
A COGNITIVE FRAMEW ORK F OR

DESCRIBING AND EV ALUA TING

SOFTW ARE EXPLORA TION TOOLS

b y

Margaret-Anne D. Storey

B.Sc., Univ ersit y of Victoria, 1993

a thesis submitted in p ar tial fulfillment

of the requirements f or the degree of

DOCTOR OF PHILOSOPHY

in the Sc ho ol

of

Computing Science

c

 Margaret-Anne D. Storey 1998

SIMON FRASER UNIVERSITY

Decem b er 1998

All righ ts reserv ed. This w ork ma y not b e

repro duced in whole or in part, b y photo cop y

or other means, without the p ermission of the author.

APPR O V AL

Name: Margaret-Anne D. Storey

Degree: DOCTOR OF PHILOSOPHY

Title of thesis: A COGNITIVE FRAMEW ORK F OR DESCRIBING AND

EV ALUA TING SOFTW ARE EXPLORA TION TOOLS

Examining Committee: Dr. F. P op o wic h

Chair

Dr. F.D. F racc hia, Co-Senior Sup ervisor

Dr. H.A. M • uller, Co-Senior Sup ervisor

Dr. T. Calv ert, Sup ervisor

Dr. J. Dill, SFU Examiner

Dr. A.K. v on Ma yrhauser, External Exam-

iner,

Professor of Computer Science, Colorado

State Univ ersit y

Dr. B.P . Cla yman, Dean of F acult y of Grad-

uate Studies

Date Appro v ed:

ii

Abstract

Soft w are programs, esp ecially legacy programs, are often large, complex and p o orly do cu-

men ted. T o main tain these programs soft w are engineers require a v ariet y of e�cien t ana-

lytical to ols. Some soft w are main tenance to ols use visualizations (i.e. graphical views) to

comm unicate information ab out soft w are systems. Although man y soft w are visualization

to ols exist, the ma jorit y of them are not v ery e�ectiv e in practice. P art of the problem

is that they are designed in an ad ho c manner, with little empirical ev aluation. They are

often criticized b ecause they try to force programmers to use a sp eci�c approac h to under-

standing soft w are rather than supp orting their o wn approac hes. The result is that curren t

soft w are visualization to ols do not pla y as big a role in industry as w as an ticipated b y some

researc hers. The to ols that are used are v ery basic, consisting of mainly text editors and

searc hing features. With increasingly fast computing platforms, there is great p oten tial for

the use of visualization to ols to signi�can tly impro v e the e�ciency of soft w are main tenance.

This thesis presen ts an iterativ e approac h for building softwar e explor ation to ols. Soft-

w are exploration to ols pro vide graphical represen tations of soft w are structures link ed to

textual views of the program source co de and do cumen tation. The metho dology consists

of sev eral iterativ e phases of design, dev elopmen t and ev aluation. The cycle starts with

a framew ork of cognitiv e design elemen ts to highligh t those activities whic h require to ol

supp ort. A protot yp e to ol called SHriMP (Simple Hierarc hical Multi-P ersp ectiv e) views

has b een designed using this framew ork as a guide. SHriMP com bines sev eral visualization

metho ds and static analysis tec hniques to enable a programmer to understand and do cu-

men t legacy soft w are systems. It has b een ev aluated and compared to other options in t w o

user studies. Observ ations from these studies w ere used to impro v e the cognitiv e framew ork

of design elemen ts, whic h in turn w ere used to impro v e the design of this and other soft w are

exploration to ols. Man y of the lessons learned through this adaptiv e approac h to design are

relev an t for other categories of soft w are engineering to ols.

iii

Ac kno wledgmen ts

I am v ery grateful to b oth Hausi M • uller and Da v e F racc hia for their supp ort, encouragemen t

and in tellectual input. In particular I w ould lik e to thank Hausi, who has b een a men tor

and friend as w ell as a sup ervisor. Hausi hired me six y ears ago as a researc h assistan t,

his en th usiasm at that time inspired me to pursue graduate studies. Da v e, I w ould lik e to

thank, for his late-nigh t length y phone calls across the w ater. My thanks to T om Calv ert,

who w as alw a ys a v ailable to giv e me excellen t advice.

