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1 IntroductionRecently much work has been done towards extending object-oriented database systems (OODBs) withadvanced tools such as view technology, advanced schema evolution tools, and role modeling systems [4, 7,10, 13, 19, 21, 22, 25]. These extensions all require that the underlying database system supports 
exibleand powerful modeling constructs that are currently not supported by most existing OODB systems [3,5, 15]. As we will describe in Section 2, such features include multiple classi�cation (allowing an objectto be an instance of multiple classes), dynamic reclassi�cation (allowing an object to gain and lose classmemberships throughout the object's lifetime), and dynamic restructuring (allowing an object's structure tochange dynamically throughout the object's lifetime).Unfortunately, this common need of view management, transparent schema evolution, role modelingsystems as well as of many knowledge-based systems for 
exible and fundamental data model characteristicsis not met by current OODB technology. In fact, the object representation assumptions underlying mostcommercial OODB systems, namely, one most-speci�c type per object, object type determined at object-creation time, �xed typing, and upwards inheritance, con
ict with the requirements of such systems. Theobject-slicing technique [16] is one particularly promising approach of extending an existing OODB systemto support the identi�ed required features.In object-slicing, a real-world object corresponds to a hierarchy of implementation objects (one foreach class whose type the object possesses) linked to a conceptual object (used to represent the object-itself) rather than associating a single implementation with each real-world object, as is commonly assumedin conventional OODB systems [16]. This technique of using implementation objects to represent an object'smembership in multiple classes is extremely 
exible, and provides a solution that extends an OODB systemto support capacity-augmenting virtual classes, multiple classi�cation, dynamic reclassi�cation, and dynamicrestructuring of objects and classes. For example, an object-slicing system can dynamically reclassify anobject from being the instance of one class (C1) to becoming that of another class (C2), by linking theobject instance to an implementation object of C2 and discarding that of C1.In addition, object-slicing facilitates the maintenance of materialized views in that (1) it elegantly avoidsthe need to duplicate data for materialized classes and (2) any update to an object will take place at a uniquelocation determined by the property involved regardless of the source of the update request [14]. Similarly,the 
exibility o�ered by the object-slicing approach naturally lends itself to implementing role systems:object-slicing's implementation objects can easily be adapted to represent the various roles of objects in arole system [11].We examine the object-slicing representation in the context of the University of Michigan's MultiViewproject, an on-going NSF-funded view management system capable of supporting updatable materializedviews and transparent schema evolution. In order to support the features required by views and schemaevolution, we have successfully implemented an object-slicing layer [20] on top of the GemStone OODBsystem 1. Based on this 
exible foundation, we have been able to rapidly prototype the MultiView systemproviding capacity-augmenting virtual classes, updatable materialized virtual classes, and view schemata.Because the object-slicing implementation could be cleanly built on top of an existing DBMS system, thequestion of how the addition of an object-slicing mechanism impacts performance now arises.It is to be expected that extending an existing system with object-slicing techniques involves the potentialoverhead of additional data structures, maintenance costs, and processing time. Although object-slicing is aknown technique that is being utilized for view systems [14], schema evolution [21], and role systems [11], tothe best of our knowledge no work has been done evaluating the costs of object-slicing. The purpose of thispaper is to provide such an evaluation.In this paper, we present experimental results of utilizing our MultiView implementation to performbenchmark tests for evaluating the costs and bene�ts of the object-slicing paradigm. In the remainder ofthis paper, we will:� Discuss data modeling requirements that can be addressed by an object-slicing solution (Section 2).� Compare object-slicing with the conventional intersection class alternative (Section 3).� Describe the object-slicing data model and its implementation (Section 4).� Analyze the storage costs of our object-slicing representation (Section 5).� Present the �ndings of experiments evaluating the object-slicing model compared to the conventionalarchitecture (Section 6).1GemStone is a registered trademark of Servio Corporation1



� Present the experimental results of optimizing query types from the OO7 benchmark on the object-slicing model using clustering (Section 7).This is followed by a discussion of related work as well as some concluding remarks.2 Data Model Requirements of Advanced OODB ToolsAs we will detail below, view management, transparent schema evolution, role modeling systems aswell as many knowledge-based systems share a common need for the powerful data model characteristics ofmultiple classi�cation, dynamic reclassi�cation, and dynamic restructuring|which typically are not providedin current OODB systems.View System Needs. In recent years, object-oriented view technology has been touted as an importanttechnique for integrating heterogeneous and distributed systems, for achieving interoperability by hidingidiosyncrasies of component systems to be integrated into one uni�ed, yet federated system, and for secu-rity [23, 22, 4, 7, 13]. View mechanisms typically provide the functionality to restructure a base schema byhiding classes, by adding classes, by customizing the behavior or extent of classes, and by rearranging thegeneralization hierarchy.The introduction of virtual classes and schemata requires the underlying data model to support certainfeatures. For example, if an object instance quali�es for membership in two virtual classes, then it shouldbelong to both even if no subsumption relationship exists between the virtual classes. For this reason, thedata model must provide multiple classi�cation, which means that an object can belong to the local extentsof multiple classes and can thus be associated with the types of multiple classes. Furthermore, an objectinstance should dynamically gain (or lose) the type of a select virtual class if its data values change so thatit ful�lls (or ceases to ful�ll) the class's selection predicate. Thus, a view system must also support thedynamic reclassi�cation and dynamic restructuring of object instances, allowing objects to 
exibly gain andlose types during their lifetimes (including both the data stored in their state as well as the set of methodsto which they can respond).Extending Views for Schema Evolution. The use of view mechanisms to achieve schema evolutionhas been advocated by a number of researchers [25, 7, 4, 21]. The basic principle is that given a schemachange request on a view schema, the system|rather than modifying the view schema in place|computes anew view that re
