functions). We adoptthe convention that italic identi�ers (e.g. x, x1, fn) are variables and sans serif identi�ers (e.g.a, F, Tau) and non-alphabetical symbols (e.g. �, =, 8) are constants.The HOL logic extends Church's formulation in two signi�cant ways: the syntax of types includesthe polymorphic type discipline developed by Milner for the LCF logic PP� [9], and the primitivebasis of the logic includes explicitly-stated rules of de�nition for consistently extending the logicwith new constants and new types. Because this second feature of the logic is particularly relevantto the approach taken to embedding the �-calculus in HOL, the rules of de�nition in the HOL logicare very brie
y introduced below. A full description of these rules and details of the rest of thelogic, including a set-theoretic semantics, can be found in [8].1.1.1 Primitive rules of de�nitionThe HOL user community has a strong tradition of taking a purely de�nitional approach to usinghigher order logic, and this is the way in which the logic is used in the present work on the �-calculus.The advantage of this approach, as opposed to the axiomatic method, is that the primitive rules ofde�nition admit only sound extensions to the logic, in the sense that they preserve the property ofthe logic having a (standard) model. Making de�nitions is therefore guaranteed not to introduceinconsistency. The disadvantage is that these rules admit only de�nitions that satisfy certain veryrestrictive rules of formation. De�nitions expressed in any other form must always be justi�ed byderiving them from equivalent, but possibly rather complex, primitive de�nitions.The primitive basis of the HOL logic includes three rules of de�nition: the rule of constantde�nition, the rule of constant speci�cation, and the rule of type de�nition. A constant de�nitionis simply an equational axiom of the form ` c = t that introduces a new constant c as an object-language abbreviation for a closed term t. Also admitted by this rule are curried or paired functionde�nitions of the forms` f v1 v2 : : : vn = t and ` f(v1; v2; : : : ; vn) = tAmong the side-conditions of the rule of constant de�nition, the details of which are not relevanthere, is the condition that the constant being de�ned may not occur on the right-hand side ofits de�ning equation. This rules out, at least as primitive, all recursive de�nitions|includinginconsistent ones like ` c = :c.The rule of constant speci�cation allows one to introduce a new constant into the logic as anatomic name for a quantity already known to exist. By this rule of de�nition, one may infer from2

a theorem of the form ` 9x: P [x] a theorem ` P [c], where c is a new constant symbol. This simplyintroduces c as an object-language name for an existing value x for which P [x] holds.The third primitive rule of de�nition in HOL is the rule of type de�nition. Suppose that � isa type and P :�!bool is the characteristic predicate of some useful nonempty subset of the setdenoted by �. A type de�nition introduces a new type constant � to name this subset of �. Fromthe theorem ` 9x:�: P x, one may infer by the rule of type de�nition the existence of a bijectionfrom the values of a new type � to the set of values that satisfy P :` 9f :�!�: (8x y: (f x = f y) � (x = y))^ (8x: P x = (9y: x = f y))This de�nitional theorem introduces the new type constant � to name the nonempty set of valueswhose properties are determined by the choice of predicate P . The requirement that ` 9x: P xensures that there is at least one value of type � . This restriction is necessary because the HOLlogic does not allow empty types. The rule of type de�nition can also be used to de�ne new typeoperators; one can de�ne, for example, the Cartesian product �1 � �2 of two types, or the type of�nite lists (�)list. See [12] for a series of detailed examples.1.1.2 Derived rules of de�nitionThe primitive rules outlined above disallow the direct use of many commonly-used principles ofde�nition|for example, the de�nition of functions by primitive recursion. The general-purposelanguage ML, however, provides a facility in HOL for implementing derived rules of de�nition; usingML, one can write programs that automatically generate the proofs that justify the legitimacy ofderived forms of de�nition. The built-in HOL derived rules of de�nition include recursive concretetype de�nitions and primitive recursive function de�nitions over these types, as well as certain formsof inductive de�nition. The details of the primitive de�nitions that underlie these rules are hiddenfrom the user, and their ML implementations are highly optimized. So these derived principles ofde�nition may just be regarded as primitive by most users of the system.The HOL mechanization of the �-calculus is a purely de�nitional theory in higher order logic.It relies heavily on the derived principles of de�nition available in HOL, which are therefore brie
yexplained as they used in the sections that follow. Details of these derived rules can be found inthe HOL system documentation [8] or the papers [12, 14].2 A sketch of the �-calculusThis section provides a summary overview of the �-calculus in just enough detail for a readerfamiliar with (for example) CCS [15] to follow the HOL mechanization described in later sections.For full details of the �-calculus and for motivational discussion, the reader should consult thepapers by Milner, Parrow and Walker [17, 18]. The summary presented here is based on thematerial in these papers, and of course no claim to originality in respect of the ideas in this sectionis made by the present author.2.1 Syntax of the calculusLet N be an in�nite set of names , which in the �-calculus are used both as variables and as datavalues, as well as names of the ports or communication links between processes. The syntax ofagents in the �-calculus is de�ned by 3

P ::= 0 inactionj xy:P output y on x then Pj x(y):P input z on x then Pfz=ygj �:P do silent � then Pj (x)P restrict scope of xj [x=y]P if x = y then P else 0j P1 j P2 P1 and P2, in parallelj P1 + P2 P1 or P2j A(x1; : : : ; xn) de�ned agentwhere P , P1, P2 range over agents, x, x1, : : : , xn, y range over names, and A ranges over n-aryagent identi�ers. The forms x(y):P and (y)P introduce variable binding into the calculus; thepre�xes `x(y)' and `(y)' bind the name y in P . If an occurrence of a name y is not bound, it iscalled free. The set of names that occur free in an agent P is written fn(P), and the set of namesbound in an agent P is written bn(P). The set of names of an agent P , written n(P), is de�ned tobe the union of fn(P) and bn(P).Agent identi�ers provide the �-calculus with both abbreviations for classes of agents and recur-sion. Each n-ary agent identi�er A is equipped with a de�ning equation of the formA(x1; : : : ; xn) def= Pwhere the set of all names that appear free in P is a subset of fx1; : : : ; xng. A de�ning equation ora set of such equations may be recursive and hence may introduce agents with in�nite behaviour.The meaning of agents is very brie
y summarized as follows. The agent 0 does nothing. Theagent xy:P emits the name y on the output port x and then behaves like P . The agent x(y):Preceives a name z on the input port x and then behaves like Pfz=yg, where `Pfz=yg' denotes theresult of substituting z for every free occurrence of y in P , with change of bound names if necessaryto avoid capture of z. The agent �:P performs the silent action � and then behaves like P . In theagent (x)P , the name x is made local to P by the binding pre�x `(x)'. The agent [x=y]P behaveslike P if x and y are the same name and otherwise behaves like 0. As in CCS, the agent P1 j P2represents the parallel composition of P1 and P2, and the agent P1+P2 behaves like either P1 or P2.Finally, the de�ned agent A(x1; :::; xn) behaves like the corresponding instance of the right-handside of the de�ning equation for the n-ary agent identi�er A.2.2 The transitional semanticsAs in CCS, agents in the �-calculus are given a transitional semantics based on labelled transitionsof the form P ��!Q, which can be read `P can perform the action � and then evolve into Q'. Thereare four types of action:A ::= � silent actionj xy free output actionj x(y) input actionj x(y) bound output actionThe silent action arises from internal communication within an agent, as well as from agents of theform �:P . Output-pre�xed agents such as xy:P give rise to the free output action xy, and inputpre�xed agents x(y):P to the input action x(y). Bound output actions of the form x(y) arise fromoutput actions that export a name outside its current scope.4

