
E�cient Decoding of Pre�x Codes

Daniel S. Hirschberg and Debra A. Lelewer

Abstract

We discuss representations of pre�x codes and the corresponding storage space and

decoding time requirements. We assume that a dictionary of words to be encoded has

been de�ned and that a pre�x code appropriate to the dictionary has been constructed.

The encoding operation becomes simple given these assumptions and given an appropriate

parsing strategy, therefore we concentrate on decoding. The application which led us to this

work constrains the use of internal memory during the decode operation. As a result, we

seek a method of decoding which has a small memory requirement.

Introduction

Data compression is an important and much-studied problem. Compressing data to

be stored or transmitted can result in signi�cant improvements in the use of computing

resources. The degree of improvement that can be achieved depends not only on the selection

of a data compression method, but also on the characteristics of the particular application.

That is, no single data compression algorithm will be superior in every application. The

very meaning of \superior" is application dependent. While the goal of data compression is

to represent a message as succinctly as possible, a particular application may modify that

goal by placing additional requirements on the performance of the data compression system.

In other words, the application may de�ne parameters that guide the selection of the data

compression method. These parameters include, for example, knowledge about the type of

data to be compressed and constraints on memory usage and execution speed.

The work we describe here is based on a speci�c data compression application in which: a)

1

textual data is to be transmitted and received over a communication line, b) decoding must be

performed on-line, and c) the amount of memory available during the decode operation is very

limited. The encoder in our data compression system is allowed substantial computational

resources. It can expend signi�cant time and space to �nd a compact representation of the

source text. Once the representation is constructed, it will be transmitted to the decoder.

The decoder may be viewed as a special-purpose translator with very limited space. This

space limitation provides an interesting challenge.

The application on which this research is based involves a minimal memory constraint.

While technology is providing increasing amounts of memory at low cost, minimizing the

use of memory will always be a goal in mass production applications of data compression.

We employ a dictionary compression technique, that is, an algorithm that compresses a

source text by replacing strings of characters in the source by pointers to a dictionary. The

dictionary is a collection of n strings of varying lengths. Long dictionary entries have higher

potential for compression than short ones in that we replace a large number of characters

with a single codeword. However, we must also take into account the frequency with which a

dictionary entry occurs in the source text. We want to assign short codewords to frequently-

occurring strings; if a string occurs only rarely its codeword may be too long to provide

good compression even though the string being replaced is itself quite long. The degree of

compression to be achieved by a dictionary compression system is largely dependent on the

choice of the dictionary; however, it is also necessary to represent the pointers e�ciently.

We choose to represent pointers by pre�x codes based on the relative frequencies of the

dictionary entries they represent. The Hu�man code is the most widely-known pre�x code

and is minimal in that it provides the best compression of any pre�x code applied to a

�xed dictionary [Hu�man 1952]. Arithmetic codes, which are not pre�x codes, can provide

better compression than the Hu�man code when applied to the same dictionary [Witten,

Neal and Cleary 1987]. This improved compression is possible because arithmetic codes are

not constrained to map an integer number of bits to each dictionary entry. The additional

compression they provide is generally a few percent.

An o�setting advantage of Hu�man codes is that they are more robust. While an error

in a single bit will prevent the bits that follow from being correctly decoded by an arithmetic

decoder, Hu�man codes tend to resynchronize quickly, thus localizing damage [Lelewer and

Hirschberg 1987]. A more important consideration in terms of the present application is the

fact that arithmetic coding uses the frequencies of the dictionary entries during decoding.

Our methods do not require the table of frequencies, and as a result we are able to decode

2

with a much smaller space requirement. For these reasons we elect to use Hu�man coding

for our application.

The compressed version of the source text consists of a representation of 1) the encoding

dictionary, 2) its pre�x code and 3) the sequence of codes that can be expanded to recover

the original text. Most of the compression is achieved by choosing an appropriate dictionary.

The computation of the corresponding pre�x code is straightforward. However, the method

of representing the dictionary and the pre�x code also a�ects the resulting compression

ratio (for moderate-sized �les, the representation choice can have a signi�cant impact on the

compression ratio). The encoder in our application must construct a representation that is

compact and that our space-limited decoder can translate e�ciently. The way in which the

encoder represents the dictionary and the pre�x code is the focus of our work. We partition

the encoding dictionary into two parts: 1a) a stream of characters, and 1b) information

that permits parsing this stream into individual dictionary entries (e.g., the lengths of the

entries or their starting positions). All of our methods prepend the stream of characters to

the encoded text and store the characters as part of the decode data structure. It is in the

way that 1b) and 2) are represented that the methods di�er. We will compare the decode

space e�ciencies of our methods and the amount of representation overhead they incur.

We de�ne representation overhead to be the number of bytes in the compressed text used

to represent items 1b) and 2). We allow the decoder some limited set-up time to receive

the code representation (items 1 and 2) and store the information needed for performing

translation. Except for the \lag" due to set-up, the decoder must operate on-line. That is,

the time required for decoding must be proportional to the size of the expanded source.

