Embracing Windows

Colin J. Taylor

Department of Computer Science, University of Nottingham,
University Park, Nottingham, NG7 2RD, England.
cjt@cs.nott.ac.uk

Technical Report NOTTCS-TR-96-1

October 23, 1996

Abstract

There are a number of systems that advocate the use of lazy functional languages for
the programming of graphical user interfaces (GUIs) such as Haggis, Gadgets, and Fud-
gets. These systems have addressed similar issues, such as how to handle I/O in a purely
functional language, and how to provide a structured interface to the event driven model
of windowing systems. In this report we present a framework that encapsulates such com-
mon elements and is intended to aid in the formal study of the relationships between these
systems. The framework is called Embracing Windows, partly because it embraces the
window paradigm, and partly because it uses the Hugs functional programming system.

Two high-level GUI development systems have been built on the framework, and are
based upon Haggis and Fudgets, respectively. The essence of these systems is distilled and
a brief comparison made. The complete Haskell source code for the Embracing Windows
framework i1s presented as an appendix. The framework also illustrates the usefulness of
Haskell type classes for structuring GUI development systems.

Keywords: Graphical User Interfaces; Monads; Fudgets; Haggis; Type Classes; Func-
tional Programming.

Contents

1 Introduction 5
1.1 I/O in Purely Functional Languages 5
1.2 Monads 6

2 Interfacing to a Window System 9
2.1 Modern Window Systems L L o 9
2.2 Monadic Primitives e 9

221 TYPes . . o o e e e e e e e e e 11
2.3 Event Loops o L o e 12
2.4 Message Cracking L L 13
2.5 Building Event Handlers oo 14
2.5.1 The GUI Monad 14
2.5.2 The GUI State 16
2.5.3 A Simple Event Handler oo oo, 17
2.5.4 A Better Interface 17
2.6 Drawing Graphics L L 18
2.6.1 Graphic Primitives Lo 18
2.6.2 TheDraw Monad 18
2.7 Controls e e e e e e 20
2.7.1 Text Labels 21
2.7.2 Edit Fields 21
2.7.3 Buttons e e 22
2.8 The Counter Program 23
2.9 Implementation Details o o 24
2.9.1 Events e e e e e 24
2.9.2 Controls 24

3 Widgets 26
3.1 The Representation of Widgets, 26
3.2 A Library of Widgets e 27
3.3 Composite Widgets e 27
3.4 Layout of Widgets 27

3.4.1 Implementation of Layout 29
3.5 Stateful Widgets oL L 29
3.6 Comparison to Haggis 30

4 Fudgets

4.1 Overview of Fudgets
4.2 Implementation of Fudgets o 0.
4.3 Layout of Fudgets
4.4 Looping Combinators L e

The Essence of Functional GUI’s

Conclusions and Future Work
6.1 Acknowledgements L L

Example Applications

Al A Calculator oo o
A.1.1 The Calculator State Machine
A.1.2 A Widget Graphical User Interface
A.1.3 A Fudget Graphical User Interface
A.1.4 Comparison of Widget and Fudget GUIs

A2 A Combination Lock L
A.2.1 A Widget Combination Lock

Source Code

B.1 I/O Primitives and Library Files
B.1.1 Types . . o o o e e e e e
B.1.2 Monadic Primitives L oo
B.1.3 Window Constants
B.1.4 Table . .. o 0
B.1.5 Event loop primitives o
B.1.6 Window system primitives L o oo
B.1.7 Mutable Variables 0 oo

B.2 Event Handling
B.2.1 GUIL .. oo e
B.2.2 Event Handlers
B.2.3 Message
B.2.4 Lifted Functions L

B.3 The Core o . e
B.3.1 Windowso
B.3.2 On Handlers
B.3.3 Controls oo
B.3.4 Graphics Lo
B.3.5 Embracing Windows Framework

B.d4 Widgets o o
B4l Widgets oL e
B.4.2 Layout Widgets L
B.4.3 Standard Widgets
B.4.4 Widgets System

B.5b Fudgets oo
B.5.1 Fudgets oL
B.5.2 Layout Fudgets L

33
33
35
36
38

41

43
45

46
46
46
48
50
52
52
52

B.5.3
B.5.4
B.5.5
B.5.6
B.5.7
B.5.8

Standard Fudgets Lo 87

Stream Processors o i i e e e e e e e e e e e 88
Stream Processor Combinators L. 89
Stream Processor Operations 89
Fudget Combinators L L 90
Fudgets System 91

Chapter 1

Introduction

There are a number of systems for describing the development of graphical user interfaces
(GUIs) in a lazy functional language; examples include Fudgets [9], Gadgets [16], and Haggis
[6]. All of the designers of these systems have had to grapple with similar issues, such as how
to perform side effecting I/0 in a purely functional language, and how to provide a structured
interface to the event driven model of windowing systems. However, the main research thrust
of these systems is in the abstractions they provide for the construction of GUIs. In this report,
we describe a framework that encapsulates the common elements of some of these systems,
and consists of layers, each building on top of the functionality provided by the lower layers.
Two high-level systems for constructing GUIs have been built on the framework, based on
Haggis and Fudgets respectively.

The Embracing Windows! framework has been developed using the Hugs functional pro-
gramming system [10] and currently interfaces to Windows 95%. The examples in this report
assume familiarity with Haskell 1.3 [17].

In the remainder of this chapter, we discuss the lowest layer in the framework, concerning
I/O in a purely functional language. Chapter 2 details the next layer, which encapsulates
a basic interface to a window system. In Chapters 3 and 4 we describe the two high-level
systems for constructing GUIs that have been built on the framework. Chapter 5 summarises
these two systems and briefly describes how they can be used together. Finally we conclude in
Chapter 6 with a survey of related work, and also present some ideas for future investigation.
The appendices present a number of extended example applications built with the high-level
systems described in Chapters 3 and 4. The Haskell source code of the framework is also
included in the appendices.

1.1 I/O in Purely Functional Languages

This section discusses /O in purely functional languages, which form a basis for the particular
form of I/O required by GUIs. A first attempt at I/O in a functional language might be to
provide side effecting primitives similar to I/O functions in imperative languages such as C:

getChar :: Char
putChar :: Char -> ()

!The Embracing Windows framework is available from http://www.cs.nott.ac.uk/~cjt/EW.html
Windows 95 is a registered trademark of the Microsoft Corporation

The getChar function waits for a key to be pressed and returns the corresponding character,
while putChar c¢ prints the character given as its argument, ¢, on the display. However,
primitives like these limit the ability to use simple equational reasoning and program trans-
formation due to the loss of referential transparency. The result of a referentially transparent
function should depend purely upon its arguments. Every time getChar is called it could
potentially return a different value, thus destroying referential transparency, for example:

x == x where x = getChar # getChar == getChar

These expressions are not equivalent because the result of the side effecting primitives is
shared, rather than sharing the actions that the side effecting primitives perform.

A number of different approaches to handling 1/0 in functional languages that solve these
problems have been proposed:

e Streams. A stream is a lazy list of data objects. Miranda® [24], Ponder [4] and Hope [2]
use streams for I/0. In these systems, an interactive program is modelled as a function
from one stream representing the input, to another representing the output.

¢ Continuations. Continuation passing style entails writing functions that take an extra
argument, a continuation, describing what to do next. Instead of the function returning
its result directly, it is passed on to the continuation to be processed first. A useful
property of continuations is their ability to specify an order of evaluation [18]. This can
form the basis for a model of 1/O using side effecting primitives.

e Monads. Motivated by the work of Moggi [13] and Spivey [23], Wadler [27, 26] proposed
a style of functional programming based on monads that can be used to model impure
‘features’ such as input and output. Monadic I/O [11] uses a collection of combinators
to build interactive programs from primitive actions. When the program is executed,
these actions are performed, realizing the I/O. Monadic I/O is used as the mechanism

for I/O in Haskell 1.3 [17].

1.2 Monads

The use of monads is now established as a method for describing interactive programs, and
will be used as the mechanism for I/O throughout this report. Our original example can be
described using the I0 monad as:

getChar :: I0 Char
putChar :: Char -> I0 ()

The result of the putChar function is an action that prints a character on the display. Simi-
larly, the result of getChar is an action that reads a character from the keyboard. Monadic
combinators are used to combine actions together:

returnIO :: a -> I0 a
thenIO :: I0 a-> (a->I0Db) ->I0D

®Miranda is a trademark of Research Software Ltd.

The returnI0 combinator constructs a trivial action that has no side effects, and whose
return value is the first argument of the combinator. a ‘thenI0¢ f, when performed, will
first perform the action a, applying the result to the function f to obtain a further action.
This latter action will be performed next and the value returned by this action is the result
of the expression a ‘thenI0‘ f. A monad is simply an abstract data type, specified by a
type constructor, m, which supports two operations whose types are the same as the types of
the functions returnI0 and thenIO with the type constructor I0 replaced by m. A monad
may also support other operations as well. Three algebraic properties must be satisfied by
the two operations, but we do not concern ourselves further with these properties in this
report. Together the data type I0 and the monadic combinators returnI0 and thenIO form
a monad.
The type constructor I0 can be thought of as being defined as:

type I0 a = World -> (a, World)

Here, a value of the type World represents the state of the ‘real world’, such as the contents
of a file system, pictures displayed on a screen, and characters read from a keyboard. This
definition is not visible to the programmer and is built into the system as a primitive type.
However, it allows us to see why monads restore the referential transparency that our side-
effecting primitives lacked. Expanding out the definition of I0 Char in the type of the getChar
function gives:

getChar :: World -> (Char, World)

The return value of this function contains the character pressed and the new state of the world.
It is also clear that the character pressed depends upon the initial state of the world, which
is the first argument to the function. The result of the function thus depends purely upon
its argument, and so maintains referential transparency. We are also free to use equational
reasoning, as an expression of type I0 a represents an action rather than the result of a
side-effecting operation. An action can be shared like any other first class value, and is only
turned into a side-effecting operation when the program is executed.

The abstract data type that forms the I0 monad essentially prevents the world from being
duplicated. This allows us to optimise operations such as getChar to update the value of
the world in place, rather than creating a copy of the initial value of the world, modified
according to the operation being performed. This results in an efficient implementation of I0
that still maintains referential transparency.

Using these combinators, we can describe a function that will, print a string on the
display:

putString 1 String -> I0 ()

putString [] returnI0 ()

putString (c:cs) = putChar ¢ ‘seqIO¢
putString cs

The seqI0 combinator is similar to thenI0, except that it discards the result of the action
specified by its first argument, and only requires an action rather than a function as its second
argument. The seqI0 combinator can be defined in terms of thenIOQ as:

seqI0 :: I0 a -> I0 b -> I0 b
a ‘seql0® b = a ‘thenI0¢ (_ -> b)

The two combinators, returnI0 and thenIO are specific cases of combinators that are re-
quired for a data type to be a monad. The standard prelude of Haskell 1.3 includes a type class
specifically for representing monads called Monad. This type class supports three overloaded
functions, return, >>=, and >> corresponding to returnIO, thenIO and seql0, respectively.
Haskell 1.3 also provides a syntactic convention for expressing functions using monadic com-
binators, called do notation. Using this syntax, the putString function previously examined
can be rewritten as:

putString 1 String -> I0 ()

putString [] return ()

putString (c:cs) = do putChar c
putString cs

The remainder of this report will make use of this syntactic convention, which expresses
monadic functions more concisely.

Chapter 2

Interfacing to a Window System

In this chapter, we present the core of the Embracing Windows system. The structure of
the core is split into five main layers that can be seen in Figure 2.1. We first present an
introduction to the concepts involved in modern windowing systems, followed by a description
of each of the five main pieces comprising the core.

2.1 Modern Window Systems

Most modern windowing systems allow the user to run multiple applications, with the user
switching between applications at will. Such systems are driven by the order of events because
the input to applications is essentially interleaved. An event can correspond to external
stimuli, such as mouse clicks, or keyboard input, but can also signal an internal operation
such as the creation or destruction of a window. The dispatching of events to the appropriate
application is handled by the windowing system. Conventionally, applications that are to be
used in such a system are built around an event loop that processes events. An event loop
can be modelled functionally as a stream processor. Such a stream processor transforms a
list of events into a list of actions by mapping an appropriate event processing function over
the list of events.

Windowing systems encapsulate the environment for drawing graphics in a special struc-
ture, commonly referred to as a graphics or device context. This includes information such as
the current drawing colour, width and shape of pen, and brush type for filling areas. When
an application draws in a window, it must first obtain an appropriate device context. All
drawing operations require the device context as a parameter. Finally, when the application
has finished drawing it must relinquish the device context to the windowing system.

2.2 Monadic Primitives

Non-graphical interactive programs use primitives that write characters to the display and
that read characters from the keyboard. A graphical interactive program requires I/O prim-
itives in a similar way to a non-graphical interactive program. However, the primitives will
draw lines in windows, and read clicks from mouse buttons. Instead of reading characters
directly from the keyboard, a primitive will supply the characters typed when the input fo-
cus is on the application’s window. Similarly, instead of writing characters to the display, a
primitive will display a character in one of the application’s windows.

| Monadic Primitives (Section 3.2) |

The
Core

| Event Loops (Section 3.3) |

Multiple Handlers (Section 3.5)

Dynamic Manipulation of Handlers (Section 3.5) |

"
|
|
|
|
|
|
|
|
:
|
: | Message Cracking (Section 3.4) |
|
|
|
|
|
|
|
|
|
|
|
|

Figure 2.1: The core of the Embracing Windows system

The monadic putChar and getChar functions provided appropriate primitives for func-
tional programs to interact with a console. In a similar manner, we can define primitives that
are appropriate for graphical interactive programs. In the Embracing Windows framework
there are three groups of primitives:

e Event loop operations
¢ Basic window operations, such as creating, and destroying windows.

e Graphic operations, such as drawing lines, and changing pen colours and sizes.

We can use type classes to provide an interface to such primitives (see Figures 2.2 and
2.6). The advantage of using type classes is that we can abstract from the monad that the
primitives are defined in. This becomes useful when we need to use the primitives in monads
other than the monad that they are originally implemented in. Another advantage of using
type classes is that they structure the world effectively. Instead of considering the world as
a single entity we can think of it as being comprised of subworlds, such as an event system,
a windowing system, and a drawing system, which in turn may consist of more subworlds
themselves. This structure is made evident in the type system by the use of type classes.
The Clean language structures the world in a similar way [1] and claims that this avoids
the specification of ordering between I/O involving separate parts of the world. When two
independent subworlds are being manipulated then the order in which they are changed is
irrelevant, and the underlying implementation of the language can decide which order to use.
The type of a function using the monadic primitives will include a context which expresses
precisely the components of the world used, such as event loops, basic window operations, or
graphics operations.

The first group of primitives characterises event-driven applications and are defined in
the EventSystem type class. The second group of primitives characterises applications with
window based interfaces and are defined in the WindowSystem type class. The last group of
primitives characterises applications that draw graphical pictures in windows, and these prim-
itives are described in Section 2.6.1. An instance of both the EventSystem and WindowSystem

10

class Monad m => EventSystem m where

eventLoop :: (Event -> I0 Int) ->m () -- Starts an event loop
defaultHandler :: Event -> m Int -- A default event handler
quitEventLoop :: m () -- Terminate event loop

class EventSystem m => WindowSystem m where

createShellWindow :: String -> m Window -- Creates a shell window
destroyWindow :: Window -> m () -- Destroys a window
setWindowCaption :: Window -> String -> m () -- Set window caption
getWindowCaption :: Window -> m String -- Get window caption
setWindowRect :: Window -> Rect -> m O -- Set window size
getWindowRect :: Window -> m Rect -- Get window size
getWindows :: m [Window] -- Get open windows
showWindow :: Bool -> Window -> m () -- Set window visibility

Figure 2.2: Window system primitives

type classes is required for the I0 monad, with the implementations of the methods simply
being the monadic primitives built-in to the functional language:

instance EventSystem I0 where

instance WindowSystem I0 where

The full instance declarations are defined in Appendices B.1.5 and B.1.6. An example of an
application that may be event-driven, but not use a window based interface, is a network
database server. In a similar way that the window operations of the WindowSystem type class
are layered on the event-driven operations of the EventSystem type class, one could imagine
defining a type class encapsulating networking operations.

We can proceed to create monadic functions that give the functional programmer access to
all of the functionality of windowing systems that is available to the imperative programmer.
However, handling input in windowing systems becomes more involved; modern windowing
systems support the use of multiple applications simultaneously, and input to the different
applications can be interleaved arbitrarily by the user. We will return to this issue in Sec-
tion 2.3.

2.2.1 Types

As well as requiring built-in primitives to access the functionality of a window system, built-in
types are required. These types are used to represent windows, objects for drawing graphics
such as pens and brushes, and device contexts encapsulating the current drawing environ-
ment:

data Window
data Object
data DC

11

Vectors, represented as pairs of integers are used very frequently when constructing a
GUI, to describe positions, sizes, and rectangles. We define type synonyms to make the use
of vectors clear:

type Vector = (Int, Int)

type Point = Vector
type Size = Vector
(Vector, Vector)

type Rect

A disadvantage of using type synonyms is that a value representing a point could be used
in the context where a size was expected. Such an inconsistency would not be detected as a
type error. This problem could be solved by using datatypes, but would require the insertion
of the names of appropriate data type constructors.

Events that occur in a windowing system are represented by values of the type Event.
The definition of this type is specific to a windowing system (Section 2.9.1 defines an Event
type for Windows 95). In general, events can be classified by the type of the event, such as
mouse button click, key press, or creation of a window. It will be useful to determine the
type of an event and, for this purpose, we define a function, getEventType, and an associated
datatype specifying a domain of event types:

data EventType = ...

getEventType :: Event -> EventType

The exact implementation of this type and function are dependent upon the windowing system
being used. However, it is important that we have a set of values that can be used to represent
the types of events.

2.3 Event Loops

Considering an interactive application as a stream processor taking a list of events to an
action, and describing this by mapping a function over the list of events leads to a possible
implementation:

event_loop :: (Event -> I0 () -> [Event] -> I0 ()
event_loop handle_event = sequence . map handle_event

The processing of each individual event results in an action of type I0 (), and all of these
actions are combined sequentially into one single action using sequence, which is a standard
Haskell 1.3 function. We can make use of the primitive functions for performing windowing
operations, such as drawing lines in windows, in response to events. The handle event
function defines the behaviour of the application in response to events.

The event Loop function described above makes the list of events explicit; in practice a
list is not used as only one event can happen at a time. The eventLoop primitive functions
in an imperative manner, waiting for an event to happen and then calling the event handling
function specified by its first argument to process this event, and then waiting for the next
event, and so on. A list of actions is generated, each one corresponding to the appropriate
response for an event, but all these events happen sequentially, and so again an explicit list
is not required as the actions can be performed when the events occur. The event handling

12

main :: I0 () =4 Test GUI [I=] [E3

main = do window <- createShellWindow "Test GUI"
showWindow True window %
eventLoop defaultHandler

Figure 2.3: A simple graphical application

function can specify default behaviour in response to an event, by passing the event to the
windowing system using the default event handler, defaultHandler. Finally, a functional
program may want to halt the event loop and can do so by using the quitEventLoop primitive.

An application with a simple GUI can now be constructed that creates a window and
starts an event loop, passing every event to the default event handler (see Figure 2.3). By
default the createShellWindow function does not make the new window visible, and so the
showWindow primitive must be used to make it visible.

2.4 Message Cracking

The Event datatype is used to encapsulate information about any event that may occur
in the system. Unfortunately, this means that information pertaining to the event may be
packed into the event data structure, and needs to be unpacked before it can be used. The
packing algorithm depends on the type of event, and we would like the unpacking to be done
automatically for the programmer. The unpacking of this information is commonly referred
to as message cracking. ldeally, we would like the programmer to be able to write functions
that deal with the unpacked data explicitly. For example, the programmer could write a
function such as:

processLButtonDown :: Vector -> I0 ()

to specify the behaviour of the application in response to the left mouse button being pressed.
The first argument to this function represents the position of the mouse pointer when the left
mouse button was pressed. However, this function is not an event handler. To turn it into
an event handler, we can use a coercion function such as:

handlelButtonDown :: (Vector -> I0 ()) -> Event -> I0 ()

This function manages the unpacking of information from an event, and passes the unpacked
information toits first argument to handle the event. Now the programmer can handle a single
event in a structured fashion by using a combination of such functions, for example:

myEventHandler :: Event -> I0 ()
myEventHandler = handlelLButtonDown processLButtonDown

The coercion functions are provided as a library for use by the programmer (Appendix B.2.2),
allowing the programmer to write functions describing the behaviour of their application
without being concerned about the packing of event information into the event data type.

13

2.5 Building Event Handlers

An application may, in general, be interested in many different types of events, giving different
behaviour in each case. Such behaviour could be created by using combinators to combine
event processing functions. One of the disadvantages of using combinators is the difficulty of
expressing the deletion of a behaviour; the usual solution is to use a combinator to compose
a function that overrides the existing behaviour. When specifying the initial behaviour of a
GUI combinators suffice, but the behaviour of a GUI may change as the application executes.
Combinators do not seem to be particularly natural to express this change in behaviour, as
it is not often that the response to an event is incremently changed, instead it is usually just
replaced entirely. For this reason, the Embracing Windows framework uses a datatype to
represent behaviour, as replacing existing behaviour is simply a matter of replacing one value
of the datatype with a different value.

Since events are associated with a particular window, we may also want different behaviour
for different windows. We can model this by using a table whose entries specify the behaviour
for specific windows. The behaviour of a specific window can also be modelled by a table
whose entries determine the responses to specific events. A desirable property is for the
behaviour of an application to be able to be altered in response to events.