open: P xy�! P 0(y)P x(w)�! P 0fw=yg y 6= xw 62 fn((y)P 0)res: P ��! P 0(y)P ��! (y)P 0 y 62 n(�)com: P xy�! P 0 Q x(z)�!Q0P jQ ��! P 0 jQ0fy=zg close: P x(w)�! P 0 Q x(w)�!Q0P jQ ��! (w)(P 0 jQ0)par: P ��! P 0P jQ ��! P 0 jQ bn(�)\ fn(Q) = fgide: Pfy1; : : : ; yn=x1; : : : ; xng ��! P 0A(y1; : : : ; yn) ��! P 0 A(x1; : : : ; xn) def= Psum: P ��! P 0P + Q ��! P 0 match: P ��! P 0[x=x]P ��! P 0input-act: x(z):P x(w)�! P fw=zg w 62 fn((z)P)tau-act: �:P ��! P output-act: xy:P xy�! P

Figure 1: Transition rules for the �-calculus.The following notation, which is introduced in [18], is used in de�ning the transition relation forthe �-calculus. The set of bound names of an action � is written bn(�), and the set of free namesof an action � is written fn(�). The meaning of this notation is de�ned bybn(�) = (fyg if � = x(y) or x(y)fg otherwiseand fn(�) = 8><>: fxg if � = x(y) or x(y)fx; yg if � = xyfg if � = �The set of names of an action v(�) is de�ned to be the union of bn(�) and fn(�). An expression ofthe form `Pfy1; : : : ; yn=x1; : : : ; xng' denotes the result of simultaneously substituting yi for xi for1 � i � n in P , with change of bound names as required to avoid capture.5

The transition relation P ��! Q itself is de�ned inductively by the rules shown in �gure 1,together with additional symmetric rules for the operators j and +. More precisely, the three-placerelation �!� (agent � action � agent) is de�ned to be the smallest set closed under these rules,where `(P; �;Q) 2 �!' is written `P ��! Q'. The details of the transition rules are not relevanthere; they are shown in full merely to give the reader a general idea of the size and complexity ofthe calculus.2.3 Bisimulation and EquivalenceAs in CCS, equivalence of agents in the �-calculus is de�ned using the notion of a bisimulationbetween agents. A binary relation S is a strong simulation if P S Q implies that1. If P ��! P 0 and � = � or � = xy, then for some Q0, Q ��!Q0 and P 0 S Q0.2. If P x(y)�!P 0 and y 62 n(P)[n(Q), then for some Q0, Q x(y)�!Q0 and for all w, P 0fw=yg S Q0fw=yg.3. If P x(y)�! P 0 and y 62 n(P) [n(Q), then for some Q0, Q x(y)�! Q0 and P 0 S Q0.A strong bisimulation is a strong simulation S whose inverse is also a strong simulation. Therelation _� is de�ned to be the largest strong bisimulation, so that two agents P and Q are stronglybisimilar (written `P _� Q') if P S Q for some strong bisimulation S.The algebraic theory of bisimilarity for agents in the �-calculus is based on the de�nitions givenabove. Many of the algebraic laws correspond to similar or identical laws in CCS. For example thefollowing equations for summation hold:P + 0 _� P zeroP + P _� P idempotenceP1 + P2 _� P2 + P1 commutativityP1 + (P2 + P3) _� (P1 + P2) + P3 associativityThe equational theory also includes an analogue to the CCS expansion law.Strong bisimilarity is not preserved by substitution of names for free names. Equivalence istherefore de�ned to be strong bisimilarity under all substitutions. For any substitution � : N ! N ,`P�' denotes the result of simultaneously substituting �(z) for all free z in the agent P , changingbound variables as necessary to avoid captures. Two agents P and Q are strongly equivalent (written`P � Q') if P� _� Q� for all substitutions �. The algebraic theory of equivalence is similar (butnot identical) to the theory of bisimilarity.For a presentation of the full algebraic theory, detailed proofs of soundness and of completenessfor �nite agents, and for a discussion of other notions of equivalence for the �-calculus, see thepapers [17, 18].3 Mechanizing the �-calculus in HOLOne possible approach to mechanizing a formal system in HOL is to translate its syntactic objectsdirectly into appropriate denotations in higher order logic. This approach is exempli�ed by MikeGordon's work on mechanizing Hoare logic [7]. Meaning is given to partial correctness statements inHoare logic by translating them into propositions of higher order logic that capture their intendedsemantics. For example, the partial correctness statementfX=ng X:=X+1 fX=n+1g 6

is translated into the assertion that the following relation holds of any pair of initial and �nal statess1 and s2:8n: ((s1 X = n) ^ (s2 = �v: (v=X) (s1 X) + 1 j s1 v))) � (s2 X = n+ 1)Program variables (e.g. X) are represented by constants of a specially-de�ned logical type var,and states are modelled by total functions from program variables to natural numbers. Partialcorrectness statements are represented directly by their denotations in logic; with su�cient parserand pretty-printer support, these can be made to look like assertions in Hoare logic (see [7]).The advantage of this approach is that the embedded formal system inherits a certain amountof syntactic infrastructure from the underlying logic. For example, �-abstraction and �-reductionin higher order logic can be used to simulate variable binding and substitution in the languagebeing mechanized. The result is a system particularly well suited to reasoning about applications,since the HOL system provides highly optimized proof support for these basic syntactic notions.This is sometimes called the shallow embedding approach to mechanizing another formal system inHOL [2].The disadvantage of direct translation is that it does not allow metatheoretic reasoning aboutthe embedded formal system to be carried out within higher order logic itself. For example, aproposition that makes reference to the embedded language as a whole cannot be expressed in thelogic; it can be stated only as a metatheorem about classes of logical assertions and hence cannotbe proved in HOL.One goal of the present work is to support formal metatheoretic reasoning about the �-calculusitself, as well as reasoning in the calculus about applications. For example, one might wish toprove properties of a programming language semantics given by a translation into the �-calculus;such properties are typically meta-theoretical in nature with respect to the target language andits semantics. A di�erent approach is therefore taken to mechanizing the �-calculus in HOL. Thelanguage of agents is embedded as an object (or, more speci�cally, as a de�ned type) within thelogic, rather than metalinguistically translated into terms of the logic. Higher order logic is thusused as a formal metalanguage whose objects are the process or agent expressions of the �-calculus.Meaning is then given to these expressions by de�ning the labelled transition semantics, strongbisimulation, and the relations _� and � within the logic itself. This is an example of a so-calleddeep embedding of a formal system in HOL.A similar approach is taken by Camilleri [3] in his formalization of CSP in higher order logic, byBack and von Wright [1] in their work on mechanized program transformation in HOL, and in thepresent author's work on reasoning about circuit models [14]. All this work, however, contrives toavoid explicit de�nitions of substitution, essentially by inheriting it from higher order logic. In thisrespect, it di�ers from the present formalization of the �-calculus, in which all syntactic operationsover the embedded language of agent expressions are de�ned within the logic and can therefore bementioned explicitly in propositions of the logical metalanguage.4 Embedding the syntax of agents in HOLThis section outlines a de�nitional HOL theory of the language of agent expressions in the �-calculus.For clarity of notation, as well as for �delity to the presentation in [17, 18], the theory makes use ofa prede�ned logical type (�)set, values of which are sets of elements of type �. This type is de�nedformally in the built-in HOL `set theory' library, which contains a substantial collection of basictheorems about sets. Also provided by the library are parser and pretty-printer support for naming�nite sets by enumeration, for example by writing `fa; b; cg', and for the set speci�cation notation`fx j �(x)g'. Sets written in these notations should be regarded as metalinguistic abbreviations;they are expanded by the HOL term parser into logical terms that denote the appropriate values.7

