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Abstract

Recently much work has been done towards extending object-oriented database systems (OODBs)
with advanced tools such as view technology, advanced schema evolution support, and role modeling
systems. These extensions all require that the underlying database system supports more powerful and
flexible modeling constructs than are currently supported by existing OODB systems. In this paper,
we identify these features as multiple classification, dynamic reclassification, and dynamic restructuring.
We then describe a methodology known as object-slicing that is capable of extending data models to
support these required features. We have successfully implemented an object-slicing software layer using
the GemStone system, which while still providing full access to all GemStone DBMS functions, now
also offers all required modeling features. In this paper, we describe our experimental results evaluating
the relative costs and benefits of adopting the object-slicing technique. This includes an analytical
assessment of the storage overhead of the object-slicing representation, and its comparison against the
conventional representational models. As clustering is critical to optimizing queries on such models,
we present the results of using OOT benchmark test suites evaluating various clustering strategies for
the object-slicing model. We find that for certain types of queries (e.g., those that benefit from the
superior blocking factor at the local attribute level resulting from clustering object-slices together by
class), the object-slicing model outperforms the conventional approach in spite of its storage overhead,
while queries involving inherited attributes with low selectivity are better serviced using a conventional
object-clustering approach.
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1 Introduction

Recently much work has been done towards extending object-oriented database systems (OODBs) with
advanced tools such as view technology, advanced schema evolution tools, and role modeling systems [4, 7,
10, 13, 19, 21, 22, 25]. These extensions all require that the underlying database system supports flexible
and powerful modeling constructs that are currently not supported by most existing OODB systems [3,
5, 15]. As we will describe in Section 2, such features include multiple classification (allowing an object
to be an instance of multiple classes), dynamic reclassification (allowing an object to gain and lose class
memberships throughout the object’s lifetime), and dynamic restructuring (allowing an object’s structure to
change dynamically throughout the object’s lifetime).

Unfortunately, this common need of view management, transparent schema evolution, role modeling
systems as well as of many knowledge-based systems for flexible and fundamental data model characteristics
is not met by current OODB technology. In fact, the object representation assumptions underlying most
commercial OODB systems, namely, one most-specific type per object, object type determined at object-
creation time, fixed typing, and upwards inheritance, conflict with the requirements of such systems. The
object-slicing technique [16] is one particularly promising approach of extending an existing OODB system
to support the identified required features.

In object-slicing, a real-world object corresponds to a hierarchy of implementation objects (one for
each class whose type the object possesses) linked to a conceptual object (used to represent the object-
itself) rather than associating a single implementation with each real-world object, as is commonly assumed
in conventional OODB systems [16]. This technique of using implementation objects to represent an object’s
membership in multiple classes is extremely flexible, and provides a solution that extends an OODB system
to support capacity-augmenting virtual classes, multiple classification, dynamic reclassification, and dynamic
restructuring of objects and classes. For example, an object-slicing system can dynamically reclassify an
object from being the instance of one class (C'l) to becoming that of another class (C2), by linking the
object instance to an implementation object of C'2 and discarding that of C'1.

In addition, object-slicing facilitates the maintenance of materialized views in that (1) it elegantly avoids
the need to duplicate data for materialized classes and (2) any update to an object will take place at a unique
location determined by the property involved regardless of the source of the update request [14]. Similarly,
the flexibility offered by the object-slicing approach naturally lends itself to implementing role systems:
object-slicing’s implementation objects can easily be adapted to represent the various roles of objects in a
role system [11].

We examine the object-slicing representation in the context of the University of Michigan’s MultiView
project, an on-going NSF-funded view management system capable of supporting updatable materialized
views and transparent schema evolution. In order to support the features required by views and schema
evolution, we have successfully implemented an object-slicing layer [20] on top of the GemStone OODB
system '. Based on this flexible foundation, we have been able to rapidly prototype the Multi View system
providing capacity-augmenting virtual classes, updatable materialized virtual classes, and view schemata.
Because the object-slicing implementation could be cleanly built on top of an existing DBMS system, the
question of how the addition of an object-slicing mechanism impacts performance now arises.

It is to be expected that extending an existing system with object-slicing techniques involves the potential
overhead of additional data structures, maintenance costs, and processing time. Although object-slicing is a
known technique that is being utilized for view systems [14], schema evolution [21], and role systems [11], to
the best of our knowledge no work has been done evaluating the costs of object-slicing. The purpose of this
paper is to provide such an evaluation.

In this paper, we present experimental results of utilizing our Mult:View implementation to perform
benchmark tests for evaluating the costs and benefits of the object-slicing paradigm. In the remainder of
this paper, we will:

e Discuss data modeling requirements that can be addressed by an object-slicing solution (Section 2).
e Compare object-slicing with the conventional intersection class alternative (Section 3).

e Describe the object-slicing data model and its implementation (Section 4).

e Analyze the storage costs of our object-slicing representation (Section 5).

e Present the findings of experiments evaluating the object-slicing model compared to the conventional
architecture (Section 6).

1GemStone is a registered trademark of Servio Corporation



e Present the experimental results of optimizing query types from the OO7 benchmark on the object-
slicing model using clustering (Section 7).

This is followed by a discussion of related work as well as some concluding remarks.

2 Data Model Requirements of Advanced OODB Tools

As we will detail below, view management, transparent schema evolution, role modeling systems as
well as many knowledge-based systems share a common need for the powerful data model characteristics of
multiple classification, dynamic reclassification, and dynamic restructuring—which typically are not provided
in current OODB systems.

View System Needs. In recent years, object-oriented view technology has been touted as an important
technique for integrating heterogeneous and distributed systems, for achieving interoperability by hiding
idiosyncrasies of component systems to be integrated into one unified, yet federated system, and for secu-
rity [23, 22, 4, 7, 13]. View mechanisms typically provide the functionality to restructure a base schema by
hiding classes, by adding classes, by customizing the behavior or extent of classes, and by rearranging the
generalization hierarchy.