2.5.1 The GUI Monad

The tables required to specify the behaviour of an application can be implemented function-
ally. However, this requires that the state be passed explicitly to all functions that may access
or modify the state. To avoid having to plumb the state through the system, we can hide
the details by using a monad. The monad must be an extension of the I0 monad so that we
can still make use of the monadic primitives from Figure 2.2. Extending the I0 monad with
state transformer capabilities allows us to make the plumbing of the state implicit. However,
it was originally thought that using the well known formulation of state transformers, s ->
(s, a), would complicate the event loop primitives. An alternative to using the standard
formulation of state transformers is to use an I0 monad with state reader capabilities, where
the state is stored in a mutable variable, Ref s -> I0 a. An interesting question is whether
such a monad is equivalent to the conventional state transformer monad; intuitively, at least,
it seems that these two approaches should be equivalent.

Mutable variables provide a mechanism to mutate state in such a way that the changes
can be implemented by updating the state in-place. A mutable variable has a type Ref a,
and is a reference to a piece of state containing a value of type a. The state contains a
mapping from references to values. Operations on mutable variables are allocation, reading,
and writing:

newRef :: a -> I0 (Ref a)
getRef :: Ref a -> 10 a
setRef :: Ref a -> a -> I0 ()

The mutable variables used here are embedded in the I0 monad, so that they can be used
in the context of the primitive window functions such as createShellWindow. The function
newRef takes an initial value and returns an action that creates a new reference, bound to
the initial value, and that returns the reference as its result. Given a reference v, getRef v
is an action that performs no side-effects, but uses the state to map the reference to its value.
The function setRef is an action that modifies the state so that it maps the reference to a

14

class Monad m => MutVars m where
newRef :: a -> m (Ref a)
getRef :: Ref a -> m a
setRef :: Ref a -=> a -> m ()

Figure 2.4: Mutable variable primitives

new value. It is useful to create a type class encapsulating the operations that characterise
mutable variables. This allows the same name to be used for the operations independent of the
particular monad they are being used in. The type class can be seen in Figure 2.4. An instance
of this type class for the I0 monad is implemented using the built-in primitives for mutable
variables in the Hugs system (the instance declaration is shown in full in Appendix B.1.7).

The Embracing Windows framework captures the behaviour of an application as the state
in a state reader monad. This state stores a reference to the tables that specify the responses
of the application to particular events:

type GUIState = WindowTable
type GUIStateVar = Ref GUIState

newtype GUI a = GUI (GUIStateVar -> I0 a)

Appropriate unitGUI and bindGUI functions can be defined, and used to define GUI as an
instance of the Monad type class. Instances of the EventSystem, WindowSystem and MutVars
type classes can also be defined by using the 1iftGUI function that lifts an operation from
the I0 monad to the GUI monad:

1iftGUI :: I0 a -> GUI a
1iftGUI a = GUI (_ -> a)

instance EventSystem GUI where
eventLoop handler = 1iftGUI (eventLoop handler)

instance WindowSystem GUI where
createShellWindow title = 1iftGUI (createShellWindow title)

instance MutVars GUI where
newRef init = 1iftGUI (newRef init)

The entire instance declarations for the EventSystem and WindowSystem type classes can be
seen in Appendix B.2.4, and for the MutVars type class in Appendix B.2.1.

An application is composed of three main steps, firstly the state for the GUI monad must
be initialised to specify default behaviour that will be provided by the windowing system.
Secondly, the interface for the application must be created along with the specific behaviour

15

of the interface components. Finally, the event loop is started allowing events to be received
and processed according to the behaviour specified by the previous steps. These steps are
modelled by the startProg function:

startProg :: GUI a -> I0 ()

startProg w = do st <- newVar initGUIState
startingWithGUI st w
eventLoop (mainHandler st)

The interface is specified by the argument to the startProg function, and is used to create
graphical components and add entries specifying their behaviour to the state encapsulated
by the GUI monad. The initGUIState function returns an initial value for this state which
defers all behaviour to the windowing system. The mainHandler function takes a reference
to the state encapsulated in the GUI monad so that the response to an event for a particular
window can be determined. The event handler determining the response is retrieved from the
tables which form this state, by looking up the appropriate window and event type. This is
performed by the processEvent function (see Section 2.5.2 for details of the lookupHandler
function), which also passes the event to the retrieved event handler for processing:

mainHandler :: GUIStateVar -> Event -> IO0 ()
mainHandler st event = startingWithGUI st (processEvent event)

processEvent :: Event -> GUI ()
processEvent event = do handler <- lookupHandler event
handler event

Using the GUI monad, event handlers can be built as functions returning values of type GUI ()
rather than type I0 (), thus allowing the event handlers to modify the tables describing the
behaviour of the application. The family of coercion functions, such as handleLButtonDown
need to be changed to work in the GUI monad:

type EventHandler = Event -> GUI ()

handlelButtonDown :: (Vector -> GUI ()) -> EventHandler

2.5.2 The GUI State

The behaviour of an application is stored in a table, indexed by values of type Window. This
allows differing behaviours to be specified for each window. The entries in the table are tables
themselves, indexed by the type EventType, with entries that are event handlers describing
the actual responses:

Table Window EventHandlers
Table EventType EventHandler

type WindowTable
type EventHandlers

We would like to use event processing functions, such as processLButtonDown as the entries
in tables of type EventHandlers. However, different event processing functions have different
types because the information they unpack from the event depends entirely upon the type
of the event. By using functions like handlelLButtonDown we can turn the event processing
functions into event handlers which have one type and so can be used as entries in tables
of type EventHandlers. We will, of course, need mechanisms to lookup and remove entries
from such a table, for example:

16

main :: I0 O
main = startProg simple

gimple :: GUI ()

simple = do window <- createShellWindow "Simple"
showWindow True window
addHandler window LButtonDown (ldown window)
addHandler window Key (keydown window)

ldown :: Window -> Event -> GUI ()

ldown window _ = setWindowCaption window "Left mouse button pressed"
keydown :: Window -> Event -> GUI ()

keydown window _ = do removeHandler window LButtonDown

setWindowCaption window "Key pressed"

Figure 2.5: A simple application illustrating event handling

addHandler :: Window -> EventType -> EventHandler -> GUI ()
removeHandler :: Window -> EventType -> GUI ()
lookupHandler :: Event -> GUI EventHandler

The addHandler function takes a window, an event type and a handler for these types of
events, and modifies the state encapsulated by the GUI monad to include the new event
handler. The removeHandler function takes a window and an event type, and modifies the
state encapsulated by the GUI monad to remove the event handler for the specified event type.
The lookupHandler function can be used to obtain the appropriate event handler for a given
event passed to it as its argument. If no event handler exists for the event, then a reasonable
course of action is to return the default event handler.

2.5.3 A Simple Event Handler

Figure 2.5 shows an example of using these functions to set up responses to particular events
that alter the title text of a window when either the mouse is pressed or a key is pressed. When
the mouse is pressed, this application changes the title text of the main window, however if
a key is pressed then the title text is changed to reflect this and also the response to mouse
clicks is changed so that nothing happens. This example illustrates how applications can
handle multiple types of events, and also how the responses to these events can be changed
as a program executes.

2.5.4 A Better Interface

Event handlers may modify the behaviour of the application through the use of the addHandler,
and removeHandler functions. A slightly easier interface for the programmer can be con-
structed by defining specialised functions for defining the behaviour of an application in
response to particular events. For example, to specify the behaviour required when the left
mouse button is pressed down we can use the following function:

17

class WindowSystem m => DrawingSystem m where
lineTo :: Point -> m ()
moveTo :: Point -> m ()
selectObject :: Object -> m Object
deleteObject :: Object -> m Bool
drawText :: Point -> String -> m ()
createPen :: Int -> Colour -> m Object

Figure 2.6: Drawing primitives

onLButtonDown :: Window -> (Vector -> GUI ()) -> GUI ()
onLButtonDown window handler
= addHandler window LButtonDown (handlelLButtonDown handler)

Functions can be defined for other types of events in a similar manner. The other functions
are shown in Appendix B.3.2, which also illustrates that in practice the argument of the
handler function will expect more arguments than just a Vector. The arguments to the
handler function depend upon the particular event.

2.6 Drawing Graphics

2.6.1 Graphic Primitives

Just as we introduced primitives for supporting event loops and basic window operations, we
introduce appropriate primitives for drawing in windows. The primitives can be characterised
by a type class that abstracts away from the monad the primitives are originally implemented
in, similarly to the EventSystem and WindowSystem type classes. In the Embracing Windows
framework, we opt to support only a handful of the possible operations that a windowing
system supports for drawing graphics, and define the DrawingSystem type class to encapsulate
them (Figure 2.6).

Instead of defining an instance of this type class for the I0 monad, as we did for the
EventSystem and WindowSystem type classes, we need to define a new monad, the Draw
monad. The primitive drawing operations require a device context parameter not evident in
the methods of the DrawingSystem type class, and this is exactly what will be supplied by
the Draw monad. This method has been used in a declarative toolkit for programming GUIs
using the ML language [19].

2.6.2 The Draw Monad

The process of drawing graphics in a window involves obtaining a device context, which
encapsulates the environment for the drawing, such as the current colour, pen size and pen
shape. It is cumbersome to have to obtain a device context before drawing, and furthermore
the device context has to be passed to all of the primitive drawing operations. This can be
avoided by using the same technique used to hide the details of the state storing the behaviour
for events in the GUI monad. We can define a drawing monad, Draw, that hides the device

18

context being used. Since the drawing operations never directly modify the device context
the type of monad we require is a state reader monad:

newtype Draw a = Draw (DC -> GUI a)

instance Monad Draw where
return x = Draw (\dc -> return x)
Draw g >>= f = Draw (\dc -> do a <- g dc
let Draw h = f a
h dc)

The Draw monad supports operations that require a device context and that operate in the
GUI monad. An operation in the I0 monad can easily be handled by using the lifting func-
tion for the GUI monad, 11ftGUI. We are now in a position to declare an instance of the
DrawingSystem type class for the Draw monad which will hide all of the details of device
contexts. For each of the methods in the DrawingSystem type class we provide an implemen-
tation in terms of the appropriate primitive functions lifted from the I0 monad to the GUI
monad:

instance DrawingSystem Draw where
lineTo (x, y) = Draw (\dc -> lift (primLineTo dc x y))

The entire instance declaration can be seen in Appendix B.3.4. The Draw monad hides the
details of the device context, but does not yet allow us to make use of this. We need a
function that supplies the initial device context, equivalent to the value of the world supplied
to a program written using the I0 monad by executing the program:

startingWithDC :: DC -> Draw a -> GUI a
startingWithDC dc (Draw d) = d dc

An application can draw in a window by simply obtaining an appropriate device context
and then supplying this to the startingWithDC function along with a value of type Draw a
describing the drawing to take place. For arbitrary drawing, we define the drawInWindow
function which takes a reference to the window to draw inside of as its first argument. Its
second argument defines the drawing to be undertaken, while its result is the corresponding
value of type GUI a that will perform the drawing;:

drawInWindow :: Window -> Draw a -> GUI a

The majority of windowing systems support the notion of a paint event, this is a special event
issued by the windowing system when the contents of a window needs to be redrawn to keep
the screen up to date. In the Embracing Windows system, we supply the following function
that eases the task of writing code to respond to paint events:

onPaint :: Window -> (Window -> Draw ()) -> GUI ()

In response to a paint event, the onPaint function invokes its second argument to repaint
the necessary window. The second argument defines the contents of a window as a function
taking a reference to the window itself to a value of type Draw (). This latter value defines
the graphical content of the window.

A simple example of an application that draws a square with some text in the middle of it is
listed in Figure 2.7. The mkWindow function creates a window that when closed will shut down
the application by ending the event loop, its implementation uses the createShellWindow
function and can be seen in Appendix B.3.2.

19

main :: I0 ()
main = startProg app

app :: GUI O

app = do window <- mkWindow "Simple GUI"
showWindow True window
onPaint window paintWin

D intiin window - do draveqire
paintWin window = do drawsquare !SIII'IFllE GUI !E.

drawText (20, 40) "Hello!"

drawsquare :: Draw ()
drawsquare = do moveTo (10, 10) Hello!
lineTo (100, 10)
lineTo (100, 100)
lineTo (10, 100)
lineTo (10, 10)

Figure 2.7: A simple drawing application

2.7 Controls

Common user interface components such as text labels, editable text fields, and push buttons
are built-in to most windowing systems. In the majority of the existing windowing system
interfaces for functional languages, these built-in components are eschewed in favour of build-
ing custom alternatives from scratch, instead the Embracing Windows framework provides
an interface to such components. The main reason for ignoring built-in components is that
the interface they provide is not usually orthogonal enough to integrate into a functional
GUI development system. The building of components from scratch is also seen as a test
of the expressiveness of a GUI development system. From a pragmatic viewpoint this has
two disadvantages, firstly the components built from scratch are likely to differ slightly from
their built-in counterparts and result in a non-standard look-and-feel. Secondly, the com-
ponents built from scratch are likely to be less efficient than built-in components. Built-in
components are often referred to as controls, and are windows with particular, predefined
behaviour. In this report we only consider three kinds of controls, text labels, editable text
fields, and push buttons, as the main principles can be illustrated with just these controls,
although Windows 95 has many others.

Controls often have certain properties and behaviours in common. For example, all con-
trols have some text associated with them such as the text of a button, label or edit field. Such
commonalities between controls can be captured by using type classes. A general type class
supporting operations for altering and retrieving the text of a control, and also for altering
and retrieving information regarding the size of a control is defined as:

class Control a where
setText :: a -> String -> GUI ()
getText :: a -> GUI String

20

setSize :: a -> Rect -> GUI ()
getSize :: a -> GUI Rect

We provide an instance of this class for each kind of control, specifying the behaviour for
the four operations as appropriate in each case. The instance declarations are shown in
Appendix B.3.3.

2.7.1 Text Labels

A simple example of a control is a text label. The operations defined in the Control class are
exactly the operations we require for a text label. By defining a data type and appropriate
instance of the Control class, we can characterise text labels as controls:

data TextLabel = ...

instance Control TextLabel where

This allows us to manipulate text labels, but not to construct them. An appropriate con-
struction function is required that will create an instance of the control built-in to the window
system and return a handle that can be used to manipulate the control. The handle can be
hidden from the programmer by encapsulating it inside of the TextLabel data type:

mkTextLabel :: String -> Window -> Rect -> GUI TextLabel

The first argument specifies the initial text of the text label, while the second and third
arguments specify the window the text label is to be displayed in, and its position in this
window. By using the setText and getText methods of the Control type class, we can now
alter and retrieve the text of a text label control.

The internal operation of the control construction function, and the type class operations is
specific to the windowing system being used. Section 2.9.2 gives details on an implementation
for the Windows 95 system.

2.7.2 Edit Fields

Edit fields can be characterised as controls in the same way as text labels. There are some
extra operations that edit fields support as well as the ones from the Control type class.
Any editable control supports two operations, the first specifying the behaviour of the control
when its content has been changed, the second specifying the behaviour when the content of
the control is committed. For an edit field, the content changes whenever the user edits the
text in the edit field. The content is considered to be committed when the user presses the
return key. The semantics for committing the content of a control depends upon the type of
the control. For example, a listbox may commit its current selection when the input focus
is switched away from the control, but a group of radio buttons may commit whenever the
selected button is changed. In a similar method to capturing the basic operations for all
controls in the Control type class, we can capture the notion of change and commit in a type
class:

class Control a => Editable a where
onChange :: a -> GUI () -> GUI ()
onCommit :: a -> GUI () -> GUI (O

21

The first parameter to the onChange and onCommit functions determines the control to specify
behaviour for, while the second parameter specifies the behaviour.

We can now define a data type for edit fields, with suitable instances of the Control and
Editable type classes, and also a construction function:

data EditField = ...

instance Control EditField where

instance Editable EditField where

mkEditField :: String -> Window -> Rect -> GUI EditField

Editable controls maintain state, and common operations on this state will be to retrieve
it, and to modify it. We can define functions for these operations, however their types depend
not only upon the type of the control being manipulated but also upon the type of the state.
To model this we would need to use a multiple parameter type class. The extended definition
of the Editable type class would be:

class Control a => Editable a s where
onChange :: a -> GUI () -> GUI ()
onCommit :: a -> GUI () -> GUI ()
setState :: a -> s -> GUI ()
getState :: a -> GUI s

Haskell 1.3 does not support multiple parameter type classes so we must be content to im-
plement the setState and getState operations on a case by case basis for each type of
control.

2.7.3 Buttons

Most windowing systems support a variety of buttons, such as push buttons, radio buttons,
and check boxes. All of these types of button maintain a current state, which is editable by
the user interacting with the button. Buttons are editable controls and, as such, we need only
define an appropriate data type for each type of button and supply instances of the Control
and Editable type classes. For a simple pushbutton that is used to acknowledge an action, a
single state button, then the onChange function can be used to specify the behaviour resulting
from the single action of pushing the button:

data PushButton =
instance Control PushButton where

instance Editable PushButton where

mkPushButton :: Window -> String -> Rect -> GUI PushButton

22

main :: I0 O
main = startProg counter

counter :: GUI ()

counter = do window <- mkWindow "Counter"
display <- mkTextLabel window '"0'" display_rect
button <- mkPushButton window "Increment'" button_rect
onChange button (increment display button 0)
showWindow True window

increment :: TextLabel -> PushButton -> Int -> GUI ()
increment display button count
= let count’ = count + 1
in do setText display (show count’)
onChange button (increment display button count’)

display_rect = ((0, 0), (100, 30)) :: Rect
button_rect ((0, 35), (100, 30)) :: Rect

i Counter M=l B3

0

Increment |

Figure 2.8: The counter application

2.8 The Counter Program

A common example used to illustrate how to build a simple GUI is the counter program. This
program has a button labelled “Increment” and a text field that displays a number. When
the user presses the button, the value displayed in the text field is incremented by one. Using
the mechanisms described in the previous sections, we can implement a counter application,
using the definitions in Figure 2.8.

The application consists of three functions:

e main makes use of the startProg function to create the application’s main window,
graphical components and start the event loop.

e counter creates the graphical components of the application: the display and the push
button. It also sets the behaviour of the push button when pressed to be specified by
the increment function.

e increment handles the event of pushing the button, it takes the current counter value
as its third argument and increments it to get the new counter value. The text of the
display is updated with the new value, and finally the behaviour of the button is altered
to reflect the new counter value.

23

The two auxiliary functions, display_rect and button_rect specify the position and size
of the display and push button with respect to their containing window. The state required
by this application, that is the value of the counter, is stored in the actual event handler
itself. The ability to dynamically manipulate the event handlers specifying the application’s
behaviour is illustrated here. If we could not update the event handler determining the
response to button presses, then we would have to store the state using a different mechanism.

2.9 Implementation Details

2.9.1 Events

The Embracing Windows framework interfaces to Windows 95, in which an event is defined
as a 4-tuple, with access functions to the components of the tuple defined in the obvious
way:

type Message Int

type Event = (Window, Message, Int, Int)

getWindow :: Event -> Window

getMessage :: Event -> Message

getWParam :: Event -> Int -- 3rd component of tuple
getLParam :: Event -> Int -- 4th component of tuple

The first component of this 4-tuple is a reference to the window that the event is associated
with, the second component specifies the type of the event, such as a mouse click. The last
two components contain extra information specific to the type of the event.

The types of events are defined by the EventType datatype, which has a number of data
constructors, one for each different type of event. The getEventType function converts a
value of type Event into one of type EventType by examining the second component of the
4-tuple comprising the event. The details of the EventType datatype and the getEventType
function can be seen in Appendix B.2.3.

2.9.2 Controls

A first attempt to provide an interface to controls might be to add a more general window
creation primitive that takes an extra argument determining the type of the window to be
created. This could then be used as the basis of a number of different functions that create
specific types of controls, such as a button:

createButton :: Window -> String -> Rect -> I0 Window
createButton parent title rect = mkControl "button' parent title rect

The mkControl primitive creates a new control of a specific type. The first argument deter-
mines the type of the control, e.g. "button", "edit", "static", whilst the second argument
specifies the parent window for the control. The remaining arguments detail the text asso-
ciated with the control, and its size and position. However, controls also need to be able to
communicate events to the application. For example, when a button is pressed, the appli-
cation might want to respond in a particular way. In Windows 95, a control belongs to the
window it is displayed inside of, the parent window. Any events that the control wishes to
communicate to the application are sent as notification events to the parent of the control.

24

Unfortunately, this means that a parent window must know about all of its contained con-
trols so that it can respond appropriately when it receives notification of an event from one
of them. It is quite common for the control itself to be able to handle the response, and this
can be achieved by wrapping a control inside a transparent parent window that is exactly
the same size as the control. This wrapped control is the component that is used in a GUI
application. When a control receives an event, this will be communicated to the transparent
parent window which processes the event easily as it knows that it can only have come from
one control. A generic primitive for creating transparent parent windows, mkChildWindow,
can be used to encode these wrapped controls within the functional language. The previous
example for creating a button control now becomes:

mkPushButton :: Window -> String -> Rect -> GUI Window

mkPushButton parent text rect = do window <- mkChildWindow parent rect
button <- createButton window text rect
return (PushButton window button)

The mkChildWindow function creates a new window that is a child of the window specified by
its first argument. The second argument determines the size of the child window. The other
control creation functions, mkEdit and mkLabel can be defined in a similar fashion, and are
shown in Appendix B.3.3.

25

Chapter 3

Widgets

Using the framework described in Chapter 2, we can implement an abstract interface for
building GUI’s. This interface has similarities to both the Haggis System [6] and the Tk-
Gofer System [25]. The main concept in this interface is the widget, which is a description
of a graphical object with a specific behaviour and appearance. Widgets can be composed to
create other widgets using combinators. A library of predefined widgets provides support for
text labels, edit fields and buttons.

