Revised version of T. F. Melham, ‘A Mechanized Theory of the
m-calculus in HOL’, Technical Report No. 244, University of
Cambridge Computer Laboratory (January 1992). Submitted
for publication in the Nordic Journal of Computing.

A Mechanized Theory
of the mw-calculus in HOL

T. F. Melham

Department of Computing Science
University of Glasgow
Glasgow, Scotland, G12 8QQ

Abstract: The w-calculus is a process algebra for modelling concurrent systems in which the
pattern of communication between processes may change over time. This paper describes the
results of preliminary work on a definitional formal theory of the w-calculus in higher order logic
using the HOL theorem prover. The ultimate goal of this work is to provide practical mechanized
support for reasoning with the w-calculus about applications.

Introduction

The w-calculus [17, 18] is a process algebra proposed by Milner, Parrow and Walker for modelling
concurrent systems in which the pattern of interconnection between processes may change over
time. This paper describes work on a mechanized formal theory of the m-calculus in higher order
logic using the HOL theorem prover [8]. The main aim of this work is to construct a practical and
sound theorem-proving tool to support reasoning about applications using the w-calculus, as well
as metatheoretic reasoning about the w-calculus itself.

Four general principles have been adopted in this project. First, a purely definitional approach
is taken to describing the w-calculus in logic. New notation concerned with the w-calculus is added
to the logic not by postulating arbitrary axioms to give meaning to it, but rather by defining it in
terms of existing expressions of the logic that already have the required semantics. Second, proofs
in the w-calculus are automated wherever feasible, with a view to eventually using the system to
reason about applications. In practice, this means writing efficient derived inference rules in HOL
for proving decidable classes of propositions, such as the a-equivalence of two terms in the calculus.
The third principle is to make the HOL proofs as robust as possible, in the sense that they should
run without major modification even when minor changes are made to the w-calculus itself. The
hope is that this will facilitate experimental investigations in HOL of minor variants of the calculus.
Finally, the m-calculus as mechanized in HOL is intended to be as nearly identical as possible to the
calculus as described in the papers [17, 18]. The aim is to avoid simplifying the calculus merely in
order to make the job of mechanizing it easier. One point at which we have compromised this last
principle is discussed in section 4.3.

1 The HOL system

The HOL system [8] is a mechanized proof-assistant for generating proofs in higher order logic.
HOL is based on the LCF approach to interactive theorem proving and has many features in com-
mon with the LCF systems developed at Cambridge [21] and Edinburgh [9]. Like LCF, the HOL

system supports secure theorem proving by representing its logic in the strongly-typed functional
programming language ML. Propositions and theorems of the logic are represented by abstract
data types, and interaction with the theorem prover takes place by executing ML procedures that
operate on values of these data types. Because HOL is built on top of a general-purpose program-
ming language, the user can write arbitrarily complex programs to implement proof strategies.
Furthermore, because of the way the logic is represented in ML, such user-defined proof strategies
are guaranteed to perform only valid logical inferences.

1.1 Higher order logic

The version of higher order logic supported by the HOL theorem prover is based on Church’s
formulation of simple type theory [4]. For the purposes of this paper, the logic can be viewed as a
typed extension of the conventional syntax of predicate calculus in which functions may be curried
and one may quantify over functions. The notation is illustrated by the theorem shown below.

FVYa f.3fn. (fn0=2z) AVn. fninum—num (n+1) = (f (fan)) n

This says that functions can be defined on the natural numbers such that they satisfy primitive-
recursive defining equations (the quantified variables f and fn range over functions). We adopt
the convention that italic identifiers (e.g. #, x,, fn) are variables and sans serif identifiers (e.g.
a, F, Tau) and non-alphabetical symbols (e.g. D, =, V) are constants.

The HOL logic extends Church’s formulation in two significant ways: the syntax of types includes
the polymorphic type discipline developed by Milner for the LCF logic PPA [9], and the primitive
basis of the logic includes explicitly-stated rules of definition for consistently extending the logic
with new constants and new types. Because this second feature of the logic is particularly relevant
to the approach taken to embedding the w-calculus in HOL, the rules of definition in the HOL logic
are very briefly introduced below. A full description of these rules and details of the rest of the
logic, including a set-theoretic semantics, can be found in [8].

1.1.1 Primitive rules of definition

The HOL user community has a strong tradition of taking a purely definitional approach to using
higher order logic, and this is the way in which the logic is used in the present work on the w-calculus.
The advantage of this approach, as opposed to the axiomatic method, is that the primitive rules of
definition admit only sound extensions to the logic, in the sense that they preserve the property of
the logic having a (standard) model. Making definitions is therefore guaranteed not to introduce
inconsistency. The disadvantage is that these rules admit only definitions that satisfy certain very
restrictive rules of formation. Definitions expressed in any other form must always be justified by
deriving them from equivalent, but possibly rather complex, primitive definitions.

The primitive basis of the HOL logic includes three rules of definition: the rule of constant
definition, the rule of constant specification, and the rule of type definition. A constant definition
is simply an equational axiom of the form F ¢ = ¢ that introduces a new constant ¢ as an object-
language abbreviation for a closed term ¢. Also admitted by this rule are curried or paired function
definitions of the forms

Ffoyvg ... v, =¢ and F (v, ve,...,0,) =t

Among the side-conditions of the rule of constant definition, the details of which are not relevant
here, is the condition that the constant being defined may not occur on the right-hand side of
its defining equation. This rules out, at least as primitive, all recursive definitions—including
inconsistent ones like - ¢ = —c.

The rule of constant specification allows one to introduce a new constant into the logic as an
atomic name for a quantity already known to exist. By this rule of definition, one may infer from

a theorem of the form F Jz. P[z] a theorem - P[c], where ¢ is a new constant symbol. This simply
introduces ¢ as an object-language name for an existing value x for which P[z] holds.

The third primitive rule of definition in HOL is the rule of type definition. Suppose that o is
a type and P:o0—bool is the characteristic predicate of some useful nonempty subset of the set
denoted by o. A type definition introduces a new type constant 7 to name this subset of . From
the theorem + Jz:0. P z, one may infer by the rule of type definition the existence of a bijection
from the values of a new type 7 to the set of values that satisfy P:

Fafir—o. (Vey. (fa=fy)Dx=y)ANe. Pz = 3Fy.2= fy))

This definitional theorem introduces the new type constant 7 to name the nonempty set of values
whose properties are determined by the choice of predicate P. The requirement that - dz. P x
ensures that there is at least one value of type 7. This restriction is necessary because the HOL
logic does not allow empty types. The rule of type definition can also be used to define new type
operators; one can define, for example, the Cartesian product o; X o5 of two types, or the type of
finite lists (a)list. See [12] for a series of detailed examples.

1.1.2 Derived rules of definition

The primitive rules outlined above disallow the direct use of many commonly-used principles of
definition—for example, the definition of functions by primitive recursion. The general-purpose
language ML, however, provides a facility in HOL for implementing derived rules of definition; using
ML, one can write programs that automatically generate the proofs that justify the legitimacy of
derived forms of definition. The built-in HOL derived rules of definition include recursive concrete
type definitions and primitive recursive function definitions over these types, as well as certain forms
of inductive definition. The details of the primitive definitions that underlie these rules are hidden
from the user, and their ML implementations are highly optimized. So these derived principles of
definition may just be regarded as primitive by most users of the system.