ects the semantics of the schema change. This approach provides several advantages overdirect modi�cation. First, it lends itself naturally to a schema versioning system in which a new schema canbe generated using views without destroying the old schema. Without schema versioning, updates to theshared database schema are almost always prohibited because of the risk of incompatibility between existingapplication programs and the modi�ed schema. Second, the underlying instances are directly shared bydi�erent schema versions, which facilitates interoperability and ensures that old versions will always be keptup-to-date. In spite of these advantages, to the best of our knowledge an implementation of view mechanismsto achieve transparent schema evolution has not yet been realized. We suspect that one reason for this isthat because views correspond to derived data, they by de�nition do not support the addition of new storedinformation to the database. Views therefore cannot simulate capacity-augmenting schema changes, such asthe add-attribute operator.In order to use view technology to support schema evolution, the traditional view management systemmust be extended to support the creation of capacity-augmenting virtual classes. A capacity-augmentingvirtual class is a virtual class that includes, for example, instance variables that are not derivable from thesource classes of the virtual class. Thus the underlying view system providing such capacity-augmentingviews does require the dynamic restructuring of objects in addition to the features of multiple classi�cationand dynamic reclassi�cation.Role Modeling System Needs. Finally, role modeling approaches have become increasingly popular [11,19]. Role systems strive to increase the 
exibility of the model by enabling objects to dynamically changetypes and class membership. In role modeling systems, objects dynamically gain and lose multiple interfaces(a.k.a. roles) throughout their lifetimes, hence the need for multiple classi�cation. Such changes are doneexplicitly by user request, and on an object-by-object basis. Because role systems must re
ect the evolutionof an object as it dynamically gains and loses roles throughout its lifetime, the properties of dynamicreclassi�cation and dynamic restructuring must also be supported by the data model underlying a rolesystem. 2



3 Object-Slicing v.s. Intersection-Class Creation3.1 An Introduction of Two Multiple-Classi�cation TechniquesIn Section 2, we identi�ed the following object model requirements: (1) e�cient dynamic restructuringof object representations, (2) multiple classi�cation, and (3) dynamic reclassi�cation in addition to the well-established object-oriented features such as encapsulation, generalization hierarchy, etc.. To the best of ourknowledge, no current OODB system supports all of these features. Furthermore, with the exception ofthe IRIS functional database system [8], which uses a relational database as storage structure and storesdata from one object across many relations, most OODBs represent each database object as a chunk ofcontiguous storage determined at object creation time. Thus they adhere to the invariant that an objectbelongs to exactly one class at a time | as well as indirectly to all of that class's superclasses [1].
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(b)Figure 1: Two Approaches For Implementing Multiple Classi�cation.Object-slicing, as introduced in Section 2, is one way to extend an existing OODB system to providethe required features. The intersection-class approach is another. The intersection-class approach simulatesmultiple classi�cation and dynamic restructuring in existing systems by creating intersection classes to re
ectthe structure of a multiply-classi�ed object. For example, suppose that given the schema in Figure 1 (a), wewant to create a new car object o1 that is both of type Jeep and of type Imported. We cannot �nd a classin which to store o1 without violating the invariant that an object belongs to exactly one class. To resolvethis dilemma, the intersection-class approach would create a new intersection class Jeep&Imported that is asubclass of both the Jeep and Imported classes. It then would create o1 as member of the new class (Figure1 (b)). Alternatively, given the same schema suppose that o1 were a member of the Jeep class and that wewanted to dynamically reclassify it to be a member of the Imported class. In this case, the intersection-classapproach would require us to create a new object o2 as member of the Imported class, to copy all attributevalues from o1 to o2, and �nally to swap the object identities of these two objects. If o1 should not lose itsmembership in the Jeep class, then this dynamic reclassi�cation of the object would again cause the creationof a Jeep&Imported intersection class.The object-slicing approach (Figure 1 (c)) would implement the required multiple classi�cation by ma-nipulating the implementation objects representing the o1 object. As shown in the �gure, the o1 conceptualobject corresponds to a hierarchy consisting of the o1Car, o1Jeep and o1Imported implementation objects.Each implementation object acts as its class's interface to the object. For example, when the current classof the o1 object is Jeep, the o1Jeep object represents the o1 object.The object-slicing approach also enables e�cient dynamic restructuring of object representations toaccount for the addition of new instance variables. Suppose that we were to extend our schema, whichoriginally contains the Car and the Jeep classes, with a new class named Imported that re�nes the Car classby adding the stored attribute nation. Each Car object (as well as each Jeep object) can potentially acquire3



object-slicing intersection-classcasting change representative implement. obj. need additional mechanism#oids for one object 1 + Nimpl onestorage for (1 +Nimpl) � sizeOf(oid) sizeOf(oid)managerial purposes +2 �Nimpl � sizeOf(pointer)storage for no redundancy no redundancydata values#classes #user-de�ned classes #user-de�ned classes+ #intersection classes (exponential)performance good access to local attributes fast access to inherited attributesfor queriesdynamic by creating and destroying by creating new classes, another objectclassi�cation implementation object and copying values and removing old onemultiple inheritance has 
exibility must beresolution to dynamically resolve determined staticallyNimpl : the number of implementation objects for each object.Table 1: Comparison of Two Multiple Classi�cation Approaches.the type of the Imported class. This means that the Car object representation should be restructured so thatit can store the data for the new attribute. This can be accomplished simply by creating implementationobjects of the Imported class and adding them to each Car object. Thus, the restructuring the objectrepresentation in the object-slicing paradigm is relatively e�cient and simple when compared with theconventional architecture of having each object carry all of its state information in a contiguous fashion andpermitting objects to belong to only one most speci�c class.3.2 Comparing the Two ApproachesEach approach has its own advantages and disadvantages. A summary of the following comparison isalso presented in Table 1.� Casting an object to a type is readily provided by switching between the representative implementa-tion objects in the object-slicing approach. However, in the intersection-class approach, we need anadditional mechanism (possibly implemented by the compiler) to implement the casting facility.� In the object-slicing approach, a single database object is represented by as many implementationobjects as the number of types the object possesses, plus one conceptual object. Thus, the number ofobject identi�ers needed to implement a single object is equal to 1 + Nimpl , where Nimpl denotes thenumber of implementation objects needed by the object. The intersection-class approach requires onlyone object identi�er per conceptual object.