3.1 The Representation of Widgets

A widget is represented as a monadic value, thus allowing the return and >>= operations of
the monad to be used to combine widgets. A widget is just a description of how to create
a graphical component with specific behaviour and layout. The monad used to represent
widgets is defined as':

newtype Widget a = Widget (Window -> GUI a)

thenW :: Widget a -> (a -> Widget b) -> Widget b
m ‘thenW® f = Widget (\window -> do let Widget m’ = m
r <- m’ window
let Widget n’ = f r
r’ <- n’ window
return r’)

returnW :: a -> Widget a
returnW x = Widget (\window -> return x)

The data constructor Widget takes a value of type Window -> GUI a as its argument, and
this value can be thought of as the widget’s realization function. It takes an argument
identifying the window in which the widget is to be realized, and creates the widget, returning
an appropriate value such as a handle that can be used to further manipulate the widget. A
program written using widgets makes use of the function wopen which realizes a widget in a
top level window. The implementation of wopen can be seen in Appendix B.4.1, and its type
is:

!The definition in Appendix B.4.1 also takes layout into account

26

wopen :: String -> Widget a -> GUI Window

wopen creates a new top level window with a title specified by its first parameter, and the
widget described by the second parameter is realized inside this window. A reference to the
new top level window is returned as the result of the whole action.

3.2 A Library of Widgets

In the current implementation of the Embracing Windows system, there are three predefined
widgets provided. Button widgets are created using buttonW, with arguments that specify
the text of the button, size of the button, and a value of type GUI () specifying the action
to be performed when the button is pressed. Similarly, edit fields can be created using the
editW function with arguments specifying the initial text and size of the edit field. The value
returned by an edit field can be used to retrieve the text of the edit field using the getText
function of the Control type class. Text labels can be created using the textW function with
arguments specifying the text and size of the label:

buttonW :: String -> Vector -> GUI () -> Widget PushButton
editW :: String -> Vector -> Widget EditField
textW :: String -> Vector -> Widget TextLabel

3.3 Composite Widgets

The monadic operations return and >>= form a basis for building composite widgets. The do
notation described in Section 1.2 can be used to make the syntax used in defining composite
widgets clearer and more concise. A composite widget that combines a label with an editable
text field can be defined as:

labelledEditW :: String -> Widget EditField
labelledEditW label = do textW label (100, 30)
editW """ (100, 30)

This widget illustrates a useful abstraction, gluing a text label to an arbitrary widget. Because
we are using a higher order functional language, it is easy to define a combinator capturing
this abstraction:

labelW :: String -> Widget a -> Widget a
labelW label widget = do textW label (100, 30)
widget

Unfortunately the size of the text label widget must be explicitly stated, and this makes the
abstraction less useful. However, it is an easy extension of the layout system to incorporate
automatic sizing of library widgets, such as text labels, based on the content of the widget.
If this extension is made then the 1abelW abstraction becomes more useful.

3.4 Layout of Widgets

The monadic widget combinators only specify the behavioural composition of widgets. The
relative layout of widgets is specified separately from the behavioural composition by using

27

primitives based on TEX’s [12] layout mechanism. Two layout primitives are provided, hbox
and vbox, with which the layout of widgets can be specified (or with which other layout
combinators can be built). When widgets are combined using do notation, one can think of
the widgets as being piled on top of each other. The hbox layout combinator pulls these piled
widgets out to form a horizontal row of widgets, while vbox pulls the piled widgets out to
form a vertical column of widgets. If no layout combinator is used then the z-order of widgets
piled on top of each other is determined by the order in which the widgets were combined
by the use of the do notation. The basic primitives for specifying layout are essentially the
same as those provided in the Haggis system. The Embracing Windows framework supports
a simple form of TEX’s notion of glue, called space widgets. A space widget occupies screen
space but has no behaviour:

hspace :: Int -> Widget ()
vspace :: Int -> Widget ()

The argument to these functions determines the amount of space that the widgets will take
up, and is specified in pixels. A possible improvement would be to use a form of device
independent units.

Using these functions, we can define new layout combinators for putting margins around
widgets. Placing a margin to the left and right of a widget leads to an hmargin layout
combinator:

hmargin :: Int -> Widget a -> Widget a

hmargin margin_width widget = hbox (do hspace margin_width
result <- widget
hspace margin_width
return result)

Here we can see how a composite widget is built, by combining a space widget, the real
widget, and another space widget. These three widgets are layed out horizontally using the
hbox layout combinator. A similar function, vmargin :: Int -> Widget a -> Widget a,
lays out a widget with a margin above and below it. By combining these two layout functions,
a third layout combinator, margin can be created that puts a margin all the way around a
widget:

margin :: Int -> Widget a -> Widget a

margin width = hmargin width . vmargin width
Revisiting the labelled text widget example described in Section 3.3, we can include, in the

combinator definition, the use of a layout combinator to constrain the label to be placed at
the left of the widget, with a space between the label and the widget:

improvedLabelW :: String -> Widget a -> Widget a
improvedLabelW label widget = hbox (do textW label (100, 30)
hspace 30
widget)

Currently the layout system requires that the size of library widgets is specified explicitly
rather than inferred in some way. For example, a text label’s initial size can be determined
from the length of the text initially displayed. However, this was not implemented in the
Embracing Windows framework so as not to complicate the system. A disadvantage of this
is that it makes widgets less reusable, as explicit sizes have to be encoded in the definitions.

28

3.4.1 Implementation of Layout

The implementation of the layout of widgets involves two main steps:

e Fach widget has associated with it a preferred size and this information is passed to
the containing widget, which may be specified by one of the layout primitives. The
containing widget uses this information to determine the size it would like, and this
is again passed up the hierarchy of widgets. Eventually the root widget is reached at
which point the requested size of all widgets has been collated to form an overall request
for the application.

e The application may well have been allocated a set amount of screen space, and this
may not match the requested size of the root widget. The actual space available is
passed to the root widget, which partitions it out between its child widgets according to
the space they have each requested. This process continues, with the available size for
widgets propagating back down the widget hierarchy. Eventually, a widget that has no
children will be reached, and this is the point at which any change in size of the widget
will occur.

This process is implemented by modifying the representation of widgets to include screen space
requests, and also functions to realize a change in size of a widget. The widget composition
combinators pass screen space requests up the hierarchy by combining the many requests of
their children to form their own request. When a widget is realized in a window, then the
requested size is used to set the initial size of the new window. The appropriate sizing of
widgets is accomplished by using sizing functions belonging to each widget in the hierarchy
of widgets. The widget composition combinators form their own sizing functions from logic
determining how to split their allocated space amongst their children and the sizing functions
of the children themselves. When a widget is resized, the actual size allocated to the widget
is propagated down the widget hierarchy through the sizing functions.

This mechanism is further complicated by widgets that are willing to accept changes in
their size, thus making the logic that splits up allocated space between widgets more involved.
Basically, if a widget can change in size, then its size will be changed in preference to a widget
that has asked for a fixed amount of screen space. The details of the algorithms used for layout
can be seen in Appendix B.4.2.

3.5 Stateful Widgets

We are using widgets to model objects in a graphical user interface, and quite often such
objects will require state. Mutable variables can be used to give widgets access to state, but,
if not used carefully, widgets can become hard to reuse. A widget version of the counter
application can be built using a mutable variable to store the current value of the counter, as
shown in Figure 3.1. The mutable variable is created by the stateW function, which is a lifting
of the standard newRef function into the Widget monad. stateW creates a stateful widget
that has no on screen representation or behaviour, but when created returns a reference to a
piece of mutable state. Notice that the state required by the counter is entirely encapsulated
inside of the counter widget by the use of the stateW function.

A common use of the stateW function is to create a piece of state to store the contents of
a text field, and this can be abstracted out into a stateful text field:

29

main :: I0 ()
main = startProg w
where w = do wopen "Counter" (counter 0)
return ()

counter :: Int -> Widget PushButton
counter init
= vbox (do st <- stateW init
display <- textW (show init) display_size
buttonW "Increment" button_size (handler display st))

handler :: TextLabel -> Ref Int -> GUI ()
handler display st = do count <- getRef st
let count’ = count + 1

setRef st count’
setText display (show count’)

(100, 30) :: Size
(100, 30) :: Size

display_size
button_size

Figure 3.1: A Widgets counter

stateTextW :: Show a => Size -> a ->
Widget (TextLabel, ((a -> a) -> GUI ()))
stateTextW size init
= do st <- stateW init
label <- textW (show init) size
let update £ = do v <- getRef st
let v’ = f v
setRef st v’
setText label (show v’)
return (label, update)

The stateTextW function returns an action whose result is a pair of values, the first of which
can be used in operations on the label, while the second is a function that can be used to alter
the state of the label. The stateful text field can be reused easily, and the improved counter
program is listed in Figure 3.2.

The main advantage of this program over the one in Section 2.8 is compositionality. It
allows the counter application to be constructed as a single widget that could easily be used
in other applications by using the widget combinators >>= and return. Also the automatic
layout support simplifies the physical description of the GUI, with only the width and height
of widgets needing to be specified.

3.6 Comparison to Haggis

The syntax for writing Widget programs is very similar to that used by Haggis but, unlike
Haggis, the Widget system does not make any use of concurrency. To illustrate the differ-
ence that concurrency makes to specifying GUIs, we present a Haggis counter application

30

main :: I0 ()
main = startProg w
where w = do wopen "Counter" (counter 0)
return ()

counter :: Int -> Widget PushButton
counter init
= vbox (do (display, update) <- stateTextW display_size 0
buttonW "Increment" button_size (update (+1)))

(100, 30) :: Size
(100, 30) :: Size

display_size
button_size

Figure 3.2: An Improved Widgets counter

main :: I0 Q)
main = do env <- mkDC ["#title:Counter"]
(1bl, 1bl_dh) <- label "0" env
(btn, button_dh) <- button (text "Increment") (+1) env
forkI0 (handler O btn 1bl)
realiseDH env (vbox [1bl_dh, button_dh])

handler :: Int -> Button (Int -> Int) -> Label -> I0 ()
handler n btn 1bl = do f <- getButtonClick btn

let n” = fn

in setlLabel 1bl (show n’)

handler n’ btn 1bl

Figure 3.3: A Haggis counter

(Figure 3.3) and contrast it with the Widget version.

We will not explain all of the functions used in the Haggis counter application, but refer
the interested reader to the documentation included in the Haggis system [5]. The Widget
and Haggis counters both consist of a combination of a text field and a button. The Haggis
counter does not specify the behaviour of the button using a function that is called in response
to user input. Instead, a separate thread of control is started using the forkI0 function. This
separate thread waits for the button to be pressed and then applies the integer modifying
function emitted by the button to the current value of the counter. The text label is altered
to show this new value, and finally we return to the beginning of the handler function to wait
again for another button press. The handler function for Haggis is similar to the handler
function for Widgets, except that, in the widget program, we don’t need to explicitly wait
for a button press. Instead, in the widget program we specify the behaviour required when a
button press event occurs by the use of a function from the type of an event to the type of
an I/0 action (in this case the type is GUI ()). Similarly, when we have processed a button
press, instead of direct recursion we return to the event loop to await the next event.

31

The addition of concurrency in the Haggis program frees the programmer from having to
deal with the event loop. However, in our example, we have written a mini event loop that
polls for button presses. In general, the Haggis programmer may end up writing a number of
smaller more specific event loops. An application whose responses to events changes as the
program executes will be better suited to the Haggis system. For example, an application
that has two buttons which, when pressed in a particular sequence, quit the program, requires
the code describing the behaviour of the application to be split up into two handlers:

main :: I0 O
main = startProg w
where w = do wopen "Test'" testW
return ()

testW :: Widget PushButton
testW = vbox (do one <- buttonW "One" button_size (return ())
buttonW "Two" button_size (onChange one quitapp)

button_size = (100, 30) :: Size

Initially, pressing the first button has no effect, however, pressing the second button changes
the behaviour of the first button such that when it is pressed the application will be shut
down.

In the Haggis system, we do not need to split up the description of the application’s
behaviour, instead it can be described as one piece of code:

main :: I0 Q)

main = do env <- mkDC ["*title:Test'"]
(one, one_dh) <- button (text "One") () env
(two, two_dh) <- button (text "Two") () env
forkI0 (handler one two 1bl)
realiseDH env (vbox [one_dh, two_dh])

handler :: Button () -> Button () -> I0 ()

handler one two = do getButtonClick two
getButtonClick one
shutdownShop

The handler function waits until the button labelled “Two” is pressed, and then continues by
waiting until the button labelled “One” is pressed. Once this has happened, the application
is shut down. If we had a large number of buttons that had to be pressed in a particular
sequence then it would be cumbersome to express this in the Widget system, however it would
be relatively easy to express in the Haggis system.

If the behaviour for each of the buttons is independent then the program written in
the Widget system would be very similar to the program written in the Haggis system.
Both programs would create two buttons, and have two separate functions specifying the
behaviour of the buttons independently. In the Haggis version, two threads of control would
be concurrently forked that wait for button presses and perform the appropriate behaviour,
whilst in the Widget version, two handler functions specify the behaviour of the buttons and
are called in response to user input.

32

Chapter 4

Fudgets

4.1 Overview of Fudgets

The Fudgets system [9] is a well established toolkit for building GUI applications in the
functional language Haskell. It uses an abstraction, the fudget, to describe a self contained
GUI component.

A fudget is built on top of the concept of a stream processor. A stream processor is a
process with one input stream and one output stream. The type of a stream processor that
inputs values of type a and outputs values of type b is written as SP a b. Stream processors
are built from three basic stream processors using a continuation passing style. The basic
stream processors are:

getSP :: (a -> SP ab) ->SP ab
putSP :: a -> SP b a ->SP b a
nullSP :: SP a b

The getSP stream processor retrieves a value from the input stream and processes it using
the first argument to getSP, transforming itself into a new stream processor. Similarly, putSP
outputs the value indicated by its first argument on the output stream and turns into the
stream processor specified by its second argument. The nullSP stream processor terminates
immediately ignoring any values on its input stream and producing no values on its output
stream.

A simple example of a stream processor is the mapAccumlSP function, which creates a
stream processor with an internal state. The first parameter to this function specifies a state
modifying function, that changes the state given the value on the stream processor’s input
stream. This state modifying function also generates the values emitted on the output stream.
This stream processor can be written in terms of the basic stream processors as:

mapAccumlSP it (8 ->Db > (s, c)) ->s->SPbc
mapAccumlSP f state = getSP § \input ->
let (state’, output) = f state input
in putSP output (mapAccumlSP f state’)

A fudget is just a stream processor that can communicate with the windowing system.
Fudgets can be combined using combinators that specify how the single input and output
streams of fudgets are connected together. These combinators are, >==<, >*< and >+< which
compose fudgets in series, and in parallel (either untagged or tagged), respectively. The
behaviour of these combinators is defined as follows:

33

e >==<, composes two fudgets serially with the output from the first fudget sent to the
input of the second:

>>=< :: Fab->Fca->Fchb
fl >==<f2

e >*<, composes two fudgets in parallel. The input values are routed to both fudgets, and
the output values are merged to form the output stream:

>< :: Fab->Fab->Fab

untagged untagged

f1>*<f2

e >+<, composes two fudgets in parallel. The input values are expected to be tagged
indicating to which fudget the value is to be routed. Similarly, the output values are
tagged indicating which fudget they came from:

>#< :: Fab->Fcd->F (Either a c) (Either b d)

fl>+<f2

The counter example can be expressed with fudgets using the code in Figure 4.1, which is
a simpler version of the SmallCounter.hs example from the original fudgets distribution [3].
The fudlogue function takes the main application fudget as its argument and turns it into
the appropriate type for the Haskell I/O system. A fudget is realized in a top level or shell
window using the shellF function. This function takes two arguments, the first is a string
specifying the title for the shell window, and the second is the fudget to be realized inside the
shell window. In this example, the counterF fudget combines three separate fudgets using
the series combinator, m >==< n. The intDispF fudget creates an integer display, while the

34

main :: I0 Q)

main = fudlogue (shellF "Counter" counterF)
counterF :: F a Click
counterF = intDispF >==<

absF countSP >==<

buttonF "Increment"

countSP :: SP click Int
countSP = mapAccumlSP inc 0
where incn _ = (n+ 1, n + 1)

Figure 4.1: A Fudget counter

buttonF fudget creates a labelled button. The fudget connecting the button to the integer
display is an abstract fudget; it has no input or output to the window system, and only
communicates with the outside world through the fudgets it is linked to. Abstract fudgets
are specified using stream processors, with the absF function converting a stream processor
into a fudget:

absF :: SPab ->F ab

A fudget is a stream processor that can also communicate with the windowing system, and
so the absF function merely turns a stream processor into a fudget that acts like the stream
processor but does not communicate with the windowing system.

4.2 Implementation of Fudgets

The original implementation of the Fudget system used stream processors as the basic build-
ing blocks for describing process networks, extending them with connections to the window
system to create fudgets. This method could be adopted to encode the Fudget system in the
Embracing Windows framework. However, it does not lend itself well to encapsulating exist-
ing GUI components such as the controls in Windows 95 as fudgets. An alternative approach
based on work by Reid and Singh[21], uses a functional representation for fudgets:

type Handler a a -> GUuI O
type Fudget a b = Window -> Handler b -> GUI (Handler a)

Here, a fudget is modelled as a function returning a realization action that will create the
appropriate GUI component. The function requires the window in which the fudget is to be
realized as its first argument, whilst the second argument is an output handler, which will
be used to send output to another fudget. The return value is of type GUI (Handler a)
indicating that the realization action may perform I/0, and returns an input handler that
can be used to send input to this fudget.

35

Using this encoding, it is possible to create atomic fudgets for buttons, edit fields, and
text labels. For example, a button fudget is created by using the buttonF function,

buttonF :: String -> Size -> F Click Click
buttonF text (w, h) parent outputHandler
= do button <- mkPushButton parent text ((0, 0), (w, h))
onChange button (outputHandler Click)
return inputHandler
where inputHandler a = outputHandler Click

The mkPushButton control construction function is used to create the window’s push button
control. The onChange function is used to set the behaviour of the button when it is pressed.
In this case when the button is pressed the value Click is emitted on the output stream of the
fudget. Finally the input handler returned simulates the button being pressed by emitting
the value Click on the output stream of the fudget.

The fudget combinators simply map onto functions that plumb together the input and
output handler functions of fudgets. For example, the definition of the >==< combinator
follows directly from the representation we are using for fudgets, connecting together the
input handler of the second fudget to the output handler of the first fudget:

(f1 >==< £2) parent outputHandler
= do handler <- f1 parent outputHandler
inputHandler <- f2 parent handler
return inputHandler

The other combinators, >*< and >+< are expressed similarly and can be seen in detail in
Appendix B.5.7.

Stream processors are simply fudgets that do not communicate with the windowing sys-
tem. The representation used for fudgets can be reused for stream processors by using a type
synonym:

type SPab=F ab

The basic stream processors can easily be encoded using the functional representation used
for fudgets, for example, we can code the getSP stream processor as:

getSP :: (a ->SP ab) ->SP ab
getSP f parent outputhandler
= let inputhandler a = do f a parent outputhandler
return ()
in return inputhandler

The getSP stream processor does not create any windows but simply returns an input handler.
This handler invokes the continuation specifying the behaviour of the stream processor being
created given the value read from the input stream.

4.3 Layout of Fudgets

The fudget combinators, >==<, >*<, and >+<, can be used to link together fudgets be-
haviourally. However, they do not specify any details about the layout of the fudgets being
combined. The original implementation of the Fudgets system provided support for three
ways to layout fudgets:

36

¢ Placer Layout: This method uses functions that modify the layout of a single fudget.
Because fudgets can be combined using the fudget combinators, this may alter the
layout of many fudgets.

¢ Combinator Layout: This method uses variants of the fudget combinators to specify
the layout of a fudget program. The flexibility in the layouts possible is constrained by
the flow of data in the fudget program because layout is based on fudget combinators
that control the flow of data.

¢ Name Layout: This method specifies the layout of fudgets independently from the
specification of the flow of data between fudgets. Fudgets are named, and the layout
specified in terms of these names, resulting in a more flexible mechanism than combi-
nator layout.

In the Embracing Windows framework, only the first and second of these methods for layout
has been implemented. In the original Fudgets system, combinator layout is implemented in
terms of placer layout, and this approach is taken in the Embracing Windows framework.

All of the above methods for specifying the layout of a fudget program do so in a hi-
erarchical fashion, with each fudget residing in a box. These boxes can be placed together
using placers. Asin the Widgets system, placers are based upon the box mechanisms of TEX.
Examples of some placers are:

horizontalP :: Placer
verticalP :: Placer

The horizontalP placer lays out a group of fudgets next to each other horizontally, while
the verticalP placer lays out fudgets vertically. Using a placer, the layout of certain fudgets
can be specified by using the placerF function:

placerF :: Placer -> Fab ->F ab

This function applies the placer to all of the fudgets composing the single fudget specified by
the second argument. Revisiting the counter example, we can layout the fudgets vertically
by using placerF:

improvedcounterF :: F a Click
improvedcounterF = placerF verticalP counterF

Some useful layout functions defined in terms of the placerF function are:

hBoxF :: Fab ->F ab
hBoxF = placerF horizontalP

vBoxF :: Fab->Fab
vBoxF = placerF verticalP

The fudget combinators for layout take a tuple describing a fudget and a layout orientation
as their first argument, followed by another fudget as their second argument. The two fudgets
are combined using the normal fudget combinators, but are also placed relative to each other
according to the orientation specified.