The HOL mechanization of the m-calculus is a purely definitional theory in higher order logic.
It relies heavily on the derived principles of definition available in HOL, which are therefore briefly
explained as they used in the sections that follow. Details of these derived rules can be found in
the HOL system documentation [8] or the papers [12, 14].

2 A sketch of the m-calculus

This section provides a summary overview of the w-calculus in just enough detail for a reader
familiar with (for example) CCS [15] to follow the HOL mechanization described in later sections.
For full details of the w-calculus and for motivational discussion, the reader should consult the
papers by Milner, Parrow and Walker [17, 18]. The summary presented here is based on the
material in these papers, and of course no claim to originality in respect of the ideas in this section
is made by the present author.

2.1 Syntax of the calculus

Let A be an infinite set of names, which in the w-calculus are used both as variables and as data
values, as well as names of the ports or communication links between processes. The syntax of
agents in the w-calculus is defined by

P == 0 inaction
| Ty.P output y on z then P
| x(y).P input z on z then P{z/y}
| 7.P do silent 7 then P
| ()P restrict scope of x
| [z=y]P if © = y then P else 0
| PP P, and P,, in parallel
| P+ P, P oor P,
| Az, .. 20) defined agent

where P, Py, P, range over agents, &, 1, ..., &,, y range over names, and A ranges over n-ary

agent identifiers. The forms z(y).P and (y)P introduce variable binding into the calculus; the
prefixes ‘@(y)’ and ‘(y)’ bind the name y in P. If an occurrence of a name y is not bound, it is
called free. The set of names that occur free in an agent P is written fn(P), and the set of names
bound in an agent P is written bn(P). The set of names of an agent P, written n(P), is defined to
be the union of fn(P) and bn(P).

Agent identifiers provide the m-calculus with both abbreviations for classes of agents and recur-
sion. Each n-ary agent identifier A is equipped with a defining equation of the form

Alzy,...,z,) = P

where the set of all names that appear free in P is a subset of {z1,...,2,}. A defining equation or
a set of such equations may be recursive and hence may introduce agents with infinite behaviour.

The meaning of agents is very briefly summarized as follows. The agent 0 does nothing. The
agent Ty.P emits the name y on the output port z and then behaves like P. The agent z(y).P
receives a name z on the input port 2 and then behaves like P{z/y}, where ‘P{z/y} denotes the
result of substituting z for every free occurrence of y in P, with change of bound names if necessary
to avoid capture of z. The agent 7.P performs the silent action 7 and then behaves like P. In the
agent (2)P, the name z is made local to P by the binding prefix ‘(z)’. The agent [x=y]P behaves
like P if « and y are the same name and otherwise behaves like 0. As in CCS, the agent P, | P»
represents the parallel composition of P, and P,, and the agent P, 4+ P, behaves like either P, or P;.
Finally, the defined agent A(zy,...,2,) behaves like the corresponding instance of the right-hand
side of the defining equation for the n-ary agent identifier A.

2.2 The transitional semantics

As in CCS, agents in the w-calculus are given a transitional semantics based on labelled transitions
of the form P —+(), which can be read ‘P can perform the action o and then evolve into @)°. There
are four types of action:

A = T silent action
| Ty free output action
| z(y) input action
| Z(y) bound output action

The silent action arises from internal communication within an agent, as well as from agents of the
form 7.P. Output-prefixed agents such as Ty.P give rise to the free output action Ty, and input
prefixed agents z(y).P to the input action z(y). Bound output actions of the form Z(y) arise from
output actions that export a name outside its current scope.

TAU-ACT: ——F— OUTPUT-ACT:

PP Ty.P 2% p
INPUT-ACT: w & fn((2)P)

2(2).P Y P {w/z}

PP PP
SUM: — MATCH: —
P+Q—F [x=z]P — P’

P e Yn /Ty Ty) — P .
IDE: o/ f }/ Azyy ... 2,) <t p
Ay, oy yn) — P

PP
PAR: P05 P 0 bn(a) Nfn(Q) = {}
Ty y z(z , T(w , z(w ,
COM: P—>TP QJQ CLOSE: P_;TP Q_;Q
PlQ— P |Qy/z} PlQ— (w)(P' Q")
RES: PP y ¢ n(a)

(y)P == (y) P’

P p y#a
(P Py ©E W)

OPEN:

Figure 1: Transition rules for the m-calculus.

The following notation, which is introduced in [18], is used in defining the transition relation for
the m-calculus. The set of bound names of an action « is written bn(a), and the set of free names
of an action « is written fn(a). The meaning of this notation is defined by

bn(a) = { {y} if a=uz(y) or z(y)

{} otherwise

and

{2} ifa=a(y) orz(y)
fn(a) =1 {z,y} ifa=7y

{} if @ =

The set of names of an action v(«) is defined to be the union of bn(a) and fn(a). An expression of
the form ‘P{yi,...,y,/21,...,2,} denotes the result of simultaneously substituting y; for x; for
1 <i¢<nin P, with change of bound names as required to avoid capture.

The transition relation P —— (Q itself is defined inductively by the rules shown in figure 1,
together with additional symmetric rules for the operators | and 4. More precisely, the three-place
relation —C (agent X action x agent) is defined to be the smallest set closed under these rules,
where ‘(P o, Q) € — is written ‘P -+ @Q’. The details of the transition rules are not relevant
here; they are shown in full merely to give the reader a general idea of the size and complexity of
the calculus.

2.3 Bisimulation and Equivalence

As in CCS, equivalence of agents in the 7w-calculus is defined using the notion of a bisimulation
between agents. A binary relation S is a strong simulation if P S () implies that

1. If P P and @ = 7 or a = Ty, then for some Q’, Q =+ Q" and P’ S Q.
2. 1f PXY P’ and y ¢ n(P)Un(Q), then for some Q)’, QMQ’ and for all w, P{w/y} S Q{w/y}.
3. 1f P2 P and y ¢ n(P)Un(Q), then for some @', @ oWy @ and P'S Q.

A strong bisimulation is a strong simulation S whose inverse is also a strong simulation. The
relation ~ is defined to be the largest strong bisimulation, so that two agents P and @) are strongly
bisimilar (written ‘P ~ Q) if P S () for some strong bisimulation S.

The algebraic theory of bisimilarity for agents in the m-calculus is based on the definitions given
above. Many of the algebraic laws correspond to similar or identical laws in CCS. For example the
following equations for summation hold:

P+0 ~ P Zero
P+P ~ P idempotence
P+P ~ P+P commutativity
P+ P+ P) ~ (PL+P)+ D5 associativity

The equational theory also includes an analogue to the CCS expansion law.

Strong bisimilarity is not preserved by substitution of names for free names. Equivalence is
therefore defined to be strong bisimilarity under all substitutions. For any substitution o : N' — A/,
‘Po’ denotes the result of simultaneously substituting o(z) for all free z in the agent P, changing
bound variables as necessary to avoid captures. Two agents P and @) are strongly equivalent (written
‘P~ Q) if Po ~ Qo for all substitutions 0. The algebraic theory of equivalence is similar (but
not identical) to the theory of bisimilarity.