In order that our methods may be presented in the most general form, we de�ne the

variables listed in Figure 1. It should be noted that N � lg ny bits, that M � V , that

B � V , and that A � C since we must be able to access any dictionary entry with an address.

Figure 2 presents a small example dictionary, which we use to illustrate our methods.

Previous Methods

A number of papers have appeared on the subject of implementations of Hu�man en-

coding and decoding. These implementations apply to any pre�x code. The more recent

of these papers [Sieminski 1988; Choueka et al. 1986] concentrate on fast implementations

and reduce processing time by avoiding manipulation of individual bits. However, a price

is paid for the reduced time requirements in the form of increased memory requirements.

y lg denotes the base 2 logarithm

3

symbol storage requirement for typical value

A an address 2 bytes

C number of characters in a dictionary entry 1 byte

N an integer between 1 and n+ 1 2 bytes

M number of codewords of a given length 1 byte

B length of a codeword (in bits) 1 byte

V value of a codeword 2 bytes

meaning

L max�min+ 1 13

max length of longest codeword (in bits) 12{16

min length of shortest codeword (in bits) 1{3

Figure 1 Variables used to de�ne storage requirements.

string frequency

abcd 10

rst 9

wxyz 15

qu 7

lm 2

ps 2

the 22

Figure 2 An example dictionary.

Sieminski's method requires 64 K bytes to store the decode tables for a simple situation in

which the dictionary contains only 127 individual characters. The size of the decode tables

grows exponentially if dictionary entries longer than one character are used [Sieminski 1988].

The method of [Choueka et al. 1986] requires O(n

2

) extra space where n is the number of

dictionary entries. While processing time is of concern, our primary criterion is the e�cient

use of internal memory during decoding. Thus these methods are inappropriate for our

4

purposes.

Hankamer [1979] describes a modi�ed Hu�man procedure with reduced memory require-

ments. The reduced memory requirements are attained by reducing the size of the dictionary

and computing a suboptimal Hu�man code. Hankamer's method assumes �xed-length dic-

tionary entries and there is no obvious extension to variable-length entries. This fact coupled

with the loss of optimality renders the method inappropriate for our needs. Tanaka [1987]

gives a �nite automaton-based Hu�man decoding algorithm. His method assumes single

character dictionary entries. A straightforward modi�cation to allow for variable-length en-

tries is similar to our Method A1 (which follows) in terms of execution speed, but requires

approximately 67% more memory.

Method A

Our �rst solution to the problem of decoding in restricted memory uses the Hu�man

code tree to represent the dictionary. However, we do not use the obvious linked imple-

mentation in which each internal node contains pointers to its left and right subtrees; the

space requirements of this implementation are prohibitive. Instead, Method A1 employs an

implicit representation of the tree structure. Method A2 is a variation of Method A1 that

provides improved storage utilization.

abcd

000

rst

001

qu

100

lm

1010

ps

1011

wxyz

11

the

01

Figure 3 A Hu�man tree for the example dictionary.

5

Method A1

Method A1 uses a total of nC + (n � 1)A space in addition to the space required for

the n dictionary entries (the space for a dictionary entry is the space required to store the

characters that make up the entry). The code representation and the dictionary are stored as

a single structure. The pre�x code is represented by the corresponding binary tree stored in

preorder form. Preorder storage is de�ned recursively: the root node is stored �rst, followed

by its left subtree stored in preorder form, and then its right subtree in preorder form. In our

storage scheme, a leaf node contains a
ag bit (set to one, distinguishing between internal

nodes and leaves), the length of the corresponding dictionary entry, and the entry itself. For

each internal node we store two items, a
ag bit (set to zero) and an address. The address

component of an internal node is the address of its right subtree. The left subtree for an

internal node is stored immediately following the node itself. A tree with n leaves contains

n � 1 internal nodes. Thus, the total storage in addition to the dictionary entries is nC

for the leaf nodes and (n � 1)A for the internal nodes, assuming that there is a spare bit

in the address and length �elds. In our application, for which the typical values given in

Figure 1 apply, the storage requirement is 3n � 2 bytes. Figure 3 shows a Hu�man tree for

the example dictionary. The codeword for each dictionary entry appears under the entry.

We use the convention that left branches are labeled `0' and right branches `1'. Figure 4

gives the corresponding decode data structure. We represent tree nodes as tuples of the

form (0,address) or (1,length,entry). The address values are based on allowing 2 bytes for an

address (A = 2) and 1 byte for each character and each string length (C = 1). We assume

that the �rst bit of an address or length �eld stores the
ag bit.