37

main :: I0 O
main = fudlogue (shellF "Counter" counterF)

counterF :: F a Click
counterF = (intDispF display_size, Above) >==#<
(absF countSP >==< buttonF "Increment" button_size)

countSP :: SP click Int
countSP = mapAccumlSP inc 0
where incn _ = (n+ 1, n + 1)

(100, 30) :: Size
(100, 30) :: Size

display_size
button_size

i Counter M=l B3

0

Increment

Figure 4.2: A Fudget counter with layout

data Orientation = Above | Below | RightOf | LeftOf

>#==< :: (F a b, Orientation) -> F b c ->F ac
>#%< :: (F a b, Orientation) -> F ¢ d -> F (Either a c¢) (Either b d)
>#+< :: (F a b, Orientation) -> F ab ->F ab

The counter example can now be written using these combinators as can be seen in Figure 4.2.
The implementation of layout for fudgets follows the same process as for Widgets, with
requests for screen space propagating up through a hierarchy of fudgets, and the actual
allocated space propagating down the hierarchy through functions that resize fudgets.

Similarly to the widget system, explicit sizes are required for the library fudgets such
as push buttons, editable text fields, and text labels. In the original fudgets system library
fudgets size themselves according to the content of the fudget. For the same reason as in
the widget system we have not implemented this ability to automatically size library fudgets
depending upon their content.

4.4 Looping Combinators

A number of combinators from the original implementation of the fudgets system have been
left out from the implementation using the Embracing Windows framework. Some of these
combinators cannot be encoded due to the choice of representation for fudgets. In particular
the representation does not preserve the correct order of input values arriving at a fudget.

38

This implies that certain recursive combinators cannot be supported. For example, consider
the loopF combinator, which connects the output of a fudget back to its own input, creating
a feedback loop:

loopF :: Fudget a a -> Fudget a a

e@e_

loopF f1

The output from the fudget provided as an argument to this combinator forms the output of
the composed fudget, but is also sent back to the fudget’s input. Using a fixpoint combinator,
we can attempt to implement such a looping combinator as:

loopF :: Faa->F aa
loopF f parent outputHandler
= let inputhandler = fix (\handler ->
f parent (\x -> do outputHandler x
handler x))
in return inputhandler

Here the fix function is a fixpoint combinator lifted into the GUI monad. The primitive
fixpoint combinator is implemented in the I0 monad, and the WindowSystem type class can
be used to lift the primitive into different monads. The type of the fixpoint combinator for a
monad m, is:

fix :: (a->ma) ->ma

This primitive allows us to use the input handler returned by the fudget we are actually
constructing, and hence we can route a value back to the input of the fudget that produced
the value.

However, this does not work as we might hope; when a value is produced as output
from a fudget composed using the loopF combinator it is ¢mmediately piped around to the
fudget’s input and processed, potentially before any values that have already been sent to the
fudget on its input stream. Input values are thus processed out of order, unlike the original
Fudgets system. This problem is important as most reasonable applications will require a
use of such looping combinators at some point. Purpose built combinators could be used to
ensure a particular order of processing of input values, or alternatively we could revert to
using a representation of fudgets based on stream processors as in the original Fudget system
implementation.

Because stream processors are implemented as fudgets that do not make use of the window-
ing system, they also suffer from these problems. In particular the mapAccumlSP function used
in the counter example for maintaining state cannot be written using the basic stream proces-
sors, and is instead implemented using mutable state. The problem is that the mapAccumlSP
function maintains state by using a feedback loop to feed the latest version of the state back
into itself. Using mutable state, this function can be written as:

39

mapAccumlSP :: (a -> b -> (a, ¢)) -> a ->SPbc
mapAccumlSP f init parent outputhandler
= do state <- newRef init
return (inputhandler state)
where inputhandler state a = do s <- getRef state

let (8’, b) = f 5 a
setRef state s’
outputhandler b

This stream processor creates a mutable variable to store the internal state in, and returns
an input handler. This handler is invoked when a value is read from the input stream. The
state is extracted from the mutable variable and modified according to the function specified
as the first argument to the mapAccumlSP function. The new state is stored in the mutable
variable, and a value emitted on the output stream.

40

Chapter 5

The Essence of Functional GUI’s

In this Section, we present an essence of the two high-level systems developed in Chapters 3
and 4. A mapping between components of the two systems is described which can allow a
mixture of the two systems within individual applications.

The essence of the Fudgets system can be seen in Figure 5.1, and the essence of the
Widgets system in Figure 5.2. These two systems are similar, in that they both have:

¢ A datatype representing graphical components.
¢ A number of atomic graphical components.
¢ Combinators for building complex graphical components from the atomic ones.

The major difference between the two systems is in the combinators used to build composite
graphical components. In the fudget system, the combinators specify the relationships be-
tween the input and ouput values produced by the components when the GUI is used. In
the widget system, the combinators are the monadic operations returnW and thenW. The
atomic components return values that can be used to manipulate the component, and are
often referred to as handles. A dependency between components involves binding a name
to the handle associated with one of the components and then making use of this in the
specification of the related component. Since both systems use the combinators to express
relationships between graphical components, it is not surprising that we can define a mapping
between the two systems, albeit a restricted one. This mapping allows graphical components

data Fudget a b = ...

buttonF :: String -> F Click Click
intDispF :: F Int a
labelF :: String -> F String a

(>==<) :: Fab->Fbc->Fac
(>¥<) :: Fab->Fab->Fab
(>+<) :: Fab->Fcd->F (Either a ¢) (Either b 4)

Figure 5.1: The essence of Fudgets

41

data Widget a = ...

buttonW :: String -> Size -> GUI () -> Widget PushButton

editW :: String -> Size -> Widget EditField
textW :: String -> Size -> Widget TextLabel
thenW :: Widget a -> (a -> Widget b) -> Widget b

returnW :: a -> Widget a

Figure 5.2: The essence of Widgets

from one system to be used in a limited way in the other system. The restricted fudget to
widget mapping is accomplished by the fudgetToWidget function:

fudgetToWidget :: F a b -> Widget ()
fudgetToWidget £ = Widget (\window -> do f window nullHandler
return ())

nullHandler :: Handler ()
nullHandler _ = return ()

The nullHandler function is a simple output handler that is used to process any output
produced by the fudget. The input handler that the fudget returns as a result of its realization
is ignored. This limits the usefulness of the mapping because the wrapped fudget cannot
interact with other widgets. The mapping could be used in an accounting application that
provides an option to start a calculator in a separate window for independant calculuations.
If a fudget version of a calculator is available then the rest of the accounting application
could be written using the Widgets system with the option for displaying the calculator using
the fudget version of the calculator under the above mapping. Since there is no interaction
between the calculator and the accounting application the above mapping suffices. In general
it would be useful to have a stronger mapping that allowed the fudget to interact with other
widgets.

Using a similar method, we can define a function that converts a widget to a fudget. This
mapping suffers from the same restrictions as the mapping from a fudget to a widget:

widgetToFudget :: Widget a -> F b ¢
widgetToFudget (Widget w) parent outputhandler
= do w parent
return nullHandler

The fudget takes the widget as its first argument, with the second and third arguments
specifying the window the fudget will be realized in, and the output handler the fudget can
use to send values on its output stream. The fudget is created by using the widget’s realization
function. The return value of the widget realization function is ignored, and the nul1Handler
function is used for the fudgets input handler. The wrapped widget cannot send output on
the fudgets output stream, or read from the fudgets input stream, and so cannot interact
with other fudgets.

42

Chapter 6

Conclusions and Future Work

There are a number of existing systems for the development of GUIs in a non-strict functional
language, such as Fudgets, Gadgets and Haggis. However, the lower level components of these
systems all solve very similar problems, such as how to handle I/O in functional languages, and
also how to provide a structured interface to the event-driven model of windowing systems.
Noble and Runciman [15] compare and contrast two systems for developing GUT’s in functional
languages. However, these systems are seperate standalone entities. A number of low level
interfaces for windowing systems have recently been developed, such as Finne’s X-Library
bindings [6] which are part of the Haggis system. Reid [20] has also developed an interface for
both the X-windows system and the Windows 95/NT systems as an extension to the Hugs
functional programming system. This system has been used as the basis for an active virtual
reality markup language (active VRML) implementation, making use of a graphics library
[7], and a cooperative version of Concurrent Haskell [8].

We have presented the details of a system for the construction and comparison of graphical
user interfaces in a purely functional language. The system is intended as a framework for the
research and development of high-level abstractions for constructing graphical user interfaces.
Illustrating this we have described two high-level abstractions that are built on the framework.
The first of these abstractions, Widgets, uses a number of ideas from the Haggis and TK-
Gofer systems, but does not make use of concurrency as Haggis does. The second, Fudgets, is
implemented using an alternative representation to the original stream processing model used
by Hallgren and Carlsson. The alternative representation is not however expressive enough
to model the looping combinators of the original Fudgets system. This is a result that has
not previously been noted.

The Widget and Fudget systems differ in the approach they take to structuring the GUI
component of an application at a high-level. In particular, they differ in the data structures
offered to the programmer for representing GUI components and also the way in which these
components can be combined and physically laid out on the display screen. The Embracing
Windows framework provides a basis for building and comparing systems such as the Widget
and Fudget systems.

One avenue of research that could be particularly interesting is to try and use the frame-
work to explore relationships between high-level abstractions like Fudgets and Widgets, such
as their relative expressive power. Chapter 5 presented a restricted mapping between the two
systems. Preliminary work has already revealed that this mapping can be strengthed to a
complete mapping from fudgets to widgets. The formalization of the relationships between
systems such as Fudgets and Widgets may benefit from a layered approach; by specifying

43

a formal semantics for the Embracing Windows system, the semantics of these high-level
systems could be simplified.

There are also a number of other high-level abstractions for creating GUlIs in functional
languages that could be implemented using this framework, such as one based on the Con-
current Clean I/0 system. The Clean language uses a type system incorporating uniqueness
types [22]. A type can be annotated to be unique, indicating that a value of this type must not
be shared at the point in an evaluation where the value is required. It is interesting to note
that the monadic style of I/O can be encoded using uniqueness types. The paradigm used
by the Clean system for constructing graphical interactive programs does not inherently rely
upon the uniqueness type system for performing I/O operations. As such, the paradigm could
be implemented using a different low level I/O mechanism such as monadic I/O. We have
performed some preliminary work attempting to construct a system based on the Embrac-
ing Windows framework that uses the Clean paradigm for constructing graphical interactive
programs. The results of this work indicate that there are no inherent difficulties in building
such a system.

Currently, the Widgets and Fudgets systems both support a form of automatic layout to
aid the GUI programmer. The layout system is very similar in both of these systems. A logical
step would be to try and abstract the layout system away from the details of the particular
systems. Pragmatically, the layout of graphical components is often performed using a GUI-
builder. GUI-builders make use of direct manipulation to allow the user to literally draw
the interface they want. Such graphical tools are important in the development of graphical
interactive applications. However GUI-builders cannot cope with all possible layouts, and
have great difficulty with layouts that can change dynamically. Having a programmatic
mechanism for specifying the layout of components is therefore still important. In general
we would expect most application interfaces to be handled by a GUI-builder, and only rarely
would the full expressiveness of the programmatic mechanism be required. The output of
such GUI-builders is often in terms of the programmatic mechanism.

When developing graphical applications the development environment can play a signifi-
cant role in making the process quick and easy. A GUlI-builder is just one example of a tool
that would form part of a development enviornment for graphical applications. Abandoning
the concept of flat text files for specifying the entire code of a graphical application can lead
to a development environment where the programmer literally draws the required interface,
and then proceeds to write small blocks of code attaching them to the components of the
interface. A good example of this concept in action is seen in the Visual Basic! programming
system, where programs are built by drawing forms and then writing a number of small blocks
of code. A specific block of code describes the behaviour of a specific component on a form.
However, Visual Basic is based on an imperative language and whether the approach will
work well for declarative languages is a topic for further research.

The Embracing Windows framework has benefited from being implemented in an in-
terpreter. Since design of graphical interfaces is very much an evolutionary process, it is
advantageous to have a quick turn around from modifying the code specifying the interface
to seeing the interface realized on a computer screen. Once the interface has been evolved
however, then a compiler is a better choice of tool to give an efficient application.

Finally, in order to shoehorn systems such as Haggis, and Gadget Gofer into the Embracing
Windows framework it appears that a form of concurrency will be necessary. This could be
added into the framework as a new layer that provides minimal support for concurrency upon

!Visual Basic is a registered trademark of the Microsoft Corporation

44

Manual |
Copy | L

=
(] ol |

] |
.

W [Auto

Figure 6.1: A Potpourri of graphical applications

which the particular communication protocols could be built. The form of concurrency that
best suits graphical user interfaces is still an open question.

A selection of graphical applications that have been written using the Embracing Windows
framework can be seen in Figure 6.1.

6.1 Acknowledgements

I would like to especially thank Mark P. Jones for his many valuable comments, suggestions
and careful reviews of draft versions of this report. Also thanks to Graham Hutton and
Benedict R. Gaster for numerous useful discussions and comments which, I hope, have enabled
me to improve the content and presentation of this work. Also thanks to Rob Noble for some
insightful comments regarding the calculator example presented in the appendices. This work
was carried out while the author was a member of the Functional Programming Group at the
University of Nottingham, UK, with financial support from the University of Nottingham.

45

Appendix A

Example Applications

This appendix presents various applications that have been written in both the Widgets and
Fudgets systems. The main goal when developing these applications was their reusability.
This is illustrated particularly well with the combination lock example in Appendix A.2,
which reuses the entire numeric keypad developed for the calculator in Appendix A.1.

A.1 A Calculator

A common test of GUI development systems is to write an application modelling a simple
desk calculator. The application should present an interface to the user very similar to that
of a real calculator, with a display screen and a number of buttons for entry of numbers, and
basic operations. The widget version of the calculator is shown in Figure A.1.

A.1.1 The Calculator State Machine

Before describing the implementation of the GUI for the calculator, we present the underlying
model of the calculator itself. This model corresponds to the application part of the calculator
program, as opposed to the GUI part.

The behaviour of the calculator can be described by a simple finite state machine. The
input to the calculator is just a character corresponding to the key pressed by the user. The

i Calculator M=l [E3

0

6| 5| 4
i)

3| 2|1
0 = C

Figure A.1: A Widget calculator

46

output of the calculator is modelled as a pair of values, the first of which corresponds to the
value on the calculator’s display. The second value of this pair is a function, modelling all
the calculations since the equal key was last pressed. A simple finite state machine such as
this can be easily implemented in a functional language:

type CalcState = (Int, Int -> Int)

eval :: Char -> CalcState -> CalcState
eval ¢ state | isDigit c = evalDigit (ord ¢ - ord ’0’) state
evalOperation c state

| otherwise

evalDigit :: Int -> CalcState -> CalcState
evalDigit n (d, a) = (10 * 4 + n, a)

evalOperation :: Char -> CalcState -> CalcState
evalOperation ’C’> (d, a) (0, id)

evalOperation ’=’ (d, a) (a d, const (a d))

(0, evalOperator op (a d))

evalOperation op (d, a)

evalOperator :: Char -> (Int -> Int -> Int)
evalOperator ’+’ = (+)

evalOperator -’ = (-)

evalOperator ’*’ = (%)

evalOperator ’/’ = (div)

The eval function describes the semantics of pressing a key on the calculator’s keypad. If
the clear, “C”, key is pressed then the display is zeroed, and the accumulating function is set
to the identity function. If the equal key is pressed, then the display is updated by applying
the accumulating function to the current display value. The accumulating function becomes
a constant function returning this same value. When a number key is pressed then the value
being displayed is updated, multiplying it by ten and adding the number corresponding to
the key pressed. The accumulating function does not change in this case. The only remaining
keys correspond to the arithmetic operators, and pressing one of these sets the display to
zero, and partially applies the appropriate arithmetic operator to the result of applying the
accumulating function to the current display value.

A driver program is required to make the calculator useful, for instance a simple text
based calculator can be implemented as:

main :: I0 ()
main = calc (0, id)

calc :: (Int, Int -> Int) -> I0 Q)

calc (d, a) = do putStr ("\nDisplay: " ++ show d ++ "\n")
¢ <- getChar
calc (eval ¢ (d, a))

The semantics described in this section associates the same precedence level to all oper-
ators. However, experimenting with real desktop calculators results in a suprising array of
differing behaviours regarding precedence of arithmetic operators. The problem of having the

47

same precedence level for all operators is not solved here as we are mainly concerned with
the interface for the calculator rather than the semantics of the calculator.

A.1.2 A Widget Graphical User Interface

The GUI of the calculator is modelled as a widget that appears in a top level window.
However, note that because the entire calculator is encapsulated as a Widget, it does not
have to be used in a top level window, but could be used to build more complicated Widgets.
For example, a simple application that composes a number of calculators next to each other
in a line can be easily written using the hbox combinator

main :: I0 O
main = startProg w
where w = do wopen "Multiple Calculators' multicalcW
return ()

multicalcW :: Widget ()

multicalcW = hBox (do calcW
calcW
calcW)

The calcW function is the calculator widget that we describe in the remainder of this section.

The calculator maintains some state storing the current value of the display, and an
accumulator function, indicating the calculation entered so far. This is just the state as
described in Appendix A.1.1:

type CalcStVar = Ref CalcState

The basic calculator widget creates an initial value of the state, and the widgets for the display
and calculator keypad. These widgets are composed vertically, so that the display appears
above the keypad. The state and a handle for the display are passed to the keypad widget so
that the state can be modified and the display updated when keys are pressed:

calcW :: Widget (O

calcW = vbox (do st <- stateW (0, id)
display <- dispW
keysW st display)

The display is implemented using the standard textW widget. However, a thin margin is
wrapped around this widget to make the visual appearance better.

dispW :: Widget TextLabel
dispW = margin 1 (textW "0" display_size)

display_size = (100, 30) :: Size

A generic keypad widget is constructed using the matrix layout combinator which takes a
width of the matrix, and a list of widgets to be formed into a matrix shape. The widgets are
used to build up the lines of the matrix, so that each line has at most the specified number of
widgets on it. The keypadW function creates a keypad widget given a list of pairs. The pairs
define the text label and behaviour of each key in the keypad:

48

keypadW :: Int -> [(String, GUI ()] -> Widget ()
keypadW width keys = do matrix width (map key keys)
return ()

The keys themselves are generated using the key function, which adds a thin margin around
the buttons for a better visual appearance:

key :: (String, GUI ()) -> Widget PushButton
key (label, action) = margin 1 (buttonW label button_size action)

button_size = (30, 30) :: Size

The keypad of the calculator consists of two separate keypads, one for the number keys,
and one for the operation keys. A generic number keypad is implemented in terms of the
keypadW widget. The numberPadW function takes a function as its argument that describes
the behaviour of the keypad. This function expects an integer value corresponding to a key
that has been pressed on the keypad as its first argument:

numberPadW :: (Int -> GUI ()) -> Widget ()
numberPadW f = keypadW 3 (map formkey [9,8..0])
where formkey n = (show n, f n)

The number keypad for the calculator is implemented in terms of the generic numberPadW
combinator. The function specifying the behaviour of the keys in the keypad uses the function
keyOp to modify the state of the calculator and update the display. The state modifying
function used in this case is the evalDigit function determining the semantics of entering
digits into the calculator.

numbersW :: CalcStVar -> TextLabel -> Widget ()
numbersW st disp = numberPadW (\n -> keyOp st disp (evalDigit n))

key0Op :: CalcStVar -> TextLabel -> (CalcState -> CalcState) -> GUI ()
keyOp st disp £ = do (d, a) <- getRef st

let (d’, a’) = £ (d, a)

setRef st (d’, a’)

setText disp (show d’)

The keypad for the operations uses the keyPadW combinator and the keyOp function in a
similar way to the numbersW function. In this case however, the state modifying function is
evalOperation, determining the semantics of entering an operation into the calculator.

operationsW :: CalcStVar -> TextLabel -> Widget ()
operationsW st disp = keypadW 2 [([op], keyOp st disp (evalOperation op))
[op <- Ug—x/=C"]

Both of the keypads are combined to form the single keypad used in the calculator. The
keypads are placed next to each other horizontally using the hbox layout combinator:

keysW :: CalcStVar -> TextLabel -> Widget ()
keysW st disp = hbox (do numbersW st disp
operationsW st disp)

49

Finally, the driver program for the calculator realizes the calculator widget in a top level
window:

main :: I0 O
main = startProg w where
w = do wopen '"Calculator" calcW
return ()

A.1.3 A Fudget Graphical User Interface

The fudgets calculator is similar to the widgets version, and starts by realizing the calculator
fudget in a top level window. Again the entire calculator is encapsulated as a single fudget,
and so may be used to build more complicated fudgets:

main :: I0 Q)
main = fudlogue (shellF "Calculator" calcF)

The state is the same as for the Widget calculator, consisting of the current value on the
display of the calculator, and an accumulator storing the current computation in progress
Ideally, we would like to use a recursive stream processor to model the state, but due to the
problem described in Section 4.4 this will not work. Instead we use mutable state indirectly
by using the mapAccumlSP function.

The main calculator consists of four components, a display screen fudget, two abstract
fudgets, and a fudget representing the keypad of the calculator. The two abstract fudgets
encapsulate the logic of the calculator, while the remaining fudgets describe its user interface.
These four fudgets are combined together serially, and the physical layout of the fudgets is
specified using the vBoxF layout function:

calcF :: F Click a

calcF = vBoxF (displayF >==<
absF displayState >==<
absF (stateSP (0, id)) >==«<
keysF)

The display screen is based on the standard integer display fudget, intDispF, but is wrapped
by the marginF fudget combinator that adds a margin around the top, bottom, left and
right of a fudget. The first parameter to the marginF combinator indicates the size of this
margin.

displayF :: F Int a
displayF = marginF 1 (intDispF display_size)
display_size = (80, 30) :: Size

The current value to be displayed on the calculator’s screen must be extracted from the state
of the calculator, and this is the job of the displayState abstract fudget. It is a stream
processor that reads in a value indicating the current state of the calculator, and discards the
accumulator component, writing the current display value to its output stream.

displayState :: SP CalcState Int
displayState = getSP (\(d, a) -> putSP d displayState)

50

In the same manner that we abstracted the notions of a generic keypad, and of a numeric
keypad from the widget version of the calculator application we do the same for the fudget
version.