For a presentation of the full algebraic theory, detailed proofs of soundness and of completeness
for finite agents, and for a discussion of other notions of equivalence for the w-calculus, see the
papers [17, 18].

3 Mechanizing the w-calculus in HOL

One possible approach to mechanizing a formal system in HOL is to translate its syntactic objects
directly into appropriate denotations in higher order logic. This approach is exemplified by Mike
Gordon’s work on mechanizing Hoare logic [7]. Meaning is given to partial correctness statements in
Hoare logic by translating them into propositions of higher order logic that capture their intended
semantics. For example, the partial correctness statement

{X=n} X:=X+1 {X=n+1}

is translated into the assertion that the following relation holds of any pair of initial and final states
sy and ss:

Vn. ((s1X=n)A(sa=Av. (v=X= (s:X)+1]|sv))) D (ssX=n+1)

Program variables (e.g. X) are represented by constants of a specially-defined logical type var,
and states are modelled by total functions from program variables to natural numbers. Partial
correctness statements are represented directly by their denotations in logic; with sufficient parser
and pretty-printer support, these can be made to look like assertions in Hoare logic (see [7]).

The advantage of this approach is that the embedded formal system inherits a certain amount
of syntactic infrastructure from the underlying logic. For example, A-abstraction and f-reduction
in higher order logic can be used to simulate variable binding and substitution in the language
being mechanized. The result is a system particularly well suited to reasoning about applications,
since the HOL system provides highly optimized proof support for these basic syntactic notions.
This is sometimes called the shallow embedding approach to mechanizing another formal system in
HOL [2].

The disadvantage of direct translation is that it does not allow metatheoretic reasoning about
the embedded formal system to be carried out within higher order logic itself. For example, a
proposition that makes reference to the embedded language as a whole cannot be expressed in the
logic; it can be stated only as a metatheorem about classes of logical assertions and hence cannot
be proved in HOL.

One goal of the present work is to support formal metatheoretic reasoning about the w-calculus
itself, as well as reasoning in the calculus about applications. For example, one might wish to
prove properties of a programming language semantics given by a translation into the w-calculus;
such properties are typically meta-theoretical in nature with respect to the target language and
its semantics. A different approach is therefore taken to mechanizing the w-calculus in HOL. The
language of agents is embedded as an object (or, more specifically, as a defined type) within the
logic, rather than metalinguistically translated into terms of the logic. Higher order logic is thus
used as a formal metalanguage whose objects are the process or agent expressions of the w-calculus.
Meaning is then given to these expressions by defining the labelled transition semantics, strong
bisimulation, and the relations ~ and ~ within the logic itself. This is an example of a so-called
deep embedding of a formal system in HOL.

A similar approach is taken by Camilleri [3] in his formalization of CSP in higher order logic, by
Back and von Wright [1] in their work on mechanized program transformation in HOL, and in the
present author’s work on reasoning about circuit models [14]. All this work, however, contrives to
avoid explicit definitions of substitution, essentially by inheriting it from higher order logic. In this
respect, it differs from the present formalization of the 7-calculus, in which all syntactic operations
over the embedded language of agent expressions are defined within the logic and can therefore be
mentioned explicitly in propositions of the logical metalanguage.

4 Embedding the syntax of agents in HOL

This section outlines a definitional HOL theory of the language of agent expressions in the w-calculus.
For clarity of notation, as well as for fidelity to the presentation in [17, 18], the theory makes use of
a predefined logical type (a)set, values of which are sets of elements of type a.. This type is defined
formally in the built-in HOL ‘set theory’ library, which contains a substantial collection of basic
theorems about sets. Also provided by the library are parser and pretty-printer support for naming
finite sets by enumeration, for example by writing ‘{a, b, ¢}’, and for the set specification notation
da | ¢(x)}. Sets written in these notations should be regarded as metalinguistic abbreviations;
they are expanded by the HOL term parser into logical terms that denote the appropriate values.

4.1 Representing names in logic

An obvious way to represent names in higher order logic is to model the set of names A by a
logical type. The only property required of A is that it must be infinite, so that bound names can
always be changed to avoid capture of names by the binding constructs ‘@(y).P” and ‘(y) P’ when
a substitution is done. Names can therefore be represented in logic by any type that contains an
infinite number of distinct values, for example the type of natural numbers.

But rather than develop the theory with a particular fixed representation for names, the set of
names N is represented by a type variable ‘@’. An infinite set of names is then assumed by working
(when necessary) under the hypothesis that there exists a choice function ch:(«)set—a which for
any finite set of names S yields a name not in S

VS. Finite S D =(ch S € 5)

This infinity hypothesis is required only for the proofs of certain theorems about the w-calculus
whose truth depends on the ability to change bound names during substitution. The assumption
that there exists a choice function ch with the above property is provably equivalent in HOL to the
alternative hypothesis

dfia—a. Ve y. (fe=fy) D (x=y) ATy Ve.=(f 2 = y))

This asserts of the type « that it has no more elements than some proper subset of a. That is, it
asserts of « that it satisfies the conventional definition of an infinite set.

Using a type variable to represent the set of names results in a ‘polymorphic’ theory of the
w-calculus in HOL. The entire theory can be specialized for a particular application by choosing an
(infinite) application-specific logical type to model names, instantiating the type variable a to this
type, and discharging the resulting infinity hypothesis wherever it appears. This is not an atomic
operation in the HOL system, but it is not hard to program in ML. The only part that cannot be
automated is proving the existence of a choice function for the type selected to represent names.

4.2 Defining the syntax of agents

The formal language of agents in the w-calculus is embedded in HOL by defining a logical type
(av)agent, values of which represent agent expressions with names of type a. The primitive rule of
type definition, as was already mentioned, allows new types to be introduced into the logic only
as names for subsets of already existing types. So to define a type of agent expressions a rather
complex encoding into values of an existing logical type is required.

The HOL system, however, provides a derived principle of definition that automates all the formal
inference necessary to define an arbitrary concrete recursive type in higher order logic [12]. The user
supplies a specification of the required type in a form similar to a datatype declaration in Standard
ML [22]. The system then constructs an appropriate encoding for values of the required type,
defines the type using this encoding and the primitive rule of type definition, and automatically
proves an abstract characterization of the newly-defined type. The details of the definition are
hidden from the user, who may regard this derived principle of recursive type definition just as if
it were primitive.

Using the derived rule of recursive type definition, the language of agent expressions is embedded
in logic by the type («)agent specified by

agent 1= Zero Zero represents 0

| Out a a agent Out z y P represents Ty.P

| In o «a agent In z y P represents z(y).P

| Tau agent Tau P represents 7.P

| Res a agent Res x P represents (z)P

| Match a « agent Match 2 y P represents [z=y|P
| Comp agent agent Comp P, P, represents P, | P,

| Plus agent agent Plus P, P, represents P, + P,

| Repl agent Repl P represents !P

This equation specifies a concrete recursive type with nine constructors, each of which (except Repl,
which is explained later) corresponds to one of the forms of agent expression in the m-calculus syntax
presented in section 2.1. Given this specification, the rule of recursive type definition automatically
finds a representation for the required type (a)agent and makes an appropriate primitive type
definition for it. The system also makes an appropriate constant definition for each of the specified
constructors. Plus, for example, becomes a constant of type

(o) agent— (o) agent— («) agent

introduced by means of the primitive rule of constant definition. Likewise, Res becomes a constant
function that maps a value of type « representing a name to a value of type («)agent representing
an agent, and so on.