The introduction of virtual classes and schemata requires the underlying data model to support certain
features. For example, if an object instance qualifies for membership in two virtual classes, then it should
belong to both even if no subsumption relationship exists between the virtual classes. For this reason, the
data model must provide multiple classification, which means that an object can belong to the local extents
of multiple classes and can thus be associated with the types of multiple classes. Furthermore, an object
instance should dynamically gain (or lose) the type of a select virtual class if its data values change so that
it fulfills (or ceases to fulfill) the class’s selection predicate. Thus, a view system must also support the
dynamic reclassification and dynamic restructuring of object instances, allowing objects to flexibly gain and
lose types during their lifetimes (including both the data stored in their state as well as the set of methods
to which they can respond).

Extending Views for Schema Evolution. The use of view mechanisms to achieve schema evolution
has been advocated by a number of researchers [25, 7, 4, 21]. The basic principle is that given a schema
change request on a view schema, the system—rather than modifying the view schema in place—computes a
new view that reflects the semantics of the schema change. This approach provides several advantages over
direct modification. First, it lends itself naturally to a schema versioning system in which a new schema can
be generated using views without destroying the old schema. Without schema versioning, updates to the
shared database schema are almost always prohibited because of the risk of incompatibility between existing
application programs and the modified schema. Second, the underlying instances are directly shared by
different schema versions, which facilitates interoperability and ensures that old versions will always be kept
up-to-date. In spite of these advantages, to the best of our knowledge an implementation of view mechanisms
to achieve transparent schema evolution has not yet been realized. We suspect that one reason for this is
that because views correspond to derived data, they by definition do not support the addition of new stored
information to the database. Views therefore cannot simulate capacity-augmenting schema changes, such as
the add-attribute operator.

In order to use view technology to support schema evolution, the traditional view management system
must be extended to support the creation of capacity-augmenting virtual classes. A capacity-augmenting
virtual class is a virtual class that includes, for example, instance variables that are not derivable from the
source classes of the virtual class. Thus the underlying view system providing such capacity-augmenting
views does require the dynamic restructuring of objects in addition to the features of multiple classification
and dynamic reclassification.

Role Modeling System Needs. Finally, role modeling approaches have become increasingly popular [11,
19]. Role systems strive to increase the flexibility of the model by enabling objects to dynamically change
types and class membership. In role modeling systems, objects dynamically gain and lose multiple interfaces
(a.k.a. roles) throughout their lifetimes, hence the need for multiple classification. Such changes are done
explicitly by user request, and on an object-by-object basis. Because role systems must reflect the evolution
of an object as 1t dynamically gains and loses roles throughout its lifetime, the properties of dynamic
reclassification and dynamic restructuring must also be supported by the data model underlying a role
system.



3 Object-Slicing v.s. Intersection-Class Creation

3.1 An Introduction of Two Multiple-Classification Techniques

In Section 2, we identified the following object model requirements: (1) efficient dynamic restructuring
of object representations, (2) multiple classification, and (3) dynamic reclassification in addition to the well-
established object-oriented features such as encapsulation, generalization hierarchy, etc.. To the best of our
knowledge, no current OODB system supports all of these features. Furthermore, with the exception of
the TRIS functional database system [8], which uses a relational database as storage structure and stores
data from one object across many relations, most OODBs represent each database object as a chunk of
contiguous storage determined at object creation time. Thus they adhere to the invariant that en object
belongs to exactly one class at a time — as well as indirectly to all of that class’s superclasses [1].
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Figure 1: Two Approaches For Implementing Multiple Classification.

Object-slicing, as introduced in Section 2, is one way to extend an existing OODB system to provide
the required features. The intersection-class approach is another. The intersection-class approach simulates
multiple classification and dynamic restructuring in existing systems by creating intersection classes to reflect
the structure of a multiply-classified object. For example, suppose that given the schema in Figure 1 (a), we
want to create a new car object ol that is both of type Jeep and of type I'mported. We cannot find a class
in which to store ol without violating the invariant that an object belongs to exactly one class. To resolve
this dilemma, the intersection-class approach would create a new intersection class Jeep&Imported that is a
subclass of both the Jeep and Imported classes. Tt then would create ol as member of the new class (Figure
1 (b)). Alternatively, given the same schema suppose that ol were a member of the Jeep class and that we
wanted to dynamically reclassify it to be a member of the Imported class. In this case, the intersection-class
approach would require us to create a new object 02 as member of the I'mported class, to copy all attribute
values from ol to 02, and finally to swap the object identities of these two objects. If 0ol should not lose its
membership in the Jeep class, then this dynamic reclassification of the object would again cause the creation
of a Jeep&Imporied intersection class.

The object-slicing approach (Figure 1 (¢)) would implement the required multiple classification by ma-
nipulating the implementation objects representing the ol object. As shown in the figure, the ol conceptual
object corresponds to a hierarchy consisting of the olcar, 0lseep and olrmporiea implementation objects.
Each implementation object acts as its class’s interface to the object. For example, when the current class
of the ol object is Jeep, the ol;.., object represents the ol object.

The object-slicing approach also enables efficient dynamic restructuring of object representations to
account for the addition of new instance variables. Suppose that we were to extend our schema, which
originally contains the Car and the Jeep classes, with a new class named Imported that refines the Car class
by adding the stored attribute nation. Each Car object (as well as each Jeep object) can potentially acquire
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Table 1: Comparison of Two Multiple Classification Approaches.

the type of the Imported class. This means that the Car object representation should be restructured so that
it can store the data for the new attribute. This can be accomplished simply by creating implementation
objects of the Imported class and adding them to each Car object. Thus, the restructuring the object
representation in the object-slicing paradigm 1s relatively efficient and simple when compared with the
conventional architecture of having each object carry all of its state information in a contiguous fashion and
permitting objects to belong to only one most specific class.