Starting with the generic notion of a keypad, we build a fudget that uses the matrixF
layout combinator to build a keypad. The keypadF function takes the width of the keypad
and a list specifying the details of the keys. Each key is determined by its label and a value
that is emitted from the keypad when it is pressed. Just as we added a thin margin to the
keys in the keypad for the widget version we do the same here. An abstract fudget is used
to produce the required value when a particular button representing a key in the keypad is
pressed:

keypadF :: Int -> [(String, a)] -> F Click a
keypadF width keys = matrixF width (>*<) (map key keys)

key :: (String, a) -> F Click a
key (label, action) = const action >7=< marginF 1 (buttonF label button_size)

button_size = (30, 30) :: Size

A numeric keypad fudget, numberPadF, can be built using the generic keypad combinator
keypadF in a similar way to the numberPadW widget. Instead of taking a function describing
the action to be performed when one of the digits on the numeric pad is pressed, the number
pressed is emitted on the output stream of the fudget:

numberPadF :: F Click Int
numberPadF = keypadF 3 (map formkey [9,8..0])
where formkey n = (show n, n)

The calculator’s keypad is composed of two separate components, the first is a numeric
keypad, whilst the second is a keypad whose keys correspond to the available arithmetic oper-
ations. The numeric keypad is defined as a specialised version of the more generic numberPadF
fudget, by simply processing the ouput digit with the appropriate function of the state ma-
chine. The arithmetic operation keypad is built using the keypadF fudget by specifying the
output values for the keys to be the application of the evalOperation function from the state
machine to the character representing the particular operation:

numbersF :: F Click (CalcState -> CalcState)
numbersF = absF (mapSP evalDigit) >==< numberPadF
operationsF :: F Click (CalcState -> CalcState)

operationsF = keypadF 2 [([op], evalOperation op) | op <- "+-%/=C"]

The entire calculator keypad is formed by combining the specialised numeric keypad and
the arithmetic operation keypad in parallel:

keysF :: F Click (CalcState -> CalcState)
keysF = hBoxF (numbersF >#*< operationsF)

The internal state of the calculator is maintained by the abstract fudget stateSP, which
accepts state modifying functions as its input and outputs the new values of the state under
these functions. The state is implemented using the standard mapAccumlSP function which

51

requires a function that will specify how the state is to be modified and what the output
value will be. In this case the output value is the same as the modified state hence in the
tuple returned by modify the two components are the same.

stateSP :: CalcState -> SP (CalcState -> CalcState) CalcState
stateSP state = mapAccumlSP modify state
where modify st £ = let st’ = f st
in (st?’, st?)

The semantics of the calculator logic is specified by the evalOperation and evalDigit func-
tions just as it was for the widgets version, see Section A.1.1.

A.1.4 Comparison of Widget and Fudget GUIs

The two interfaces developed in the preceding sections look identical on screen. The code is
also remarkably similar, with almost all of the widget functions having obvious corresponding
functions in the fudget version. The stream processors, stateSP and displayState, cor-
respond to the keyOp function of the widget version. However, one important difference is
that in the widget version the abstractions for keypads require the actions that are to be
performed, when the keys are pressed, as arguments. In the fudget version these actions can
be determined at a later point as the keypads simply emit a value indicating which key has
been pressed.

A.2 A Combination Lock

At the Glasgow GUIFest in 1995, one of the suggestions for applications to test GUI develop-
ment systems was a combination lock. The idea is to build a graphical component modelling
a combination lock that can be used wherever a button component could be used.

A.2.1 A Widget Combination Lock

The combination lock we model here is based on a digital combination lock with a keypad
for entering combinations. We will consider only numeric combinations here, but it is easy to
extend the code to handle combinations using other symbols.

Firstly, we will need a graphical component modelling a keypad. Fortunately, we have
already described a numeric keypad in the implementation of the calculator widget (Sec-
tion A.1.2), and we can reuse the numberPadW function for the combination lock.

The combination lock needs to store the current code entered as part of its state. The
behaviour exhibited when the correct code is entered can be changed by the user of the
combination lock widget, and so must also be stored as part of its state:

type Code [Int]
type CombState = (Code, GUI ())
type CombStVar = Ref CombState

Codes are represented as lists of integer digits. The first component in the CombState type
represents the code that the user has entered. The second component in the CombState type
represents the behaviour of the combination lock when the correct code has been entered.
The combination lock widget must be able to be used wherever a regular button widget
could be used. All button widgets must be instances of the Editable type class, and so we

52

must make the combination lock widget an instance too. A data type declaration is required
so that we can represent combination locks in a form that we can use to make an instance of
the Editable type class:

data CombinationLock = CombinationLock CombStVar

This representation allows us to manipulate the combination lock through its state. We can
make CombinationLock an instance of the Editable type class, but before we do this, we
must make it an instance of the Control type class, as this is a subclass of the Editable type
class:

instance Control CombinationLock where
setText (CombinationLock st) text = return ()
getText (CombinationLock st) = return "

Here for simplicity, we do not make use of the associated text for a combination lock control
and implement dummy behaviour for altering or retrieving this text. This is expressed by the
implementations of the setText and getText functions that have no side effects and return
dummy values. Now we can define an instance of the CombinationLock data type for the
Button type class:

instance Editable CombinationLock where
onChange (CombinationLock st) handler’
= do (current, handler) <- getRef st
setRef st (current, handler’)
onCommit (CombinationLock st) handler = return ()

The implementation of the onChange function simply replaces the current handler used by
the combination lock when the correct code is entered.

The actual combination lock is described by a widget combinator, combLockW, which
creates a widget that, when realized in a window, will create an initial value of the combination
lock’s state, realize the keypad and return a value that can be used to further manipulate the
combination lock:

combLockW :: Code -> GUI () -> Widget CombinationLock
combLockW code handler = do st <- stateW ([], handler)
numberPadW (match st (reverse code))
return (CombinationLock st)

The master code that is passed to the match function is reversed as this simplifies the code
for this function.

The logic behind the combination lock is all described by the match function that expresses
the behaviour exhibited by the keypad when one of the buttons in the keypad is pressed.
This function must construct the new code entered by the user by adding the new digit
corresponding to the button pressed to the existing code. It must also compare the new
code entered to the master code, if the two match then the behaviour specified by the second
component of the state, the handler, must be performed. If the codes do not match, then we
simply store the new code entered by the user in the state. However, the code entered by the
user must never exceed the length of the master code, and so the new code entered by the
user is truncated to the length of the master code:

53

: Counter [M[=] E3

]
9 [0 T
b h L
3 2 1
0

Figure A.2: A counter using a combination lock

match :: CombStVar -> Code -> Int -> GUI ()
match st master x = do (current, handler) <- getRef st
let current’ = take (length master) (x : current)
if current’ == master then
do handler
setRef st ([], handler)
else
setRef st (current’, handler)

If the code entered by the user does match the master code, then the currently entered code
is reset to an empty list, representing an empty code, so that the combination lock is reset,
ready to receive another combination attempt.

It is quite simple to modify the counter application from Figure 3.2 to use a combination
lock instead of a regular push button. The only function that needs to be changed is the
counter function:

counter :: Int -> Widget CombinationLock
counter init
= vbox (do (display, update) <- stateTextW display_size O
combLockW [1,2,3] (update (+1)))

The master code is chosen to be 123, and when this code is entered a function to add one
to its argument is sent to the Widget created by the stateTextW combinator. The resulting
application can be seen in Figure A.2.

54

Appendix B

Source Code

This section provides the Haskell source code for the Embracing Windows framework. The
framework also requires a modified version of the Hugs functional programming system that
implements the monadic primitives for windowing operations. These primitives are imple-
mented in C, in a similar way to the primitives already built-in to Hugs for teletype 1/0. The
source code for these primitives is not included here.

B.1 I/0O Primitives and Library Files

B.1.1 Types

This module contains the type definitions for particular types used throughout the Embracing
Windows framework. It also includes data type definitions for built-in types corresponding
to window handles, device contexts, and objects. Objects are used for drawing graphics;
currently, the only type of object available is a pen.

> module Types
> where

Pairs of integers are used very frequently, and so we define a type for them:

> type Vector = (Int, Int)

Vectors are used in many different ways to represent points, sizes and rectangles. We define
type synonyms and useful access functions for each of these cases to make the code easier to
comprehend. Using data type definitions would be better as we gain stricter type checking
and could also make use of the Haskell 1.3 record syntax which gives us the selector functions

automatically:

> type Point = Vector

> type Size = Vector

> type Rect = (Vector, Vector)

> getX :: Size -> Int
> getX (x, _) =x

> getY :: Size -> Int
> getY (L, y) =y

> getSize :: Rect -> Size

55

> getSize (_, size) = size

> getPoint :: Rect -> Point
> getPoint (point, _) = point

> type Colour = Int

The following data types are built-in to the modified verision of Hugs, and are used to rep-
resent windows, device contexts, and objects respectively. An null value for the Window data
type is defined, which is nullWindow useful for cases when a value of type Window is required
but not really important. Equality is defined on values of type Window, as this is useful in
determining if an event is related to a specific window.

> data Window

> data DC
> data Object

> primitive nullWindow "primNullWindow" :: Window

> primitive primEqWindow :: Window -> Window -> Bool
> instance Eq Window where

> (==) = primEqWindow

An event in Windows 95 is comprised of a window, message identifier, and two extra
integer parameters for event specific information. We model this as a 4-tuple:

> type Event = (Window, Int, Int, Int)

B.1.2 Monadic Primitives

This module contains the definitions of the primitives required for the windows interface.
There are three classes of primitives, event loop primitives, window primitives, and graphic
primitives.

> module Windows_API
> where

> import Types

The basic event loop primitives include primitives for starting an event loop, passing an event
to the default handler, and for quiting an event loop:

> primitive primEventLoop :: (Event -> I0 Int) -> I0 ()
> primitive primDefaultHandler :: Event -> I0 Int
> primitive primQuitEventLoop :: IO ()

The windowing primitives provide functions for creating and destroying windows, setting and
retrieving the caption of a window, setting and retrieving the size of a window, retrieving
a list of the open windows, and setting the visibility of a window. The window creation
function takes a string value as its first argument that determines the window class to use.
A window class can be used in Windows 95 to specify the initial parameters of a window. A
number of window classes are predefined in Windows 95, such as “button”, “edit”, “static”,
corresponding to button controls, editable text field controls, and static text labels. The
primitive for obtaining a list of open windows is used to provide a default behaviour for
exiting from an application, by automatically closing any open windows. The first argument
to the primShowWindow primitive is used to specify whether a window should be made visible
or invisible. The value True indicates that the window should be made visible, the value
False indicates that the window should be made invisible.

56

> primitive primCreateWindow :: String -> Window -> Bool -> IO Window
> primitive primDestroyWindow :: Window -> I0 ()

> primitive primSetWindowText :: Window -> String -> I0 ()
> primitive primGetWindowText :: Window -> I0 String

> primitive primSetWindowRect :: Window -> Rect -> I0 ()
> primitive primGetWindowRect :: Window -> IO Rect

> primitive primGetWindows :: I0 [Window]
> primitive primShowWindow :: Bool -> Window -> I0 ()

Two primitives are provided for applications that require some notion of timing to operate.
The first primitive sets a timer, that will cause a special event corresponding to a tick to
occur at specific intervals of time. The second primitive stops such ticks from occuring by
removing the timer:

> primitive primSetTimer :: Window -> Int -> Int -> I0 ()
> primitive primKillTimer :: Window -> Int -> I0 ()

The following primitives are useful for drawing graphics. The first two are used to obtain and
release device contexts needed for drawing. Only two basic drawing primitives are supported,
for moving to and drawing a line to a particular point in a window. There are many other
primitives that could have been included, such as ones for drawing circles or polygons, but
we omit these for reasons of simplicity, and also most of these more complicated primitives
can be encoded using the basic ones provided here. Support for drawing text is provided by
the primDisplayText primitive. Objects are used to alter the device context, the only one
currently provided is the pen. Primitives are specified for selecting an object into a device
context, and for deleting an object from memory. A simple pen object creation primitive is
also supplied. Finally the primBeginPaint and primEndPaint primitives are supported to
obtain and release a device context for drawing in a window in response to a paint message:

> primitive primGetDC :: Window -> I0 DC

> primitive primReleaseDC :: Window -> DC -> I0 ()

> primitive primMoveTo :: DC -> Int -> Int -> I0 ()

> primitive primLineTo :: DC -> Int -> Int -> I0 ()

> primitive primDisplayText :: DC -> Int -> Int -> String -> I0 ()
> primitive primSelectObject :: DC -> Object -> IO Object

> primitive primDeleteObject :: Object -> I0 Bool

> primitive primCreatePen :: Int -> Colour -> I0 Object

> primitive primBeginPaint :: Window -> I0 DC

> primitive primEndPaint :: Window -> I0 ()

B.1.3 Window Constants

This module contains definitions for constants that are specific to the Windows 95 system.

> module Window_Constants
> where

The following constants determine the extra space that window borders and menus occupy
in addition to the main client window area:

57

1]
o]

: Int

> window_extra_x :
27 :: Int

> window_extra_y

B.1.4 Table

The state maintained in the GUI monad is stored in tables. This module provides a simple
implementation of tables.

> module Table
> where

A table is represented as an association list:

> type Table k e = [(k, e)]

A null table is representated as an empty association list:

> nullTable :: Table k e
> nullTable = []

The following functions are useful auxillary functions for comparing keys and retrieving the
value from an entry in an association list:

> keyMatches :: Eq k => k -> (k, e) -> Bool
> keyMatches k (k’, _) = k == k’

> getEntry :: (k, e) -> e
> getEntry (_, e) = e

The rest of the functions in this module provide the main interface to tables. The function
lookup to retrieve the value corresponding to a particular key is missing here, as this function
is predefined by the Haskell 1.3 prelude file. The update function can be used to update the
contents of a table. The addEntry and removeEntry functions can be used to add and remove
associations from a table:

update :: Eq k => k -> (e -> e) -> Table k e -> Table k e

update k £ [1 = []

update k £ (t:ts) | keyMatches k t
| otherwise

(k, £ (getEntry t)) : ts
t : update k f ts

Vv V V V

addEntry :: Eq k => k -> e -> Table k e -> Table k ¢
addEntry k e t = (k, e) : (removeEntry k t)

Vv Vv

removeEntry :: Eq k => k -> Table k e —-> Table k e
removeEntry k []1 = []
removeEntry k ((k’, e’):es) | k’ == = removeEntry k es
| otherwise = (k’, e’) : removeEntry k es

Vv V V V

B.1.5 Event loop primitives

This module declares a type class that allows us to refer to the monadic primitives for event
loops by the same name regardless of the monad that the primitives have been lifted into. An
instance of the type class is provided for the I0 monad, which allows us to use the monadic
primitives as they are declared in the Windows_API module.

58

> module EventSys

> where

> import Types

> import Windows_API

> class Monad m => EventSystem m where

> eventLoop :: (Event -> I0 Int) ->m ()
> defaultHandler :: Event -> m Int

> quitEventLoop :: m ()

> instance EventSystem I0 where

> eventLoop = primEventLoop

> defaultHandler = primDefaultHandler
> quitEventLoop = primQuitEventLoop

B.1.6 Window system primitives

This module declares a type class that allows us to refer to the monadic primitives for basic
window operations by the same name regardless of the monad that the primitives have been
lifted into. An instance of the type class is provided for the I0 monad, which allows us
to use the monadic primitives as they are declared in the Windows_API module. A window
system is assumed to be event based and so the context for the WindowSystem type class
includes the EventSystem type class. The WindowSystem type class includes a method not
mentioned in the paper, createWindow. This is a more primitive window creation function
that createShellWindow and is useful for creating controls and child windows as well as shell
windows.

> module WinSys
> where

> import Types

> import Windows_API

> import EventSys

> class EventSystem m => WindowSystem m where

> createWindow :: String -> Window -> Bool -> m Window
> createShellWindow :: String -> m Window

> destroyWindow :: Window -> m ()

> setWindowCaption :: Window -> String -> m ()
> getWindowCaption :: Window -> m String

> setWindowRect :: Window -> Rect -> m O

> getWindowRect :: Window -> m Rect

> getWindows :: m [Window]

> showWindow :: Bool -> Window -> m ()

> setTimer :: Window -> Int -> Int -> m ()
> killTimer :: Window -> Int -> m ()

> getDC :: Window -> m DC

> releaseDC :: Window -> DC -> m ()

> beginPaint :: Window -> m DC

> endPaint :: Window -> m ()

> instance WindowSystem I0 where

> createWindow = primCreateWindow

> createShellWindow = primCreateShellWindow

> destroyWindow = primDestroyWindow

> setWindowCaption = primSetWindowText

59

> getWindowCaption primGetWindowText
> setWindowRect primSetWindowRect
> getWindowRect primGetWindowRect
> getWindows primGetWindows

> showWindow primShowWindow

> setTimer primSetTimer

> killTimer primKillTimer

> getDC primGetDC

> releaseDC primReleaseDC

> beginPaint primBeginPaint

> endPaint = primEndPaint

The createWindow primitive is a very general window creation function, but it is quite cum-
bersome to use. A simpler function for creating shell windows can easily be defined as:

> primCreateShellWindow :: WindowSystem m => String -> m Window
> primCreateShellWindow title

> = do window <- createWindow "HugsWindow" nullWindow True
> setWindowCaption window title
> return window

B.1.7 Mutable Variables

This module declares a type class encapsulating the operations that characterise mutable
variables. This allows the names for these operations to be reused regardless of the monad we
are working in. The built-in data type for mutable variables and their associated operations
are also declared. These built-in operations are used to declare an instance of the MutVars
type class, so that the operations may be used in the I0 monad.

> module IORef

> where

> class MutVars m where

> newRef :: a -> m (Ref a)

> getRef :: Ref a -> m a

> setRef :: Ref a -> a ->m ()

> data Ref a

a -> I0 (Ref a)
Ref a -> I0 a
Ref a => a -> I0 Q)

"newRef" ::
"getRef" ::
"setRef" ::

> primitive primNewRef
primitive primGetRef
primitive primSetRef

v Vv

instance MutVars I0 where
newRef = primNewRef
getRef = primGetRef
setRef = primSetRef

Vv V V V

Equality on mutable variables is declared as it is in the I0Ref module since this does not
depend upon the monad in which the mutable variable operations are lifted into:

> primitive eqRef :: Ref a -> Ref a -> Bool

> instance Eq (Ref a) where
> (==) = eqRef

60

B.2 Event Handling

B.2.1 GUI

This module defines the GUT monad and associated functions. The state that the GUT monad
maintains is stored in a table containing tables that can be used to map an event to the
appropriate behaviour. This whole structure is stored in a mutable variable.

> module GUI
> where

import Types
import Table
import MutVar
import Message

Vv V V V

Event handlers are functions that take an event as an argument and process it. The response
to an event may well involve manipulation of windows, and the event handlers themselves,
and so the result of an event handler is a value of the GUI monad.

> type EventHandler = Event -> GUI ()

The state maintained by the GUI monad is stored in a table of type Window_Table whose
entries are tables themselves. The whole state is stored as a mutable variable.

> type EventHandlers = Table EventType EventHandler
> type Window_Table = Table Window EventHandlers

> type GUIState = Window_Table

> type GUIStateVar = Ref GUIState

The following functions are useful for accessing and changing the state maintained by the GUI
monad.

> getWindowTable :: GUIState -> Window_Table
> getWindowTable = updateWindowTable id

> setWindowTable :: Window_Table -> GUIState -> GUIState
> setWindowTable window_table = updateWindowTable (_ -> window_table)

> updateWindowTable :: (Window_Table -> Window_Table) -> GUIState -> GUIState
> updateWindowTable f window_table = f window_table

The GUI monad is a state reader monad. The state encapsulated by this monad is a mutable
variable that stores the responses required for particular events. Because the monad is a state
reader monad, the mutable variable itself cannot be changed, but the value it contains can
be changed, and thus the monad can act like a normal state transformer monad.

> newtype GUI a = GUI (GUIStateVar -> I0 a)

> instance Functor GUI where
> map £ (GUI g) = GUI (\st -> do a <~ g st

> return (f a))

> instance Monad GUI where

> return x = GUI (\st -> return x)

> GUI g >>= 1 = GUI (\st -> do a <- g st

> let GUI h = f a
> h st)

61

The getenvGUI function is useful for extracting the mutable variable containing the state
encapsulated by the GUI monad.

> getenvGUI :: GUI GUIStateVar
> getenvGUI = GUI return

Operations of type I0 a can be lifted into the GUI monad by simply ignoring the mutable
variable containing the state encapsulated by the GUI monad.

> 1iftGUI :: I0 a -> GUI a
> 1iftGUI £ = GUI (_ -> f)

Since the GUI monad uses mutable variables, it is useful to have versions of the operations
on mutable variables that work in the GUI monad. This can be achieved by providing an
instance of the MutVars type class for the GUI type, with the methods being implemented as
lifted versions of the original mutable variable primitives.