The result is a single theorem which provides a complete and abstract characterization of the
type (a)agent and forms the basis for all further reasoning about it. The theorem asserts the
admissibility of defining functions over agents by primitive recursion:

EVe fo fi fo fa fa S5 fo fr

Al fn:(a) agent— 4.
fnZero=¢€eA
Vag 21 a. fn(Out 29 21 a) = fo (frna) 2o 21 a A
Vag 21 a. fn(lnzg zy a) = f (fna) zoz a N
Va. fn(Tau a) = f> (frna) a A
Vo a. fn(Resz a) = f3 (fna)za N
Vag 21 a. fn(Match 2o 21 a) = fu (fna) oz, a A
Va, ay. fn(Comp ay ay) = f5 (frnay) (frnas) ay ay A
Va, as. fn(Plus ay as) = fs (frnay) (fnasz) ay as A
Va. fn(Repl a) = f7 (fna) a

This is an abstract characterization of the language of agents in logic which is both succinct and
complete, in the sense that it completely determines the structure of agent expressions up to
isomorphism. It can be viewed as slight extension of the initiality property by which structures are
characterized in the ‘initial algebra’ approach to specifying abstract data types [5].

4.2.1 Primitive recursion and induction over agents

As was discussed in section 1.1.1, function constants that satisfy recursive defining equations are
not directly definable by the primitive rule for constant definitions. To define such a constant,
one must first prove that there in fact exists a total function that satisfies the required recursive
equation. The HOL system, however, has a built-in derived principle of primitive recursive function
definition, which automates existence proofs for primitive recursive functions defined over concrete
recursive types such as («)agent.

Given the characterizing theorem for («)agent and the primitive recursive defining equations
for a function over agents, this rule automatically proves the existence of a total function that
satisfies these equations. A constant is then introduced by a constant specification to name this
total function. The details of the proofs are hidden from the user, who for all practical purposes
can simply regard this derived principle of recursive function definition as part of the primitive
basis of the logic.

The HOL system also has a built-in derived inference rule for proving a structural induction
theorem for any concrete recursive type. Given the recursion theorem for (a)agent shown above,
this rule automatically proves a theorem that states the validity of structural induction on agent
expressions. This induction theorem can, in turn, be used with another built-in proof tool to
automatically construct a HOL tactic for interactive goal-directed proofs by structural induction
on agents. (See any one of [8, 9, 21] for an explanation of tactics.) As one might expect, this tactic
is invaluable for proving many of the basic syntactic theorems about the w-calculus in HOL.

4.3 Agent identifiers and replication

The w-calculus syntax shown in section 2.1 includes defined agents of the form A(xzy,...,z,), where
A is an n-ary agent identifier. Agent identifiers, together with their defining equations, supply the
w-calculus both with object-language abbreviations for agent expressions and with recursion. The
latter is the essential function of agent identifiers; without them, there is no way to express infinite
behaviour. In the HOL mechanization, however, agent identifiers are replaced by an alternative way
of providing unbounded behaviour, namely the replication of agents. This difference represents the
only significant point at which the principle that the HOL theory should be as close as possible to
the calculus as presented in [17, 18] has been compromised.

The replication of an agent P is written ‘!’ and is represented in logic by ‘Repl P’. The agent
!P can be thought of as the parallel composition of as many instances of P as desired. Informally,

IP=P|P|-|P|P

n copies
This is reflected in the following transition rule for replication

PP P
P2y P

REPL:

which states that whatever action can be performed by the parallel composition of an agent P with
the replication 'P can also be done by the replication !P itself. In the HOL theory of the w-calculus,
this rule replaces the agent identifier rule IDE shown in figure 1.

Replacing agent identifiers by replication considerably simplifies the HOL mechanization; it
avoids the need to parameterize the entire theory by sets of defining equations and to work under
well-formedness hypotheses for these equations. But for many applications, recursive agent defini-
tions are likely to be more direct and natural to use than replication. The theory aims, therefore, to
recover at least some of the utility of agent identifiers. The merely abbreviatory role of agent iden-
tifiers can just be transferred to ordinary constant definitions in the logic. But the expressive power
of recursive defining equations can be regained only at the cost of developing some special-purpose
proof support. The aim is eventually to support recursive agent definitions by a method similar
to that by which recursive function definitions are automated in HOL. Preliminary experiments
indicate that this approach is feasible, but to date little work has been done on this in the HOL
mechanization. For an explanation of how at least some recursive definitions can be encoded using
replication, see Milner’s tutorial [16].

Using replication departs from the formulation in the original exposition of the m-calculus. In
subsequent work, however, replication has in any case largely replaced agent identifier definitions

10

as the chosen primitive for infinite behaviours. Replication is used in the polyadic m-calculus [16],
a generalization allowing simultaneous communication of several names, as well as more recent
formulations of the original m-calculus.

4.4 Elementary syntactic theory

Having defined the type (a)agent in logic, it is straightforward, if somewhat tedious, to develop
the elementary theory of the syntax of agents in HOL. This comprises the various definitions and
theorems about free and bound names, substitution, and a-equivalence of agents needed for later
proofs—matters that are covered in a mere page or so in the paper [18], but which naturally take
considerably longer to treat formally. The following sections outline the HOL theory of free and
bound names and substitution; the definition of a-equivalence is omitted.

4.4.1 Free and bound names

Development of the theory begins with defining the function constants Fn, Bn and N. These have
the logical type (a)agent—(«)set and correspond to the functions fn, bn and n described above in
section 2.1. The definitions use some of the infrastructure provided by the HOL set theory library,
namely the basic operations of set union and set difference, as well as notation for specifying
finite sets by enumeration. The functions themselves are primitive recursive over the type of agent
expressions («)agent. They can therefore be defined simply by supplying the required defining
equations to the HOL derived rule of recursive function definition. The recursive definition of Fn,
for example, is given by the theorem

FFn Zero={} A
Ve y P.Fn(Out 2z y P) ={z,y}U (Fn P) A
Vey P.Fn(lnzy P)={z}U((Fn P) — {y}) A
VP.Fn(Tau P) =Fn P A
Vo P.Fn(Res z P) = (Fn P) — {z} A
Vo y P.Fn(Match 2 y P) = {z,y} U (Fn P) A
VP Q.Fn(Comp P Q)= (Fn P)U(Fn Q) A
VP Q.Fn(Plus P Q) = (Fn P)U (Fn Q) A
VP. Fn(Repl P) = Fn P

which is proved automatically by this derived rule, as outlined above in section 4.2.1. The definitions
of Bn and N are similar.

A collection of theorems about free and bound names in the w-calculus has been proved in HOL
from the definitions of Fn, Bn and N . These theorems are mostly very simple and their proofs
trivial; two illustrative examples are

= VP. Finite(Fn P)
FYP.NP=FnPUBnP

Both theorems are proved by structural induction on the agent P using the tactic discussed above
in section 4.2.1. The significance of the first theorem has to do with the need to change bound
names to avoid capture during substitution. A fresh name is sometimes needed, distinct from all
the names free in a given agent P, and this is possible only if the set Fn(P) is finite. The second
theorem merely states that the function N, which is defined recursively in HOL, satisfies the more
direct definition used in [18].