3.2 Comparing the Two Approaches

Each approach has its own advantages and disadvantages. A summary of the following comparison is
also presented 1n Table 1.

e Casting an object to a type is readily provided by switching between the representative implementa-
tion objects in the object-slicing approach. However, in the intersection-class approach, we need an
additional mechanism (possibly implemented by the compiler) to implement the casting facility.

e In the object-slicing approach, a single database object is represented by as many implementation
objects as the number of types the object possesses, plus one conceptual object. Thus, the number of
object identifiers needed to implement a single object is equal to 1 4+ Nippi, where Ny denotes the
number of implementation objects needed by the object. The intersection-class approach requires only
one object identifier per conceptual object.

e OODBs use storage for purposes other than storing data values, e.g., for indices and object identifiers.
The object-slicing approach requires additional storage for the internal object identifiers described
above (Njppr - sizeOf(0id)) ? and pointers to link the implementation and conceptual objects (2 -
Nimpt - sizeO f(pointer)) . On the other hand, the intersection-class approach requires no additional
storage, other than that required to create the intersection-class itself.

e Neither approach requires duplication of data values, and thus they are non-redundant in terms of the
storage for data values. (Note that the designer is still able to duplicate data for performance reasons
in both approaches.)

e The object-slicing approach does not require the creation of any hidden classes; all classes in the global
schema are user-defined classes. However, the intersection-class approach requires intersection classes
in order to accomplish multiple classification. For each object that takes two types, we must create

20bject identifiers are necessary for one conceptual object and Nimpr implementation objects.
3Each implementation object keeps the pointer to its conceptual object, and vice versa.



a class to hold the combination of the two types, if it does not yet exist. The number of intersection
classes may increase to 2Vetess  where N,qs5 1s the number of user-defined classes of the global schema.
In the worst case, the number of intersection classes could grow exponentially with respect to the
number of user-defined classes. Also, as demonstrated above, dynamic classification may require the
creation and/or removal of intersection-classes on the fly. The intersection-class approach thus requires
dynamic schema evolution support.

e The state of a given object in the object-slicing approach is separated by class and distributed over
a number of implementation objects. Because each implementation object is smaller than a complete
object, the blocking factor of the implementation objects of a given class under the object-slicing
model should be significantly better than the blocking factor of complete objects of the same class
under a conventional architecture such as that of the intersection-class model. Sequential access of
clustered implementation objects should therefore be faster than sequential access to the same number
of complete objects. However, access to an inherited attributes in the object-slicing approach can
involve the random access retrieval of conceptual object and multiple implementation objects. The
intersection-class approach may therefore be faster in accessing an inherited attribute because the
values of all attributes of an object reside in the same location. We present detailed comparison
studies by benchmark experiments and simulations that confirm this hypothesis in Section 6.

e Changing an object from being an instance of one class (C'1) to being an instance of another class (C'2)
is called dynamic classification [16]. In the object-slicing approach, when an object is dynamically
reclassified to be an instance of the class C'2 rather than one of class C'1, the object instance takes an
implementation object of the class C'2 and discards that of the class C'l. By combining the operators
for adding and removing class membership, we can easily achieve this functionality. In the intersection-
class approach, we first must identify the proper class for the new classification and, if it does not exist,
create the class. This requires schema evolution support with classification capability. Second, we need
to create an object of this new class and copy the values of the object to be reclassified into this newly
created object. To preserve object identity, we must copy the object identity of the old object to the
new object by utilizing a swap mechanism.

In conclusion, on most fronts the object-slicing approach promises comparable performance to the more
conventional intersection-class method, and in some cases even improves performance. Furthermore, because
object-slicing avoids the creation of cumbersome intersection classes and offers flexible restructuring of both
state and behavior, it appears to be a cleaner method for extending existing OODBs. However, the additional
overhead required for the object-slicing structures and the random accesses needed to retrieve the inherited
state from implementation objects are disadvantages associated with the object-slicing methodology. In
the remainder of this paper, we thus describe our experimental results in evaluating these two approaches.
In Sections 5, 6 and 7, we perform a closer examination of the benefit provided by object-slicing’s larger
blocking factor at the class, the cost of the additional random accesses, and the potential of clustering to
alleviate that cost.

4 The Object-Slicing Model

We formalize the object-slicing paradigm used in our implementation of MultiView below. Let O; € O
be a user-defined object. In the object-slicing model, O; is represented using two kinds of objects: a sin-
gle conceptual object, O;_ .. and one implementation object for each class C; € C' to which the object
belongs, Oilmpzcj~ A conceptual object consists of a tuple, <tmplObjects, OID>, where OID is the
unique, system-generated object-identifier of the conceptual object, and implObjects is the set of imple-
mentation objects that are linked to the conceptual object. An implementation object is a tuple
<OID,otd,class,state> where OID is the object-identifier of the linked conceptual object, oid is the
object-identifier of the implementation object itself 4, class is the class of which the implementation object
is a direct instance, and state corresponds to the values of the local instance variables stored for the given

4Each implementation object by default possesses its own object identifier. However, because the implementation object
serves as an interface for a specific conceptual object, the object-identifier of the conceptual object supersedes that of the
implementation object for most practical purposes, such as determining object-equality.



object ®. Each implementation object O is an object instance of the database class C; € C' it repre-

fimpte
sents. Conceptual objects are object instances of a special system class, ConceptualObject, rather than of a
user-defined class.

Because a single real-world object is now represented using multiple database objects, we define a number
of functions to operate on objects in the model, including object creation, equality comparison, etc. For
example, we say that two objects are equal if and only if they are linked to the same conceptual object.
Similarly, given an object O; € O and a class C; € C, we define functions MakeImpl(O C;) and
DeleteImpl(O;_, . _,

If an object O; possesses an implementation object O

tconc?

C}) to create and destroy implementation objects of class C; for object O;_, ...

iimp for some C; € €', then O; must also possess
7

implementation objects for all classes C} s.t. €} is-a Cf. Thus the set of implementation objects associated
with a given conceptual object mirrors the structure of the class hierarchy. Object-slicing intrinsically

O; EO,C]' eC.

includes its own Inheritance mechanism. Let there be an implementation object O;,,, .
7

If the method my € M were to be invoked upon object O , and my is not defined locally in type(C}),

Timple
7

then O will delegate the method my to O It will in turn conduct a search “upwards” through

Timple . tcomc*
3

C;’s superclasses. If method my, is not found in the type of a superclass C; of C}, then an error is returned;

otherwise, the method is invoked upon the object O, _ 6. Figure 2 illustrates this idea using an example.
1
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(a) An implementation object from the PedigreedCat class receives a message ‘color’.

(b) Each of the implementation objects
belonging to the superclasses of
the PedigreedCat class is queried for
the method ‘color’.

(c) The method ‘color’ is found at the Cat class.
The implementation object of O1 belonging
to the Cat class returns the value of the
‘color’ instance variable, ‘brown’.