> instance MutVars GUI where

> newRef a = 1iftGUI (newRef a)

> getRef a = 1iftGUI (getRef a)

> setRef a x 1iftGUI (setRef a x)

The following functions provide a means to access and modify the state encapsulated by
the GUI monad. The caller of these functions needs no knowledge of the fact that the state is
stored in a mutable variable.

updateGUIState :: (GUIState -> GUIState) -> GUI GUIState
updateGUIState £ = do st <- getenvGUI

v <- getRef st

setRef st (f v)

return v

vV V. V V V

> getGUIState :: GUI GUIState
> getGUIState = updateGUIState id

> setGUIState :: GUIState -> GUI ()
> setGUIState state = do updateGUIState (_ -> state)
> return ()

To make the GUI monad useful, we have to define a function to turn a value of type GUI a
into one of type I0 a so that it can be executed in a program. This requires supplying an
initial value for the state that the GUI monad encapsulates.

> startingWithGUI :: GUI a -> GUIStateVar -> I0 a
> startingWithGUI (GUI £) r = f r

B.2.2 Event Handlers

This module defines a family of coercion functions that unpack information from the Event
data type and pass it on to a function to process the event. The different types of events are
identified by a magic number specific to the Microsoft Windows 95 system.

> module EventHandlers
> where

> import Types
> import Message

62

> import GUI
> import Graphics

> handleDestroy :: (Window -> GUI ()) -> Event -> GUI ()
> handleDestroy f (w, 2, _,) =f w

> handlePaint :: (Window -> Draw ()) -> Event -> GUI ()
> handlePaint £ (w, 15, _, _) = paintInWindow w (f w)

The event processing function that the handleLButtonDown coercion function takes as its first
argument receives the window the mouse button was pressed in, a boolean to indicate whether
the mouse button was single or double clicked, and a vector describing the position of the
mouse cursor when the mouse button was pressed. In a similar way, the handleLButtonUp
coercion function passes on the window the mouse cursor was clicked in, and its position to
the event processing function.

> handleLButtonDown :: (Window -> Bool-> Point -> GUI ()) -> Event -> GUI ()

> handleLButtonDown f (w, 513, _, lparam) = f w False (getVector lparam)
> handleLButtonDown f (w, 515, _, lparam) = f w True (getVector lparam)
> handleLButtonUp :: (Window -> Point -> GUI ()) -> Event -> GUI ()

> handleLButtonUp f (w, 514, _, lparam) = f w (getVector lparam)

The event processing function used with the handleCommand coercion function expects
four parameters, the associated window, an identifier, handle of control, and a notification
code. The notification code indicates whether the event is a notification from a control, a
menu selection, or from a keyboard accelerator for a menu. The identifier specifies which
control or menu item is involved. The handle of the control specifies which control sent the
notification if the event represents a control notification, otherwise this value is null. child
control, The handleCommand coercion function

> handleCommand :: (Window -> Int -> Int -> Int -> GUI ()) -> Event -> GUI ()
> handleCommand f (w, 273, wp, lp) = £ w (loword wp) lp (hiword wp)

The handleKey coercion function passes on parameters to its event processing function
indicating the window involved, a code for the key pressed, a boolean representing if the key
was pressed or released, and two integers describing the number of times the keystroke is
repeated and the state of modifier keys such as shift, alt, and ctrl.

> handleKey :: (Window -> Int-> Bool -> Int -> Int -> GUI ()) -> Event -> GUI ()
> handleKey f (w, 256, wp, 1p) = £ w wp True (loword lp) (hiword lp)
> handleKey f (w, 257, wp, 1p) = £ w wp False (loword lp) (hiword lp)

The integer passed to the event processing function by the handleQuit coercion function
indicates the exit code, describing whether the application is being quitted for normal or
abnormal reasons.

> handleQuit :: (Window -> Int -> GUI ()) -> Event -> GUI ()
> handleQuit £ (w, 18, wp, _) = f w wp

The integer handleTimer passes to its event processing function is an identifier for the
particular timer involved.

> handleTimer :: (Window -> Int -> GUI ()) -> Event -> GUI ()
> handleTimer f (w, 275, wp, _) = f w wp

63

handleSize passes an integer representing the type of sizing operation, such as maximiz-
ing, minimizing, restoring, or normal window sizing, to the event processing function.

> handleSize :: (Window -> Int -> Size -> GUI ()) -> Event -> GUI ()
> handleSize £ (w, 5, wp, 1p) = f w wp (getVector 1lp)

B.2.3 Message

This module contains an event type for the Windows 95 system, and some auxillary functions
that are useful for packing/unpacking values from an event.

> module Message
> where

> import Types

The hiword and loword functions extract the high word, and low word from a 32 bit value.

> hiword :: Int -> Int
> hiword w = w ‘div‘ 65536

> loword :: Int -> Int
> loword w = w ‘mod‘ 65536

Vectors are commonly packed into a 32 bit value, and require unpacking using the hiword
and loword functions, getVector performs this unpacking.

> getVector :: Int -> Vector
> getVector lparam = (loword lparam, hiword lparam)

The makeParam function is useful for constructing a 32 bit value from two 16 bit words.

> makeParam :: Int -> Int -> Int
> makeParam hi lo = lo + (hi * 65536)

The event data type supports only a handful of the possible events for the Windows 95
system. The events supported are window destruction, window painting, mouse button clicks,
commands (menu selections, and control notifications), key presses, quitting applications,
timer events, and window sizing. The getEventType function extracts the type of event from
a value of type Event by examining the second parameter, the message parameter.

> data EventType = Destroy

> | Paint

> | LButtonDown
> | LButtonUp
> | Command

> | Key

> | Quit

> | Timer

> | Size

> | Unknown

>

deriving Eq

getEventType :: Event -> EventType
getEventType (_, msg, _, _)
= case msg of
2 -> Destroy
15 -> Paint

v V V V VvV

64

275 -> Timer
5 -> Size
=> Unknown

> 513 -> LButtonDown
> 514 -> LButtonUp

> 515 -> LButtonDown
> 273 -> Command

> 256 -> Key

> 257 -> Key

> 18 -> Quit

>

>

>

>

B.2.4 Lifted Functions

To use the event loop primitives and the basic window operation primitives in the GUI
monad requires appropriate instance declarations for the EventSystem and WindowSystem
type classes. The implementation of the methods of these type classes simply uses the lifting
function for the GUI monad to lift the primitives from the I0 monad to the GUI monad.

> module Lift
> where

import WinSys
import GUI

v Vv

instance EventSystem GUI where
eventLoop handler
defaultHandler event

Vv V V V

quitEventLoop

instance WindowSystem GUI where
createWindow ¢ parent border
createShellWindow title
destroyWindow window
setWindowCaption window text
getWindowCaption window
setWindowRect window layout
getWindowRect window
getWindows
showWindow state window
setTimer window id time
killTimer window id
getDC window
releaseDC window dc
beginPaint window
endPaint window

VVV VYV VVVVVYVVVVVYV

1iftGUI
1iftGUI
1iftGUI

= 1iftGUI

1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI
1iftGUI

(eventLoop handler)
(defaultHandler event)
quitEventLoop

(createWindow ¢ parent border)
(createShellWindow title)
(destroyWindow window)
(setWindowCaption window text)
(getWindowCaption window)
(setWindowRect window layout)
(getWindowRect window)
getWindows

(showWindow state window)
(setTimer window id time)
(killTimer window id)

(getDC window)

(releaseDC window dc)
(beginPaint window)

(endPaint window)

65

B.3 The Core

B.3.1 Windows

This file is the main windows interface. It has functions for maintaining the state of a GUI,
that is the event handlers that are in place to handle events.

> module Windows
> where

import Types
import Table
import GUI
import Message
import Lift
import WinSys
import MutVar

vV V V V V V VvV

The following functions are used to process events. When an event occurs the mainHandler
function encapsulates the state of the application into the GUI monad, and passes the even
to the processEvent function. This function looks up the event in the application’s state,
first looking for the table containing responses to events for the particular window that the
event is associated with, and then using the type of the event to determine the response. If
no entry is found, then the response is determined by the default event handler, otherwise the
response retrieved from the state is performed. If the response is determined by the default
event handler, then its return value must be passed back to the window system (this is an
idiosyncrasy of the Windows 95 system).

> getEventHandler :: GUIState -> Window -> EventType -> Maybe EventHandler
> getEventHandler state window eventtype

> = do let window_table = getWindowTable state

> eventhandlers <- lookup window window_table

> lookup eventtype eventhandlers

runEventHandler :: Maybe EventHandler -> Event -> GUI Int

runEventHandler Nothing event = defaultHandler event

runEventHandler (Just event_handler) event = do event_handler event
return 0

Vv V V V

processEvent :: Event -> GUI Int
processEvent event = do let etype = getEventType event
(w, _, _, _) = event
state <- getGUIState
let event_handler = getEventHandler state w etype
runEventHandler event_handler event

vV V.V V V V

> mainHandler :: GUIStateVar -> Event -> IO Int
> mainHandler st ce = startingWithGUI (processEvent ce) st

The initial state for all graphical applications is an empty table, which indicates that no
windows have been created, and that all events are to be processed using the default event

handler.

> initGUIState :: GUIState
> initGUIState = nullTable

66

A graphical application is started using the startProg function, which creates the state to
store the table used for determining responses to events. The application is then given an
opportunity to create windows, menus, buttons, and other graphical components, installing
the appropriate responses to events in the state. Finally the event loop is entered, and the
application then becomes responsive to interaction from the user.

> startProg :: GUI () -> I0 O

> startProg w = do st <- newRef initGUIState
> startingWithGUI w st

> eventLoop (mainHandler st)

The basic window creation primitive can be used to create so called child windows, which
have another window as their parent, and exist inside this other window. A useful abstraction
for creating these windows, not only creates the window, but sets its position and size, and
also makes it visible.

> mkChildWindow :: Window -> Rect -> GUI Window

> mkChildWindow parent layout

> = do window <- createWindow "HugsWindow" parent False
setWindowRect window layout

showWindow True window

Vv VvV Vv

return window

When a new window is created, we add a new entry to the state; this is a table that
will contain the mappings between events and responses for the new window. This table is
initially empty indicating that all responses are to be determined by the default event handler
built-in to the window system.

> addWindow :: Window -> GUI ()

> addWindow window

> = do state <- getGUIState

let window_table = getWindowTable state
window_table’ = addEntry window nullTable window_table
state’ = getWindowTable window_table’ state

case (lookup window window_table) of

Nothing -> setGUIState state’

Just _ -> return ()

VvV V.V V V VvV

The following functions provide a simple interface for altering the responses to events that are
stored in the graphical application’s state. The functions support removing existing responses
for events, and adding new responses for events.

> addHandler :: Window -> EventType -> EventHandler -> GUI ()

> addHandler window event handler

> = do addWindow window

> updateGUIState £

> return ()

> where f = updateWindowTable (update window (addEntry event handler))

> removeHandler :: Window -> EventType -> GUI ()

> removeHandler window event

> = do updateGUIState £

> return ()

> where f = updateWindowTable (update window (removeEntry event))

When an application wishes to shut itself down, it can call this function. Closing of open
windows is automatically taken care of by obtaining a list of all the open windows belonging to

67

the application, and then destroying these windows. The state for the application is emptied
before destroying the windows so that the application does not process any messages relating
to the windows destruction.

> quitdpp :: GUI ()

> quitApp = do window_list <- getWindows

updateGUIState £

mapM_ destroyWindow window_list
quitEventLoop

return ()

where f state = setWindowTable nullTable state

vV V.V V V

B.3.2 On Handlers

This module provides a family of functions useful for defining the behaviour of a graphical
application. The application’s state is altered to set the behaviour in response to an event.
Also, the information packed in the event structure is unpacked according to the type of the
event, requiring the programmer to supply a function using the unpacked information.

> module OnHandlers
> where

import Types

import GUI

import Windows
import EventHandlers
import Lift

import Windows_API

VvV V V V V VvV

v

onDestroy :: Window -> (Window -> GUI ()) -> GUI ()
> onDestroy window handler = addHandler window Destroy (handleDestroy handler)

> onPaint :: Window -> (Window -> Draw ()) -> GUI ()
> onPaint window handler = addHandler window Paint (handlePaint handler)

> onLButtonDown :: Window -> (Window -> Bool -> Point -> GUI ()) -> GUI ()
> onLButtonDown window handler
> = addHandler window LButtonDown (handleLButtonDown handler)

> onLButtonUp :: Window -> (Window -> Point -> GUI ()) -> GUI ()
> onLButtonUp window handler
> = addHandler window LButtonUp (handleLButtonUp handler)

> onCommand :: Window -> (Window -> Int -> Int -> Int -> GUI ()) -> GUI ()
> onCommand window handler = addHandler window Command (handleCommand handler)

> onKey :: Window -> (Window -> Int -> Bool -> Int -> Int -> GUI ()) -> GUI ()
> onKey window handler = addHandler window Key (handleKey handler)

> onQuit :: Window -> (Window -> Int -> GUI ()) -> GUI ()
> onQuit window handler = addHandler window Quit (handleQuit handler)

> onTimer :: Window -> (Window -> Int -> GUI ()) -> GUI ()
> onTimer window handler = addHandler window Timer (handleTimer handler)

> onSize :: Window -> (Window -> Int -> Size -> GUI ()) -> GUI ()
> onSize window handler = addHandler window Size (handleSize handler)

68

A useful abstraction is to create a window with a particular title, and with a predefined
response of shutting down the application when closed.

> mkWindow :: String -> GUI Window
> mkWindow text

> = do window <- createShellWindow text
> onDestroy window (_ -> quithpp)
> return window

B.3.3 Controls

This module provides support for the built-in controls of a windowing system. A hierarchy
of type classes is used to capture the commonalities between different controls.

> module Controls
> where

import Types
import GUI

import Lift
import Windows
import OnHandlers

vV V. V V V

A control has the concept of an associated piece of text, such as the label on a button, and
also has a particular size. These characteristics are captured by the Control type class:

> class Control a where

> setText :: a -> String -> GUI O
> getText :: a -> GUI String

> setRect :: a -> Rect -> GUI ()

> getRect :: a -> GUI Rect

An editable control supports the concepts of change and commit. Change is when the contents
of an editable control changes as a result of interaction with the user. Commit is when the
contents of an editable control is fixed at its current value in response to a user action. An
example of an editable control is an editable text field. Whenever the text of the text field
is edited, the behaviour specified by the onChange function is invoked. Commit occurs when
the user presses the return key in the text field:

> class Control a => Editable a where
> onChange :: a -> GUI () -> GUI ()
> onCommit :: a -> GUI () -> GUI ()

> class Editable a => Button a where
> setState :: a —-> Bool -> GUI ()
> getState :: a -> GUI Bool

A push button is implemented by wrapping the built-in control inside of a transparent window.
Both of the windows involved, the one for the control itself, and the transparent window
wrapping it and stored in the representation of a push button. This allows the button to
be easily manipulated. The operation of altering the text of the control uses the control’s
own window, whereas altering the size of the control alters the size of both the control’s
window and the surrounding transparent window. The button’s content is considered to have
changed whenever it is pushed, and thus the behaviour specified by the onChange method is
invoked whenever this is the case. The position of a child window is specified relatively to its
containing parent window, thus the position of a wrapped control window is (0, 0).

69

> data PushButton = PushButton Window Window

> instance Control PushButton where

> setText (PushButton _ button) text = setWindowCaption button text
> getText (PushButton _ button) = getWindowCaption button

> setRect (PushButton window button) (xy, wh)

> = do setWindowRect window (xy, wh)

> setWindowRect button ((0, 0), wh)

>

getRect (PushButton window _) = getWindowRect window

> instance Button PushButton where

> setState (PushButton _ _) state = return ()

> getState (PushButton _ _) = return False

> instance Editable PushButton where

> onChange (PushButton window _) handler

> = onCommand window (\w id ctl code -> handler)
> onCommit (PushButton window _) handler = return ()

An editable text field is implemented in a similar manner to a push button, except the
required responses for change and commit in the control are stored in the representation of
the editable text field. This is necessary as the event indicating either a change or a commit
has the same type. When changing the behaviour for either a change or a commit, we must
maintain the behaviour for the other event, which we can retrieve from the editable text field’s
representation:

> data EditField = EditField Window Window (GUI ()) (GUI ())
> instance Control EditField where
> setText (EditField _ edit _ _) text = setWindowCaption edit text
getText (EditField _ edit _ _) = getWindowCaption edit
setRect (EditField window edit _ _) (xy, wh)

= do setWindowRect window (xy, wh)

setWindowRect edit ((0, 0), wh)

getRect (EditField window) = getWindowRect window

vV V. V V V

instance Editable EditField where

onChange (EditField window button _ oncommit) handler

>

> -

> = onCommand window (\w id c¢tl code -> notify code button)
> where notify n edit = if (n == 768) then handler

> else if (n == 1792) then oncommit

> else return ()

> onCommit (EditField window button onchange _) handler

> = onCommand window (\w id c¢tl code -> notify code button)
> where notify n edit = if (n == 768) then onchange

> else if (n == 1792) then handler

>

else return ()
A text label need only be an instance of the Control type class as it has none of the charac-
teristics of an editable control. As such a wrapping transparent window is not required:

> data TextLabel = TextLabel Window
> instance Control TextLabel where

> setText (TextLabel window) text = setWindowCaption window text
getText (TextLabel window) getWindowCaption window
setRect (TextLabel window) rect = setWindowRect window rect
getRect (TextLabel window)

vV Vv Vv
non

getWindowRect window

When creating a control, we need to specify a string identifying the type of control to be
created, and a parent window. The basic window creation primitive does not automatically set

70

the position and size of the control, or it’s associated text. To provide this extra functionality,
we define a function mkControl, that also makes the control visible as well as setting its
position and size.

> mkControl :: String -> Window -> String -> Rect -> GUI Window

> mkControl clss parent text size = do window <- createWindow clss parent True
> setWindowRect window size
setWindowCaption window text
showWindow True window

return window

v V V

The following functions are used to create instances of particular controls. For push buttons
and editable text fields, a child window is used to wrap the control window. This makes the
processing of notification events from the control window easier to handle. Text labels have
no notification events and so are not created inside of a child window:

> mkPushButton :: Window -> String -> Rect -> GUI PushButton
> mkPushButton parent text (xy, wh)

> = do window <- mkChildWindow parent (xy, wh)

> btn <- mkControl "button'" window text ((0, 0), wh)
> return (PushButton window btn)

> mkEditField :: Window -> String -> Rect -> GUI EditField

> mkEditField parent text (xy, wh)

> = do window <- mkChildWindow parent (xy, wh)

> edit <- mkControl "edit'" window text ((0, 0), wh)

> return (EditField window edit (return ()) (return ()))
> mkTextLabel :: Window -> String -> Rect -> GUI TextLabel

> mkTextLabel parent text (xy, wh)

> = do window <- mkControl "static'" parent text (xy, wh)

> return (TextLabel window)

B.3.4 Graphics

This module provides support for drawing graphics in windows. A monad is introduced that
encapsulates the context required for drawing.