11

4.4.2 Substitution

One of the more complex definitions in the syntactic theory is the definition of simultaneous substi-
tution of names for free occurrences of names in an agent. The complexity is due, of course, to the
name binding constructs of the w-calculus. Bound names sometimes have to be changed to avoid
the capture of names introduced by substitution. Furthermore, the present theory of substitution
is designed with future use for applications in mind, so bound names are changed only when strictly
necessary. This further complicates the definition.

To formalize substitution for the w-calculus in logic, a function

Sub : (a—(a)set—a) — (a)agent — (a—a) — (o) agent
—_—— [N——’ [

choice function agent name mapping result

is defined by primitive recursion on agents. The function Sub takes two arguments in addition
to the agent in which the substitution is to be done. One is a name mapping s:a—«, which
specifies the particular substitution of names for names required. The other argument is a choice
function ch:a—(a)set—a, which is used in the body of the definition of substitution to generate
fresh names wherever a change of bound names is required. It is assumed that the choice function
has the property that for any name n and finite set of names S, the name ch n S is not an element
of S. This is expressed by

VS. Finite S D Vn.—(chn S € 5)

which is taken as a hypothesis, if necessary, in proofs involving substitution—as was discussed
above in section 4.1. In general, the choice function is assumed to take both a name n and a set
S as arguments. This is done so that application-specific instances of the choice function can, if
desired, generate a name not in S by taking some variant of the name n.

The primitive recursive definition of Sub in HOL is given by the theorem shown below. The
notation ‘let v = ¢; in ¢’ used in this definition is a metalinguistic abbreviation supported by the
HOL parser and pretty-printer. It expands into a term provably equivalent to (Av.ts) t;.

FVch s. Sub ch Zero s = Zero A
Veh ¢ y P s.Sub ch (Out 2 y P) s =Out (s z) (sy) (Sub ch P s) A
VehayPs.Subch (InzyP)s =
let vs = Image s ((Fn P) — {y}) in
lety = (y €vs=chywvs|y)in
In (s)y (Subch P (An.(n=y)=y' | sn)) A
Veh P s.Sub ch (Tau P) s = Tau (Sub ch P s) A
Veh y P s.Sub ch (Resy P) s =
let vs = Image s ((Fn P) — {y}) in
lety = (y€vs=chywvs|y)in
Res y' (Subch P (An.(n=y) =y |sn)) A
Veh o y P s.Sub ch (Match 2 y P) s = Match (s z) (sy) (Sub ch P s) A
Veh P @ s.Sub ch (Comp P Q) s = Comp (Sub ch P s) (Sub ch Q s) A
Veh P Q) s.Sub ch (Plus P Q) s = Plus (Sub ¢k P s) (Sub c¢h) s) A
Veh P s.Sub ch (Repl P) s = Repl (Sub ¢h P s)

The definition is straightforward, except for the defining equations for the input prefix In and
restriction Res. For all the other constructors, the function Sub simply maps the substitution
recursively down through an agent, applying the mapping s wherever free names occur. The input
prefix and restriction constructs ‘In 2 y P’ and ‘Res y P’, however, both bind the name y. It may
therefore be necessary to change this bound name to a fresh name y’, in order to avoid capture

12

of names when the substitution s is applied to P. The definition ensures that bound names are
changed only when necessary, namely when y occurs in the image of the function s on the set of
all names (other than y itself) that occur free in P. In this case, the bound name is changed to a
new name y’ which is generated by the choice function ¢h and which, under the infinity hypothesis
for ch, does not occur in this set. Any free occurrences of y in P are also changed to y'.

4.4.3 Theorems about substitution

A number of general theorems about substitution are needed for proofs about the m-calculus. The
content of these theorems is mostly predictable, and a full list of theorems need not be given here.
In proving these theorems in the HOL system, care was taken to restrict dependence on the infinity
hypothesis for the choice function to only those theorems for which it is really needed. For example,
one of the theorems proved in HOL states that the identity substitution leaves agents unchanged:

FYP ch.Sub ch P (Az.z) = P

This proposition holds for any function ch whatsoever, and the theorem therefore does not include
the infinity hypothesis for c¢h as an assumption. By contrast, the following theorem

FVch. (VS. Finite S D Vn.=(chn S € S)) D
VP s.Fn (Sub ch P s) = Image s (Fn P)

states that the set of names that occur free in an agent after substitution with a name mapping s
is the same as the image of the function s on the original set of free names. This holds only if the
choice function ch correctly generates new bound names chosen from an infinite set of names «. In
this theorem, the infinity hypothesis is essential.

4.4.4 Substitution for a single name

Simultaneous substitution of names for names is needed for only certain parts of the theory devel-
oped in [17, 18]. In the absence of agent identifiers, full simultaneous substitution is not needed for
defining the transition relation, strong bisimulation and the relation ~. Substitution for a single
name will suffice.

Substitution of for y in the agent P, written ‘P{z/y}” in the notation of section 2.1, is
formalized by the constant definition

FVeh P2 y.Subl ch P (z,y) = Sub ch P (An. (n=y) = z | n)

where substitution for a single name is defined in terms of a simultaneous substitution in which the
name mapping is the identity function on all names but one. Theorems about the special case of
substitution for a single name are (mostly) straightforward to prove in HOL, given this definition
of Subl and the more general theory of simultaneous substitution.

5 Formalizing the transitional semantics

The theory outlined above provides all the syntactic infrastructure needed to define and reason
about the transitional semantics for the w-calculus in logic. This section describes how the labelled
transition relation on which this semantics is based is defined in HOL and gives a sketch of the
theory developed from this definition.

13

5.1 Representing actions in HOL

The transition system for the w-calculus shown in section 2.2 is based on four kinds of actions.
These are represented in logic by values of the type («)action, which is specified by

action = tau tau represents 7
| fo a « fo z y represents Ty
| in a «a in @ y represents z(y)
| bo a «a bo z y represents T(y)

and which is defined automatically using the same derived rule of (recursive) type definition used
to define the type of agents. The concrete type (a)action specified by this equation has four
constructors. One of these, namely tau, is a constant representing the distinguished action 7; the
other three are functions of type a—a—(a)action that map a pair of names to the representation
of an action.

Given this specifying equation for the type of actions, the derived rule of type definition auto-
matically proves the following characterizing theorem for the type («)action:

Ve fo fi for 3 fni(a)action—f.
fntau=¢eA
Vag z1. fn(foxg x1) = fo xo @1 A
Vag z1. fu(inag 21) = fi 2o 21 A
Vag z1. fn(bo zg 1) = fo 2o 2

This theorem asserts that functions over the type («)action can be uniquely defined by cases on
the four different kinds of actions in the w-calculus. It is straightforward to use this theorem in
conjunction with the derived principle of (primitive recursive) function definition to define logical
counterparts to the functions fn, bn and n on actions introduced in section 2.2. For example, the
definition of a function fn:(«)action—(«)set that corresponds to fn is just

Ffntau = {} A
Vo y.fn(fox y) ={z,y} A
Ve y.fn(inz y) ={z} A
Va y.fn(bo z y) = {z}

The definitions of functions bn and n corresponding to bn and n are similar. Given these definitions
and the characterizing theorem for the type («)action, it is trivial to develop a basic theory of actions
for the w-calculus in HOL.