� OODBs use storage for purposes other than storing data values, e.g., for indices and object identi�ers.The object-slicing approach requires additional storage for the internal object identi�ers describedabove (Nimpl � sizeOf(oid)) 2 and pointers to link the implementation and conceptual objects (2 �Nimpl � sizeOf(pointer)) 3. On the other hand, the intersection-class approach requires no additionalstorage, other than that required to create the intersection-class itself.� Neither approach requires duplication of data values, and thus they are non-redundant in terms of thestorage for data values. (Note that the designer is still able to duplicate data for performance reasonsin both approaches.)� The object-slicing approach does not require the creation of any hidden classes; all classes in the globalschema are user-de�ned classes. However, the intersection-class approach requires intersection classesin order to accomplish multiple classi�cation. For each object that takes two types, we must create2Object identi�ers are necessary for one conceptual object and Nimpl implementation objects.3Each implementation object keeps the pointer to its conceptual object, and vice versa.4



a class to hold the combination of the two types, if it does not yet exist. The number of intersectionclasses may increase to 2Nclass , where Nclass is the number of user-de�ned classes of the global schema.In the worst case, the number of intersection classes could grow exponentially with respect to thenumber of user-de�ned classes. Also, as demonstrated above, dynamic classi�cation may require thecreation and/or removal of intersection-classes on the 
y. The intersection-class approach thus requiresdynamic schema evolution support.� The state of a given object in the object-slicing approach is separated by class and distributed overa number of implementation objects. Because each implementation object is smaller than a completeobject, the blocking factor of the implementation objects of a given class under the object-slicingmodel should be signi�cantly better than the blocking factor of complete objects of the same classunder a conventional architecture such as that of the intersection-class model. Sequential access ofclustered implementation objects should therefore be faster than sequential access to the same numberof complete objects. However, access to an inherited attributes in the object-slicing approach caninvolve the random access retrieval of conceptual object and multiple implementation objects. Theintersection-class approach may therefore be faster in accessing an inherited attribute because thevalues of all attributes of an object reside in the same location. We present detailed comparisonstudies by benchmark experiments and simulations that con�rm this hypothesis in Section 6.� Changing an object from being an instance of one class (C1) to being an instance of another class (C2)is called dynamic classi�cation [16]. In the object-slicing approach, when an object is dynamicallyreclassi�ed to be an instance of the class C2 rather than one of class C1, the object instance takes animplementation object of the class C2 and discards that of the class C1. By combining the operatorsfor adding and removing class membership, we can easily achieve this functionality. In the intersection-class approach, we �rst must identify the proper class for the new classi�cation and, if it does not exist,create the class. This requires schema evolution support with classi�cation capability. Second, we needto create an object of this new class and copy the values of the object to be reclassi�ed into this newlycreated object. To preserve object identity, we must copy the object identity of the old object to thenew object by utilizing a swap mechanism.In conclusion, on most fronts the object-slicing approach promises comparable performance to the moreconventional intersection-class method, and in some cases even improves performance. Furthermore, becauseobject-slicing avoids the creation of cumbersome intersection classes and o�ers 
exible restructuring of bothstate and behavior, it appears to be a cleaner method for extending existing OODBs. However, the additionaloverhead required for the object-slicing structures and the random accesses needed to retrieve the inheritedstate from implementation objects are disadvantages associated with the object-slicing methodology. Inthe remainder of this paper, we thus describe our experimental results in evaluating these two approaches.In Sections 5, 6 and 7, we perform a closer examination of the bene�t provided by object-slicing's largerblocking factor at the class, the cost of the additional random accesses, and the potential of clustering toalleviate that cost.4 The Object-Slicing ModelWe formalize the object-slicing paradigm used in our implementation of MultiView below. Let Oi 2 Obe a user-de�ned object. In the object-slicing model, Oi is represented using two kinds of objects: a sin-gle conceptual object, Oiconc and one implementation object for each class Cj 2 C to which the objectbelongs, OiimplCj . A conceptual object consists of a tuple, <implObjects, OID>, where OID is theunique, system-generated object-identi�er of the conceptual object, and implObjects is the set of imple-mentation objects that are linked to the conceptual object. An implementation object is a tuple<OID,oid,class,state> where OID is the object-identi�er of the linked conceptual object, oid is theobject-identi�er of the implementation object itself 4, class is the class of which the implementation objectis a direct instance, and state corresponds to the values of the local instance variables stored for the given4Each implementation object by default possesses its own object identi�er. However, because the implementation objectserves as an interface for a speci�c conceptual object, the object-identi�er of the conceptual object supersedes that of theimplementation object for most practical purposes, such as determining object-equality.5



object 5. Each implementation object OiimplCj is an object instance of the database class Cj 2 C it repre-sents. Conceptual objects are object instances of a special system class, ConceptualObject, rather than of auser-de�ned class.Because a single real-world object is now represented using multiple database objects, we de�ne a numberof functions to operate on objects in the model, including object creation, equality comparison, etc. Forexample, we say that two objects are equal if and only if they are linked to the same conceptual object.Similarly, given an object Oi 2 O and a class Cj 2 C, we de�ne functions MakeImpl(Oiconc,Cj) andDeleteImpl(Oiconc,Cj) to create and destroy implementation objects of class Cj for object Oiconc .If an object Oi possesses an implementation object OiimplCj for some Cj 2 C, then Oi must also possessimplementation objects for all classes Ck s.t. Cj is-a Ck. Thus the set of implementation objects associatedwith a given conceptual object mirrors the structure of the class hierarchy. Object-slicing intrinsicallyincludes its own inheritance mechanism. Let there be an implementation object OiimplCj , Oi 2 O;Cj 2 C.If the method mk 2M were to be invoked upon object OiimplCj , and mk is not de�ned locally in type(Cj),then OiimplCj will delegate the method mk to Oiconc . It will in turn conduct a search \upwards" throughCj's superclasses. If method mk is not found in the type of a superclass Cl of Cj, then an error is returned;otherwise, the method is invoked upon the object OiimplCl 6. Figure 2 illustrates this idea using an example.