> module Graphics
> where

> import Types
> import WinSys

Drawing in a window requires a device context, which is obtained in one of two ways depending
upon the situation. If the drawing is taking place in response to the special paint event, then
the device context can be obtained by using the beginPaint function, and must be freed
using the endPaint function. For all other cases, a device context can be obtained using the
getDC function, and is freed using the releaseDC function. These functions are specific to
the Windows 95 system. The following two functions encapsulate these two ways of obtaining
a device context:

> drawInWindow :: Window -> Draw a -> GUI a

> drawInWindow w d = do dc <- getDC w

> result <- startingWithDraw dc d
> releaseDC w dc

71

> return result

> paintInWindow :: Window -> Draw a -> GUI a
> paintInWindow w d = do dc <- beginPaint w

> result <- startingWithDraw dc d
> endPaint w
> return result

The Draw monad encapsulates a device context such that the programmer does not have to
thread it throughout the code for drawing graphics. This monad is a state reader monad:

> newtype Draw a = Draw (DC -> GUI a)

> instance Functor Draw where
> map f (Draw g) = Draw (\dc -> map f (g dc))

instance Monad Draw where
return x = Draw (\dc -> return x)
Draw g >>= f = Draw (\dc -> do a <- g dc
let Draw h = f a
h dc)

vV V.V V V

> startingWithDraw :: DC -> Draw a -> GUI a
> startingWithDraw dc (Draw d) = d dc

Arbitrary operations in the GUI monad can be lifted into the Draw monad simply by ignoring
the device context that is encapsulated by the Draw monad:

> liftDraw :: GUI a -> Draw a
> liftDraw a = Draw (_ -> a)

All operations from the EventSystem,WindowSystem and MutVars type classes are lifted into
the Draw monad, so that these operations are all available while drawing graphics:

> instance EventSystem Draw where

> eventLoop handler = liftDraw (eventLoop handler)

> defaultHandler event = liftDraw (defaultHandler event)

> quitEventLoop = liftDraw (quitEventLoop)

> instance WindowSystem Draw where

> createWindow clss parent brdr = liftDraw (createWindow clss parent brdr)
> destroyWindow window = liftDraw (destroyWindow window)

> setWindowCaption window text = liftDraw (setWindowCaption window text)
> getWindowCaption window = liftDraw (getWindowCaption window)

> setWindowRect window layout = liftDraw (setWindowRect window layout)
> getWindowRect window = liftDraw (getWindowRect window)

> getWindows = liftDraw getWindows

> showWindow state window = liftDraw (showWindow state window)

> setTimer window id time = liftDraw (setTimer window id time)

> killTimer window id = liftDraw (killTimer window id)

> getDC window = liftDraw (getDC window)

> releaseDC window dc = liftDraw (releaseDC window dc)

> beginPaint window = liftDraw (beginPaint window)

> endPaint window = liftDraw (endPaint window)

> instance MutVars Draw where

> newRef a = liftDraw (newRef a)

> getRef a = liftDraw (getRef a)

>

setRef a x liftDraw (setRef a x)

72

A drawing system is characterised by operations for drawing lines, and text. It also supports
the creation of pens with different colours and widths. These ideas are encapsulated into the
DrawingSystem type class:

> class WindowSystem m => DrawingSystem m where
> lineTo :: Point -> m ()

> moveTo :: Point -> m ()

> selectObject :: Object -> m Object

> deleteObject :: Object -> m Bool

> drawText :: Point -> String -> m ()

> createPen :: Int -> Colour -> m Object

The Draw monad is a drawing system, as can be expressed by making it an instance of the
DrawingSystem monad. The device context encapsulated by the Draw monad is used as an
argument to the primitive functions for drawing in windows. Since the primitive functions
were not included in any of the type classes we have defined, they must be lifted into the GUI
monad explicitly:

> instance DrawingSystem Draw where

> lineTo (x, y) = Draw (\dc -> 1iftGUI (primLineTo dc x y))

> moveTo (x, y) = Draw (\dc -> 1iftGUI (primMoveTo dc x y))

> selectObject obj = Draw (\dc -> 1iftGUI (primSelectObject dc obj))

> deleteObject obj = Draw (\dc -> 1iftGUI (primDeleteObject obj))

> drawText (x, y) text = Draw (\dc -> liftGUI (primDisplayText dc x y text))
> createPen w ¢ = Draw (\dc -> 1iftGUI (primCreatePen w c))

> mapPoint :: (Int -> Int) -> Point -> Point

> mapPoint f (x, y) = (f x, £ y)

An individual point can be drawn by drawing a line one unit in length. Coloured points
require the creation of an appropriate pen with the correct colour and width:

> drawPoint :: DrawingSystem m => Point -> m ()
> drawPoint p = drawLine p (mapPoint (+1) p)

> drawCPoint :: DrawingSystem m => Point -> Colour -> Int -> m ()
> drawCPoint p ¢ w = do pen <- createPen w ¢

> oldpen <- selectObject pen

drawPoint p

selectObject oldpen

deleteObject pen

return ()

Vv V V V

A line can be drawn by moving to one end of the line, and drawing to the other end:

> drawlLine :: DrawingSystem m => Point -> Point -> m ()
> drawlLine p q = do moveTo p
> lineTo q

A filled rectangle can be drawn by drawing a sequence of lines next to each other. An unfilled
rectangle just requires the perimeter to be drawn:

> drawFilledRect :: DrawingSystem m => Rect -> m ()
> drawFilledRect ((x1, y1), (x2, y2))
> = sequence [drawLine (x1, y) (x2, y) | y <= [y1..y2]]

v

drawRect :: DrawingSystem m => Rect -> m ()
> drawRect ((x1, y1), (x2, y2)) =

73

do moveTo (x1, y1)
lineTo (x1, y2)
lineTo (x2, y2)
lineTo (x2, y1)
lineTo (x1, y1)

vV V. V V V

A polygon is a list a points that, when joined together, form the polygon. The last point in
the list is joined to the first point to close the shape:

> type Polygon = [Point]

> drawPolygon :: DrawingSystem m => Polygon -> m ()
> drawPolygon [] = return O
> drawPolygon (p:ps) = sequence (moveTo p : map lineTo (ps ++ [pl))

Colours are internally implemented as 32 bit values with the least significant 8 bits repre-
senting the amount of red, the next significant 8 bits representing the amount of green, and
the next significant 8 bits representing the amount of blue. This function should really be a
primitive as it assumes a particular internal represenation for the Colour type:

> mkColour :: Int -> Int -> Int -> Colour
> mkColour r g b = r + (g * 256) + (b * 65536)

B.3.5 Embracing Windows Framework

This module imports all of the source code that comprises the Embracing Windows frame-
work.

> module EmbracingWindows
> where

import Windows_Constants
import Windows

import OnHandlers

import Controls

import Graphics

v V V V VvV

74

B.4 Widgets

The widget system implemented in this section has been inspired by both TK-gofer and
Haggis. The layout combinators and the use of a monadic representation for a graphical
component in particular bear strong similarities to the ideas used in Haggis. The decision not
to use concurrency and to keep the overall system relatively simple stem from the approach
that the TK-gofer system takes to expressing GUIs in a functional language.

B.4.1 Widgets

This module defines the data structure used for representing widgets, and associated manip-
ulation functions.

> module WidgetCore
> where

> import EmbracingWindows

A layout request is characterised by three values, a minimum size, a natural size, and an
appropriate function for changing the size of the graphical component associated with the
layout request:

> data LR = LR {minSize :: Size, natSize :: Size, sf :: Rect -> GUI ()}

A widget is represented by a function whose argument identifies the window the widget is to
be created inside of. The result of the function is a value of type GUI (a, [LR]), indicating
that the function can perform I/0 and that the result of this I/O is a pair comprising the real
return value of the widget, and a list of layout requests. A list of layout requests is returned
in the pair, as the basic combinators for combining widgets do not alter the layout of the
widgets and so must preserve the layout requests:

> newtype Widget a = Widget (Window -> GUI (a, [LRI))

Combinators for the layout of widgets essentially take a list of layout requests and combine
them into a single layout request. A function that does this is referred to as a placer, and for
widgets the type of such functions is:

> type WPlacer = [LR] -> LR

It is useful to define a null sizing function that does nothing, and also a null layout request
which requests no screen space and uses a null sizing function:

> nullSF :: Rect -> GUI ()
> nullSF (_, _) = return ()

> nullLR :: [LR]
> nulllLR = [LR (0, 0) (0, 0) nullSF]

Widgets are combined using the two standard monadic combinators, thenW and returnW. The
layout requests of widgets are combined by simply concatenating the two lists comprising the
layout requests to obtain the new layout request list. The Widget type is made an instance of
the Monad type class, allowing the use of the built-in notation for defining monadic functions.
A map function can be defined for widgets, allowing us to define Widget as an instance of the
Functor type class:

75

thenW :: Widget a -> (a -> Widget b) -> Widget b
thenWW m n
= Widget (\win ->
do let Widget m’ = m
(r, 1lra) <- m’ win
let Widget n’ = n r
(v, 1rb) <- n’ win
return (v, lra ++ 1lrb))

vV V.V V V V V.YV

> returnW :: a -> Widget a
> returnW a = Widget (\win -> return (a, nullLR))

> instance Monad Widget where
> return = returnW
> (>>=) = thenW

> mapW :: (a -> b) -> Widget a -> Widget b
> mapW f w = do x <- w
> return (f x)

> instance Functor Widget where
map = mapW

v

A stateful widget has no on screen appearance, but creates a piece of mutable state and
returns a reference to it:

> stateW :: a -> Widget (Ref a)
> stateW init = Widget (\win -> do st <- newRef init
> return (st, nullLR))

A widget is realised in a window using the wopen function. This function creates a new
window, and realises the widget inside of it. The widget returns a list of layout requests that
must be combined to obtain a single layout request. The requests are combined by taking
the largest values for the minimum, and natural sizes in both the horizontal and vertical
dimensions. This corresponds to a default layout combinator that places widgets in a pile on
top of one another. The newly created window is sized to the natural size of the combined
layout request increased by a small amount corresponding to the width and height of window
borders and menus. The size of the window borders and menus is specific to Windows 95.
The combined sizing function is called to ensure that the widget is sized correctly, since
the combined layout request size may be different to the size the components of the widget
have requested. When a sizing event occurs for the newly created window, the combined
sizing function is used to resize the widget. Finally the newly created window must be made
visible:

> wopen :: String -> Widget a -> GUI Window

> wopen text (Widget wid)

> = do win <- mkWindow text

(_, 1rs) <- wid win

let (LR _ (sx, sy) sf) = pileWP lrs

setWindowRect win ((0, 0), (sx + window_extra_x, sy + window_extra_y))

st (0, 0), (sx, sy))

onSize win (\w state xy -> sf ((0, 0), xy))
showWindow True win

vV V V V V V.V

return win

The following function defines a widget placer for placing widgets in a pile. The combined
minimum and natural sizes are obtained by taking the maximum values for these sizes in both

76

the horizontal and vertical dimensions of all the individual layout requests. Sizing functions
are combined in by simply passing the new size to all of the sizing functions unaltered:

> pileWP :: WPlacer
> pileWP 1lrs = foldrl pile2 1lrs
where
pile2 (LR mina nata sfa) (LR minb natb sfb)
= let newsf rect = do sfa rect
sfb rect
in (LR (pairmax mina minb) (pairmax nata natb) newsf)
pairmax (x, y) (x’, y’) = (max x x’, max y y’)

vV V.V V V V

B.4.2 Layout Widgets

This module contains layout combinators and other layout functions.

> module LayoutWidgets
> where

> import WidgetCore

A widget placer can be used to layout widgets with the placerW function, taking a widget
placer and a widget as arguments. The widget placer is used to combine the list of layout
requests associated with the widget into a single layout request. Finally, a new widget is
constructed with a singleton list of layout requests with the combined layout request as its
element:

> placerW :: WPlacer -> Widget a -> Widget a

> placerW placer (Widget wid)

> = Widget (\win -> do (a, lrs) <- wid win

> return (a, [placer lrs]))

A simple widget placer, is the horizontal widget placer. This combines widgets by placing
them next to each other horizontally. The minimum and natural sizes of each of the widgets
involved are combined by summing the horizontal dimensions and taking the maximum of
the vertical dimensions. A new sizing function splits up the allocated screen space between
the widgets according to their individual requests. A widget whose natural and minimum
sizes are the same will always receive the screen space it asked for, possibly at the expense of
widgets whose natural and minimum sizes differ:

> horizontalWP :: WPlacer

> horizontalWP lrs = let newmin = foldrl f (map minSize lrs)

newnat = foldrl f (map natSize 1rs)
in LR newmin newnat (newsf 1lrs)

where
f(x,y) (X7, y) ={&+x,maxyy)
diff (LR (x,) (x’, 1)) =x’ - x

gl _____ = return ()
g (lr:1rs) offset ay h a b

do let (LR (x, y) (x’, _) sf) = 1r
width = if b /= 0 then
x’ + (((x? = x) * a) ‘div¢ b)
else O
width’ = max x width
sf ((offset, ay), (width’, max y h))
g lrs (offset + width’) ay h a b
newsf lrs ((ax, ay), (w, h)) = do let a = sum (map diff 1rs)
x = sun (map (fst . natSize) lrs)
g lrs ax ay h (w - x) a

vV VV VYV VYV YV VYV VVYVYVVYV

7

The horizontalWP widget placer is used to define the hbox layout combinator:

> hbox :: Widget a -> Widget a
> hbox = placerW horizontalWP

A widget placer similar to the horizontalWP widget placer, combines widgets by placing them
next to each other vertically. The logic behind this widget placer is identical to that for the
horizontalWP widget placer, except that the horizontal and vertical dimensions are swapped
around. Abstracting away from this leads to the notion of a transpose combinator that would
take a widget placer and return a new widget placer identical to the original except that the
horizontal and vertical dimensions are flipped. Unfortunately, the choice of representation of
layout requests makes it difficult to define such a combinator, as the sizing function is not
abstract enough. The sizing function is really a combination of two functions, one splitting a
rectangle into a list of rectangles, and the other using this list of rectangles to size the widgets.
A transpose combinator needs to be able to modify the list of rectangles before the widgets
are sized using them. The modification would flip the horizontal and vertical dimensions.
The representation we have chosen, however, does not make the distinction between splitting
a rectangle into a list of rectangles, and actually sizing the widgets using this list. As a result
of this, we cannot modify the list of rectangles and so cannot write a transpose combinator.
Instead we duplicate the logic from the horizontalWP widget placer and manually modify
the code to flip the horizontal and vertical dimensions:

> verticalWP :: WPlacer
> verticalWP lrs = let newmin = foldrl f (map minSize lrs)
> newnat = foldrl £ (map natSize 1rs)
in LR newmin newnat (newsf lrs)
where
f(x,y) x7, y°) = (max x x’, y +y”)
diff (LR (L, v (L, y)) =y -7y
gl _____ = return ()
g (lr:1rs) ax offset w a b = do let (LR (x, y) (_, y’) sf) = 1r
height = if b /= 0 then
y’ + (((y’> - y) * a) ‘div‘ b)
else O
height’ = max y height
sf ((ax, offset), (max x w, height’))
g lrs ax (offset + height’) w a b
newsf lrs ((ax, ay), (w, h)) = do let a = sum (map diff 1rs)
y = sun (map (snd . natSize) lrs)
g lrs ax ay w (h - y) a

vV VVV V VYV VYV VYV VYVVYV

> vbox :: Widget a -> Widget a
> vbox = placerW verticalWP

Adding a margin to a widget is a useful layout abstraction, and we provide three functions
for doing this. The first adds a margin to the top and bottom of a widget, the second adds a
margin to the left and right, and the last places a margin all the way around a widget:

> ymargin :: Int -> Widget a -> Widget a
> vmargin m w = vbox (do glue

> val <- w

> glue

> return val)

> where glue = space (m, m)

> hmargin :: Int -> Widget a -> Widget a

78

> hmargin m w = hbox (do glue

> val <- w

> glue

> return val)

> where glue = space (m, m)

> margin :: Int -> Widget a -> Widget a
> margin m w = hmargin m (vmargin m w)

It is sometimes useful to place widgets in a grid, the matrix layout combinator can be used
for this. The first argument to this layout combinator specifies the width of the grid in terms
of the number of widgets placed horizontally on one row. The second argument is a list of the
widgets to be used to fill the grid. Combining widgets using this layout combinator results
in a new widget, whose return value is a function. This function can be used to obtain the
return values of the constituent widgets by passing it a vector indicating which widget in the
grid to get the return value of:

matrix :: Int -> [Widget al -> Widget (Vector -> a)
matrix n ws
= do aws <- vbox (accumulate (map (hbox . accumulate) (splitsegs n ws)))
let retwid (x, y) = (aws!!y)!'x
return retwid

vV V.V V V

> splitsegs :: Int -> [a] -> [[all
> splitsegs n = takeWhile (not . null) . map (take n) . iterate (drop n)

Space widgets have no behaviour, but do take up screen space. Three functions are defined
for constructing space widgets. The first constructs a space widget taking up a specified
amount of horizontal space, while the second constructs a widget taking up a specified of
vertical space. Finally, a combination of these two functions is used to construct a space
widget taking up a specific amount of horizontal and vertical space:

> hspace :: Int -> Widget O
> hspace n = Widget (\win -> return ((), [LR (n,0) (n,0) nullSF]))

> vspace :: Int -> Widget O
> vspace n = Widget (\win -> return ((), [LR (0,n) (0,n) nullSF]))

> space :: Size -> Widget (O
space (x, y) = do hspace x
> vspace y

v

B.4.3 Standard Widgets

This module contains definitions of standard library widgets, such as push buttons, editable
text fields, and labels.

> module WidgetLib
> where

> import EmbracingWindows

> import WidgetCore

> import LayoutWidgets

A button widget is specified by the text label, size of the widget, and a value of type GUI
() indicating the behaviour of the button when pressed. The layout request for the widget

79

indicates that the button can shrink or grow to fit the space it is allocated, since its minimum
size is a zero size rectangle. An editable text field widget, and text label widget are constructed
in a similar fashion to the button widget. However note, that the layout request for text labels
specifies the minimum and natural sizes to be the same indicating that the widget cannot
shrink or grow in size:

> buttonW :: String -> Size -> GUI () -> Widget PushButton

> buttonW text (w, h) eh

> = Widget (\win ->

> do btn <- mkPushButton win text ((0, 0), (w, h))
> onChange btn eh

> let sizefun size = setRect btn size

> return (btn, [LR (0,0) (w, h) sizefun]))

editW :: String -> Size -> Widget EditField
editW text (w, h)
= Widget (\win ->
do edit <- mkEditField win text ((0, 0), (w, h))
let sizefun size = setRect edit size
return (edit, [LR (0,0) (w, h) sizefun]))

VvV V.V V V VvV

textW :: String -> Size -> Widget TextLabel
textW text (w, h)
= Widget (\win ->
do static <- mkTextLabel win text ((0, 0), (w, h))
let sizefun size = setRect static size
return (static, [LR (w,h) (w, h) sizefun]))

vV V.V V V V

The concept of an abstract widget that has no visual appearance is quite useful, and a good
example of such a widget is a timer widget. A timer widget has no visual appearance,
but can be used to perform actions on a regular basis. The widget construction function,
createTimer, takes a first argument specifying a time interval. The timerTick function is
used to set the behaviour to occur after this time interval has elapsed:

> data TimerControl = TimerControl Window

timerW :: Int -> Widget TimerControl
timerW interval = Widget (\win -> do timewin <- mkWindow ""
setTimer timewin O interval

Vv V V V

return (TimerControl timewin, nullLR))

createTimer :: Int -> GUI TimerControl
createTimer interval
= do timewin <- mkWindow ""
gsetTimer timewin O interval

vV V. V V V

return (TimerControl timewin)

> timerTick :: TimerControl -> GUI () -> GUI ()
> timerTick (TimerControl window) handler = onTimer window (\w id -> handler)

A stateful text label combines the standard text label widget with a piece of state. The value
of type a supplied as the third argument specifies the initial value of the state. The widget
returns a pair, the first value of which can be used to manipulate the text label, while the
second value is a function that can be used to modify the state of the widget:

> stateTextW :: Show a => Size -> a -> Widget (TextLabel, ((a -> a) -> GUI ()))
> stateTextW size init

80

= do st <- stateW init
label <- textW (show init) size
let update £ = do v <- getRef st
let vV = f v
setRef st v’
setText label (show v’)
return (label, update)

vV V.V V V V Vv

A labelled edit widget, as described in Section 3.3:

> labelledEditW :: String -> Size -> Widget EditField
> labelledEditW label size = hbox (do textW label size
> editW "" size)

B.4.4 Widgets System

This module imports all of the source code that comprises the Widget system.

> module Widgets
> where

> import WidgetCore

> import LayoutWidgets
> import WidgetLib

81

B.5 Fudgets

The fudget system implemented here is based upon the original fudgets implementation. The
layout combinators and stream processor functions are mostly identical or slightly modified
versions of their counterparts from the original fudget implementation. The representation
chosen for fudgets is a modified version of that proposed by Reid and Singh, and here the
associated combinators are modified versions of the ones they proposed. The implementation
of the library widgets is new, although based in some part upon the ideas of Reid and Singh.

B.5.1 Fudgets

This module defines the representation for a fudget and some basic functions for manipulating
fudgets.

> module FudgetCore
> where

> import EmbracingWindows

Layout is handled in the Fudget system in a similar way to the Widget system, using layout
requests. A layout request specifies a preferred size and two booleans. The booleans indicate
whether the fudget can accept a different size in either of the two dimensions, horizontal and
vertical. Again, just as a sizing function was used in the Widget system, a fudget will have
an associated sizing function:

> type SizeFun = Rect -> GUI ()
> data Layout = L LayoutRequest SizeFun
> data LayoutRequest = Layout Size Bool Bool

> nullSizer :: SizeFun
> nullSizer rect = return ()

> nulllayout :: [Layout]
> nulllayout = [L (Layout (0, 0) True True) nullSizer]

Layout combinators in the Fudget system essentially convert a list of layout requests into a
single request:

> type Placer = [Layout] -> Layout

A fudget is represented as a function taking two arguments. The first indicates the window
the fudget is to be created inside of, and the second is a handler that can be used to output
values from the fudget. The result of the function is a value of the GUI monad because the
fudget can communicate with the windowing system. The result of the action returned is a
pair of values, the first of which specifies an input handler that can be used to send input
values to the fudget, the second of which is a list of layout requests:

> type Handler a = a -> GUI ()
> type F a b = Window -> Handler b -> GUI (Handler a, [Layout])

> nullHandler :: Handler a
> nullHandler a = return ()

> nullF :: Fab

> nullF parent outputHandler
> = return (nullHandler, nulllLayout)

82

A fudget program can be executed by converting it into a program using the standard Haskell
I/O mechanism and then running it. The fudlogue function performs this conversion, by
passing a null window and null handler to the fudget, and using this as the initialisation for
the startProg function:

> fudlogue :: Fab ->1I0 O
> fudlogue f = startProg (do f nullWindow nullHandler
> return ()

B.5.2 Layout Fudgets

This module contains functions for specifying the layout of fudget programs.