Figure 2: Object-Slicing Example

Because objects in the object-slicing model can dynamically add and lose implementation objects, and
because the object-slicing model includes its own inheritance mechanism, the object-slicing technique can
be used to extend object-oriented data models to provide the features of multiple classification, dynamic
reclassification, and dynamic restructuring. It is relatively straightforward to see how one could implement
the object-slicing model on top of an existing OODB. In our technical report [20], we describe our solution of
realizing the model using a Smalltalk-based OODB, GemStone system. Due to space limitations, a discussion
of these implementation issues is not repeated here.

5 Object-Slicing Storage Costs

In evaluating the performance of databases, I/O operation time typically dominates CPU operation
time. Consequently, an evaluation of object-slicing must consider the effect of object-slicing on I/O time.

5The methods used to set or retrieve an instance variable’s value are called accessing methods. Accessing methods are
always located at the same class as the instance variables for which they are defined, and thus when an instance variable
migrates from one class to another, that instance variable’s accessing methods must make the same migration.

81f a method with selector m; is found in more than one class in the superclass hierarchy of Cy, then the user is prompted
to cast O; into a non-ambiguous implementation object.



One major variable for calculating I/O time is the number of objects that can be stored in a disk block,
known as the blocking factor (bf), namely: [ disk block size / object size ].

In traditional (non-object-slicing) architectures, the size of an object is calculated to be the total amount
of storage needed to store the state of the object (data size), oid size, and pointer size (to reference the
object’s class), and some fields for the system use. Because the object-slicing model represents any given
object using a conceptual object and some number of implementation objects, objects in the object-slicing
architecture inherently require more storage space than their counterparts in traditional architectures. Like
a traditional object, an object under the object-slicing architecture contains data, an oid, and a pointer to
its class. In addition, an object-slicing object that belongs to [ classes also requires { implementation ob-
jects (each with a reference to its class and to the object’s conceptual object), the conceptual object (which
has a dictionary of references to 1ts implementation objects, respectively indexed by the class the implemen-
tation object belongs to), and the system fields 7. That is, while in a conventional architecture we would have:

obj size = data size + oid size + pointer size + system fields;
in the object-slicing architecture we now have:

obj size = data size + (I + 1) - 0id size + (4l 4+ 1) - pointer size + system fields.

To simplify, we assume that oid size is equal to pointer size. The ratio of the sizes is now:

datasize + (bl + 2) - pointersize + systemfields
datasize + 2 - pointersize + systemfields

SizeRatio(SR) =

Ignoring the size of the system fields for simplicity and assuming that oid size = pointer size, the ratio
becomes:

SR — DS + (5l + 2) - pointersize
o DS 4+ 2 - pointersize

where SR is the size ratio and DS is data size. When the size of the pointer is 4 bytes, which is a reasonable
assumption for current systems, this becomes

DS+ (51+72) -4

SR DS +38

Given these assumptions, Figure 3 shows the blocking factor ratio for the fixed data size values of 10,
20, 30, 50, 100, and 1000 bytes while increasing [, the number of implementation objects required, from 1
to 20. On the other hand, Figure 4 shows the blocking factor ratio by fixing the number of implementation
objects and varying data size. In general, the ratio increases as the value of [ increases and decreases as the
data size increases. This means that the disadvantage of the object-slicing architecture’s storage overhead
is ameliorated by an increased object size/decreased schema size (depth of schema) ratio.

6 Evaluation of Object-Slicing Approach Using the OO7 Benchmark

In order to determine the base cost of implementing the object-slicing representation paradigm, we have
run several test queries from the University of Wisconsin’s OO7 benchmark suite [6] with the intention of
comparing GemStone’s native implementation versus our object-slicing extension to GemStone. GemStone
is a Smalltalk-based system, while the four systems compared in the OO7 benchmark paper [6] are all C++
based. Because GemStone thus supports dynamic method resolution, run-time augmentation of the schema
with new methods, etc., we did not compare GemStone against other systems, and instead limited our study
to comparing “pure” GemStone with MultiView. For this study, we used GemStone, version 3.2 Opal; and
created a randomly populated database of the parts-assembly benchmark example with 10,000 Atomic Parts.

First, we compare results for navigation-type queries, e.g., for the “Traversal 17 query. The “Traversal
17 query tests raw pointer traversal speed with a high degree of locality [6]. The query requires a traversal of

"While this storage of references linking conceptual to implementation objects and back could be reduced, we’ve chosen this
representation for reason of efficiency.
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the assembly hierarchy shown in Figure 5 and performs a depth-first search on each part’s graph of atomic
parts. MultiView’s performance slightly improved upon GemStone’s time (by & 4%) despite the fact that
MultiView is built on top of GemStone rather than directly into the GemStone kernel—thus adding an
extra layer of indirection ®. The improved performance can be explained as follows. First, the navigation
was limited to access of local instance variables (rather than inherited ones). Thus there is no overhead of
finding appropriate implementation objects for MultiView. Consequently, only one implementation object
has to be retrieved per queried object. The query avoids having to perform random accesses to retrieve
additional implementation objects. Not only was retrieval of the single implementation objects sequential,
but also these navigated implementation objects are much smaller in size (containing only local instance
variables) compared to GemStone’s native objects (containing both local and inherited instance variables in
one contiguous allocation) and thus offered a higher blocking factor (See Section 5 for a more formal analysis

of these factors).

— id
DesignObj | — type
|— buildDate
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Assembly y— AtomicPart N type
~ = length
docld—

Composite 1
Part Parts

Figure 5: A Portion of OO7 Benchmark Database.

Next, we tested the “Query 1 Search” benchmark, which performs a random lookup of an atomic part
based on the inherited property “id” as shown in Figure 5. For this lookup, MultiView performed 3-
1/2 times slower than GemStone. The major overhead stems from the fact that for each of the 10,000
lookups, we must traverse from each Atomic Part’s implementation objects to the corresponding conceptual
object, and then to its corresponding DesignObj’s implementation object in order to retrieve the “id” data
value. Accessing an inherited attribute in MultiView requires two additional traversals: one to traverse the

8We do not have access to the GemStone code to override the kernel with Multi View.



conceptuallink to get from the implementation object to its conceptual object, and the other to traverse
the implementationLink to get from the conceptual object to the correct implementation object holding
the desired data value. As demonstrated in this paper, these two links improve the flexibility of our object
model greatly but it also causes the observed performance degradation.