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‘color’ instance variable, ‘brown’.Figure 2: Object-Slicing ExampleBecause objects in the object-slicing model can dynamically add and lose implementation objects, andbecause the object-slicing model includes its own inheritance mechanism, the object-slicing technique canbe used to extend object-oriented data models to provide the features of multiple classi�cation, dynamicreclassi�cation, and dynamic restructuring. It is relatively straightforward to see how one could implementthe object-slicing model on top of an existing OODB. In our technical report [20], we describe our solution ofrealizing the model using a Smalltalk-based OODB, GemStone system. Due to space limitations, a discussionof these implementation issues is not repeated here.5 Object-Slicing Storage CostsIn evaluating the performance of databases, I/O operation time typically dominates CPU operationtime. Consequently, an evaluation of object-slicing must consider the e�ect of object-slicing on I/O time.5The methods used to set or retrieve an instance variable's value are called accessing methods. Accessing methods arealways located at the same class as the instance variables for which they are de�ned, and thus when an instance variablemigrates from one class to another, that instance variable's accessing methods must make the same migration.6If a method with selector mi is found in more than one class in the superclass hierarchy of Cj , then the user is promptedto cast Oi into a non-ambiguous implementation object. 6



One major variable for calculating I/O time is the number of objects that can be stored in a disk block,known as the blocking factor (bf), namely: d disk block size = object size e.In traditional (non-object-slicing) architectures, the size of an object is calculated to be the total amountof storage needed to store the state of the object (data size), oid size, and pointer size (to reference theobject's class), and some �elds for the system use. Because the object-slicing model represents any givenobject using a conceptual object and some number of implementation objects, objects in the object-slicingarchitecture inherently require more storage space than their counterparts in traditional architectures. Likea traditional object, an object under the object-slicing architecture contains data, an oid, and a pointer toits class. In addition, an object-slicing object that belongs to l classes also requires l implementation ob-jects (each with a reference to its class and to the object's conceptual object), the conceptual object (whichhas a dictionary of references to its implementation objects, respectively indexed by the class the implemen-tation object belongs to), and the system �elds 7. That is, while in a conventional architecturewe would have:obj size = data size + oid size + pointer size + system fields;in the object-slicing architecture we now have:obj size = data size + (l + 1) � oid size + (4l + 1) � pointer size + system fields.To simplify, we assume that oid size is equal to pointer size. The ratio of the sizes is now:SizeRatio(SR) = datasize + (5l + 2) � pointersize + systemfieldsdatasize + 2 � pointersize + systemfields :Ignoring the size of the system �elds for simplicity and assuming that oid size = pointer size, the ratiobecomes: SR = DS + (5l + 2) � pointersizeDS + 2 � pointersize ;where SR is the size ratio and DS is data size. When the size of the pointer is 4 bytes, which is a reasonableassumption for current systems, this becomesSR = DS + (5l + 2) � 4DS + 8 :Given these assumptions, Figure 3 shows the blocking factor ratio for the �xed data size values of 10,20, 30, 50, 100, and 1000 bytes while increasing l, the number of implementation objects required, from 1to 20. On the other hand, Figure 4 shows the blocking factor ratio by �xing the number of implementationobjects and varying data size. In general, the ratio increases as the value of l increases and decreases as thedata size increases. This means that the disadvantage of the object-slicing architecture's storage overheadis ameliorated by an increased object size/decreased schema size (depth of schema) ratio.6 Evaluation of Object-Slicing Approach Using the OO7 BenchmarkIn order to determine the base cost of implementing the object-slicing representation paradigm, we haverun several test queries from the University of Wisconsin's OO7 benchmark suite [6] with the intention ofcomparing GemStone's native implementation versus our object-slicing extension to GemStone. GemStoneis a Smalltalk-based system, while the four systems compared in the OO7 benchmark paper [6] are all C++based. Because GemStone thus supports dynamic method resolution, run-time augmentation of the schemawith new methods, etc., we did not compare GemStone against other systems, and instead limited our studyto comparing \pure" GemStone with MultiView. For this study, we used GemStone, version 3.2 Opal; andcreated a randomly populated database of the parts-assembly benchmark example with 10,000 Atomic Parts.First, we compare results for navigation-type queries, e.g., for the \Traversal 1" query. The \Traversal1" query tests raw pointer traversal speed with a high degree of locality [6]. The query requires a traversal of7While this storage of references linking conceptual to implementation objects and back could be reduced, we've chosen thisrepresentation for reason of e�ciency. 7
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Figure 4: Blocking Factor Ratio with Fixed Numberof Implementation Objectthe assembly hierarchy shown in Figure 5 and performs a depth-�rst search on each part's graph of atomicparts. MultiView's performance slightly improved upon GemStone's time (by � 4%) despite the fact thatMultiView is built on top of GemStone rather than directly into the GemStone kernel|thus adding anextra layer of indirection 8. The improved performance can be explained as follows. First, the navigationwas limited to access of local instance variables (rather than inherited ones). Thus there is no overhead of�nding appropriate implementation objects for MultiView. Consequently, only one implementation objecthas to be retrieved per queried object. The query avoids having to perform random accesses to retrieveadditional implementation objects. Not only was retrieval of the single implementation objects sequential,but also these navigated implementation objects are much smaller in size (containing only local instancevariables) compared to GemStone's native objects (containing both local and inherited instance variables inone contiguous allocation) and thus o�ered a higher blocking factor (See Section 5 for a more formal analysisof these factors).
