
Comparison of Optimized Backpropagation Algorithms �
W. Schiffmann, M. Joost, R. Werner

University of Koblenz

Institute of Physics

Rheinau 3–4

W-5400 Koblenz

e-mail: evol@infko.uni-koblenz.de

Presented at ESANN 93, Brüssel

Abstract

Backpropagation is one of the most famous training algorithms for multilayer
perceptrons. Unfortunately it can be very slow for practical applications. Over the
last years many improvement strategies have been developed to speed up backpro-
pagation. It’s very difficult to compare these different techniques, because most of
them have been tested on various specific data sets. Most of the reported results are
based on some kind of tiny and artificial training sets like XOR, encoder or decoder.
It’s very doubtful if these results hold for more complicate practical application.
In this report an overview of many different speedup techniques is given. All of
them were assessed by a very hard practical classification task, which consists of
a big medical data set. As you will see many of these optimized algorithms fail in
learning the data set.

1 Introduction

This report is intended to summarize our experience using many different speedup
techniques for the backpropagation algorithm. We have tested 16 different algorithms
on a very hard classification task. Most of these algorithms are using many parameters,
which have to be tuned by hand. So hundreds of the tests runs have to be performed. It’s
beyond the scope of this paper to discuss every approach in detail. We rather group the
different approaches in some classes of algorithms and discuss these classes. A much
more detailed report will be available via ftp.

2 Thyroid-Data

In order to compare many different approaches we have used measurements of the
thyroid gland [Quinlan, 1987]. Each measurement vector consists of 21 values – 15�This work is supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the project FE–
generator (grant Schi 304/1–1)



binary and 6 analog. Three classes are assigned to each of the measurement vectors
which correspond to the hyper-, hypo- and normal function of the thyroid gland. Since
apporximately 92% of all patients have a normal function, a useful classifier must be
significantly better than 92% correct classifications. The training set consists of 3772
measurement vectors and again 3428 vectors are available for testing. The training
period was limited to 5000 epochs using a fixed 3 layer network architecture with 21
input- , 10 hidden- and 3 output units. The network was fully interconnected. Using
a SPARC2 CPU training takes from 12 to 24 hours. The weights of the network have
been randomly chosen by a normal distribution (� = 0:0; � = 0:1). The bias of each
unit has been computed as follows. First the average input pattern of the hole learning
set has been calculated. While propagating this averaged pattern through the network
the bias of each unit is tuned to half activate every hidden or output unit. By this means
the gradient of the sigmoid activation function of every unit is maximized, which has
some benefits on the gradient descent during the training.

3 Standard Backpropagation

Bascically, backpropagation [Rumelhart, 1986] is a gradient descent technique to mi-
nimize some error criteria E. In the batched mode variant the descent is based on the
gradient rE for the total training set :

∆wij(n) = �� � @E@wij + � � ∆wij(n� 1)� and � are two non-negative constant parameters called learning rate and momentum.
The momentum can speed up training in very flat regions of the error surface and
suppresses weight oscillation in steep valleys or ravines. Unfortunately it is necessary
propagate the hole training set through the network for calculatingrE . This can slow
down training for bigger training sets. For some tasks (e.g. neural controllers) no finite
training set is available. Therefore often a online variant is used, which updates the
connections based on the gradient for the actual training pattern rEp:

∆wij(n) = �� � @Ep@wij + � � ∆wij(n� 1)
A good choise of � and � is essential for training success and speed. Adjusting these
parameters by hand can be very difficult and might take a very long time for more
complicated tasks.