The storage scheme described above allows for simple decoding. For each codeword we

begin at the �rst position of the decode table and we decode one bit at a time. On a 0 bit

we move from an internal node to its left child by advancing over the address �eld. On a 1

bit we use the address �eld to move to the right subtree of the current internal node. We

continue to decode bits until a
ag value of 1 is encountered, indicating a leaf node. At

this point we have detected the end of a codeword and located the corresponding dictionary

entry. The dictionary entry is appended to the decoded output, and we return to the �rst

position of the decode table ready to decode the next codeword. The following operations

are performed for each codeword in the encoded source. We use address(k) to represent the

address component of an internal node k, flag(k) to represent the
ag component of any

node k, and length(k) to represent the length component of a leaf node k.

k 1

repeat

6

receive bit

if bit = 0

then k k +A

else k address(k)

flag

v

alue flag(k)

until flag

v

alue = 1

append contents of memory locations k : : : k + length(k)� 1 to the decoded output

The encoder transmits the tree to the decoder in the form we have described. Thus, the

representation overhead associated with Method A1 is nC + (n � 1)A, and the \lag" time

consists of the time necessary to receive and store the tree.

address 1 3 5 7 12 16 20

contents (0; 20) (0; 16) (0; 12) (1; 4; abcd) (1; 3; rst) (1; 3; the) (0; 35)

address 22 24 27 29 32 35

contents (0; 27) (1; 2; qu) (0; 32) (1; 2; lm) (1; 2; ps) (1; 4; wxyz)

Figure 4 Method A1 storage of example dictionary.

Method A2

The storage requirement of Method A1 can be improved in some cases by exploiting

the fact that the length values need not be stored in the decode data structure. The key

observation that allows us to eliminate the string lengths is that we can �nd the length of an

entry by subtracting its starting address from the starting address of its preorder successor.

The starting address of any leaf node's preorder successor can be found easily, trivially, in

fact, if the leaf, x, is a left child of its parent. In this case, the preorder successor of x is

its sibling, and the address of the sibling is stored in x's parent node. In the other case,

when x is a right child, we can walk from x to its preorder successor as follows: we walk

up `1' branches until we reach a node that is not a right child; at this point, we walk up a

single `0' branch and then down a `1' (right) branch. In other words, the preorder successor

of x is the right child of the lowest internal node from which we follow a `0' (left) branch

to x. This characterization is also valid when x is a left child, since x's parent is the lowest

internal node from which we follow a left branch to x; and x's preorder successor is the right

child of this (parent) node. The only node for which the above characterization is not valid

7

is the �nal node in the preorder listing. This node lies on a path from the root consisting

of only right branches, and it has no preorder successor. So that we can decode this �nal

node, we store the address of its (nonexistent) preorder successor in address 0 of the decode

data structure, ahead of the preorder representation of the decode tree. Thus we store n

addresses in Method A2 instead of the n � 1 addresses used in Method A1.

In the Method A1 data structure, address values are coupled with
ag bits to represent

internal nodes, and length values are coupled with
ag bits and combined with character

strings to represent leaf nodes. The coupling is accomplished by using the leading bit of

the address or length value for storing the
ag. In eliminating the length value from a leaf

node, we are presented with the problem of how to store the
ag bit. The best solution to

this problem is to couple the
ag bit with the leading character of the dictionary entry. In

order for this to be possible, we must be able to store characters in b� 1 bits (where b is the

number of bits per byte). This assumption may be reasonable on machines with 8-bit bytes

where the application involves storing or transmitting text. The printable characters typical

of many text �les can be represented in seven bits. Under this assumption, the storage

requirement of Method A2 becomes nA, as compared with (n � 1)A + nC for Method A1.

Using the typical values given in Figure 1, we have 2n bytes for Method A2, as compared

with 3n � 2 bytes for Method A1.

If the assumption of a spare bit in character storage is not valid, eliminating the lengths

may not provide an improvement in storage utilization. Since high-level languages have the

byte as the atomic unit of addressable memory, we are forced to store the
ag in a byte when

neither the length �eld nor the character �eld can accommodate it. If string lengths can

be stored in a single byte (C = 1) with a spare bit, we gain nothing by storing a one-byte

ag instead of a one-byte (
ag,length) pair. In fact, the storage requirement for Method A2

would be nA+ n bytes as compared with (n� 1)A+ n bytes for Method A1. However, in a

case where lengths require more than one byte of storage (C � 2), the one-byte
ag would

be an improvement over the C-byte (
ag,length) pair. In this case, Method A1 requires

(n � 1)A + nC bytes of storage and Method A2 requires only nA + n. In addition, the

use of the (
ag,length) coupling depends on the assumption that lengths can be stored in

such a way as to provide a spare bit for the
ag. If this assumption is not valid, storing

the
ag alone will provide a space improvement over storing the (
ag,length) pair in C + 1

bytes. In summary, the elimination of the length values from the Method A1 data structure

is not guaranteed to provide improved storage utilization, but does so under fairly general

conditions. In fact, Method A2 will be superior to Method A1 unless characters require all

b bits in a byte and string lengths require at most b � 1 bits. And in this case Method A2

8

can lose by most A+ 1 bytes!