4.1 Representing names in logicAn obvious way to represent names in higher order logic is to model the set of names N by alogical type. The only property required of N is that it must be in�nite, so that bound names canalways be changed to avoid capture of names by the binding constructs `x(y):P ' and `(y)P ' whena substitution is done. Names can therefore be represented in logic by any type that contains anin�nite number of distinct values, for example the type of natural numbers.But rather than develop the theory with a particular �xed representation for names, the set ofnames N is represented by a type variable `�'. An in�nite set of names is then assumed by working(when necessary) under the hypothesis that there exists a choice function ch:(�)set!� which forany �nite set of names S yields a name not in S:8S: Finite S � :(ch S 2 S)This in�nity hypothesis is required only for the proofs of certain theorems about the �-calculuswhose truth depends on the ability to change bound names during substitution. The assumptionthat there exists a choice function ch with the above property is provably equivalent in HOL to thealternative hypothesis9f :�!�: (8x y: (f x = f y) � (x = y))^ (9y: 8x: :(f x = y))This asserts of the type � that it has no more elements than some proper subset of �. That is, itasserts of � that it satis�es the conventional de�nition of an in�nite set.Using a type variable to represent the set of names results in a `polymorphic' theory of the�-calculus in HOL. The entire theory can be specialized for a particular application by choosing an(in�nite) application-speci�c logical type to model names, instantiating the type variable � to thistype, and discharging the resulting in�nity hypothesis wherever it appears. This is not an atomicoperation in the HOL system, but it is not hard to program in ML. The only part that cannot beautomated is proving the existence of a choice function for the type selected to represent names.4.2 De�ning the syntax of agentsThe formal language of agents in the �-calculus is embedded in HOL by de�ning a logical type(�)agent, values of which represent agent expressions with names of type �. The primitive rule oftype de�nition, as was already mentioned, allows new types to be introduced into the logic onlyas names for subsets of already existing types. So to de�ne a type of agent expressions a rathercomplex encoding into values of an existing logical type is required.The HOL system, however, provides a derived principle of de�nition that automates all the formalinference necessary to de�ne an arbitrary concrete recursive type in higher order logic [12]. The usersupplies a speci�cation of the required type in a form similar to a datatype declaration in StandardML [22]. The system then constructs an appropriate encoding for values of the required type,de�nes the type using this encoding and the primitive rule of type de�nition, and automaticallyproves an abstract characterization of the newly-de�ned type. The details of the de�nition arehidden from the user, who may regard this derived principle of recursive type de�nition just as ifit were primitive.Using the derived rule of recursive type de�nition, the language of agent expressions is embeddedin logic by the type (�)agent speci�ed by 8

agent ::= Zero Zero represents 0j Out � � agent Out x y P represents xy:Pj In � � agent In x y P represents x(y):Pj Tau agent Tau P represents �:Pj Res � agent Res x P represents (x)Pj Match � � agent Match x y P represents [x=y]Pj Comp agent agent Comp P1 P2 represents P1 j P2j Plus agent agent Plus P1 P2 represents P1 + P2j Repl agent Repl P represents !PThis equation speci�es a concrete recursive type with nine constructors, each of which (except Repl,which is explained later) corresponds to one of the forms of agent expression in the �-calculus syntaxpresented in section 2.1. Given this speci�cation, the rule of recursive type de�nition automatically�nds a representation for the required type (�)agent and makes an appropriate primitive typede�nition for it. The system also makes an appropriate constant de�nition for each of the speci�edconstructors. Plus, for example, becomes a constant of type(�)agent!(�)agent!(�)agentintroduced by means of the primitive rule of constant de�nition. Likewise, Res becomes a constantfunction that maps a value of type � representing a name to a value of type (�)agent representingan agent, and so on.The result is a single theorem which provides a complete and abstract characterization of thetype (�)agent and forms the basis for all further reasoning about it. The theorem asserts theadmissibility of de�ning functions over agents by primitive recursion:` 8e f0 f1 f2 f3 f4 f5 f6 f7:9!fn:(�)agent!�:fn Zero = e ^8x0 x1 a: fn(Out x0 x1 a) = f0 (fn a) x0 x1 a ^8x0 x1 a: fn(In x0 x1 a) = f1 (fn a) x0 x1 a ^8a: fn(Tau a) = f2 (fn a) a ^8x a: fn(Res x a) = f3 (fn a) x a ^8x0 x1 a: fn(Match x0 x1 a) = f4 (fn a) x0 x1 a ^8a1 a2: fn(Comp a1 a2) = f5 (fn a1) (fn a2) a1 a2 ^8a1 a2: fn(Plus a1 a2) = f6 (fn a1) (fn a2) a1 a2 ^8a: fn(Repl a) = f7 (fn a) aThis is an abstract characterization of the language of agents in logic which is both succinct andcomplete, in the sense that it completely determines the structure of agent expressions up toisomorphism. It can be viewed as slight extension of the initiality property by which structures arecharacterized in the `initial algebra' approach to specifying abstract data types [5].4.2.1 Primitive recursion and induction over agentsAs was discussed in section 1.1.1, function constants that satisfy recursive de�ning equations arenot directly de�nable by the primitive rule for constant de�nitions. To de�ne such a constant,one must �rst prove that there in fact exists a total function that satis�es the required recursiveequation. The HOL system, however, has a built-in derived principle of primitive recursive functionde�nition, which automates existence proofs for primitive recursive functions de�ned over concreterecursive types such as (�)agent. 9