In short, there are two possible causes for the degradation in performance associated with object-slicing.
First, the storage overhead to store the conceptual object, the oids’ of the implementation objects, and those
two extra links may require a larger number of blocks and result in more page faults. Second, because the
implementation objects belonging to the same class are by default clustered together, each traversal to an
implementation object for getting an inherited value requires a partial random block access, which can result
in a page fault.

In the next section, we investigate the impact of the object-slicing mechanism upon an implementation’s
storage overhead in terms of the blocking factor of various objects and also in terms of the page faults incurred
by the retrieval of object-slicing implementation objects. We also evaluate the ability of clustering strategies
to alleviate these object-slicing penalties.

7 Evaluating and Optimizing Object-Slicing Using the OO7 Benchmark

7.1 Clustering Strategies for Object-Slicing

By specifying that certain categories of objects be placed in contiguous storage on the disk (thereby
clustering them), database designers try to match the traversal patterns of objects in a database to stor-
age sequences of objects to minimize disk I/O costs. In traditional (non-object-slicing) environments, the
granularity of this optimization is often restricted to the clustering of objects. A MultiView object’s state is
distributed among multiple object-slicing implementation objects, however, which lends itself to clustering
strategies that resemble the vertical partitioning of the relational model. In order to determine under which
circumstances it is preferable to cluster the implementation objects by class (which we call class clustering),
and under which circumstances it is better to cluster all the components of a MultiView object together
(which we term object clustering), we designed and carried out an extensive experimental study evaluating
both clustering techniques.

(11,594 objects)

-id (4 bytes)
type (10 bytes)
-buildDate (4 bytes)

DesignObj

-partOf (4 bytes)

-documentation (4 bytes) -to (4 bytes)

- -usedInPriv (4 bytes) from (4 bytes)

CompositePart J)-usedinShar (4 bytes) X (4 bytes)

(500 objects) ~ -Parts (4 bytes) (10,000 objects) -y (4 bytes)
-rootPart (4 bytes) -docld (4 bytes)

AtomicPart

Figure 6: Subschema of OOT Database.

For our evaluation, we again use a subsection of the OO7 Benchmark’s example database (Figure 5).
Figure 6 shows the three class subschema that is central to our test queries. Figure 7 illustrates clustering
options of object versus class clustering using an example. In this example, there are three objects that
are instances of the AtomicPart class from the schema shown in Figure 6. Figure 7(a) depicts the initial
object relationships, in which there are three objects—Objectl, Object2, and Object3—each of which has
two implementation objects (one for the DesignObj class and one for AtomicPart). If we were to cluster
the database objects by class, as shown in Figure 7(b), then we would cluster the implementation objects of
each class and the conceptual objects separately. If, however, we were to cluster by objects, then all the data
associated with each individual object would be clustered together, as shown in Figure 7(c). The second
option resembles clustering at the granularity of complete objects.

Tables 2 and 3 compare the relative object sizes and blocking factors involved with the object clustering
and class clustering strategies. The classes in the OOT schema are listed as the rows of each table. The
columns of Table 2 indicate, respectively, the number of objects that initially exist in each class’s extent
(#impls), the number of objects that have the given class as a most-specific type (F#objs), the average size
of an object in the class’s extent using the class clustering methodology (CC size), the blocking factor of
the class using the CC strategy (CC BF), the number of blocks that would be needed to store the extent of
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Figure 7: Example of Object Clustering v.s. Class Clustering.

| #impl | #objs | CC size | CC BF | #CC | OC size | OC BF | #0C |

DesignObj 11594 0 30 17 680 54 9 0
Assembly 1093 0 20 25 43 74 6 0
BaseAssembly 729 729 20 25 29 86 5 146
ComplexAssembly 364 364 16 32 12 90 5 73
AtomicPart 10000 10000 36 14 704 82 6 1667
CompositePart 500 500 32 16 32 78 6 84
Connection 30000 | 30000 34 15 1993 50 10 3000
Module 1 1 24 21 1 78 6 1

Table 2: Data sizes with 512 byte blocks.

| | # Objects | Conc. Obj. Size | Conc. Obj. BF | Conc. Obj. Blocks |

DesignObj 0 12 42 0
Assembly 0 16 32 0
BaseAssembly 729 20 25 30
ComplexAssembly 364 20 25 15
AtomicPart 10000 16 32 313
CompositePart 500 16 32 16
Connection 30000 12 42 715
Module 1 16 32 1

Table 3: Conceptual Object sizes for ClassClusterDictionary with a blocksize of 512 bytes.
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the class using the CC strategy (#CC), the average size of an object in the class’s extent using the object
clustering (OC)methodology (OC size), the blocking factor of the class using OC (OC BF), and the number
of blocks that would be needed to store the extent of the class using OC (#0C).

The columns of Table 3 indicate, respectively, the number of objects that have that class as most specific
type, the size of a conceptual object that has that class as most specific type, the blocking factor of such a
conceptual object, and the number of blocks needed to store the conceptual objects of that class’s extent.
For example, we can see from Table 2 that there are 10,000 instances of the AtomicPart class. If we were to
cluster implementation objects according to their classes; then the blocking factor of the AtomicPart class’s
extent would be sixteen objects per 512 byte block. If, on the other hand, we were to cluster all of an object’s
conceptual object plus all of its implementation objects together, then the AtomicPart class’s extent would
have a blocking factor of only six objects per 512 byte block.

We ran several benchmark queries adopted from the OO7 benchmark test suite on Multi View to compare
the performance of the class clustering and object clustering strategies. We modified the accessing methods
of all objects in MultiView so as to log all object accesses and method invocations. We used the resulting logs
as input to trace-driven simulations of a least-recently-used (LRU) buffering policy. The simulator takes as
input the trace data, a clustering policy, and the amount of memory in the simulated machine, and performs
the following tasks:

1. Uses the specified clustering policy to map each data item in the trace data to a simulated block.

2. Simulates the effect of the clustering policy given the specified amount of memory and the access
patterns contained in the trace data.