> module LayoutFudgets
> where

import EmbracingWindows

import FudgetCore

import Combinators

import LayoutWidgets -- For splitsegs

Vv V V V

The part function is useful for dividing a list into two lists determined by a predicate over
the elements of the list. This is used in the definition of the horizontalP and verticalP
placers:

> part :: (a -> Bool) -> [al -> ([al, [al)

> part p [0 = (1,0

> part p (x:xs) = let (ys, zs) = part p xs

> in if p x then (x : ys, zs) else (ys, x : zs)

The following functions are useful auxillary functions for manipulating layout requests:

> fixedh :: LayoutRequest -> Bool
> fixedh (Layout _ hf _) = hf

> fixedv :: LayoutRequest -> Bool
> fixedv (Layout _ _ vf) = vf

> minsize :: LayoutRequest -> Size
> minsize (Layout size hf vf) = size

> getRequest :: Layout -> LayoutRequest
> getRequest (L request sizer) = request

> getRequests :: [Layout] -> [LayoutRequest]
> getRequests layouts = map getRequest layouts

> getSizefun :: Layout -> SizeFun
> getSizefun (L _ sizefun) = sizefun

The placerF function is used to apply a placer to a fudget. It uses the placer to combine
the list of layout requests associated with a fudget into a single layout request that is used to
build the new fudget:

> placerF :: Placer -> Fab ->F ab

> placerF placer f parent outputHandler

> = do (inputHandler, layouts) <- f parent outputHandler
> return (inputHandler, [placer layouts])

83

By reversing the list of layout requests before applying a placer, we can reverse the placers
action, for example converting a horizontalP into a placer that puts fudget next to each
other horizontally from right to left instead of left to right:

> revP :: Placer -> Placer
> revP placer = placer . reverse

Two commonly used placers are horizontalP and verticalP used to place fudgets next to
each other horizontally and vertically, respectively. We define two functions, hBoxF and vBoxF,
that take fudgets as arguments and apply the appropriate placer to make the use of these
placers easier. The logic behind the horizontalP and verticalP placers is similar to that for
the Widget system placers. Basically, the available space is split between the fudgets wanting
the space according to how much space they each requested. Fudgets that are not willing
to accept a change in the space they are given are allocated space first, with the remaining
space divided proportionally amongst those fudgets that can accept a change in their size.
A transpose combinator is difficult to write for the same reasons as for the Widget system,
that is, the sizing functions need to be split into two separate functions. The first of these
functions divides allocated screen space amongst fudgets giving a list of rectangles, whilst the
second function sizes the fudgets using these rectangles. This would be necessary so that the
transpose combinator can modify the list of rectangles produced by the first function. Since
the sizing functions are not broken into two in this way, writing a transpose combinator is

difficult:

> hBoxF = placerF horizontalP
> vBoxF = placerF verticalP

> horizontalP :: Placer
> horizontalP layouts =
let requests = getRequests layouts
ninsizes = map minsize requests
h = sum (map getX minsizes)
v = (maximum . (0:) . (map getY)) minsizes
(th’, fv’) = (allf and fixedh, allf and fixedv)
allf conn fix = conn (map fix requests)
sizer rect =
let goth = (fromInt . getX . getSize) rect
gotv = (fromInt . getY . getSize) rect
startx = (fromInt . getX . getPoint) rect
starty = (getY . getPoint) rect
(fih, flh) = part fixedh requests
fixedh’ = (fromInt . sum . map (getX . minsize)) fih
floath = (fromInt . sum . map (getX . minsize)) flh
fixedR = if floath > 0.0 then 1.0 else goth / fixedh’
floatR = if floath == 0.0 then 1.0 else (goth - fixedh’) / floath
rR’ req = if fixedh req then fixedR else floatR
place x [1 = [return ()]
place x (1 : 1s) =
let req = getRequest 1
sf = getSizefun 1
width = (fromInt . getX . minsize) req * rR’ req
x’ = truncate x

newx = x + width
width’ = truncate width
in (sf ((x’, starty), (width’, gotv))) : place newx ls
in sequence (place startx layouts)
in (L (Layout (h, v) fh’ fv’) sizer)

VVVVVVVVVYVVVYVVVVVVYVVVYVYVYVYVYVVYV

84

> verticalP :: Placer
> verticalP layouts =
> let requests = getRequests layouts
ninsizes = map minsize requests
h = sum (map getY minsizes)
v = (maximum . (0:) . (map getX)) minsizes
(th’, fv’) = (allf and fixedv, allf and fixedh)
allf conn fix = conn (map fix requests)
sizer rect =
let goth = (fromInt . getY . getSize) rect
gotv = (fromInt . getX . getSize) rect
startx = (fromInt . getY . getPoint) rect
starty = (getX . getPoint) rect
(fih, flh) = part fixedv requests
fixedh’ = (fromInt . sum . map (getY . minsize)) fih
floath = (fromInt . sum . map (getY . minsize)) flh
fixedR = if floath > 0.0 then 1.0 else goth / fixedh’
floatR = if floath == 0.0 then 1.0 else (goth - fixedh’) / floath
rR’ req = if fixedv req then fixedR else floatR
place y [1 = [return ()]
place y (1 : 1s) =
let req = getRequest 1
sf = getSizefun 1
height = (fromInt . getY . minsize) req * rR’ req
y’ = truncate y
newy = y + height
height’ = truncate height
in (sf ((starty, y’), (gotv, height’))) : place newy ls
in sequence (place startx layouts)
in (L (Layout (v, h) fv’ fh’) sizer)

vV VVVVVVVVVVVVVYVVVVVVVYVVYVYVYVYV

A space fudget has no behaviour but does take up screen space, and is willing to change it’s
size to fit the available space:

> spaceF :: Size -> F a b
> spaceF (w, h) parent outputHandler
> = return (nullHandler, [(L (Layout (w, h) False False) nullSizer)])

Margins can be added to fudgets using the following layout combinators. The first adds a
margin to the top and bottom of a fudget, whilst the second adds a margin to the left and
right of a fudget. The last adds a margin all the way around a fudget by using a combination
of the first two combinators:

> ymarginF :: Int -=> Fab->Fab
> vmarginF m £ = vBoxF (spaceF (0, m) >*< f >*< spaceF (0, m))

> hmarginF :: Int -=> Fab->Fab
> hmarginF m £ = hBoxF (spaceF (m, 0) >*< f >*< spaceF (m, 0))

> marginF :: Int -=> Fab->Fab
> marginF m f = hmarginF m (vmarginF m f)

The noStretchF function allows the stretchability of fudgets in both the horizontal and
vertical dimensions to be changed:

> noStretchF :: Bool -> Bool -> Fab ->F ab
> noStretchF fh fv f parent outputHandler

85

= do (handler, layout) <- f parent outputHandler
let layout’ = map fixStretch layout
return (handler, layout’)
where fixStretch (L (Layout size

Vv V V V

) sizer) = L (Layout size fh fv) sizer

Combinator layout is implemented in terms of placer layout, using the three placers horizontalP,
verticalP and revP:

> data Orientation = Above | Below | RightOf | LeftOf

> place2F :: (a -> b -> F ¢ d) -> (a, Orientation) -> b -> F ¢ d

> place2F (><) (£f1, al) £2 = placerF (placer al) (f1 >< £2) where

> placer Left0f = horizontalP

> placer Right0f = revP horizontalP

> placer Above = verticalP

> placer Below = revP verticalP

> (O+#<) :: (F a b, Orientation) -> F ¢ d -> F (Either a ¢) (Either b d)
> (>+#<) = place2F (>+<)

> (>==#<) :: (F a b, Orientation) -> Fca->F cb

> (>==#<) = place2F (>==<)
> (Ox#<) :: (F a b, Orientation) -> Fab ->F ab
> (>*#<) = place2F (>*<)

Fudgets can be placed in a grid formation by using the matrixF function. This function takes
three arguments. The first specifies the width of the grid in terms of fudgets, the second
argument is the fudget combinator to use to combine the fudgets, while the last argument is
the list of fudgets to use to fill the grid. This layout combinator has a disadvantage as it is
currently defined, as the type of its second argument restricts the fudget combinators that
can be used to connect the fudgets comprising a matrix:

> matrixF :: Int -> (Fab->Fab->Fab)->[Fabl] ->Fab
> matrixF n (><) fs = let rows = map (foldrl colop) (splitsegs n fs)

> in foldrl rowop rows
> where colop f1 £2 = place2F (><) (f1, Left0f) £2
> rowop f1 £2 = place2F (><) (£2, Below) f1

A fudget is realised inside of a window using the shellF function. This function creates a new
window and realises the fudget inside of it using the horizontalP placer to provide default
layout. The layout request of the fudget is used to obtain the desired size for the window.
This is used to set the size of the new window. The size for the new window is however,
slightly larger than one would expect to account for the size of window borders and menus.
The sizing function for the fudget is called to ensure that the fudget is sized appropriately for
the new window. An event handler is installed defining the behaviour in response to sizing
events to call the sizing function. Finally the newly created window is made visible, and a
dummy return input handler and layout request are returned:

> shellF :: String -> Fab ->Fcd

> shellF title f parent outputHandler

> = do win <- mkWindow title

(_, 1) <= (placerF horizontalP f) win nullHandler

let [(L (Layout (x’, y’) _ _) sizer)] =1

setWindowRect win ((0, 0), (x’ + window_extra_x, y’ + window_extra_y))
gizer ((0, 0), (x’, y7))

Vv V V V

86

> onSize win (\w state xy -> sizer ((0, 0), xy))
showWindow True win
> return (nullHandler, nulllLayout)

v

B.5.3 Standard Fudgets

This module defines a library of standard fudgets, such as push button fudgets, editable text
field fudgets, and text label fudgets.

> module FudgetLib
> where

> import EmbracingWindows
> import FudgetCore

A useful fudget is one that forces the fudget program to quit when it receives any value on
its input stream:

> quitF :: Fab

> quitF parent outputHandler

> = return (inputHandler, nulllLayout)
> where inputHandler a = do quitApp
> return ()

A push button fudget can be created by the buttonF fudget which takes two arguments, the
text label for the button, and the initial size of the button. The code to create the fudget is
similar to the buttonW function from the Widgets system:

> data Click = Click

> buttonF :: String -> Size -> F Click Click
> buttonF text (w, h) parent outputHandler
= do btn <- mkPushButton parent text ((0, 0), (w, h))
onChange btn (outputHandler Click)
let inputHandler a = outputHandler Click
sizer size = setRect btn size
layout = [(L (Layout (w, h) False False) sizer)]
return (inputHandler, layout)

vV V.V V V V

A timer fudget outputs the value Tick at predefined time intervals:

> data Tick = Tick

> timerF :: F (Maybe (Int, Int)) Tick
> timerF parent outputHandler
> = do return (inputHandler, nullLayout)
where inputHandler Nothing = killTimer parent 0
inputHandler (Just (interval, delay))
= do setTimer parent 0 interval
onTimer parent (\w id -> outputHandler Tick)

Vv V V V

An editable text field fudget can be created with the stringF function. This uses the data
type InputMsg to indicate on its output stream any changes that occur to the edit field, such
as a simple change, or a commit:

> data InputMsg a = InputChange a |
> InputDone a
> deriving (Eq, Ord, Show)

87

> stringF :: Size -> F String (InputMsg String)
> stringF (w,h) parent outputHandler
> = do edit <- mkEditField parent "" ((0, 0), (w, h))
let outputHandler’ output = do str <- getText edit
outputHandler (output str)

onChange edit (outputHandler’ InputChange)
onCommit edit (outputHandler’ InputDone)
let inputHandler a = setText edit a

sizer size = setRect edit size

layout = [(L (Layout (w, h) True True) sizer)]
return (inputHandler, layout)

vV V V V V V V.YV

The intDispF function creates a fudget showing the value of an integer. The value being
displayed can be changed by sending the new value on the fudget’s input stream:

> intDispF :: Size -> F Int a
> intDispF (w,h) parent outputHandler
> = do lab <- mkTextLabel parent "" ((0, 0), (w, h))
let inputHandler a = setText lab (show a)
sizer size = setRect lab size
layout = [(L (Layout (w, h) True True) sizer)]
return (inputHandler, layout)

Vv V V V

The labelF function creates a fudget showing a text label. The text label can be changed by
sending a new text label on the fudget’s input stream:

> labelF :: String -> Size -> F String b
> labelF text (w, h) parent outputHandler
> = do lab <- mkTextLabel parent text ((0, 0), (w, h))
let inputHandler a = setText lab a

sizer size = setRect lab size

layout = [(L (Layout (w, h) True True) sizer)]
return (inputHandler, layout)

Vv V V V

B.5.4 Stream processors

This module defines a representation for stream processors along with the three basic stream
processor, putSP, getSP and nullSP.

> module SP where
> import FudgetCore

> type SPab=Fab

> putSP :: a -> 8P b a -> 8P b a

> putSP init f parent outputHandler

> = do (inputHandler, _) <- f parent outputHandler

> outputHandler init

> return (inputHandler, nulllLayout)

> getSP :: (a->S8P ab) ->SPab

> getSP f parent outputHandler

> = return (inputHandler, nulllLayout)

> where inputHandler a = do f a parent outputHandler
> return ()

88

> nullSP :: SP a b
> nullSP parent outputHandler
> = return (\a -> return (), nulllLayout)

B.5.5 Stream Processor Combinators

This module defines some useful combinators for building complex stream processors, along
with equivalent infix operators.

> module SPCombs
> where

> import Combinators
import SP
import SPOps

v Vv

infixr
infixl
infixr

Vv V V V

infixl

v

serCompSP :: SP b c -> 8P ab ->S8P ac
> serCompSP = (>==<)

>parSP :: SPab ->8Pab->8Pab
> parSP = (>*<)

> compSP :: SP ab -> SP ¢ d -> SP (Either a ¢) (Either b 4)
> compSP = (>+<)

> absF :: SPab->Fab
> absF x = x

> (>°"=<) :: 5P bc->Fab->Fac
> sp > "=< fud = absF sp >==< fud

> (>=""<) :: Fbc->8Pab->Fac
> fud >=""< sp = fud >==< absF sp

> (>"=<) :: (b ->c) >Fab->Fac
> £ >’=< fud = mapSP £ >""=< fud

> (>="<) :: Fbc ->(a->b) -=>Fac
> fud >="< £ = fud >=""< mapSP £

B.5.6 Stream Processor Operations

This module defines functions for constructing useful stream processors.

> module SPOps
> where

> import SP

> import FudgetLib

> import MutVar

The identity stream processor simply passes all values that arrive on its input stream to its
output stream. A mapping stream processor takes a function that specifies how to generate
output stream elements from input stream elements:

89

> idSP :: SP a a
> idSP = getSP (\x -> putSP x idSP)

> mapSP :: (a ->b) ->SP ab
> mapSP £ = getSP (\x -> putSP (f x) (mapSP f))

The mapAccumlSP function constructs a stateful stream processor as described in Section 4.4:

> mapAccumlSP :: (a -> b -> (a, ¢)) =>a -> SP b ¢
> mapAccumlSP f init parent outputHandler

> = do stateVar <- newRef init

> return (inputHandler stateVar, nulllayout)

> where

> inputHandler stateVar a = do s <- getRef stateVar
> let (s’, b) =f s a
> setRef stateVar s’

> outputHandler b

The following stream processor filters input stream values to the output stream according to
the filter function specified as the first argument:

> mapFilterSP :: (a -> Maybe b) -> SP a b
> mapFilterSP f

> = getSP (\x -> case f x of
> Just y -> putSP y (mapFilterSP f)
> Nothing -> mapFilterSP f)

The inputDoneSP stream processor is useful for testing whether an editable text field fudget
has had its value commited or not:

> inputDoneSP :: SP (InputMsg a) a
> inputDoneSP = mapFilterSP done

> where
> done (InputDone s) = Just s
> done _ = Nothing

The following functions are useful for dealing with editable text field fudgets:

> stripInputMsg :: InputMsg a -> Maybe a
> stripInputMsg (InputDone x) = Just x
> stripInputMsg (InputChange x) = Just x

> stripInputSP :: SP (InputMsg a) a
> stripInputSP = mapFilterSP stripInputlMsg

> tstInp :: (a -=> b) -> InputMsg a -> b

> tstInp p (InputChange s) = p s

> tstInp p (InputDone s) =p s

> mapInp :: (a => b) -> InputMsg a -> InputMsg b

> mapInp f (InputChange s) = InputChange (f s)
> mapInp £ (InputDone s) InputDone (f s)

B.5.7 Fudget Combinators

This module defines infix operators for combining fudgets.

90

> module
> import
> infixr

infixl
> infixl

v

The (>=

> (O>==<)

> (f1 >==
= do (handler, lra) <- fl1 parent outputHandler

Vv VvV Vv

Combinators where

FudgetCore

4 >==

5 >*<

5 >+<

=<) operator combines two fudgets in series:
:Fab->Fca->Fcb

< £2) parent outputHandler

(inputHandler, 1lrb) <- £2 parent handler
return (inputHandler, lra ++ 1lrb)

The (>*<) operator combines two fudgets in parallel, with the values on the input and output
streams being untagged:

> (>%<)

c:Fab->Fab->Fab

> (f£1 >*< £2) parent outputHandler

VvV V V V V VvV

= do (handler, lra) <- fl1 parent outputHandler

(inputHandler, lrb) <- £2 parent outputHandler

let compInputHandler a = do handler a
inputHandler a
return ()

return (compInputHandler, lra ++ 1rb)

The (>+<) operator combines two fudgets in parallel, tagging the values on the input and
output streams:

> (O+<)

:: Fab->Fcd->F (Either a ¢) (Either b d)

> (f1 >+< £2) parent outputHandler

vV V.V V V V Vv

B.5.8

= do (handler, lra) <- fl1 parent (outputHandler . Left)

(inputHandler, 1lrb) <- £2 parent (outputHandler . Right)
let compInputHandler a = do case a of
Left v -> handler v
Right v -> inputHandler v
return ()
return (compInputHandler, lra ++ lrb)

Fudgets System

This module imports all of the source code that forms the fudget system.

v

module

v

where

import
import
import
import
import

VvV V V V V VvV

import

Fudgets

FudgetCore
LayoutFudgets
FudgetLib

SP

SPCombs

SPOps

91

Bibliography

[1]

P. Achten and R. Plasmeijer. The Ins and Outs of Clean 1/0. Journal of Functional
Programming, 5(1):81-110, January 1995.

R.M. Burstall, D.B. MacQueen, and D.T.Sanella. Hope: an experimental applicative
language. Technical Report CSR-62-80, University of Edinburgh, 1980.

Magnus Carlsson and Thomas Hallgren. The Fudget Library distribution. Available by
anonymous FTP from pub/haskell/chalmers on ftp.cs.chalmers.se., 1995.

Jon Fairbairn. Design and Implementation of a Simple Typed Language Based on the
Lambda-Calculus. Technical Report 75, University of Cambridge, May 1985.

Sigbjern Finne. The Haggis distribution. Available by anonymous FTP from
pub/haskell/glasgow/ on ftp.dcs.gla.ac.uk., 1996.

Sighjorn Finne and Simon L. Peyton Jones. Composing Haggis. In Furographics Work-
shop on Programming Paradigms in Computer Graphics, April 1995.

Sighjorn Finne and Simon L. Peyton Jones. Pictures: A Simple Structured Graphics
Model. In Proceedings of the Glasgow Functional Programming Group Workshop, July
1995.

Sighjorn Finne and Simon L. Peyton Jones. Concurrent Haskell. In Proceedings of the
Twenty Third ACM Symposium on Principles of Programming Languages (POPL), 1996.

Thomas Hallgren and Magnus Carlsson. Programming with Fudgets. In Johan Jeuring
and Erik Meijer, editors, Advanced Functional Programming, volume 925 of Lecture Notes
in Computer Science, pages 137-182. Springer Verlag, May 1995.

Mark P. Jones. The Hugs distribution. Available by anonymous FTP from
nott-fp/languages/hugs on ftp.cs.nott.ac.uk., 1995.

Simon L. Peyton Jones and Philip Wadler. Imperative Functional Programming. In

Proceedings of the Twentieth ACM Symposium on Principles of Programming Languages
(POPL), January 1993.

Donald E. Knuth. TgX and METAFONT, New Directions in Typesetting. Digital Press
and the American Mathematical Society, 1979.

Eugenio Moggi. Computational lambda-calculus and monads. In IEEE Symposium on
Logic in Computer Science, Asilomar, California, 1989.

92

[14] Rob Noble. Lazy Functional Components for Graphical User Interfaces. PhD thesis,
Dept. of Computer Science, University of York, November 1995.

[15] Rob Noble and Colin Runciman. Functional Languages and Graphical User Interfaces.
Technical Report YCS-94-223.ps.Z, University of York, Department of Computer Science,
1994.

[16] Rob Noble and Colin Runciman. Gadgets: Lazy functional components for graphical
user interfaces. In Manuel Hermenegildo and S. Doaitse Swierstra, editors, Proceedings
of the Seventh International Symposium on Programming Languages, Implementations,
Logics and Programs, volume 982 of Lecture Notes in Computer Science, pages 321-340.
Springer Verlag, September 1995.

[17] John Peterson and Kevin Hammond (editors). Report on the Programming Language
Haskell, A Non-strict, Purely Functional Language (Version 1.3). Technical Report
YALEU/DCS/RR-1106, Yale University, Department of Computer Science, May 1996.

[18] Gordon D. Plotkin. Call-by-Name, Call-by-Value and the A-Calculus. Theoretical Com-
puter Science, 1(2):125-159, December 1975.

[19] Chris Reade and Panos Argiris. A Declarative Toolkit for Graphical User Interface
Programming (Using ML with Windows 95). Technical Report CSTR-96-1, Brunel Uni-
versity, 1996.

[20] Alastair Reid. The Yale Release of Hugs. Available by anonymous FTP from
pub/haskell/yale on haskell.cs.yale.edu., 1996.

[21] Alastair Reid and Satnam Singh. Implementing Fudgets with Standard Widget Sets. In
Glasgow functional programming workshop, pages 222-235. Springer-Verlag, 1993.

[22] Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plasmeijer. Guaranteeing
safe destructive updates through a type system with uniqness information for graphs.
In Schneider and Ehrig, editors, Proceedings of Graph Transformations in Computers
Science, International Workshop, volume 776 of Lecture Notes in Computer Science,
pages 358-379. Springer Verlag, 1994.

[23] Mike Spivey. A Functional Theory of Exceptions. Science of Computer Programming,
14:25-42, 1990.

[24] D.A. Turner. Miranda - a non strict functional language with polymorphic types. In
Proceedings IFIP Functional Programming Languages and Computer Architecture, Nancy
France, September 1985.

[25] Tom Vullinghs, Daniel Tuinman, and Wolfram Schulte. Lightweight GUIs for Functional
Programming. In Manuel Hermenegildo and S. Doaitse Swierstra, editors, PLILP’95:
Seventh International Symposium on Programming Languages, Implementations, Logics
and Programs, volume 982 of Lecture Notes in Computer Science, pages 341-356. Springer
Verlag, September 1995.

[26] Philip Wadler. Comprehending Monads. In ACM Conference on Lisp and Functional
programming, pages 61-78, Nice, France, June 1990.

93

[27] Philip Wadler. The essence of functional programing (invited talk). In Proceedings of the
Nineteenth ACM Symposium on Principles of Programming Languages (POPL), January
1992.

94