Given the characterizing theorem for (�)agent and the primitive recursive de�ning equationsfor a function over agents, this rule automatically proves the existence of a total function thatsatis�es these equations. A constant is then introduced by a constant speci�cation to name thistotal function. The details of the proofs are hidden from the user, who for all practical purposescan simply regard this derived principle of recursive function de�nition as part of the primitivebasis of the logic.The HOL system also has a built-in derived inference rule for proving a structural inductiontheorem for any concrete recursive type. Given the recursion theorem for (�)agent shown above,this rule automatically proves a theorem that states the validity of structural induction on agentexpressions. This induction theorem can, in turn, be used with another built-in proof tool toautomatically construct a HOL tactic for interactive goal-directed proofs by structural inductionon agents. (See any one of [8, 9, 21] for an explanation of tactics.) As one might expect, this tacticis invaluable for proving many of the basic syntactic theorems about the �-calculus in HOL.4.3 Agent identi�ers and replicationThe �-calculus syntax shown in section 2.1 includes de�ned agents of the form A(x1; : : : ; xn), whereA is an n-ary agent identi�er. Agent identi�ers, together with their de�ning equations, supply the�-calculus both with object-language abbreviations for agent expressions and with recursion. Thelatter is the essential function of agent identi�ers; without them, there is no way to express in�nitebehaviour. In the HOL mechanization, however, agent identi�ers are replaced by an alternative wayof providing unbounded behaviour, namely the replication of agents. This di�erence represents theonly signi�cant point at which the principle that the HOL theory should be as close as possible tothe calculus as presented in [17, 18] has been compromised.The replication of an agent P is written `!P ' and is represented in logic by `Repl P '. The agent!P can be thought of as the parallel composition of as many instances of P as desired. Informally,!P = P j P j � � � j P| {z }n copies j !PThis is re
ected in the following transition rule for replicationrepl: P j !P ��! P 0!P ��! P 0which states that whatever action can be performed by the parallel composition of an agent P withthe replication !P can also be done by the replication !P itself. In the HOL theory of the �-calculus,this rule replaces the agent identi�er rule ide shown in �gure 1.Replacing agent identi�ers by replication considerably simpli�es the HOL mechanization; itavoids the need to parameterize the entire theory by sets of de�ning equations and to work underwell-formedness hypotheses for these equations. But for many applications, recursive agent de�ni-tions are likely to be more direct and natural to use than replication. The theory aims, therefore, torecover at least some of the utility of agent identi�ers. The merely abbreviatory role of agent iden-ti�ers can just be transferred to ordinary constant de�nitions in the logic. But the expressive powerof recursive de�ning equations can be regained only at the cost of developing some special-purposeproof support. The aim is eventually to support recursive agent de�nitions by a method similarto that by which recursive function de�nitions are automated in HOL. Preliminary experimentsindicate that this approach is feasible, but to date little work has been done on this in the HOLmechanization. For an explanation of how at least some recursive de�nitions can be encoded usingreplication, see Milner's tutorial [16].Using replication departs from the formulation in the original exposition of the �-calculus. Insubsequent work, however, replication has in any case largely replaced agent identi�er de�nitions10

as the chosen primitive for in�nite behaviours. Replication is used in the polyadic �-calculus [16],a generalization allowing simultaneous communication of several names, as well as more recentformulations of the original �-calculus.4.4 Elementary syntactic theoryHaving de�ned the type (�)agent in logic, it is straightforward, if somewhat tedious, to developthe elementary theory of the syntax of agents in HOL. This comprises the various de�nitions andtheorems about free and bound names, substitution, and �-equivalence of agents needed for laterproofs|matters that are covered in a mere page or so in the paper [18], but which naturally takeconsiderably longer to treat formally. The following sections outline the HOL theory of free andbound names and substitution; the de�nition of �-equivalence is omitted.4.4.1 Free and bound namesDevelopment of the theory begins with de�ning the function constants Fn, Bn and N. These havethe logical type (�)agent!(�)set and correspond to the functions fn, bn and n described above insection 2.1. The de�nitions use some of the infrastructure provided by the HOL set theory library,namely the basic operations of set union and set di�erence, as well as notation for specifying�nite sets by enumeration. The functions themselves are primitive recursive over the type of agentexpressions (�)agent. They can therefore be de�ned simply by supplying the required de�ningequations to the HOL derived rule of recursive function de�nition. The recursive de�nition of Fn,for example, is given by the theorem` Fn Zero = fg ^8x y P: Fn(Out x y P) = fx; yg [(Fn P) ^8x y P: Fn(In x y P) = fxg [((Fn P)� fyg) ^8P: Fn(Tau P) = Fn P ^8x P: Fn(Res x P) = (Fn P)� fxg ^8x y P: Fn(Match x y P) = fx; yg [(Fn P) ^8P Q: Fn(Comp P Q) = (Fn P) [(Fn Q) ^8P Q: Fn(Plus P Q) = (Fn P) [(Fn Q) ^8P: Fn(Repl P) = Fn Pwhich is proved automatically by this derived rule, as outlined above in section 4.2.1. The de�nitionsof Bn and N are similar.A collection of theorems about free and bound names in the �-calculus has been proved in HOLfrom the de�nitions of Fn, Bn and N . These theorems are mostly very simple and their proofstrivial; two illustrative examples are` 8P: Finite(Fn P)` 8P: N P = Fn P [Bn PBoth theorems are proved by structural induction on the agent P using the tactic discussed abovein section 4.2.1. The signi�cance of the �rst theorem has to do with the need to change boundnames to avoid capture during substitution. A fresh name is sometimes needed, distinct from allthe names free in a given agent P , and this is possible only if the set Fn(P) is �nite. The secondtheorem merely states that the function N, which is de�ned recursively in HOL, satis�es the moredirect de�nition used in [18]. 11