In Figure 5 we give the Method A2 data structure for the example dictionary of Figure 2

under the assumption that each character contains a spare bit that can be used for the
ag

value. We assume that address �elds also contain the spare bit and that A = 2. We represent

internal nodes as (
ag,address) pairs and leaf nodes as (
ag,entry) pairs.

address 0 2 4 6 8 12 15 18

contents 34 (0; 18) (0; 15) (0; 12) (1; abcd) (1; rst) (1; the) (0; 30)

address 20 22 24 26 28 30

contents (0; 24) (1; qu) (0; 28) (1; lm) (1; ps) (1; wxyz)

Figure 5 Method A2 storage of example dictionary of Figure 2.

Using the Method A2 data structure to decode is very similar to using the Method A1

structure. The only di�erence is that, in addition to the address of the dictionary entry being

decoded, we are also looking for the address of its preorder successor. The following instruc-

tions are performed for each codeword. We use address(k) and flag(k) as in Method A1;

p represents the current candidate for the address of the preorder successor. We use the

notation contents(0) to retrieve the successor of the last node in the preorder listing from

memory location 0. Decode speed is very similar to that of Method A1; the only extra time

is due to storing an address in p for each 0 bit.

p contents(0)

k 2

repeat

receive bit

if bit = 0

then p address(k)

k k +A

else k address(k)

flag

v

alue flag(k)

untilflag

v

alue = 1

append contents of memory locations k : : : p � 1 to the decoded output

The encoder transmits the tree to the decoder in the form we have described. Thus, as-

9

suming a spare bit in character bytes, the representation overhead for Method A2 is nA and

the set-up time consists of the time necessary to receive and store the tree. Both represen-

tation overhead and set-up time are smaller for Method A2 than for Method A1. Figures 10

and 11 present space and time comparisons of our methods. The data for Method A1 pre-

sumes the spare bit in the address and length bytes, and for Method A2 the spare bit in

character bytes is assumed.

Method B

The second method we discuss is based on the concept of a canonical Hu�man code

de�ned by Schwartz and Kallick [1964] and by Connell [1973]. We describe this concept

�rst and then our implementation of it. The essence of the canonical code concept is that

Hu�man's algorithm is needed only to compute the lengths of the codewords to be mapped

to the dictionary entries. Once lengths are determined, actual codewords may be speci�ed in

many ways; the only necessary condition is that they satisfy the pre�x property. This is true

for pre�x codes in general. Intuitively, the canonical code may be viewed as one that builds

the pre�x code tree from left to right in increasing order of depth (i.e., codeword length) with

the convention that each leaf is placed at the \�rst" position (from left to right) available

to it. The example dictionary has codeword length sequence [2,2,3,3,3,4,4]. In constructing

the canonical code, the �rst codeword of length two is placed at the left edge of level two of

the tree. Using the convention that left branches are labeled with 0 and right branches with

1, the �rst codeword is 00. The second codeword of length two is the sibling of the �rst,

01. The �rst codeword of length three is placed at the �rst available position on level three

of the tree. Level three is �lled from left to right by placing codewords 100, 101, and 110.

The length-four codewords, 1110 and 1111, complete the tree. The canonical code tree for

the example dictionary is given in Figure 6. The codeword for each dictionary entry appears

under the entry.

The canonical code possesses some nice mathematical properties. The codewords of a

given length are consecutive binary numbers. The �rst codeword of length l; c

l

, is related

to the last codeword of length l � 1; d

l�1

, by the equation c

l

= 2(d

l�1

+ 1). In other words,

the �rst codeword of length l is obtained from the last codeword of length l � 1 by adding

1 to the binary number represented by d

l�1

and shifting that binary number left once. In

the case where some lengths are unused, as in [1,3,3,3,4,4], the codewords of length 3 are

consecutive binary numbers as are the codewords of length 4. The function that computes

the �rst length-3 codeword from the length-1 codeword is 2(2(d

1

+1)); that is, to move down

two levels in the tree from level 1 to level 3, two shifts are required. For the length sequence

10

pslm

qu

wxyzthe

abcd rst

00 01

100 101 110

1110 1111

Figure 6 The canonical Hu�man code tree for the example dictionary of Figure 2.

[1,3,3,3,4,4], the canonical code is f0; 100; 101; 110; 1110; 1111g. Every canonical code has

a string of zeros as its �rst (shortest) codeword and a string of ones as its last (longest)

codeword. We say that a canonical code has the numerical sequence property.