3. Returns the total number of block misses incurred by the simulation. (A block miss occurs when an
object that does not reside in main memory is accessed.)

We use this simulator to compare the number of block misses that are incurred under the class clustering
and object clustering strategies to the number of block misses that would occur if we did not use an object-
slicing mechanism. Thus each of the following graphs plots three lines:

1. The block misses incurred by an object-clustering policy.
2. The block misses incurred by an class-clustering policy.
3. The block misses incurred by a non-object-slicing implementation.

From these graphs we should be able to identify the degree to which either the object-clustering or class-
clustering strategy approaches the memory size / blocks missed ratio of a non-object-slicing implementation.

7.1.1 Retrieving Local Attributes

Class clustering and object clustering are each associated with inherent strengths and weaknesses. The chief
advantage of class clustering is that it greatly increases the blocking factor of the objects in each class’s
extent, thereby facilitating the retrieval of local attributes. A comparison of the blocking factors of the two
strategies for the various classes is presented in Tables 2 and 3. From these tables, we can see that the
number of blocks needed to store the extent of the classes in our example schema using the class clustering
strategy is between one half and one third the number of blocks that would be needed if an object-clustering
strategy were used. This ratio clearly depends on other factors, such as the datasize and the number of
implementation objects, as indicated by the blocking factor ratios depicted in Tables 2 and 3.

In Test 1, we compare the performance of object clustering and class clustering regarding the retrieval
of objects’ local attributes. In this test, we generate 10 random numbers, n, then search the extent of the
AtomicPart class looking for a part that has a Document Id equal to the random number n. Note that
docldArray is an attribute defined by the AtomicPart class, and is thus an attribute local to the AtomicPart
implementation objects.

Query QI:
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index := (Rand RandomNumberLessThan: (docIdArray size)) + 1.
document := docIdArray at: index.
(AtomicPart extent) select: [ :elem | elem docId = document].

This test is equivalent to performing ten sequential searches of the 10,000 objects in the extent of the
AtomicPart class while retrieving a locally defined attribute.

The class clustering strategy produces a blocking factor of sixteen objects per block for the AtomicPart
class, versus only six objects per block using the object clustering strategy. We thus would expect the class
clustering strategy to produce about % of the block misses of the object clustering strategy. Our experiments
confirm these expectations. Namely Figure 8 shows a 37% decrease in block misses between the object
clustering and class clustering strategies.
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Figure 8: Block Misses for Retrieving Local Attribute

The vertical axis of Figure 8 indicates the number of block misses, while the horizontal axis indicates
the memory size in blocks. Because the AtomicPart class’s extent is stored on 715 contiguous blocks under
the class clustering strategy and 1667 contiguous blocks under the object clustering strategy, even with an
infinite amount of memory, there will be a minimum of 1667 block misses in the object-clustering case,
and 715 block misses in the class-clustering scenario. The third line shows the blocks misses that would be
incurred if we did not use object-slicing. In that case, the AtomicPart class’s extent would be stored on
1,000 contiguous blocks, and the first query would result in a minimum 1,000 block misses. As the number
of blocks in memory decreases, the number of block misses should naturally increase. Because accesses are
sequential, both class clustering and object clustering object layouts are optimal for this query, in that every
object will be accessed exactly once, and no object will be accessed after any of the objects that succeeds
it in storage has been accessed. Therefore, independent from the number of blocks in memory, the class
clustering strategy will result in 715 block misses and the object clustering strategy will result in 1667 block
misses. The class clustering strategy is the clear winner for these types of queries. It improves upon a
non-object-slicing implementation and is superior to the object-clustering strategy for the retrieval of local
attributes.

7.1.2 Sequential Retrieval of Inherited Attributes

In the case of queries that retrieve inherited attributes, we might expect object clustering to outperform
class clustering. While the object clustering strategy can access methods in a sequential manner, in the
class clustering scenario each retrieval of an inherited attribute requires a semi-random access to retrieve
the object’s conceptual object and a semi-random access to retrieve the implementation object associated
with the inherited property °. Our second test, Test 2, iterates through the extent of the AtomicPart class,
comparing each object’s inherited buildDate instance variable to a randomly generated date:

Query Q2:

9Semi-random because the sets of implementation objects and conceptual objects are themselves clustered sequentially.
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aDate := RandomNumber.
(AtomicPart extent) select: [ :elem | elem buildDate < aDate].

Test 2 measures the impact of semi-random accesses caused by retrieving an inherited attribute from the
10,000 objects in the AtomicPart extent. In this test, the buildDate of each object in the AtomicPart extent
was compared to a randomly generated number. Test 2 i1s equivalent to performing a sequential search of
the 10,000 objects in the extent of AtomicPart class and retrieving a property inherited from the DesignObj
class from each of them.

Recall from Section 4 that whenever an inherited instance variable of an implementation object is accessed,
three objects must be accessed in order to retrieve the inherited instance variable-the recipient object (the
object that is initially accessed), the recipient’s conceptual object, and the implementation object where the
inherited instance variable is defined. For example, if we were to apply this query to the example scenario
shown in Figure 7, the sequence of objects we retrieve might be as follows:

1. Obj b (O1’s AtomicPart object, accessed when it receives buildDate)
0bj 1 (O1’s conceptual object, accessed when Obj b does not understand buildDate)
0bj a (O1’s DesignObj impl. object, accessed because buildDate is defined at DesignObj)

0bj d (02’s AtomicPart impl. object, accessed when it receives buildDate)

0bj ¢ (02’s DesignObj impl. object, accessed because buildDate is defined at DesignObj)
0bj £ (O3’s AtomicPart impl. object, accessed when it receives buildDate)

(
(
(
(
0bj 2 (0O2’s conceptual object, accessed when Obj d does not understand buildDate)
(
(
0bj 3 (0O3’s conceptual object, accessed when Obj f does not understand buildDate)
e (

O oo =~ O Ot e W N

0bj e (0O3’s DesignObj impl. object, accessed because buildDate is defined at DesignObj)
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Figure 9: Block Misses Involved in the Sequential Retrieval of an Inherited Attribute

The results of this test (Figure 9) show that the cost of semi-random access to inherited attributes
needed by the class clustering strategy i1s counterbalanced by the superior blocking factors at both the
DesignObj and AtomicPart classes. Although for small memory sizes object-clustering causes fewer faults
than class clustering, for larger memory sizes class clustering out-performs object clustering and more closely
approaches the baseline of a non-object-slicing implementation. Note that the number of object-clustering
misses remains constant regardless of the number of blocks in memory. This is because from the object-
clustering perspective, we are simply performing a sequential search of the AtomicPart class. On the other
hand, because the class clustering approach automatically references three different blocks for every object
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processed, when the number of blocks in memory dips below three, class clustering results in 30,000 block
misses (one for each implementation or conceptual object accessed).