5.2 Defining the labelled transition relation

In the paper [18], the transition relation — is defined inductively by the rules reproduced in the
present paper in figure 1. In the mechanized theory of the w-calculus this relation is also defined
inductively, using a derived principle of inductive predicate definition implemented in HOL [13].
Given the user’s specification of a desired set of rules, this derived principle of definition automat-
ically proves the existence of the relation inductively defined by them. More precisely, the system
constructs a term that explicitly denotes the smallest relation closed under the rules specified by
the user. HOL then introduces (via a constant specification) a constant to name this relation. The
result is a collection of automatically proved theorems stating that the newly-defined relation is in
fact closed under the required rules, together with an additional theorem asserting that it is the
smallest such relation.

14

To define the transition relation using this derived principle of inductive definition, the user just
enters the transition rules shown in figure 1 as a list of pairs of the form

((list of premises), (conclusion))

Each pair consists of a list of the premises of a rule, including any side conditions, and its conclusion.
There is one such pair for each of the transition rules, including all symmetric forms. The premises
and conclusions are stated using the HOL representation of agents and actions and (where necessary)
the notation for free and bound names and substitution defined in the syntactic theory described
above.

Given this user-supplied specification of the rules, the system constructs a logical statement of
each transition rule in the form of an implication of conclusion by premises. These express what it
means for a 3-place relation

R:(a)agent— (o) action—(«) agent—bool

to be closed under each of the rules. The assertion that the relation R is closed under the left-hand
symmetric form of the suM rule, for example, is expressed in logic by the implication shown below.

VPaP. RPaP DVQ.R (PlusPQ)aP
Likewise, the translation into higher order logic of the OPEN rule is

VP zy P w.
R P (foxy) PPAN=(y=2) A—w € Fn(Resy P') D
R (Res y P) (bo 2 w) (Subl ch P’ (w,y))

This logical formulation of the OPEN rule illustrates an explicit use of the defined syntactic notions
of substitution and the set of free names in an agent. The translations into logic of the remaining
rules are similar to these examples.

The definition made by HOL of the transition relation is based on this translation of the rules into
logical implications. The conjunction of all these implications asserts the closure of an arbitrary
three-place relation R under the transition rules of the w-calculus, and the labelled transition
relation itself is just defined to be the intersection of all such relations. More precisely, the derived
HOL rule of inductive definition makes a constant specification for the relation

Trans : (a—(a)set—a) — (a)agent — (a)action — («)agent — bool
which is logically equivalent to the following constant definition:

FTransch Pa Q) =
VR:(a)agent— () action— (o) agent—bool.
(R is closed under the rulesy D R P a Q)

This definition states that there is a transition from the agent P to the agent () labelled by the
action a exactly when P, a and @) are in the intersection (i.e. V") of every relation R closed under
the transition rules for the w-calculus. The relation Trans must take the choice function ch as an
argument, since substitution is employed in stating closure under the rules.

15

The final result of making the automatic inductive definition sketched above (and all the user
actually sees) is a set of theorems that state the transition rules for the defined relation Trans,
together with an additional theorem stating that Trans is the smallest relation closed under these
rules. The following theorems for the left-hand suM rule and the OPEN rule, for example, are among
the theorems proved automatically by the system:

FY¥ch Pa P.Trans ch P a P’ D VQ. Trans ch (Plus P Q) a P’

FYch Pzy P w.
Trans ch P (foz y) P’ A —~(y=2) A—~w € Fn(Res y P') D
Trans ch (Res y P) (bo w) (Subl ch P’ (w,y))

There are sixteen such theorems for the m-calculus with replication in place of agent identifiers,
one for each transition rule including symmetric forms. The additional theorem stating that Trans
(actually, that Trans ch) is the smallest relation closed under the rules, which is also derived
automatically by the rule of inductive predicate definition, has the form

F Veh. VR:(«) agent—(«) action— (o) agent—bool..
(R is closed under the rules) D
YPa@.Transch Pa Q) D RPa(@

This rule induction theorem for Trans is essential for proving properties of the transition relation
by induction on the depth of inference. By appeal to an appropriate instance of this theorem, one
may reduce proving that some property R[P,a, @] holds of all a-labelled transitions from P to Q)
to showing that this property is preserved by the transition rules for the w-calculus.

5.3 Proof tools associated with the transition relation

Associated with the derived rule of inductive predicate definition are several general-purpose proof
tools for reasoning about inductively defined relations in HOL. The most important of these is a
tactic for interactive goal-directed proofs by rule induction. This tactic mechanizes the inductive
form of argument outlined above; given the rule induction theorem for Trans and a hypothesis to
be proved of the form

VP a@.Transch P a @Q D R[P,a,Q)]

the rule induction tactic reduces the task of proving this hypothesis to proving that the property
expressed by ‘R[P, a, Q] is preserved by the rules that inductively define Trans. Many of the proofs
about the w-calculus in [18] are done by induction on the depth of inference, so this tactic is of
primary importance in mechanizing these proofs in HOL.

Other proof tools associated with the transition relation include a set of HOL tactics for proving
that specific labelled transitions hold between agents of the calculus. For example, one of these
tactics can be used to reduce the task of proving that Trans ch (P + Q) a P’ to proving that
Trans ch P a P'. These tactics are constructed automatically by the system from the theorems
stating the transition rules for Trans. There is also an automatic proof procedure for deriving an
exhaustive case analysis theorem for the transition system:

FTransch Pa () =
(P=Tau Q A a=tau) V
(Jz y. P=Outz y Q Na=foz y) Vv
(FP Q. P=Plus P" Q" ATransch P a Q) V ...

16

This theorem may be loosely paraphrased as follows:

if - P -5 (@, then this follows from
the TAU-ACT rule, or
the ouTpPUT-ACT rule, or
the pPLUS rule, or...

This fact is used to mechanize arguments about the transition system of the kind that are typically

accompanied by an explanation of the form ‘if ..., then by a shorter inference ...".

5.4 Theorems about the transition relation

The theorems and proof tools described above provide the logical infrastructure necessary to develop
the HOL theory of the labelled transition relation for the w-calculus. This theory consists of
a collection of simple facts about the transition relation formalized by Trans. One example is
the following lemma about free and bound names, which shows how dependence on the infinity
hypothesis propagates to the level of transitions:

FVch. (VS. Finite S D Vn.=(chn S € S)) D
VPa P.Transch Pa P O (Fn P C (Fn PUbn a)) A (fna C Fn P)

This is one in a series of lemmas for the proof that a-equivalence is a strong bisimulation presented
in the paper [18]. The HOL proof was done using the rule induction tactic described above; this is
very natural, since the theorem to be proved is an implication of precisely the form one can infer
using the rule indiction theorem for Trans. The HOL proof closely follows the detailed proof given
in [18], which proceeds by induction on the depth of inference.