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conceptualLink to get from the implementation object to its conceptual object, and the other to traversethe implementationLink to get from the conceptual object to the correct implementation object holdingthe desired data value. As demonstrated in this paper, these two links improve the 
exibility of our objectmodel greatly but it also causes the observed performance degradation.In short, there are two possible causes for the degradation in performance associated with object-slicing.First, the storage overhead to store the conceptual object, the oids' of the implementation objects, and thosetwo extra links may require a larger number of blocks and result in more page faults. Second, because theimplementation objects belonging to the same class are by default clustered together, each traversal to animplementation object for getting an inherited value requires a partial random block access, which can resultin a page fault.In the next section, we investigate the impact of the object-slicing mechanism upon an implementation'sstorage overhead in terms of the blocking factor of various objects and also in terms of the page faults incurredby the retrieval of object-slicing implementation objects. We also evaluate the ability of clustering strategiesto alleviate these object-slicing penalties.7 Evaluating and Optimizing Object-Slicing Using the OO7 Benchmark7.1 Clustering Strategies for Object-SlicingBy specifying that certain categories of objects be placed in contiguous storage on the disk (therebyclustering them), database designers try to match the traversal patterns of objects in a database to stor-age sequences of objects to minimize disk I/O costs. In traditional (non-object-slicing) environments, thegranularity of this optimization is often restricted to the clustering of objects. A MultiView object's state isdistributed among multiple object-slicing implementation objects, however, which lends itself to clusteringstrategies that resemble the vertical partitioning of the relational model. In order to determine under whichcircumstances it is preferable to cluster the implementation objects by class (which we call class clustering),and under which circumstances it is better to cluster all the components of a MultiView object together(which we term object clustering), we designed and carried out an extensive experimental study evaluatingboth clustering techniques.
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is-aFigure 6: Subschema of OO7 Database.For our evaluation, we again use a subsection of the OO7 Benchmark's example database (Figure 5).Figure 6 shows the three class subschema that is central to our test queries. Figure 7 illustrates clusteringoptions of object versus class clustering using an example. In this example, there are three objects thatare instances of the AtomicPart class from the schema shown in Figure 6. Figure 7(a) depicts the initialobject relationships, in which there are three objects|Object1, Object2, and Object3|each of which hastwo implementation objects (one for the DesignObj class and one for AtomicPart). If we were to clusterthe database objects by class, as shown in Figure 7(b), then we would cluster the implementation objects ofeach class and the conceptual objects separately. If, however, we were to cluster by objects, then all the dataassociated with each individual object would be clustered together, as shown in Figure 7(c). The secondoption resembles clustering at the granularity of complete objects.Tables 2 and 3 compare the relative object sizes and blocking factors involved with the object clusteringand class clustering strategies. The classes in the OO7 schema are listed as the rows of each table. Thecolumns of Table 2 indicate, respectively, the number of objects that initially exist in each class's extent(#impls), the number of objects that have the given class as a most-speci�c type (#objs), the average sizeof an object in the class's extent using the class clustering methodology (CC size), the blocking factor ofthe class using the CC strategy (CC BF), the number of blocks that would be needed to store the extent of9
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the class using the CC strategy (#CC), the average size of an object in the class's extent using the objectclustering (OC)methodology (OC size), the blocking factor of the class using OC (OC BF), and the numberof blocks that would be needed to store the extent of the class using OC (#OC).The columns of Table 3 indicate, respectively, the number of objects that have that class as most speci�ctype, the size of a conceptual object that has that class as most speci�c type, the blocking factor of such aconceptual object, and the number of blocks needed to store the conceptual objects of that class's extent.For example, we can see from Table 2 that there are 10,000 instances of the AtomicPart class. If we were tocluster implementation objects according to their classes, then the blocking factor of the AtomicPart class'sextent would be sixteen objects per 512 byte block. If, on the other hand, we were to cluster all of an object'sconceptual object plus all of its implementation objects together, then the AtomicPart class's extent wouldhave a blocking factor of only six objects per 512 byte block.We ran several benchmark queries adopted from the OO7 benchmark test suite onMultiView to comparethe performance of the class clustering and object clustering strategies. We modi�ed the accessing methodsof all objects inMultiView so as to log all object accesses and method invocations. We used the resulting logsas input to trace-driven simulations of a least-recently-used (LRU) bu�ering policy. The simulator takes asinput the trace data, a clustering policy, and the amount of memory in the simulated machine, and performsthe following tasks:1. Uses the speci�ed clustering policy to map each data item in the trace data to a simulated block.2. Simulates the e�ect of the clustering policy given the speci�ed amount of memory and the accesspatterns contained in the trace data.3. Returns the total number of block misses incurred by the simulation. (A block miss occurs when anobject that does not reside in main memory is accessed.)We use this simulator to compare the number of block misses that are incurred under the class clusteringand object clustering strategies to the number of block misses that would occur if we did not use an object-slicing mechanism. Thus each of the following graphs plots three lines:1. The block misses incurred by an object-clustering policy.2. The block misses incurred by an class-clustering policy.3. The block misses incurred by a non-object-slicing implementation.From these graphs we should be able to identify the degree to which either the object-clustering or class-clustering strategy approaches the memory size / blocks missed ratio of a non-object-slicing implementation.7.1.1 Retrieving Local AttributesClass clustering and object clustering are each associated with inherent strengths and weaknesses. The chiefadvantage of class clustering is that it greatly increases the blocking factor of the objects in each class'sextent, thereby facilitating the retrieval of local attributes. A comparison of the blocking factors of the twostrategies for the various classes is presented in Tables 2 and 3. From these tables, we can see that thenumber of blocks needed to store the extent of the classes in our example schema using the class clusteringstrategy is between one half and one third the number of blocks that would be needed if an object-clusteringstrategy were used. This ratio clearly depends on other factors, such as the datasize and the number ofimplementation objects, as indicated by the blocking factor ratios depicted in Tables 2 and 3.In Test 1, we compare the performance of object clustering and class clustering regarding the retrievalof objects' local attributes. In this test, we generate 10 random numbers, n, then search the extent of theAtomicPart class looking for a part that has a Document Id equal to the random number n. Note thatdocIdArray is an attribute de�ned by the AtomicPart class, and is thus an attribute local to the AtomicPartimplementation objects.Query Q1: 11



index := (Rand RandomNumberLessThan: (docIdArray size)) + 1.document := docIdArray at: index.(AtomicPart extent) select: [ :elem | elem docId = document].This test is equivalent to performing ten sequential searches of the 10,000 objects in the extent of theAtomicPart class while retrieving a locally de�ned attribute.The class clustering strategy produces a blocking factor of sixteen objects per block for the AtomicPartclass, versus only six objects per block using the object clustering strategy. We thus would expect the classclustering strategy to produce about 13 of the block misses of the object clustering strategy. Our experimentscon�rm these expectations. Namely Figure 8 shows a 37% decrease in block misses between the objectclustering and class clustering strategies.