In order to refine the results from Test 2, we next set out to vary two parameters that affect the per-
formance of object clustering and class clustering. First, Test 2 involved only a single inherited attribute.
Since the block miss gap between class and object clustering was reduced by the presence of a single in-
herited attribute, we designed Test 3 to measure the effect of an increased number of inherited attributes
(each inherited from a different class). Next, note that the 10,000 implementation objects associated with
AtomicPart objects make up a significant percentage of the 11,594 implementation objects in the extent of
the DesignObj class. In Test 4 we compare class and object clustering performance in a scenario where the
inherited attribute is inherited from a class where the queried objects make up only a small portion of the
class’s extent—that is, where a condition of low selectivity exists between the original and inheritance class.

7.1.3 Retrieval of Multiple Inherited Attributes

In Test 2, inherited attributes are retrieved with semi-random accesses. Because object clustering permits
a given object’s state to be retrieved in a sequential manner (whereas class clustering requires at best semi-
random accesses for inherited attributes), we designed Test 3 to increase the number of classes involved in the
access pattern. Test 3 traverses the assembly hierarchy of the root Module object, visiting all components
and their sub-components in a recursive fashion.

Query Q3:

method: Assembly
TraverseAH
(self isInstance0f: BaseAssembly )
ifTrue: [ "(((self asClassOf: BaseAssembly) componentsPriv)
do: [ :elem |
visitedNode at: nodeNumber put: nodeCount ])
]
ifFalse: [ ((self asClassOf: ComplexAssembly) subAssemblies)
do: [ :elem | elem TraverseAH].
1.
%

run
allodule := (Module extent) at: 1.
aModule designRoot TraverseAH.
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Figure 10: Random Access on Inherited Attribute
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Graph 10 compares the block misses that are incurred by the object and class clustering layouts. Because
this query does not use all of the state of the accessed objects, we benefit from the superior blocking factor
at the implementation object level offered by the class clustering approach. Under the object clustering
scenario, the accessed objects reside on 220 unique blocks, whereas under the class clustering scenario, only
107 unique blocks are retrieved during Test 3. The graph shows that object clustering is better for small
amounts of memory, but that class clustering’s performance more successfully approaches non-object-slicing
performance as the number of blocks in main memory increases. Class clustering is better for larger amounts
of main memory due to the inherently higher blocking factors of class clustering. Under the object clustering,
when an instance 1s brought into main memory, all the constituent implementation objects residing in the
same block must also be brought into the memory—including implementation objects that are not needed
by the query being performed. Object clustering thus accesses a number of unnecessary blocks. However,
because the implementation objects of an object under the class clustering scenario inhabit separate blocks,
class clustering requires cross-block references to access the values of the inherited attribute. Thus, when
only an extremely small number of blocks can be stored in memory, some of the necessary blocks will be
swapped out from memory before they are re-referenced by the query.

7.1.4 Retrieval of Inherited Attributes with Low Selectivity

In Test 4, we compare class and object clustering performance in a scenario where the inherited attribute is
inherited from a class where the queried objects make up only a small portion of the class’s extent. Test 4’s
query iterates over the extent of the CompositePart class, retrieving each object’s DesignObj implementation
object.

Query Q4:

(CompositePart extent) select: [ :elem | elem buildDate < RandomNumber]

Since CompositePart objects make up about 5% of the DesignObj class’s extent, the retrieval of each
CompositePart instance’s buildDate requires a random access into the extent of the DesignObj class’s extent.
Graph 11 contrasts the impact of the two clustering strategies on the block misses incurred by query 4. The
graph shows that under conditions of low selectivity, object clustering is far better than class clustering.
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Figure 11: Query on Inherited Attribute with Low Selectivity

When a given implementation object receives a reference to a local attribute, the local attribute is stored
in the receiver and thus no additional blocks must be retrieved. The retrieval of an inherited attribute in
the object-slicing architecture also involves additional accesses to the receiver’s conceptual object and to the
implementation object that stores the inherited attribute value. If an object-clustering strategy is in effect,
then both implementation objects will be stored in the same block as the conceptual object, and thus all
three objects can be accessed with the retrieval of a single block. If) however, a class-clustering strategy
is being used, then the reference to the implementation object will require a random access to retrieve the
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receiver’s conceptual object from the store of conceptual objects, as well as a random access to retrieve the
appropriate implementation object from the extent of whichever of the receiver’s superclasses defines the
referenced property.

Thus, under object clustering the number of blocks that must be randomly accessed is not affected by
the size of the extent of the DesignObject superclass, because the DesignObject implementation objects of
objects belonging to both the DesignObject and Composite Part classes will be clustered together with the
extent of the Composite Part class. However, the class clustering strategy does not differentiate between the
implementation objects belonging to different classes when storing the implementation objects that make up a
class’s extent. Thus under class clustering, the DesignObject implementation objects of objects that belong
to both the DesignObject and Composite Part classes will be intermingled with all other DesignObject
implementation objects in the extent of the DesignObject class.

As shown in Figure 6, the number of AutomicPart instances, C'omposite Part instances, and DesignQObject
instances are 10,000, 1000, and 1000, respectively. Thus, under class clustering the DesignObject class
indiscriminately stores the 12,000 implementation objects that belong to DesignObject, AtomicPart, or
Composite Part instances. Because these implementation objects are intermixed, most of the blocks to store
implementation objects of DesignObject could be brought into memory in order to retrieve the build Date
values of the Composite Part instances. This means that under the class clustering strategy, the execution
of query 4 could require the retrieval of all blocks of the DesignObject implementation objects, whereas
for object clustering, the query only needs to bring the portion of blocks that contain the implementation
objects belonging to the C'omposite Part instances. This difference causes the performance gap between
class clustering and object clustering as shown in Graph 11. This gap is quite dramatic, and indicates
that if an application heavily uses this kind of queries (queries on inherited attribute with low selectively),
object-clustering is superior to class-clustering for the sake of average performance.