Other theorems that have been proved in HOL about the labelled transition system include
various equivalences between transitions, for example

FVeh Pa@ R. Trans ch (Plus P Q) a R = Trans ch (Plus Q P) a R
FY¥ch Pa@. Trans ch (Plus P Zero) a Q = Trans ch P a Q)
FYch Pxa@. Trans ch (Match 2 2 P) a Q = Trans ch P a Q)

One can also prove that certain transitions are impossible, as in

FVeh P a. —(Trans ch Zero a P)

Simple theorems of this kind follow directly from the rules defining the relation Trans and the case
analysis theorem discussed in the preceding section. They are easy to prove, and the proofs are
very regular and could be completely automated in HOL.

6 Defining bisimulation and equivalence

Once the substitution function Subl and the transition relation Trans have been defined, it is
straightforward to express the concept of a strong simulation in logic. The following definition is a

17

direct translation into higher order logic of the definition given in section 2.3.

FSimch S =
VPQ.SPQ D

VP Trans ch Ptau P’ D
3Q" Trans ch Q tau Q' A S P Q' A

Va y P.Transch P (fox y) P’ D
AQ" Trans ch Q (fox y) Q' NS P Q' A

Ve y P.Transch P (inz y) PPA=(y € (NPUNQ)) D
Q" Trans ch Q (inz y) Q' A

Vw. S (Subl ch P’ (w,y)) (Subl ch Q' (w,y)) A

Vo y P.Transch P (boaz y) PPA=(y € (NPUNQ)) D

Q" Trans ch Q (boz y) Q" NS P Q'

This defines ‘Sim ch S” to mean ‘the relation S is a strong simulation’. The predicate Sim must
take the choice function ch as a parameter because its definition depends on substitution.

Given this definition, the bisimilarity relation ~ between agents is defined in HOL by the simple
constant definition

FBisimch P Q =35.5 PQASimch SASimch (Azy. Sy z)

This says that two agents P and () are bisimilar if S P @ holds for any strong bisimulation 5
it uses (higher-order) existential quantification over relations to define ‘Bisim ch’ to be the largest
strong bisimulation. Once again, the decision to use a type variable to model the set of names
means that the choice function must appear as a parameter to Bisim.

Finally, strong equivalence is defined to be bisimilarity under all substitutions of names for
names. In HOL, we just define

F Equiv ch P () = Vs:a — . Bisim (Sub ch P s) (Sub ch Q) s)

Notice that universal quantification over substitution functions is used in this definition; higher-
order logic makes a direct definition completely straightforward. As usual, the choice function ch
becomes a parameter.

7 The algebraic theory

Having defined strong bisimulation and equivalence in HOL, one may then proceed to develop the
algebraic theory presented in [17, 18] as a collection of theorems about the relations Bisim and
Equiv. Proofs have been completed in HOL for many of the simpler equivalences in this theory,
but work on the theory is still in progress. Some examples of the theorems proved are the laws for
summation shown above in section 2.3. These are expressed in logic by the theorems

- Veh P. Bisim ch (Plus P Zero) P

FVeh P.Bisim ch (Plus P P) P

FVeh P Q. Bisim ch (Plus P Q) (Plus @ P)

FVeh P Q R.Bisim ch (Plus P (Plus @ R)) (Plus (Plus P Q) R)

These theorems were proved in HOL in the same way that the corresponding laws are proved in [18],
namely by explicitly producing an appropriate strong bisimulation in each case. For example, the
bisimulation used to prove the commutative law of summation is presented in [18] as

{(P1+P27 P2+P1)|P17P23gentS}UId

18

where Id is the identity relation on agents. In the HOL proof, the same relation is written
AP AQ. (P=Q)VIP Q.(P=Plus P Q')A (Q =Plus Q" P")

Formally, this term becomes the witness supplied for the existentially quantified variable in an
instance of the definition of Bisim. The proof that this is indeed a strong bisimulation proceeds
essentially by rewriting, making extensive use of the theory of the transition system discussed above
in section 5.2. Several other laws are may be proved in HOL in exactly the same way—that is, by
exhibiting an appropriate bisimulation.

Following [18], many of the laws for equivalence may be easily derived in HOL from corresponding
laws for bisimilarity. For example, to prove

FVeh P. Equiv ch (Plus P Zero) P

we merely use the theorem-prover’s built-in rewriting facility to rewrite with the definitions of Equiv
and Sim, transforming this proposition into

FVeh P s. Bisim ch (Plus (Sub ch P s) Zero) (Sub ch P s)

This is just an instance of the identity law for bisimilarity already proved, and so the desired result
follows immediately.

Once all the laws have been proved, we will have the theory of strong equivalence for agents
available as a collection of (essentially) equational theorems in HOL. We will then be able to use
these theorems to reason about applications in this theory. In the simplest case, such reasoning
could consist in just interactively guiding HOL’s rewriting tools to use the laws to show that two
particular agents—describing, say, an implementation and a specification—are equivalent. One
could also investigate more automatic proof strategies based on algebraic manipulation.

But because the definition of equivalence is also available, we could do equivalence proofs by
directly exhibiting bisimulations as well. We might even employ a mixture of the two proof styles,
using both algebra and simulation as necessary. Furthermore, we could also prove that two agents
are not equivalent in this framework; the case analysis theorem presented in section 5.3 lets us reason
directly about possible transitions. More generally, the full range of classical proof techniques—
induction, proof by contradiction, equational reasoning—is potentially available in such a system.
Both automatic and semi-automatic (user guided) approaches to proof can be implemented. The
result is a rather powerful and flexible framework for both practical use and theoretical experiments.

8 Concluding remarks

This paper has outlined work in progress on a mechanized formal theory of the w-calculus in higher
order logic using the HOL system. This theory is still far from complete—the expansion law is yet
to be derived, for example—and it is still too early to tell if the goals mentioned in the introduction
can be achieved. But the results obtained so far seem to indicate that some measure of success
is possible. Once the theory is complete, we intend to test it on a realistic application. It would
also be interesting to compare the practical utility of the HOL mechanization with a proof system
for the m-calculus implemented using a more general logical framework, such as Isabelle [20] or the
Edinburgh Logical Framework [10].

The research most closely related to the theory described in this paper is Monica Nesi’s work on
a theory of CCS in HOL [19]. This work parallels ours; essentially the same techniques are used to
define the syntax and transitional semantics of CCS and to derive rules for observation congruence.
A modal logic for CCS (a variant of Hennessy-Milner logic [11]) is also included in Nesi’s theory.
One of the main technical differences between the two formalizations is that the CCS theory has

19

managed to avoid the difficulties connected with substitution. In particular, although Nesi’s theory
includes recursively-defined processes rec X. F, and hence includes bound process variables and
substitutions, it is (informally) assumed that bound variables are chosen so that captures do not
occur. By contrast, the present theory deals with the possibility of free variable capture explicitly
and formally.

A very different approach to providing theorem-proving support for the w-calculus is that of the
Mobility Workbench [24]. This is a special-purpose tool for automated reasoning about equivalences
between agents. Given two agents PP and), the system attempts to construct a bisimulation that
relates them; this is done by incrementally generating the state spaces of PP and () at the same time
as building the bisimulation relation. This gives a decision procedure for equivalence in a certain
class of agents with finite control (similar to finite state systems in CCS). The exact equivalence
employed is Sangiorgi’s open bisimulation relation [23].