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Figure 8: Block Misses for Retrieving Local AttributeThe vertical axis of Figure 8 indicates the number of block misses, while the horizontal axis indicatesthe memory size in blocks. Because the AtomicPart class's extent is stored on 715 contiguous blocks underthe class clustering strategy and 1667 contiguous blocks under the object clustering strategy, even with anin�nite amount of memory, there will be a minimum of 1667 block misses in the object-clustering case,and 715 block misses in the class-clustering scenario. The third line shows the blocks misses that would beincurred if we did not use object-slicing. In that case, the AtomicPart class's extent would be stored on1,000 contiguous blocks, and the �rst query would result in a minimum 1,000 block misses. As the numberof blocks in memory decreases, the number of block misses should naturally increase. Because accesses aresequential, both class clustering and object clustering object layouts are optimal for this query, in that everyobject will be accessed exactly once, and no object will be accessed after any of the objects that succeedsit in storage has been accessed. Therefore, independent from the number of blocks in memory, the classclustering strategy will result in 715 block misses and the object clustering strategy will result in 1667 blockmisses. The class clustering strategy is the clear winner for these types of queries. It improves upon anon-object-slicing implementation and is superior to the object-clustering strategy for the retrieval of localattributes.7.1.2 Sequential Retrieval of Inherited AttributesIn the case of queries that retrieve inherited attributes, we might expect object clustering to outperformclass clustering. While the object clustering strategy can access methods in a sequential manner, in theclass clustering scenario each retrieval of an inherited attribute requires a semi-random access to retrievethe object's conceptual object and a semi-random access to retrieve the implementation object associatedwith the inherited property 9. Our second test, Test 2, iterates through the extent of the AtomicPart class,comparing each object's inherited buildDate instance variable to a randomly generated date:Query Q2:9Semi-random because the sets of implementation objects and conceptual objects are themselves clustered sequentially.12



aDate := RandomNumber.(AtomicPart extent) select: [ :elem | elem buildDate < aDate].Test 2 measures the impact of semi-random accesses caused by retrieving an inherited attribute from the10,000 objects in the AtomicPart extent. In this test, the buildDate of each object in the AtomicPart extentwas compared to a randomly generated number. Test 2 is equivalent to performing a sequential search ofthe 10,000 objects in the extent of AtomicPart class and retrieving a property inherited from the DesignObjclass from each of them.Recall fromSection 4 that whenever an inherited instance variable of an implementationobject is accessed,three objects must be accessed in order to retrieve the inherited instance variable{the recipient object (theobject that is initially accessed), the recipient's conceptual object, and the implementation object where theinherited instance variable is de�ned. For example, if we were to apply this query to the example scenarioshown in Figure 7, the sequence of objects we retrieve might be as follows:1. Obj b (O1's AtomicPart object, accessed when it receives buildDate)2. Obj 1 (O1's conceptual object, accessed when Obj b does not understand buildDate)3. Obj a (O1's DesignObj impl. object, accessed because buildDate is de�ned at DesignObj)4. Obj d (O2's AtomicPart impl. object, accessed when it receives buildDate)5. Obj 2 (O2's conceptual object, accessed when Obj d does not understand buildDate)6. Obj c (O2's DesignObj impl. object, accessed because buildDate is de�ned at DesignObj)7. Obj f (O3's AtomicPart impl. object, accessed when it receives buildDate)8. Obj 3 (O3's conceptual object, accessed when Obj f does not understand buildDate)9. Obj e (O3's DesignObj impl. object, accessed because buildDate is de�ned at DesignObj)
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Figure 9: Block Misses Involved in the Sequential Retrieval of an Inherited AttributeThe results of this test (Figure 9) show that the cost of semi-random access to inherited attributesneeded by the class clustering strategy is counterbalanced by the superior blocking factors at both theDesignObj and AtomicPart classes. Although for small memory sizes object-clustering causes fewer faultsthan class clustering, for larger memory sizes class clustering out-performs object clustering and more closelyapproaches the baseline of a non-object-slicing implementation. Note that the number of object-clusteringmisses remains constant regardless of the number of blocks in memory. This is because from the object-clustering perspective, we are simply performing a sequential search of the AtomicPart class. On the otherhand, because the class clustering approach automatically references three di�erent blocks for every object13



processed, when the number of blocks in memory dips below three, class clustering results in 30,000 blockmisses (one for each implementation or conceptual object accessed).In order to re�ne the results from Test 2, we next set out to vary two parameters that a�ect the per-formance of object clustering and class clustering. First, Test 2 involved only a single inherited attribute.Since the block miss gap between class and object clustering was reduced by the presence of a single in-herited attribute, we designed Test 3 to measure the e�ect of an increased number of inherited attributes(each inherited from a di�erent class). Next, note that the 10,000 implementation objects associated withAtomicPart objects make up a signi�cant percentage of the 11,594 implementation objects in the extent ofthe DesignObj class. In Test 4 we compare class and object clustering performance in a scenario where theinherited attribute is inherited from a class where the queried objects make up only a small portion of theclass's extent|that is, where a condition of low selectivity exists between the original and inheritance class.7.1.3 Retrieval of Multiple Inherited AttributesIn Test 2, inherited attributes are retrieved with semi-random accesses. Because object clustering permitsa given object's state to be retrieved in a sequential manner (whereas class clustering requires at best semi-random accesses for inherited attributes), we designed Test 3 to increase the number of classes involved in theaccess pattern. Test 3 traverses the assembly hierarchy of the root Module object, visiting all componentsand their sub-components in a recursive fashion.Query Q3:method: AssemblyTraverseAH(self isInstanceOf: BaseAssembly )ifTrue: [ ^(((self asClassOf: BaseAssembly) componentsPriv)do: [ :elem |visitedNode at: nodeNumber put: nodeCount ])]ifFalse: [ ((self asClassOf: ComplexAssembly) subAssemblies)do: [ :elem | elem TraverseAH].].%runaModule := (Module extent) at: 1.aModule designRoot TraverseAH.%