4.4.2 SubstitutionOne of the more complex de�nitions in the syntactic theory is the de�nition of simultaneous substi-tution of names for free occurrences of names in an agent. The complexity is due, of course, to thename binding constructs of the �-calculus. Bound names sometimes have to be changed to avoidthe capture of names introduced by substitution. Furthermore, the present theory of substitutionis designed with future use for applications in mind, so bound names are changed only when strictlynecessary. This further complicates the de�nition.To formalize substitution for the �-calculus in logic, a functionSub : (�!(�)set!�)| {z }choice function ! (�)agent| {z }agent ! (�!�)| {z }name mapping! (�)agent| {z }resultis de�ned by primitive recursion on agents. The function Sub takes two arguments in additionto the agent in which the substitution is to be done. One is a name mapping s:�!�, whichspeci�es the particular substitution of names for names required. The other argument is a choicefunction ch:�!(�)set!�, which is used in the body of the de�nition of substitution to generatefresh names wherever a change of bound names is required. It is assumed that the choice functionhas the property that for any name n and �nite set of names S, the name ch n S is not an elementof S. This is expressed by8S: Finite S � 8n: :(ch n S 2 S)which is taken as a hypothesis, if necessary, in proofs involving substitution|as was discussedabove in section 4.1. In general, the choice function is assumed to take both a name n and a setS as arguments. This is done so that application-speci�c instances of the choice function can, ifdesired, generate a name not in S by taking some variant of the name n.The primitive recursive de�nition of Sub in HOL is given by the theorem shown below. Thenotation `let v = t1 in t2' used in this de�nition is a metalinguistic abbreviation supported by theHOL parser and pretty-printer. It expands into a term provably equivalent to (�v: t2) t1.` 8ch s: Sub ch Zero s = Zero ^8ch x y P s: Sub ch (Out x y P) s = Out (s x) (s y) (Sub ch P s) ^8ch x y P s: Sub ch (In x y P) s =let vs = Image s ((Fn P)� fyg) inlet y0 = (y 2 vs) ch y vs j y) inIn (s x) y0 (Sub ch P (�n: (n=y)) y0 j s n)) ^8ch P s: Sub ch (Tau P) s = Tau (Sub ch P s) ^8ch y P s: Sub ch (Res y P) s =let vs = Image s ((Fn P)� fyg) inlet y0 = (y 2 vs) ch y vs j y) inRes y0 (Sub ch P (�n: (n = y)) y0 j s n)) ^8ch x y P s: Sub ch (Match x y P) s = Match (s x) (s y) (Sub ch P s) ^8ch P Q s: Sub ch (Comp P Q) s = Comp (Sub ch P s) (Sub ch Q s) ^8ch P Q s: Sub ch (Plus P Q) s = Plus (Sub ch P s) (Sub ch Q s) ^8ch P s: Sub ch (Repl P) s = Repl (Sub ch P s)The de�nition is straightforward, except for the de�ning equations for the input pre�x In andrestriction Res. For all the other constructors, the function Sub simply maps the substitutionrecursively down through an agent, applying the mapping s wherever free names occur. The inputpre�x and restriction constructs `In x y P ' and `Res y P ', however, both bind the name y. It maytherefore be necessary to change this bound name to a fresh name y0, in order to avoid capture12

of names when the substitution s is applied to P . The de�nition ensures that bound names arechanged only when necessary, namely when y occurs in the image of the function s on the set ofall names (other than y itself) that occur free in P . In this case, the bound name is changed to anew name y0 which is generated by the choice function ch and which, under the in�nity hypothesisfor ch, does not occur in this set. Any free occurrences of y in P are also changed to y0.4.4.3 Theorems about substitutionA number of general theorems about substitution are needed for proofs about the �-calculus. Thecontent of these theorems is mostly predictable, and a full list of theorems need not be given here.In proving these theorems in the HOL system, care was taken to restrict dependence on the in�nityhypothesis for the choice function to only those theorems for which it is really needed. For example,one of the theorems proved in HOL states that the identity substitution leaves agents unchanged:` 8P ch: Sub ch P (�x:x) = PThis proposition holds for any function ch whatsoever, and the theorem therefore does not includethe in�nity hypothesis for ch as an assumption. By contrast, the following theorem` 8ch: (8S: Finite S � 8n: :(ch n S 2 S)) �8P s: Fn (Sub ch P s) = Image s (Fn P)states that the set of names that occur free in an agent after substitution with a name mapping sis the same as the image of the function s on the original set of free names. This holds only if thechoice function ch correctly generates new bound names chosen from an in�nite set of names �. Inthis theorem, the in�nity hypothesis is essential.4.4.4 Substitution for a single nameSimultaneous substitution of names for names is needed for only certain parts of the theory devel-oped in [17, 18]. In the absence of agent identi�ers, full simultaneous substitution is not needed forde�ning the transition relation, strong bisimulation and the relation _�. Substitution for a singlename will su�ce.Substitution of x for y in the agent P , written `Pfx=yg' in the notation of section 2.1, isformalized by the constant de�nition` 8ch P x y: Sub1 ch P (x; y) = Sub ch P (�n: (n = y)) x j n)where substitution for a single name is de�ned in terms of a simultaneous substitution in which thename mapping is the identity function on all names but one. Theorems about the special case ofsubstitution for a single name are (mostly) straightforward to prove in HOL, given this de�nitionof Sub1 and the more general theory of simultaneous substitution.5 Formalizing the transitional semanticsThe theory outlined above provides all the syntactic infrastructure needed to de�ne and reasonabout the transitional semantics for the �-calculus in logic. This section describes how the labelledtransition relation on which this semantics is based is de�ned in HOL and gives a sketch of thetheory developed from this de�nition. 13

5.1 Representing actions in HOLThe transition system for the �-calculus shown in section 2.2 is based on four kinds of actions.These are represented in logic by values of the type (�)action, which is speci�ed byaction ::= tau tau represents �j fo � � fo x y represents xyj in � � in x y represents x(y)j bo � � bo x y represents x(y)and which is de�ned automatically using the same derived rule of (recursive) type de�nition usedto de�ne the type of agents. The concrete type (�)action speci�ed by this equation has fourconstructors. One of these, namely tau, is a constant representing the distinguished action � ; theother three are functions of type �!�!(�)action that map a pair of names to the representationof an action.Given this specifying equation for the type of actions, the derived rule of type de�nition auto-matically proves the following characterizing theorem for the type (�)action:` 8e f0 f1 f2: 9!fn:(�)action!�:fn tau = e ^8x0 x1: fn(fo x0 x1) = f0 x0 x1 ^8x0 x1: fn(in x0 x1) = f1 x0 x1 ^8x0 x1: fn(bo x0 x1) = f2 x0 x1This theorem asserts that functions over the type (�)action can be uniquely de�ned by cases onthe four di�erent kinds of actions in the �-calculus. It is straightforward to use this theorem inconjunction with the derived principle of (primitive recursive) function de�nition to de�ne logicalcounterparts to the functions fn, bn and n on actions introduced in section 2.2. For example, thede�nition of a function fn:(�)action!(�)set that corresponds to fn is just` fn tau = fg ^8x y: fn(fo x y) = fx; yg ^8x y: fn(in x y) = fxg ^8x y: fn(bo x y) = fxgThe de�nitions of functions bn and n corresponding to bn and n are similar. Given these de�nitionsand the characterizing theorem for the type (�)action, it is trivial to develop a basic theory of actionsfor the �-calculus in HOL.5.2 De�ning the labelled transition relationIn the paper [18], the transition relation �! is de�ned inductively by the rules reproduced in thepresent paper in �gure 1. In the mechanized theory of the �-calculus this relation is also de�nedinductively, using a derived principle of inductive predicate de�nition implemented in HOL [13].Given the user's speci�cation of a desired set of rules, this derived principle of de�nition automat-ically proves the existence of the relation inductively de�ned by them. More precisely, the systemconstructs a term that explicitly denotes the smallest relation closed under the rules speci�ed bythe user. HOL then introduces (via a constant speci�cation) a constant to name this relation. Theresult is a collection of automatically proved theorems stating that the newly-de�ned relation is infact closed under the required rules, together with an additional theorem asserting that it is thesmallest such relation. 14