The basic strategy of proving equivalences by constructing bisimulations is, of course, also
technically possible in the HOL mechanization—it was used ‘manually’ in the proofs discussed
in section 7, for example. It would interesting to see if algorithms of the kind employed in the
Mobility Workbench could be adapted for the HOL framework, or even if some hybrid system
could be constructed. (Such an investigation may require the HOL theory to be revised to employ
open bisimulation.) A HOL tool based on this idea should, in principle, be more powerful than
the more specialized Workbench; for example, it should be possible in such a system to combine
algebraic reasoning with the construction of bisimulation relations, perhaps in a semi-automated
way. Furthermore, one could also reason about w-calculus agents without finite control. The
automatic parts of any HOL-based tool are, however, likely to be considerably slower than the
more specialized system.

As a further development of this work, a HOL mechanization of the polyadic w-calculus [16]
should be considered. The formulation of this calculus employs the notion of structural congruence
to separate the laws dealing with the structure of groups of agents from those describing how these
agents interact. The former are just postulated as equational axioms, whereas the latter are derived
from a reduced set of transition rules. In the corresponding HOL theory, one would need to derive
the axiomatic component formally; the most direct approach would be to take a quotient using an
appropriately-defined equivalence relation on terms.

Much of the HOL theory outlined in this paper is concerned with syntax, and in particular with
the fundamental ideas of variable binding and substitution. As well as being rather dull, these
technicalities are notoriously easy to make mistakes about. A general solution to these problems is
one of the aims of Andy Gordon’s work on representing syntax in a mechanized logic [6]. The goal is
to define a general theory of syntax and to construct tools to automatically define specific syntaxes
in logic and to reason about them. There is, therefore, some hope that theory developments of the
kind described in the present paper can be made considerably easier in future.

Acknowledgements

I am grateful to Professor Robin Milner for explaining how agent identifiers could be replaced by
replication. Thanks are also due to Monica Nesi and Yves Bertot, who carefully read an early draft
of this paper and found several typographical errors, and to Konrad Slind for valuable comments
on the theory and its presentation. Some preliminary studies for this work were done jointly with
Mike Gordon at the University of Cambridge Computer Laboratory.

References

[1] R. J. R. Back and J. von Wright, ‘Refinement Concepts Formalised in Higher Order Logic’,
Formal Aspects of Computing, Vol. 2, No. 3 (July-September 1990), pp. 247-272.

20

[2] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel, ‘Experi-
ence with embedding hardware description languages in HOL’, in Theorem Provers in Circuit
Design: Theory, Practice and Ezxperience: Proceedings of the IFIP W(G10.2 International
Conference, Nigmegen, June 1992, edited by V. Stavridou, T. F. Melham, and R. T. Boute
(North-Holland, 1992), pp. 129-156.

[3] A. J. Camilleri, ‘Mechanizing CSP Trace Theory in Higher Order Logic’, IEFFE Transactions
on Software Engineering, Vol. 16, No. 9 (September 1990), pp. 993-1004.

[4] A. Church, ‘A Formulation of the Simple Theory of Types’, The Journal of Symbolic Logic,
Vol. 5 (1940), pp. 56-68.

[6] J. A. Goguen, J. W. Thatcher, and E. G. Wagner, ‘An initial algebra approach to the spec-
ification, correctness, and implementation of abstract data types’, in Current Trends in Pro-
gramming Methodology, edited by R.T. Yeh (Prentice-Hall, 1978), Vol. 1v, pp. 80-149.

[6] A. Gordon, ‘A Mechanisation of Name-carrying Syntax up to Alpha-conversion’ in Higher-
order logic theorem proving and its applications, Proceedings 1993, Lecture Notes in Computer
Science, Vol. 780 (Springer-Verlag, 1994).

[7] M. J. C. Gordon, ‘Mechanizing Programming Logics in Higher Order Logic’, in: Current
Trends in Hardware Verification and Automated Theorem Proving, edited by G. Birtwistle
and P.A. Subrahmanyam (Springer-Verlag, 1989), pp. 387-439.

[8] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A theorem proving environment
for higher order logic (Cambridge University Press, 1993).

[9] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Fdinburgh LCF: A Mechanised Logic of
Computation, Lecture Notes in Computer Science, Vol. 78 (Springer-Verlag, 1979).

[10] R. Harper, F. Honsell, and G. Plotkin, ‘A Framework for Defining Logics’, Report no. ECS-
LFCS-87-23, Laboratory for Foundations of Computer Science, Department of Computer Sci-
ence, University of Edinburgh (March 1987).

[11] M. Hennessy and R. Milner, ‘Algebraic Laws for Nondeterminism and Concurrency’, Journal
of the ACM, Vol. 32, No. 1 (January 1985), pp. 137-161.

[12] T. F. Melham, ‘Automating Recursive Type Definitions in Higher Order Logic’, in Current
Trends in Hardware Verification and Automated Theorem Proving, edited by G. Birtwistle and
P. A. Subrahmanyam (Springer-Verlag, 1989), pp. 341-386.

[13] T. Melham, ‘A Package for Inductive Relation Definitions in HOL’, in Proceedings of the 1991
International Workshop on the HOL Theorem Proving System and its Applications, Davis,
August 1991, edited by M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley (IEEE Computer
Society Press, 1992), pp. 350-357.

[14] T. F. Melham, ‘Using Recursive Types to Reason about Hardware in Higher Order Logic’, in
Proceedings of the IFIP WG 10.2 Working Conference on the Fusion of Hardware Design and
Verification, edited by G. J. Milne (North-Holland, 1988), pp. 51-75.

[15] R. Milner, Communication and Concurrency (Prentice Hall, 1989).

[16] R. Milner, ‘The Polyadic 7-Calculus: a Tutorial’, Report no. ECS-LFCS-91-180, Laboratory for
Foundations of Computer Science, Department of Computer Science, University of Edinburgh
(October 1991).

21

[17] R. Milner, J. Parrow, and D. Walker, ‘A Calculus of Mobile Processes, I’, Information and
Computation, Vol. 100, No. 1 (September, 1992), pp. 1-40.

[18] R. Milner, J. Parrow, and D. Walker, ‘A Calculus of Mobile Processes, II', Information and
Computation, Vol. 100, No. 1 (September, 1992), pp. 41-77.

[19] M. Nesi, ‘A Formalization of the Process Algebra CCS in Higher Order Logic’, Technical report
no. 278, Computer Laboratory, University of Cambridge (December 1992).

[20] L. C. Paulson, ‘Isabelle: The Next 700 Theorem Provers’, in Logic and Computer Science,
edited by P. Odifreddi (Academic Press, 1990), pp. 361-386.

[21] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge
Tracts in Theoretical Computer Science 2 (Cambridge University Press, 1987).

[22] L. C. Paulson, ML for the Working Programmer (Cambridge University Press, 1991).

[23] D. Sangiorgi, ‘A Theory of Bisimulation for the w-calculus’, in CONCUR’93: jth International
Conference on Concurrency Theory, Hildesheim, August 1993, Proceedings, edited by E. Best,
Lecture Notes in Computer Science, Vol. 715 (Springer-Verlag, 1993), pp. 127-142.

[24] B. Victor and F. Moller, ‘The Mobility Workbench: A Tool for the w-calculus’, Report no.
ECS-LFCS-94-285, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh (February 1994).

22