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Figure 10: Random Access on Inherited Attribute14



Graph 10 compares the block misses that are incurred by the object and class clustering layouts. Becausethis query does not use all of the state of the accessed objects, we bene�t from the superior blocking factorat the implementation object level o�ered by the class clustering approach. Under the object clusteringscenario, the accessed objects reside on 220 unique blocks, whereas under the class clustering scenario, only107 unique blocks are retrieved during Test 3. The graph shows that object clustering is better for smallamounts of memory, but that class clustering's performance more successfully approaches non-object-slicingperformance as the number of blocks in main memory increases. Class clustering is better for larger amountsof main memory due to the inherently higher blocking factors of class clustering. Under the object clustering,when an instance is brought into main memory, all the constituent implementation objects residing in thesame block must also be brought into the memory|including implementation objects that are not neededby the query being performed. Object clustering thus accesses a number of unnecessary blocks. However,because the implementation objects of an object under the class clustering scenario inhabit separate blocks,class clustering requires cross-block references to access the values of the inherited attribute. Thus, whenonly an extremely small number of blocks can be stored in memory, some of the necessary blocks will beswapped out from memory before they are re-referenced by the query.7.1.4 Retrieval of Inherited Attributes with Low SelectivityIn Test 4, we compare class and object clustering performance in a scenario where the inherited attribute isinherited from a class where the queried objects make up only a small portion of the class's extent. Test 4'squery iterates over the extent of the CompositePart class, retrieving each object's DesignObj implementationobject.Query Q4:(CompositePart extent) select: [ :elem | elem buildDate < RandomNumber]Since CompositePart objects make up about 5% of the DesignObj class's extent, the retrieval of eachCompositePart instance's buildDate requires a random access into the extent of the DesignObj class's extent.Graph 11 contrasts the impact of the two clustering strategies on the block misses incurred by query 4. Thegraph shows that under conditions of low selectivity, object clustering is far better than class clustering.
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Figure 11: Query on Inherited Attribute with Low SelectivityWhen a given implementation object receives a reference to a local attribute, the local attribute is storedin the receiver and thus no additional blocks must be retrieved. The retrieval of an inherited attribute inthe object-slicing architecture also involves additional accesses to the receiver's conceptual object and to theimplementation object that stores the inherited attribute value. If an object-clustering strategy is in e�ect,then both implementation objects will be stored in the same block as the conceptual object, and thus allthree objects can be accessed with the retrieval of a single block. If, however, a class-clustering strategyis being used, then the reference to the implementation object will require a random access to retrieve the15



receiver's conceptual object from the store of conceptual objects, as well as a random access to retrieve theappropriate implementation object from the extent of whichever of the receiver's superclasses de�nes thereferenced property.Thus, under object clustering the number of blocks that must be randomly accessed is not a�ected bythe size of the extent of the DesignObject superclass, because the DesignObject implementation objects ofobjects belonging to both the DesignObject and CompositePart classes will be clustered together with theextent of the CompositePart class. However, the class clustering strategy does not di�erentiate between theimplementation objects belonging to di�erent classes when storing the implementation objects that make up aclass's extent. Thus under class clustering, the DesignObject implementation objects of objects that belongto both the DesignObject and CompositePart classes will be intermingled with all other DesignObjectimplementation objects in the extent of the DesignObject class.As shown in Figure 6, the number ofAutomicPart instances, CompositePart instances, andDesignObjectinstances are 10,000, 1000, and 1000, respectively. Thus, under class clustering the DesignObject classindiscriminately stores the 12,000 implementation objects that belong to DesignObject, AtomicPart, orCompositePart instances. Because these implementation objects are intermixed, most of the blocks to storeimplementation objects of DesignObject could be brought into memory in order to retrieve the buildDatevalues of the CompositePart instances. This means that under the class clustering strategy, the executionof query 4 could require the retrieval of all blocks of the DesignObject implementation objects, whereasfor object clustering, the query only needs to bring the portion of blocks that contain the implementationobjects belonging to the CompositePart instances. This di�erence causes the performance gap betweenclass clustering and object clustering as shown in Graph 11. This gap is quite dramatic, and indicatesthat if an application heavily uses this kind of queries (queries on inherited attribute with low selectively),object-clustering is superior to class-clustering for the sake of average performance.8 Related WorkIn this paper, we identi�ed data modeling requirements that should be met by an OODB model in orderto support advanced tools, such as view mechanisms, schema evolution, and role systems. Identi�ed featuresinclude multiple classi�cation, dynamic reclassi�cation, and dynamic restructuring. We are not the �rst whohave identi�ed the utility of such 
exible modeling constructs.One example of this is the work by Scholl et. al. on object-oriented views [23]. Other examples arerecently emerging role modeling approaches [11, 19]. In role modeling systems, objects dynamically gainand lose multiple interfaces (aka roles) throughout their lifetimes. These roles can be compared to theimplementation objects of an object-slicing implementation, in that both permit objects to belong to multipleclasses and change types dynamically. In some sense, accessing an object through one of its implementationobjects is like accessing an object while it is playing one of its roles.In [24], Sciore proposed an object specialization approach, in which a real world entity is modeled bymultiple objects arranged in an object hierarchy. These object hierarchy objects inherit from each other,enabling each individual entity object to decide its own inheritance hierarchy. Although our implementationobjects resemble object hierarchy objects in that they inherit from each other, objects in our implementationalways conform to the existing global class hierarchy. The role system proposed by Gottlob et al. [11] wasimplemented using techniques similar to object-slicing . This system, like ours, is implemented in Smalltalkby overriding the doesNotUnderstand: method.Unlike many role systems, which allow object hierarchies to exist independently from class hierarchies [24],objects in our model always conform to the existing global class hierarchy. To recap, if an object possessesan implementation object of a given class's type, it must also possess an implementation object for everyclass that is a superclass of that given type. This achieves an e�cient and uniform inheritance scheme.Also, unlike many role systems, in our implementation conceptual objects can be associated with at mostone implementation object of a given type [11]. Our proposed object-slicing approach is thus a compromisebetween extremely 