We now discuss the way in which the numerical sequence property contributes to reducing

memory requirements. First, the canonical code eliminates the need for the encoder to

transmit to the decoder an explicit representation of the tree; the length sequence is su�cient

to de�ne the tree. We represent the length sequence as a list consisting of 1) min, the length

of the shortest codeword, 2) max, the length of the longest codeword, and 3) the number of

codewords of each length. The �rst example above is, thus, represented by 2,4,2,3,2 and the

second by 1,4,1,0,3,2. In most cases this representation is more compact than a list of the

lengths of all of the codewords. If the encoder uses the length list to de�ne the code, the

size of the representation is 2B +LM where L = max�min+1; M represents the number

of bytes required to store the maximum number of codewords of any given length and B

the number of bytes required to store the length of a codeword. We will show that the data

structure needed by the decoder can be constructed e�ciently given the length list.

In addition to providing a compact representation of the code, the numerical sequence

property may be used to index into the data dictionary. This is done through the use of

two small tables, limit and base. Each of these tables is indexed from min to max. The

limit table is used in decoding to detect the end of a codeword. The entry limit[i] contains

11

the value of the largest codeword of length at most i. The numerical sequence property

guarantees that the numerical value of a codeword of length i is greater than the value of

any shorter codeword. Thus if the binary value of a string of i bits is greater than limit[i]

the string is not a codeword but a pre�x of a codeword. The decoder reads min bits from

the coded text. If the binary value of this bit string is less than or equal to limit[min] the

bit string represents a codeword. If the value of the �rst min bits is greater than limit[min]

the decoder reads another bit, updates the value of the bit string, and compares that value

to limit[min+ 1]. This process continues until the value of the bit string of length i is less

than or equal to limit[i] for some i. At this point we have recognized a codeword. Once

the end of a codeword is detected the base table may be used to locate the corresponding

dictionary entry. The base table as de�ned in [Connell 1973] maps a codeword value onto

the relative position of the corresponding dictionary entry in a list of dictionary entries.

The information provided by the limit and base tables is su�cient to allow decoding

if the entries of the data dictionary are all of the same length; however for variable-length

entries we need the address of the appropriate entry, not an index. We present two solutions

to this problem. We comment that tables limit and base as de�ned by Connell [1973] are

redundant with respect to one another. That is, the information contained in the base table

can be extracted from the limit table entries. However, the base table can be represented in

very little space, and contributes substantially to the clarity of exposition of our methods.

Eliminating the base table also results in slower decoding; therefore we maintain the base

table.

Method B1

Method B1 adapts Connell's base table method to allow for variable-length dictionary

entries by introducing an address table indexed from 1 to n + 1. The value of address[k]

is the address of the �rst character of the k

th

dictionary entry. The entries are stored in a

string table that is organized in the following way: entries are stored in nondecreasing order

by codeword length and the block of entries with codeword length i is stored in order of

decreasing codeword value. In terms of the pre�x tree we store the dictionary in modi�ed

level order; that is, in increasing order by level and in order from right to left on each level

(of course we are storing only the leaves of the pre�x tree). The base table provides pointers

into the address table; that is, base[i] contains x such that address[x] is the starting address

of the block of dictionary entries with codeword length i. When a codeword c of length

i is recognized, limit[i]� value(c)z provides an o�set in the list of codewords of length i.

z value(c) is the binary value of codeword c

12

Thus p = base[i] + limit[i]� value(c) is the subscript in the address table at which the

beginning of the corresponding dictionary entry is stored. The length of the entry is given

by address[p + 1] � address[p]. The address and length of the entry are all we need to

append the entry to the output of the decoder. The storage requirement at decode time

consists of LV for the limit table (limit contains codeword values), LN for the base table

(base contains subscripts from 1 to n+1), and (n+1)A for the address table. In most cases

we expect LV +LN +(n+1)A to be an improvement over the nC+(n�1)A requirement of

Method A1. In practice L is generally O(lg n) while a \typical" value of L is 13. Therefore

Method A1 requires 3n�2 bytes and Method B1 2n+54 in a typical application. The storage

requirement of Method B1 will always be greater than the 2n requirement of Method A2;

thus, Method B1 provides no improvement in an application in which character bytes contain

an unused bit. In terms of translation time, Method B1 is expected to be a little bit slower

than the A Methods, but not signi�cantly slower.

The encoder transmits the length list, the strings, and their lengths as a preface to the

encoded text. Thus, the representation overhead is 2B + LM + nC. The representation

is transmitted in the following form: �rst, min and max; then for each codeword length i

(from min to max), n

i

followed by n

i

(length; str) pairs. Each n

i

represents the number

of dictionary entries with codeword length i and each (length; str) pair gives the number

of characters in a dictionary entry followed by the character string itself. The entries with

codeword length i are listed in order of decreasing codeword value. The decoder performs the

following calculations to set up the decode data structure. In addition to the time required

to receive the data, the decoder performs �(n) operations in setting up the address table and

�(L) operations in constructing tables limit and base.

s 1

a 1

receive min;max

for i min to max do

receive n

i

if i = min

then base[min] 1

limit[min] n

min

� 1

else base[i] base[i� 1] + n

i�1

limit[i] 2(limit[i� 1] + 1) + n

i

� 1

for j 1 to n

i

do

receive length; str

store str in string[s � � � s+ length� 1]

address[a] s

13

a a+ 1

s s+ length

endfor

endfor

address[a] s

Figure 7 gives the Method B1 data structure for the example dictionary. The addresses

represent byte addresses of dictionary entries; we assume that the starting address is 1, and

that each character of an entry occupies 1 byte. Figures 10 and 11 provide space and time

comparisons of Method A1, Method A2, and Method B1.