8 Related Work

In this paper, we identified data modeling requirements that should be met by an OODB model in order
to support advanced tools, such as view mechanisms, schema evolution, and role systems. Identified features
include multiple classification, dynamic reclassification, and dynamic restructuring. We are not the first who
have identified the utility of such flexible modeling constructs.

One example of this is the work by Scholl et. al. on object-oriented views [23]. Other examples are
recently emerging role modeling approaches [11, 19]. In role modeling systems, objects dynamically gain
and lose multiple interfaces (aka roles) throughout their lifetimes. These roles can be compared to the
implementation objects of an object-slicing implementation, in that both permit objects to belong to multiple
classes and change types dynamically. In some sense, accessing an object through one of its implementation
objects is like accessing an object while it is playing one of its roles.

In [24], Sciore proposed an object specialization approach, in which a real world entity is modeled by
multiple objects arranged in an object hierarchy. These object hierarchy objects inherit from each other,
enabling each individual entity object to decide its own inheritance hierarchy. Although our implementation
objects resemble object hierarchy objects in that they inherit from each other, objects in our implementation
always conform to the existing global class hierarchy. The role system proposed by Gottlob et al. [11] was
implemented using techniques similar to object-slicing . This system, like ours, 1s implemented in Smalltalk
by overriding the doesNotUnderstand: method.

Unlike many role systems, which allow object hierarchies to exist independently from class hierarchies [24],
objects in our model always conform to the existing global class hierarchy. To recap, if an object possesses
an implementation object of a given class’s type, it must also possess an implementation object for every
class that is a superclass of that given type. This achieves an efficient and uniform inheritance scheme.
Also, unlike many role systems, in our implementation conceptual objects can be associated with at most
one implementation object of a given type [11]. Our proposed object-slicing approach is thus a compromise
between extremely flexible role models on the one side and rigid class-based data models on the other side.

In short, variations of the object-slicing technique have been repeatedly recognized as a powerful and
flexible method for extending an existing OODB system to support the identified required features. In spite
of this work, the object representation assumptions underlying most OODB systems are of a different nature.
Current OODB systems allow only one most-specific type per object and the object type is determined and
fixed at object-creation time [2, 18, 12].

The Iris functional database system is the most well-known exception to this; i1.e., it is a DBMS system
that supports multiple classification. However, IRIS, being built on top of a relational engine, distributes its
data over several relational tables [8], and hence can support multiple states per object. There are, however,
several significant differences between our work and IRIS. For one, our object-slicing representation is built
on top of a pure object-oriented kernel rather than a relational system. Consequently, our system supports
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inheritance of both instance variable and methods. TRIS, however, does not provide for any encapsulation.
Instead, foreign functions written in other programming languages can be imported. In our system, each
implementation object is still a fully functioning object in the sense of the object-oriented paradigm, and
thus is encapsulated and can respond to methods, such as, typeof(), etc. In short, in this paper we examine
the impact of an object-oriented realization of object-slicing rather than a horizontal partitioning type of an
approach.

Extending an existing DBMS with object-slicing techniques necessarily involves the overhead of additional
data structures, maintenance costs, and processing time. To our knowledge no work has been done evaluating
the costs of object-slicing. In this paper, we address this issue. More precisely, we present results from our
evaluation of the performance costs incurred by object-slicing, and examine the potential of various clustering
techniques to alleviate this cost.

Unlike previous work on the clustering and partitioning of OODBs [26, 27], our goals are not to invent
new clustering strategies to dynamically adapt to various access patterns. Instead, we are interested in
understanding what the innate differences are between the conventional and the object-slicing representation
— and whether the flexibility gained comes with an added cost. Furthermore, previous work in the area
of clustering such as [9, 17], is still applicable in our representation model. In fact, we expect that object-
slicing is amendable to horizontal and vertical partitioning techniques, since conceptual objects are already
naturally partitioned into smaller self-maintained chunks.

9 Conclusions

In this paper, we identify extensions required from an OODB system in order to support advanced tools
such as view technology, advanced schema evolution support, and role modeling systems. These features
include multiple classification, dynamic reclassification, and dynamic restructuring. While we are not the
first to identify the need for such flexible data modeling support, we point out that the majority of currently
available OODB systems do not provide such support. Instead, they support comparatively poor data
models—requiring an object to belong to exactly one most specific type, and not allowing an object to
dynamically migrate to new types over the lifetime of the object.

In this paper, we describe a methodology known as object-slicing that 1s capable of extending existing
OODB systems to support these required features. We have successfully implemented an object-slicing
representational layer on the GemStone OODBMS system, which while still providing full access to all
GemStone DBMS functions, now also offers these flexible modeling features. Our experience with building
this object-slicing paradigm should be valuable to other researchers or OODB system builders that are
exploring the extension of OODB systems with more flexible constructions.

Extending an existing DBMS with object-slicing techniques necessarily involves the overhead of addi-
tional data structures, maintenance costs, and processing time. However, although object-slicing 1s a known
technique that is being utilized for view systems [14], schema evolution [21], and role systems [11], to our
knowledge no work has been done evaluating the costs of object-slicing. In this paper, we therefore provide
an in depth evaluation of the object-slicing technique.

We describe our experimental results evaluating the relative costs and benefits of adopting the object-
slicing techniques. First, we compare object-slicing with the conventional intersection class alternative by
contrasting their capabilities. We back up our experimental results with an analytical storage cost model of
our object-slicing implementation, which confirms the expected improvement of performance for access of
local attributes and the additional cost associated with accessing inherited objects with low selectivity. As
clustering is critical to optimizing queries on such models, we present results gathered using OO7 benchmarks
queries to evaluate the object-slicing model using two of the more standard clustering strategies. In particular,
we report our experimental results of both class-clustering and object-clustering strategies. Based on these
results, we conclude that clustering can be utilized to effectively reduce the overhead associated with object-
slicing, and that as in a conventional architecture various types of access patterns can best be optimized by
providing distinct types of clustering techniques.
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