exible role models on the one side and rigid class-based data models on the other side.In short, variations of the object-slicing technique have been repeatedly recognized as a powerful and
exible method for extending an existing OODB system to support the identi�ed required features. In spiteof this work, the object representation assumptions underlying most OODB systems are of a di�erent nature.Current OODB systems allow only one most-speci�c type per object and the object type is determined and�xed at object-creation time [2, 18, 12].The Iris functional database system is the most well-known exception to this; i.e., it is a DBMS systemthat supports multiple classi�cation. However, IRIS, being built on top of a relational engine, distributes itsdata over several relational tables [8], and hence can support multiple states per object. There are, however,several signi�cant di�erences between our work and IRIS. For one, our object-slicing representation is builton top of a pure object-oriented kernel rather than a relational system. Consequently, our system supports16



inheritance of both instance variable and methods. IRIS, however, does not provide for any encapsulation.Instead, foreign functions written in other programming languages can be imported. In our system, eachimplementation object is still a fully functioning object in the sense of the object-oriented paradigm, andthus is encapsulated and can respond to methods, such as, typeof(), etc. In short, in this paper we examinethe impact of an object-oriented realization of object-slicing rather than a horizontal partitioning type of anapproach.Extending an existing DBMS with object-slicing techniques necessarily involves the overhead of additionaldata structures, maintenance costs, and processing time. To our knowledge no work has been done evaluatingthe costs of object-slicing. In this paper, we address this issue. More precisely, we present results from ourevaluation of the performance costs incurred by object-slicing, and examine the potential of various clusteringtechniques to alleviate this cost.Unlike previous work on the clustering and partitioning of OODBs [26, 27], our goals are not to inventnew clustering strategies to dynamically adapt to various access patterns. Instead, we are interested inunderstanding what the innate di�erences are between the conventional and the object-slicing representation| and whether the 
exibility gained comes with an added cost. Furthermore, previous work in the areaof clustering such as [9, 17], is still applicable in our representation model. In fact, we expect that object-slicing is amendable to horizontal and vertical partitioning techniques, since conceptual objects are alreadynaturally partitioned into smaller self-maintained chunks.9 ConclusionsIn this paper, we identify extensions required from an OODB system in order to support advanced toolssuch as view technology, advanced schema evolution support, and role modeling systems. These featuresinclude multiple classi�cation, dynamic reclassi�cation, and dynamic restructuring. While we are not the�rst to identify the need for such 
exible data modeling support, we point out that the majority of currentlyavailable OODB systems do not provide such support. Instead, they support comparatively poor datamodels|requiring an object to belong to exactly one most speci�c type, and not allowing an object todynamically migrate to new types over the lifetime of the object.In this paper, we describe a methodology known as object-slicing that is capable of extending existingOODB systems to support these required features. We have successfully implemented an object-slicingrepresentational layer on the GemStone OODBMS system, which while still providing full access to allGemStone DBMS functions, now also o�ers these 
exible modeling features. Our experience with buildingthis object-slicing paradigm should be valuable to other researchers or OODB system builders that areexploring the extension of OODB systems with more 
exible constructions.Extending an existing DBMS with object-slicing techniques necessarily involves the overhead of addi-tional data structures, maintenance costs, and processing time. However, although object-slicing is a knowntechnique that is being utilized for view systems [14], schema evolution [21], and role systems [11], to ourknowledge no work has been done evaluating the costs of object-slicing. In this paper, we therefore providean in depth evaluation of the object-slicing technique.We describe our experimental results evaluating the relative costs and bene�ts of adopting the object-slicing techniques. First, we compare object-slicing with the conventional intersection class alternative bycontrasting their capabilities. We back up our experimental results with an analytical storage cost model ofour object-slicing implementation, which con�rms the expected improvement of performance for access oflocal attributes and the additional cost associated with accessing inherited objects with low selectivity. Asclustering is critical to optimizing queries on such models, we present results gathered using OO7 benchmarksqueries to evaluate the object-slicing model using two of the more standard clustering strategies. In particular,we report our experimental results of both class-clustering and object-clustering strategies. Based on theseresults, we conclude that clustering can be utilized to e�ectively reduce the overhead associated with object-slicing, and that as in a conventional architecture various types of access patterns can best be optimized byproviding distinct types of clustering techniques.References[1] S. Abiteboul and A. Bonner. Objects and views. SIGMOD, pages 238{247, 1991.[2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonic. The object-orienteddatabase system manifesto. In F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Building an Object-Oriented Database System: The Story of O2, chapter 1, pages 3 { 20. Morgan Kaufmann Pub., 1992.[3] J. Banerjee, H. Chou, J. F. Garza, W. Kim, D. Woelk, N. Ballou, and H. J. Kim. Data model issuesfor object-oriented applications. In S. B. Zdonik and D. Maier, editors, Readings in Object-OrientedDatabase Systems, pages 197{208. Morgan Kaufmann Pub., 1990.17
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