1 5 8 10 13 17 19 21

w x y z t h e q u r s t a b c d p s l m � � �

address

string

6

3

1

baselimit

1

6

15

(01)

(110)

(1111)

codeword lengths

min = 2

3

max = 4

Figure 7 Method B1 data structure for the example of Figure 2.

Method B2

We now present a modi�cation of Method B1 that can provide space utilization supe-

rior to that of Method A2. Method B2 is actually a collection of methods, parameterized

by a variable k. The time-space compromise that best �ts the requirements of a particu-

lar application can be selected by �xing an appropriate value of k. The improvement in

Method B2 over Method B1 is achieved by storing fewer than n address values; the value

14

of the parameter k determines what fraction of the n address values are stored. Method B2

uses the limit and base tables exactly as in Method B1. The dictionary is represented by

three tables. The �rst table, string, contains the dictionary entries stored as in Method B1

(i.e., in modi�ed level order). The second table, address, is indexed from 1 to b

n

k

c and stores

the address of every k

th

dictionary entry, with address[j] containing the address of entry

jk. The third table, len, is indexed from 1 to n�b

n

k

c and contains string lengths. Thus the

space requirements of Method B2 are: LV + LN for the limit and base tables, b

n

k

cA for the

address table, and (n� b

n

k

c)C for the len table.

The limit table is used to recognize codewords as in Method B1. The base table again

yields an index into the list of dictionary entries; if base[i] = x then the x

th

dictionary entry

is the �rst entry (in modi�ed level order) with codeword of length i. When a codeword c of

length i has been decoded, we use p = base[i]+limit[i]�value(c)�1 to �nd the corresponding

dictionary entry. If p mod k = 0, the address of the �rst character of the entry is stored

in address[

p

k

]. If p mod k 6= (k � 1), the length of entry p is stored in len[p � b

p

k

c + 1].

Thus, when p mod k = 0, both the address and the length of the corresponding dictionary

entry are stored in the decode data structure. When p mod k 6= 0, address[b

p

k

c] is a pointer

to the block of k entries that includes the one we seek. We \walk" along this block until

we �nd the entry corresponding to c. This walk can be viewed as a sequence of \jumps"

that use the len values to jump over entries. The number of jumps is given by p mod k; the

maximum number of jumps is k � 1. If p mod k 6= (k � 1), the length of the entry is stored

in the len table; otherwise, the length of the entry is computed from the starting address

of its successor in the modi�ed level order listing (i.e., address[b

p

k

c + 1]). The following

calculations provide the starting address start and the length corresponding to any index p.

p base[i] + limit[i]� value(c)� 1

q b

p

k

c

if q = 0

then start 1

else start address[q]

r p mod k

t p � q

for i 1 to r do

start start+ len[t� i+ 1]

endfor

if r 6= k � 1

then length len[t+ 1]

else length address[q + 1]� start

15

As in Method B1, the encoder transmits the length list, the strings, and their lengths.

Thus the representation overhead is 2B +LM + nC. Tables limit and base are built exactly

as in Method B1. The following code includes the computations for tables len and address.

The set-up time is again �(n) + �(L).

s 1

a 1

l 1

count 0

receive min;max

for i min to max do

receive n

i

if i = min

then base[min] 1

limit[min] n

min

� 1

else base[i] base[i� 1] + n

i�1

limit[i] 2(limit[i� 1] + 1) + n

i

� 1

for j 1 to n

i

do

receive length; str

store str in string[s � � � s+ length� 1]

if count mod k 6= k � 1

then len[l] length

l l + 1

if count 6= 0 and count mod k = 0

then address[a] s

a a+ 1

count count+ 1

s s+ length

endfor

endfor

if count mod k = 0

then address[a] s

Figure 8 gives the Method B2 data structure for the example of Figure 2 with k = 2. A

comparison with the other methods is provided in Figures 10 and 11. We note that if k = 1

the storage requirement for Method B2 reduces to the requirement for Method B1.

We provide a second example for Method B2 in Figure 9. The data structure for an

example with a larger dictionary and k = 3 is given. The reader can use the limit table

values to verify that the codewords for fwxyz, the, qu, rst, abcd, ps, lm, out, rtg are f0,

110, 101, 100, 11110, 11101, 11100, 111111, 111110g.