4 Online Training

Only little work is done on improving the online update scheme. Darken and Moody
[1990] have developed a so called “Search-Then-Converge” strategey, which simply
decreases the learning rate during training. Schmidhuber [1989] calculates a lerarning
rate independent for every pattern presentation. Therefore the tangent in the error
surface of the actual training pattern at the current position is used. The new values for



every connection are found by calculating the point of intersection with the zero plane.
For practical reasons it is necessary to define an upper limit for a single learning step.
There also may be some error surfaces which never reach the zero plane. For those
surfaces a small constant value is subtracted to make sure that zero points exists.
Figure 1 shows the best training runs of standard stochastic backpropagation, Darken
and Moody’s approach and Schmidhuber’s algorithm. By using a decreasing learning
rate during the training the advantages of big values (fast learning in the early learning
phase) and small values (good asymptotic behaviour) can be combinded, resulting in
slightly improved performance. Unfortunately a new parameter (decay factor) has to
be adjusted by hand. Results of Schmidhuber’s algorithm are very disappointing and
worse than standard online backpropagation.

Error

3Periods x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

0.00 1.00 2.00 3.00 4.00 5.00

Schmidhuber

Backprop

Darken & Moody

Figure 1: Online Algorithms

5 Batched Training

Most of the improvement strategies are based on batched backpropagation. Using this
update scheme the gradient of the complete error surface is known and can be used to
calculate new connection strength more accurately than just using the gradient of the
partial error surface given by a single training pattern. Unfortunately much less updates
can be performed, which may slow down the training of big learning sets.
Two different types of batched algorithms can be distinguished. On the one hand there



is the global adaptive type, which adapts a single learning rate used for all connections
during the training. On the other hand there are local adaptive algorithms, which use
independent learning rates for every connection. However, all the learning rates are
adapted during the training.

5.1 Global adaptive Algorithms

Error

3Periods x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

0.00 1.00 2.00 3.00 4.00 5.00

Salomon

Polak-Ribiere

Chan & Fallside

Conj. grad.

Backprop

Figure 2: Global adaptive Algorithms

Many different strategies have been suggested to adapt a global learning rate during
the training. Salomon [1989] uses a simple evolution strategy to adjust the learning
rate. Therefore starting with some � the next update is done by using an increased and
a decreased learning rate. The one which results in better performance is used as the
starting point for the next update. Chan and Fallside [1987] adjust the learning rate
by observing the angle between rE(n) and ∆w(n � 1). The adaptation tries to adjust
this angel at 90o. As long as the angle is less than 90o the learning rate is increased
otherwise it is decreased. On principle it’s possible to calculate the optimal learning
rate for an update direction, which minimizes E with respect to the search direction. In
order to minimize the number of iterations for this calculation a Newton like iteration
like the method of “False Position” [Luenberger, 1973] can be used. This so called “line
search” is used by A.H. Kramer and Sangiovanni-Vincentelli [1989] together with the
Polak-Ribiere method. Leonard and M.A. Kramer [1990] rather combine a conjugate
gradient method and a line search strategy.



In oder to compare the results (displayed in Fig. 2) one has to take into account,
that the evolution strategy doubles the computation time and the line search typically
requires about 3 iterations. This results in trebled computation time. Salomon’s , Chan
/ Fallside’s and Kramer / Vincentelli’s approach result in almost identical performance,
the conjugate gradient method operates a little better. All strategies clearly outperform
standard batched backpropagation. Nevertheless standard online backpropagtion is
much superior to all these strategies.