To de�ne the transition relation using this derived principle of inductive de�nition, the user justenters the transition rules shown in �gure 1 as a list of pairs of the form(hlist of premisesi; hconclusioni)Each pair consists of a list of the premises of a rule, including any side conditions, and its conclusion.There is one such pair for each of the transition rules, including all symmetric forms. The premisesand conclusions are stated using the HOL representation of agents and actions and (where necessary)the notation for free and bound names and substitution de�ned in the syntactic theory describedabove.Given this user-supplied speci�cation of the rules, the system constructs a logical statement ofeach transition rule in the form of an implication of conclusion by premises. These express what itmeans for a 3-place relationR:(�)agent!(�)action!(�)agent!boolto be closed under each of the rules. The assertion that the relation R is closed under the left-handsymmetric form of the sum rule, for example, is expressed in logic by the implication shown below.8P a P 0: R P a P 0 � 8Q: R (Plus P Q) a P 0Likewise, the translation into higher order logic of the open rule is8P x y P 0 w:R P (fo x y) P 0 ^ :(y=x)^ :w 2 Fn(Res y P 0) �R (Res y P) (bo x w) (Sub1 ch P 0 (w; y))This logical formulation of the open rule illustrates an explicit use of the de�ned syntactic notionsof substitution and the set of free names in an agent. The translations into logic of the remainingrules are similar to these examples.The de�nition made by HOL of the transition relation is based on this translation of the rules intological implications. The conjunction of all these implications asserts the closure of an arbitrarythree-place relation R under the transition rules of the �-calculus, and the labelled transitionrelation itself is just de�ned to be the intersection of all such relations. More precisely, the derivedHOL rule of inductive de�nition makes a constant speci�cation for the relationTrans : (�!(�)set!�)! (�)agent! (�)action! (�)agent! boolwhich is logically equivalent to the following constant de�nition:` Trans ch P a Q =8R:(�)agent!(�)action!(�)agent!bool:hR is closed under the rulesi � R P a QThis de�nition states that there is a transition from the agent P to the agent Q labelled by theaction a exactly when P , a and Q are in the intersection (i.e. `8') of every relation R closed underthe transition rules for the �-calculus. The relation Trans must take the choice function ch as anargument, since substitution is employed in stating closure under the rules.15

The �nal result of making the automatic inductive de�nition sketched above (and all the useractually sees) is a set of theorems that state the transition rules for the de�ned relation Trans,together with an additional theorem stating that Trans is the smallest relation closed under theserules. The following theorems for the left-hand sum rule and the open rule, for example, are amongthe theorems proved automatically by the system:` 8ch P a P 0: Trans ch P a P 0 � 8Q: Trans ch (Plus P Q) a P 0` 8ch P x y P 0 w:Trans ch P (fo x y) P 0 ^ :(y=x) ^ :w 2 Fn(Res y P 0) �Trans ch (Res y P) (bo x w) (Sub1 ch P 0 (w; y))There are sixteen such theorems for the �-calculus with replication in place of agent identi�ers,one for each transition rule including symmetric forms. The additional theorem stating that Trans(actually, that Trans ch) is the smallest relation closed under the rules, which is also derivedautomatically by the rule of inductive predicate de�nition, has the form` 8ch: 8R:(�)agent!(�)action!(�)agent!bool:hR is closed under the rulesi �8P a Q: Trans ch P a Q � R P a QThis rule induction theorem for Trans is essential for proving properties of the transition relationby induction on the depth of inference. By appeal to an appropriate instance of this theorem, onemay reduce proving that some property R[P; a;Q] holds of all a-labelled transitions from P to Qto showing that this property is preserved by the transition rules for the �-calculus.5.3 Proof tools associated with the transition relationAssociated with the derived rule of inductive predicate de�nition are several general-purpose prooftools for reasoning about inductively de�ned relations in HOL. The most important of these is atactic for interactive goal-directed proofs by rule induction. This tactic mechanizes the inductiveform of argument outlined above; given the rule induction theorem for Trans and a hypothesis tobe proved of the form8P a Q: Trans ch P a Q � R[P; a;Q]the rule induction tactic reduces the task of proving this hypothesis to proving that the propertyexpressed by `R[P; a;Q]' is preserved by the rules that inductively de�ne Trans. Many of the proofsabout the �-calculus in [18] are done by induction on the depth of inference, so this tactic is ofprimary importance in mechanizing these proofs in HOL.Other proof tools associated with the transition relation include a set of HOL tactics for provingthat speci�c labelled transitions hold between agents of the calculus. For example, one of thesetactics can be used to reduce the task of proving that Trans ch (P + Q) a P 0 to proving thatTrans ch P a P 0. These tactics are constructed automatically by the system from the theoremsstating the transition rules for Trans. There is also an automatic proof procedure for deriving anexhaustive case analysis theorem for the transition system:` Trans ch P a Q =(P=Tau Q ^ a=tau) _(9x y: P=Out x y Q ^ a=fo x y) _(9P 0 Q0: P=Plus P 0 Q0 ^ Trans ch P 0 a Q) _ : : :16

This theorem may be loosely paraphrased as follows:if ` P a�! Q, then this follows fromthe tau-act rule, orthe output-act rule, orthe plus rule, or: : :This fact is used to mechanize arguments about the transition system of the kind that are typicallyaccompanied by an explanation of the form `if : : : , then by a shorter inference : : : '.5.4 Theorems about the transition relationThe theorems and proof tools described above provide the logical infrastructure necessary to developthe HOL theory of the labelled transition relation for the �-calculus. This theory consists ofa collection of simple facts about the transition relation formalized by Trans. One example isthe following lemma about free and bound names, which shows how dependence on the in�nityhypothesis propagates to the level of transitions:` 8ch: (8S: Finite S � 8n: :(ch n S 2 S)) �8P a P 0: Trans ch P a P 0 � (Fn P 0 � (Fn P [bn a))^ (fn a � Fn P)This is one in a series of lemmas for the proof that �-equivalence is a strong bisimulation presentedin the paper [18]. The HOL proof was done using the rule induction tactic described above; this isvery natural, since the theorem to be proved is an implication of precisely the form one can inferusing the rule indiction theorem for Trans. The HOL proof closely follows the detailed proof givenin [18], which proceeds by induction on the depth of inference.Other theorems that have been proved in HOL about the labelled transition system includevarious equivalences between transitions, for example` 8ch P a Q R: Trans ch (Plus P Q) a R = Trans ch (Plus Q P) a R` 8ch P a Q: Trans ch (Plus P Zero) a Q = Trans ch P a Q` 8ch P x a Q: Trans ch (Match x x P) a Q = Trans ch P a QOne can also prove that certain transitions are impossible, as in` 8ch P a: :(Trans ch Zero a P)Simple theorems of this kind follow directly from the rules de�ning the relation Trans and the caseanalysis theorem discussed in the preceding section. They are easy to prove, and the proofs arevery regular and could be completely automated in HOL.6 De�ning bisimulation and equivalenceOnce the substitution function Sub1 and the transition relation Trans have been de�ned, it isstraightforward to express the concept of a strong simulation in logic. The following de�nition is a17