16

8 13 19

w x y z t h e q u r s t a b c d p s l m � � �

address

string

1

3

6

len

4 (wxyz)

2 (qu)

4 (abcd)

2 (lm)

baselimit

1

6

15

(01)

(110)

(1111)

codeword lengths

min = 2

3

max = 4

Figure 8 Method B2 data structure for the example dictionary of Figure 2 (k = 2).

The parameter k determines the decode speed of Method B2 as well as its storage

requirement. The maximum number of jumps determines the worst case time for appending

one dictionary entry to the output. The maximumnumber of jumps is k�1. It is important

to recognize that the time-space tradeo� provided by Method B2 is nonlinear. When k = 1,

Method B2 stores n addresses; when k = n, Method B2 stores 1 address and n� 1 lengths.

Assuming A = 2 and C = 1, the choice k = 1 requires 2n bytes of storage, and the choice

k = n requires n + 1 bytes. When k = 2, the storage requirement is 1:5n bytes, essentially

midway between the requirement for k = 1 and that for k = n. However, the choice of

k = 2 may result in decode speed much closer to that provided by k = 1 than that provided

by k = n. The extra decode time required by Method B2 (as compared to Method B1) is

proportional to the number of jumps. When k = n, only one address is stored. Thus, the

�rst codeword (in modi�ed level order) can be decoded with no jumps, the second requires 1

jump, and in general the j

th

requires j�1 jumps; the maximumnumber of jumps required to

decode a single codeword is n� 1. Employing Method B2 with k = 2 reduces the maximum

number of jumps to just one. If we compare the use of k = n with the use of k = 1, we see

that by doubling the space requirement we eliminate the need to jump since every address

is stored; however, we can reduce the maximum number of jumps to one at a cost of only

17

10 19 26

w x y z t h e q u r s t a b c d p s l m o u t r t � � �

address

string

1

2

5

8

len

4 (wxyz)

3 (the)

3 (rst)

4 (abcd)

2 (lm)

3 (out)

baselimit

0

1

6

13

30

63

(0)

(110)

(11110)

(111111)

codeword lengths

min = 1

2

3

4

5

max = 6

Figure 9 Method B2 data structure for an example with k = 3.

50% extra space. In general, a space increase of

1

k

of the k = n requirement (which stores

only a single address and all n string lengths) imposes a ceiling of k � 1 on the number of

jumps. In practice a k value of about 4 or 5 is reasonable.

Method Representation Decode Space Decode Space in

Overhead Requirements \Typical" Application

A1 (n� 1)A+ nC (n� 1)A+ nC 3n� 2

A2 nA nA 2n

B1 2B + LM + nC (n+ 1)A+ LV + LN 2n + 54

B2 2B + LM + nC b

n

k

cA+ (n� b

n

k

c)C + LV + LN 1:2n + 52

Figure 10 Space comparison of methods.

18

Method Receiving Time for Additional Relative Decode

Code Description Set-up Time Time

A1 (n� 1)A+ nC none very fast

A2 nA none very fast

B1 2B + LM + nC c

1

L+ c

2

n very fast

B2 2B + LM + nC c

1

L+ c

2

n fast

Figure 11 Time comparison of methods.

We present a summary of the performance of our methods in Figures 10 and 11. The

\typical" values are those given in Figure 1 with the addition of k = 5. In the second

column of Figure 11, labeled \Receiving Time for Code Description", we give the number of

bytes transmitted for the code description; clearly the time required to receive the data is

proportional to its size. In column three of Figure 11, c

1

and c

2

represent small constants.

We note that, while the A Methods require no additional set-up time, their code descriptions

are almost guaranteed to be longer than those of the B Methods, so that the larger receiving

time requirement o�sets the savings in set-up time.

Additional Implementation Considerations

Reducing transmission time

We consider several issues associated with the representation of: 1a) the stream of char-

acters; 1b) information needed to reconstruct the dictionary from the character stream; and

2) the pre�x code. Our discussions have focused on the way in which the representation is

stored in the decoder and the way in which it is used to decode the message. We now make

some observations on the way in which it is transmitted.

We have assumed that the characters of the dictionary are stored one character per byte

in our decode data structures. It is not necessary to respect byte boundaries in transmitting

the stream of characters. The stream of characters may be represented in 7- or 8-bit ASCII;

however, if the dictionary is very large, it may be signi�cantly more e�cient to employ

a variable-length coding technique. The canonical Hu�man code can be used at very low

cost for encoding single characters; only tables limit and base and an array of characters in

modi�ed level order are required for decoding.

In Figures 10 and 11 we include nC bytes in the representation overhead for the lengths

of the dictionary entries. We observe, �rst, that it is not necessary that an integer number of

19

bytes be used to transmit a string length. In addition, if the lengths of the entries vary across

a wide range, we can do much better than nC bytes by using a variable-length representation

of the integers such as the Fibonacci codes described by Apostolico and Fraenkel [1987]. If

dictionary-entry lengths vary from l

1

to l

2

, a �xed-length representation requires lg l

2

bits

for each length. The variable-length codes represent small lengths in fewer than lg l

2

bits,

but large length values require more bits. The variable-length code is justi�ed, then, if

dictionary entries are short on average. For Methods B1 and B2, in which the pre�x code

is represented by a length list, the same variable-length coding can be applied to codeword

lengths. Codeword lengths are expected to be short; it is likely that most of them can be

represented in less than one byte. The Fibonacci codes are simple to encode and decode

in-place, and are well-suited for representing integers.