5.2 Local adaptive Algorithms

All local adaptive algorithms adjust learning rates for every connection in order to mi-
nimize oszillation and to maximize the update step size. Most of them observe the sign
of the last two gradients. As long as these gradients agree in sign the corresponding
learning rate is increased. If the sign changes an oscillation is detected and the learning
rate is decreased. Silva and Almeida [1990] use this strategy. Increasing and decreasing
is performed by multiplying the learning rates with some constant values. They also use
a total backtracking strategy which restarts an update step if the total error increases by
using halfed learning rates. Tollenaere’s SuperSAB algorithm [1990] is quite similar to
Silva and Almeida’s approach. He has modified the update rule such, that updates which
result in sign changes of partial derivatives are undone. Due to this kind of partial back-
tracking no total backtracking is necessary. Additionally an upper limit for the learning
rates is used. Jacobs delta-bar-delta algorithm [1988] not only observes the signs of two
successive gradients, but rather uses sign changes of an exponential averaged gradient.
In contrast to the other algorithms he uses an additive constant in oder to increase the
learning rate. Thus he has a linear increase and an exponential decrease. Riedmiller
and Braun [1992] are using an adaptive version of the “Manhattan-Learning” called
“rprop”. The updates are no longer proportional to the partial derivative. They use an
independent step size for every connection, which is adjusted like learning rates by the
SuperSAB algorithm. In addition a lower limit for these step size is necessary in oder
to prevent arithmetic underflow. The update direction depends on the sign of the partial
derivative. Also partial backtracking is used. Scott E. Fahlman’s quickprop algorithm
[1988] applies the method of “False Positon” independent to every connection. Nevert-
heless the calculated update has to be limited if the step computed by this formula is too
large, infinite or uphill on the current gradient. A learning rate is still necessary to start
the training or restart it after a 0:0 update. The calculation of the gradient is modified
using oi � (1 � oi) + 0:1 instead of oi � (1 � oi) in the computation of the derivative.
Also a small weight decay is used.
In addition we have investigated Fahlman and Lebiere’s cascaded correlation algorithm
[1990]. This algorithm differs in many ways from all other approaches. It begins with
a minimal network, then automatically trains and adds new hidden units one by one,
creating a multi-layer structure. Weights are adjusted by the quickprop update rule.
Since the computation time for a single training epoch depends on the actual network
size, it’s not very useful to compare this approach in terms of training epochs. So we
rather use the number of computed connections, which can be expressed in terms of
training epochs (for a fixed network topology).
Figure 3 shows the results of all local adaptive algorithms. All local adaptive algorithms
greatly reduse the training time and improve the network performance. Nevertheless



results still differ. RPROP and Quickprop are superior to all other algorithms. Su-
perSAB’s performance is almost similar to Silva and Almeida’s approach. Using the
delta-bar-delta algorithm it was very hard to find a proper additive increment for the
learning rates. We had to use a very small increment in order to ensure convergence,
resulting in slower training. The cascaded correlation algorithm outperforms all algo-
rithms using fixed topologies.

Error

3Periods x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

0.00 1.00 2.00 3.00 4.00 5.00

delta-bar-delta

cascor rprop

Silva & Almeida

SuperSAB

quickprop

Figure 3: Local adaptive Algorithms

6 Conclusion

Table 1 shows a comparison of the best results of every training algorithm.
Many “optimized” algorithms failed in training the chosen task,although most authors

promised a algorithm superior to standard backpropagation. Because these algorithms
have only been tested by training tiny artificial tasks, these results cannot be transfered
to more complicated training sets. Especially for these kind of training sets optimization
is necessary, whereas it’s of little importance to speed up XOR learning. Nevertheless
most of the algorithms are superior to standard backpropagation running in batched
mode. On the other hand online backpropagation outperforms all global adaptive
learning algorithms. Algorithms using local adaptation strategies greatly reduce the
training time and also improve the network performance. In terms of learning speed
RPROP and Quickprop seems to be superior to all other training algorithms using fixed



Training Set Testing Set
Algorithm Error Recog. rate Error Recog. rate

Backprop 50.3 99.13 137.63 97.58
Backprop (batch mode) 461.8 92.63 414.34 92.85
Backprop (batch mode) + Eaton and Oliver 511.0 92.47 450.10 92.71
Backprop + Darken and Moody 44.2 99.20 126.84 97.90
Schmidhuber 91.5 98.36 163.54 97.23
Salomon 331.1 94.64 346.73 94.14
Chan and Fallside 317.6 94.67 335.47 94.17
Polak-Ribiere + line search 322.0 94.70 339.33 94.17
Conj. gradient + line search 244.9 94.57 267.92 93.84
Silva and Almeida 21.5 99.60 96.65 98.45
SuperSAB 27.9 99.55 105.31 98.42
Delta-Bar-Delta 51.6 99.20 110.64 98.37
RPROP 25.99 99.58 120.73 98.02
Quickprop 29.2 99.60 110.91 98.25
Cascade correlation 10 units 10.37 99.84 91.50 98.42
Cascade correlation 20 units 0.82 100.00 101.36 98.48

Table 1: Best results

topologies . Nevertheless Silva and Almeida’s approach and SuperSAB have trained
networks, which generalize a little better. The cascade correlation algorithm clearly
outperforms all other approaches but it isn’t directly comparable with them.