direct translation into higher order logic of the de�nition given in section 2.3.` Sim ch S =8P Q: S P Q �8P 0:Trans ch P tau P 0 �9Q0: Trans ch Q tau Q0 ^ S P 0 Q0 ^8x y P 0: Trans ch P (fo x y) P 0 �9Q0: Trans ch Q (fo x y) Q0 ^ S P 0 Q0 ^8x y P 0: Trans ch P (in x y) P 0 ^ :(y 2 (N P [N Q)) �9Q0: Trans ch Q (in x y) Q0 ^8w: S (Sub1 ch P 0 (w; y)) (Sub1 ch Q0 (w; y)) ^8x y P 0: Trans ch P (bo x y) P 0 ^ :(y 2 (N P [N Q)) �9Q0: Trans ch Q (bo x y) Q0 ^ S P 0 Q0This de�nes `Sim ch S' to mean `the relation S is a strong simulation'. The predicate Sim musttake the choice function ch as a parameter because its de�nition depends on substitution.Given this de�nition, the bisimilarity relation _� between agents is de�ned in HOL by the simpleconstant de�nition` Bisim ch P Q = 9S: S P Q ^ Sim ch S ^ Sim ch (�x y: S y x)This says that two agents P and Q are bisimilar if S P Q holds for any strong bisimulation S;it uses (higher-order) existential quanti�cation over relations to de�ne `Bisim ch' to be the largeststrong bisimulation. Once again, the decision to use a type variable to model the set of namesmeans that the choice function must appear as a parameter to Bisim.Finally, strong equivalence is de�ned to be bisimilarity under all substitutions of names fornames. In HOL, we just de�ne` Equiv ch P Q = 8s:�! �: Bisim (Sub ch P s) (Sub ch Q s)Notice that universal quanti�cation over substitution functions is used in this de�nition; higher-order logic makes a direct de�nition completely straightforward. As usual, the choice function chbecomes a parameter.7 The algebraic theoryHaving de�ned strong bisimulation and equivalence in HOL, one may then proceed to develop thealgebraic theory presented in [17, 18] as a collection of theorems about the relations Bisim andEquiv. Proofs have been completed in HOL for many of the simpler equivalences in this theory,but work on the theory is still in progress. Some examples of the theorems proved are the laws forsummation shown above in section 2.3. These are expressed in logic by the theorems` 8ch P: Bisim ch (Plus P Zero) P` 8ch P: Bisim ch (Plus P P) P` 8ch P Q: Bisim ch (Plus P Q) (Plus Q P)` 8ch P Q R:Bisim ch (Plus P (Plus Q R)) (Plus (Plus P Q) R)These theorems were proved in HOL in the same way that the corresponding laws are proved in [18],namely by explicitly producing an appropriate strong bisimulation in each case. For example, thebisimulation used to prove the commutative law of summation is presented in [18] asf(P1 + P2; P2 + P1) j P1; P2 agentsg [Id 18

where Id is the identity relation on agents. In the HOL proof, the same relation is written�P: �Q: (P = Q)_ 9P 0 Q0: (P = Plus P 0 Q0) ^ (Q = Plus Q0 P 0)Formally, this term becomes the witness supplied for the existentially quanti�ed variable in aninstance of the de�nition of Bisim. The proof that this is indeed a strong bisimulation proceedsessentially by rewriting, making extensive use of the theory of the transition system discussed abovein section 5.2. Several other laws are may be proved in HOL in exactly the same way|that is, byexhibiting an appropriate bisimulation.Following [18], many of the laws for equivalence may be easily derived in HOL from correspondinglaws for bisimilarity. For example, to prove` 8ch P: Equiv ch (Plus P Zero) Pwe merely use the theorem-prover's built-in rewriting facility to rewrite with the de�nitions of Equivand Sim, transforming this proposition into` 8ch P s: Bisim ch (Plus (Sub ch P s) Zero) (Sub ch P s)This is just an instance of the identity law for bisimilarity already proved, and so the desired resultfollows immediately.Once all the laws have been proved, we will have the theory of strong equivalence for agentsavailable as a collection of (essentially) equational theorems in HOL. We will then be able to usethese theorems to reason about applications in this theory. In the simplest case, such reasoningcould consist in just interactively guiding HOL's rewriting tools to use the laws to show that twoparticular agents|describing, say, an implementation and a speci�cation|are equivalent. Onecould also investigate more automatic proof strategies based on algebraic manipulation.But because the de�nition of equivalence is also available, we could do equivalence proofs bydirectly exhibiting bisimulations as well. We might even employ a mixture of the two proof styles,using both algebra and simulation as necessary. Furthermore, we could also prove that two agentsare not equivalent in this framework; the case analysis theorem presented in section 5.3 lets us reasondirectly about possible transitions. More generally, the full range of classical proof techniques|induction, proof by contradiction, equational reasoning|is potentially available in such a system.Both automatic and semi-automatic (user guided) approaches to proof can be implemented. Theresult is a rather powerful and
exible framework for both practical use and theoretical experiments.8 Concluding remarksThis paper has outlined work in progress on a mechanized formal theory of the �-calculus in higherorder logic using the HOL system. This theory is still far from complete|the expansion law is yetto be derived, for example|and it is still too early to tell if the goals mentioned in the introductioncan be achieved. But the results obtained so far seem to indicate that some measure of successis possible. Once the theory is complete, we intend to test it on a realistic application. It wouldalso be interesting to compare the practical utility of the HOL mechanization with a proof systemfor the �-calculus implemented using a more general logical framework, such as Isabelle [20] or theEdinburgh Logical Framework [10].The research most closely related to the theory described in this paper is Monica Nesi's work ona theory of CCS in HOL [19]. This work parallels ours; essentially the same techniques are used tode�ne the syntax and transitional semantics of CCS and to derive rules for observation congruence.A modal logic for CCS (a variant of Hennessy-Milner logic [11]) is also included in Nesi's theory.One of the main technical di�erences between the two formalizations is that the CCS theory has19