Reducing decode time

Another implementation detail worthy of mention is one that can reduce decode time for

Method B2. Just as the canonical Hu�man code can be viewed as a re�nement of standard

Hu�man coding (in that it selects a particular code tree among multiple optimal trees), we

present a further re�nement of the canonical code, which we call the B2-optimal canonical

code. We note, �rst, that while the canonical code speci�es a code tree, it leaves open the

question of how to assign the n

i

codewords of length i to the n

i

dictionary entries. We

specify this assignment so as to minimize the average number of jumps (thus a B2-optimal

canonical code is one that minimizes decode time).

The B2-optimal code depends on the parameter k and on the interplay between k and

the number of codewords of each length. Figure 8 shows that decoding any of wxyz, qu,

abcd, or lm requires no jumps and that decoding either the, rst, or ps requires one jump.

The B2-optimal code reverses the positions of wxyz and the so that the entry with higher

frequency can be decoded without jumps. Two of the level-three entries can be decoded

without jumps; these should be the two with highest frequencies. Therefore, qu is placed

at the middle position of level three and the positions of abcd and rst are arbitrary. Since

ps and lm have equal frequency their relative positions on level four are arbitrary. The

B2-optimal tree typically reduces the average number of jumps in decoding a source text by

25{30%. There are no disadvantages to the use of the B2-optimal tree for decoding; the only

cost is the time it takes the encoder to construct the optimal tree rather than an arbitrary

canonical tree, and this cost is small.

Summary

Four methods of decoding pre�x codes in limited space have been pre-

sented. The methods are partitioned into two categories based on the data

structuring strategy employed. Method A2 is almost always superior to Method A1;

however, the choice among Methods A2, B1, and B2 is less obvious. Parame-

ters of a particular application will in
uence this decision. Tables comparing

time and space requirements of the four methods expose the relevant param-

eters. The methods we describe de�ne only the decoding phase of a data

compression system. The choice of a �xed encoding dictionary is the most

critical factor in determining the performance of a system based on our meth-

ods. While the representation of the code contributes to the compression ratio

attained, most of the compression is achieved by selecting a dictionary that is

well-suited to the data being compressed. The size of the dictionary (i.e., num-

ber of strings, n) determines the exact time and space requirements of each

method. With an advantageous choice of dictionary, our methods can attain

compression performance comparable to state-of-the-art techniques such as the

Unix utility compress. De�ning a dictionary that guarantees good compres-

sion is, however, a di�cult task. When the use of main memory is a concern

and su�cient preprocessing time to construct the dictionary is available, our

methods provide a solution to the problem of decoding in limited space without

sacri�cing compression performance. The methods are described in su�cient

detail to allow practitioners to implement them easily.

REFERENCES

Apostolico, A. and Fraenkel, A. S. Robust transmission of unbounded strings

using Fibonacci representations. IEEE Trans. Inf. Theory 33, 2 (Mar. 1987),

238{245.

Choueka, Y., Fraenkel, A. S., Klein, S. T., and Perl, Y. Hu�man coding without

bit-manipulation. Tech. Rep. CS86-05, Weizmann Institute of Science, Dept.

of Applied Mathematics, Rehovot, Israel, 1986.

Connell, J. B. A Hu�man-Shannon-Fano code. Proc. IEEE 61, 7 (Jul. 1973),

1046{1047.

Hankamer, M. A modi�ed Hu�man procedure with reduced memory require-

ments. IEEE Trans. Comm. 27, 6 (Jun. 1979), 930{932.

Hu�man, D. A. A method for the construction of minimum-redundancy codes.

Proc. IRE 40,9 (Sept. 1952), 1098{1101.

Lelewer, D. A. and Hirschberg, D. S. Data compression. ACM Comput. Surv.,

19, 3 (Sept. 1987), 261{296.

Schwartz, E. S., and Kallick, B. Generating a canonical pre�x encoding. Com-

mun. ACM 7, 3 (Mar. 1964), 166{169.

Sieminski, A. Fast decoding of the Hu�man codes. Inf. Process. Lett. 26, 5

(May 1988), 237{241.

Storer, J. A. Data Compression Methods and Theory, Computer Science Press,

Rockville, Md., 1988.

Tanaka, H. Data structure of Hu�man codes and its application to e�cient

encoding and decoding. IEEE Trans. Inf. Theory 33, 1 (Jan. 1987), 154{156.

Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding for data com-

pression. Commun. ACM 30, 6 (June 1987), 520{540.