Most algorithms are using batched updates. Very little optimization is done on
backpropagation updating connections with respect to the actual training pattern. Further
research in needed on this topic. There seems to be little influence on the generalization
ability. Nevertheless a network’s generalization ability depends on the network topology,
as the cascade correlation algorithm shows. Training a network with more and more
hidden units just increases the approximation quality with respect to the learning set but
doesn’t improve the generalization behaviour.

7 References

1. Chan, L. W. and Fallside, F.: An adaptive training algorithm for backpropagation
networks, Computer Speech and Language, Vol. 2, page 205-218,1987

2. Darken, C. and Moody, J.: Note on Learning Rate Schedules for Stochastic Optimi-
zation, Neural Information Processing Systems , Lippmann R. P. and Moody J. E.
and Touretzky D. S. (Editors), page 832-838, 1991

3. Fahlman, Scott E.: An Empirical Study of Learning Speed in Back-Propagation
Networks, Technical Report CMU-CS-88-162, 1988

4. Fahlman, Scott E. and Lebiere, Christian: The Cascade-Correlation Learning Archi-
tecture, Neural Information Processing Systems 2, page 524-532, 1990



5. Hertz, John and Krogh, Anders and Palmer, Richard G.: Introduction to theory of
neural computation, Addison-Wesley Publishing Company, ISBN 0-201-51560-1,
1991

6. Jacobs, Robert A.: Increased Rates of Convergence Through Learning Rate Adaption,
Neural Networks, Vol. 1, page 295-307,1988

7. Joost, Merten and Werner, Randolf: Algorithmen zur Optimierung neuronaler Merk-
malsfilter, Diplomarbeit, Universität Koblenz, 1991

8. Kramer, Alan H. and Vincentelli, A. Sangiovanni: Efficient parallel learning algo-
rithms for neural networks, Advances in Neural Information Processing Systems I,
Touretzky D. S. (Editor), page 40-48, 1989

9. Leonard, J. and Kramer, M. A.:Improvement of the Backpropagation Algorithm for
Training Neural Networks, Computers Chem. Engng., Volume 14, No 3, page
337-341, 1990

10. Luenberger, David G.: Introduction to linear and nonlinear programming, Addison-
Wesley, 1973

11. Quinlan J.R.: Simplifyingdecision trees, Int. J. Man-Machine Studies, page 221-234,
1987

12. Rumelhart D.E., Hinton G.E. and Williams R.J., 1986: Learning internal represen-
tations by error propagation, in Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, Vol.I, MIT Press, pp. 318–362

13. Riedmiller, Martin and Braun, Heinrich: RPROP - A Fast Adaptive Learning Algo-
rithm, Technical Report (To appear in: Proc. of ISCIS VII), Universität Karlsruhe,
1992

14. Salomon, Ralf: Adaptive Regelung der Lernrate bei back-propagation, Forschungs-
berichte des Fachbereichs Informatik, Technische Universität Berlin, Bericht 1989/24,
1989

15. Scalero, Robert S. and Tepedelenlioglu, Nazif: A Fast Algorithm for Training Feed-
forward Neural Networks, IEEE Transactions on Signal Processing, Vol. 40, No 1,
page 202-210, January 1992

16. Schmidhuber, Jürgen: Accelerated Learning in Back-Propagation Nets, Connectio-
nism in perspective, Elsevier Science Publishers B.V. (North-Holland),page 439-445,
1989

17. Silva, Fernando M. and Almeida, Luis B.: Speeding up Backpropagation, Advanced
Neural Computers, Eckmiller R. (Editor), page 151-158, 1990

18. Tollenaere, Tom: SuperSAB: Fast Adaptive Backpropagation with Good Scaling
Properties, Neural Networks, Vol. 3, page 561-573, 1990