managed to avoid the di�culties connected with substitution. In particular, although Nesi's theoryincludes recursively-de�ned processes recX:E, and hence includes bound process variables andsubstitutions, it is (informally) assumed that bound variables are chosen so that captures do notoccur. By contrast, the present theory deals with the possibility of free variable capture explicitlyand formally.A very di�erent approach to providing theorem-proving support for the �-calculus is that of theMobility Workbench [24]. This is a special-purpose tool for automated reasoning about equivalencesbetween agents. Given two agents P and Q, the system attempts to construct a bisimulation thatrelates them; this is done by incrementally generating the state spaces of P and Q at the same timeas building the bisimulation relation. This gives a decision procedure for equivalence in a certainclass of agents with �nite control (similar to �nite state systems in CCS). The exact equivalenceemployed is Sangiorgi's open bisimulation relation [23].The basic strategy of proving equivalences by constructing bisimulations is, of course, alsotechnically possible in the HOL mechanization|it was used `manually' in the proofs discussedin section 7, for example. It would interesting to see if algorithms of the kind employed in theMobility Workbench could be adapted for the HOL framework, or even if some hybrid systemcould be constructed. (Such an investigation may require the HOL theory to be revised to employopen bisimulation.) A HOL tool based on this idea should, in principle, be more powerful thanthe more specialized Workbench; for example, it should be possible in such a system to combinealgebraic reasoning with the construction of bisimulation relations, perhaps in a semi-automatedway. Furthermore, one could also reason about �-calculus agents without �nite control. Theautomatic parts of any HOL-based tool are, however, likely to be considerably slower than themore specialized system.As a further development of this work, a HOL mechanization of the polyadic �-calculus [16]should be considered. The formulation of this calculus employs the notion of structural congruenceto separate the laws dealing with the structure of groups of agents from those describing how theseagents interact. The former are just postulated as equational axioms, whereas the latter are derivedfrom a reduced set of transition rules. In the corresponding HOL theory, one would need to derivethe axiomatic component formally; the most direct approach would be to take a quotient using anappropriately-de�ned equivalence relation on terms.Much of the HOL theory outlined in this paper is concerned with syntax, and in particular withthe fundamental ideas of variable binding and substitution. As well as being rather dull, thesetechnicalities are notoriously easy to make mistakes about. A general solution to these problems isone of the aims of Andy Gordon's work on representing syntax in a mechanized logic [6]. The goal isto de�ne a general theory of syntax and to construct tools to automatically de�ne speci�c syntaxesin logic and to reason about them. There is, therefore, some hope that theory developments of thekind described in the present paper can be made considerably easier in future.AcknowledgementsI am grateful to Professor Robin Milner for explaining how agent identi�ers could be replaced byreplication. Thanks are also due to Monica Nesi and Yves Bertot, who carefully read an early draftof this paper and found several typographical errors, and to Konrad Slind for valuable commentson the theory and its presentation. Some preliminary studies for this work were done jointly withMike Gordon at the University of Cambridge Computer Laboratory.References[1] R. J. R. Back and J. von Wright, `Re�nement Concepts Formalised in Higher Order Logic',Formal Aspects of Computing, Vol. 2, No. 3 (July-September 1990), pp. 247{272.20

[2] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel, `Experi-ence with embedding hardware description languages in HOL', in Theorem Provers in CircuitDesign: Theory, Practice and Experience: Proceedings of the IFIP WG10.2 InternationalConference, Nijmegen, June 1992, edited by V. Stavridou, T. F. Melham, and R. T. Boute(North-Holland, 1992), pp. 129{156.[3] A. J. Camilleri, `Mechanizing CSP Trace Theory in Higher Order Logic', IEEE Transactionson Software Engineering, Vol. 16, No. 9 (September 1990), pp. 993{1004.[4] A. Church, `A Formulation of the Simple Theory of Types', The Journal of Symbolic Logic,Vol. 5 (1940), pp. 56{68.[5] J. A. Goguen, J. W. Thatcher, and E. G. Wagner, `An initial algebra approach to the spec-i�cation, correctness, and implementation of abstract data types', in Current Trends in Pro-gramming Methodology, edited by R.T. Yeh (Prentice-Hall, 1978), Vol. iv, pp. 80{149.[6] A. Gordon, `A Mechanisation of Name-carrying Syntax up to Alpha-conversion' in Higher-order logic theorem proving and its applications, Proceedings 1993, Lecture Notes in ComputerScience, Vol. 780 (Springer-Verlag, 1994).[7] M. J. C. Gordon, `Mechanizing Programming Logics in Higher Order Logic', in: CurrentTrends in Hardware Veri�cation and Automated Theorem Proving, edited by G. Birtwistleand P.A. Subrahmanyam (Springer-Verlag, 1989), pp. 387{439.[8] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A theorem proving environmentfor higher order logic (Cambridge University Press, 1993).[9] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF: A Mechanised Logic ofComputation, Lecture Notes in Computer Science, Vol. 78 (Springer-Verlag, 1979).[10] R. Harper, F. Honsell, and G. Plotkin, `A Framework for De�ning Logics', Report no. ECS-LFCS-87-23, Laboratory for Foundations of Computer Science, Department of Computer Sci-ence, University of Edinburgh (March 1987).[11] M. Hennessy and R. Milner, `Algebraic Laws for Nondeterminism and Concurrency', Journalof the ACM, Vol. 32, No. 1 (January 1985), pp. 137{161.[12] T. F. Melham, `Automating Recursive Type De�nitions in Higher Order Logic', in CurrentTrends in Hardware Veri�cation and Automated Theorem Proving, edited by G. Birtwistle andP. A. Subrahmanyam (Springer-Verlag, 1989), pp. 341{386.[13] T. Melham, `A Package for Inductive Relation De�nitions in HOL', in Proceedings of the 1991International Workshop on the HOL Theorem Proving System and its Applications, Davis,August 1991, edited by M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley (IEEE ComputerSociety Press, 1992), pp. 350{357.[14] T. F. Melham, `Using Recursive Types to Reason about Hardware in Higher Order Logic', inProceedings of the IFIP WG 10.2 Working Conference on the Fusion of Hardware Design andVeri�cation, edited by G. J. Milne (North-Holland, 1988), pp. 51{75.[15] R. Milner, Communication and Concurrency (Prentice Hall, 1989).[16] R. Milner, `The Polyadic �-Calculus: a Tutorial', Report no. ECS-LFCS-91-180, Laboratory forFoundations of Computer Science, Department of Computer Science, University of Edinburgh(October 1991). 21

[17] R. Milner, J. Parrow, and D. Walker, `A Calculus of Mobile Processes, I', Information andComputation, Vol. 100, No. 1 (September, 1992), pp. 1{40.[18] R. Milner, J. Parrow, and D. Walker, `A Calculus of Mobile Processes, II', Information andComputation, Vol. 100, No. 1 (September, 1992), pp. 41{77.[19] M. Nesi, `A Formalization of the Process Algebra CCS in Higher Order Logic', Technical reportno. 278, Computer Laboratory, University of Cambridge (December 1992).[20] L. C. Paulson, `Isabelle: The Next 700 Theorem Provers', in Logic and Computer Science,edited by P. Odifreddi (Academic Press, 1990), pp. 361{386.[21] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, CambridgeTracts in Theoretical Computer Science 2 (Cambridge University Press, 1987).[22] L. C. Paulson, ML for the Working Programmer (Cambridge University Press, 1991).[23] D. Sangiorgi, `A Theory of Bisimulation for the �-calculus', in CONCUR'93: 4th InternationalConference on Concurrency Theory, Hildesheim, August 1993, Proceedings, edited by E. Best,Lecture Notes in Computer Science, Vol. 715 (Springer-Verlag, 1993), pp. 127{142.[24] B. Victor and F. Moller, `The Mobility Workbench: A Tool for the �-calculus', Report no.ECS-LFCS-94-285, Laboratory for Foundations of Computer Science, Department of ComputerScience, University of Edinburgh (February 1994).

22