Researc h w ould not b e as m uc h fun without fello w studen ts and researc hers to collab o-

rate with. It has b een a real pleasure and privilege w orking with Ken W ong (at UVic). His

stamina and in v estigativ e abilities are amazing. Thanks also to presen t and past mem b ers of

the Rigi group. In particular Scott Tilley , Johannes Martin, Bry an Gilb ert, Jim McDaniel

and Jo c hen Stier con tributed to this researc h in one w a y or another. Thanks to graduate

studen ts at SFU: Sheelagh Carp endale, Andrew W alenstein, Mik e Heinric hs and Lyn Bar-

tram for stim ulating con v ersations and friendly smiles. Numerous other friends help ed and

inspired me along the w a y: Zosia Lacz, Kristine Kilmister and Ian P errigo (1968-1994).

Ian's fa v ourite sa ying \Indomitable Spirit" still rings in m y ears.

I w ould also lik e to thank the Sc ho ol of Computing Science, Simon F raser Univ ersit y and

the Departmen t of Computer Science, Univ ersit y of Victoria for allo wing me to pursue an

uno�cial join t degree b et w een them. Sp ecial thanks to Kersti for handling all of the extra

pap erw ork this arrangemen t caused.

Ho w ev er, none of this w ould ha v e b een p ossible without m y h usband and b est friend,

Brian Storey . T en y ears ago as I w as taking Grade 10 Math b y corresp ondence he encouraged

me to pursue m y dream of attending Univ ersit y , and along the w a y alw a ys b eliev ed in me,

ev en when I didn't. My thanks to Ciara and Erin, for sleeping through the nigh t when it

really coun ted. And thanks to m y Mother and F ather, who instilled the follo wing in me as

a c hild: if a thing is w orth doing, it is w orth doing w ell.

iv

Dedication

T o Brian.

v

Con ten ts

Abstract : iii

Ac kno wledgmen ts : iv

Dedication : v

List of T ables : xi

List of Figures : xii

1 In tro duction : 1

1.1 Problem: Understanding Complex Programs : : : : : : : : : : : : : : 1

1.2 Solution: Design T o ols to Enhanc e Program Comprehension : : : : : : 3

1.3 Outline of the Thesis : 4

2 Cognitiv e Mo dels of Program Comprehension : : : : : : : : : : : : : 6

2.1 Bottom-Up Program Comprehension : : : : : : : : : : : : : : : : : : : 6

2.2 T op-Do wn Program Comprehension : : : : : : : : : : : : : : : : : : : 7

2.3 Systematic and As-Needed Strategies : : : : : : : : : : : : : : : : : : : 9

2.4 Kno wledge-based Understanding Mo del : : : : : : : : : : : : : : : : : 10

2.5 An In tegrated Metamo del of Program Comprehension : : : : : : : : : 11

2.6 Explaining the V ariation in Program Comprehension Mo dels : : : : : 12

2.6.1 Main tainer c haracteristics : 12

2.6.2 Program c haracteristics : 14

2.6.3 T ask c haracteristics : 17

2.7 Summary : 18

3 T o ol In v estigations : 20

3.1 Exp ert Reviews : 22

3.2 User Studies : 24

3.3 Field Observ ations : 28

3.4 Case Studies : 30

vi

3.5 Surv eys : 32

3.6 Summary : 33

4 A Cognitiv e F ramew ork : 35

4.1 Impro v e Program Comprehension : 35

4.1.1 Enhance b ottom-up comprehension : : : : : : : : : : : : : : 37

4.1.2 Enhance top-do wn comprehension : : : : : : : : : : : : : : : 39

4.1.3 In tegrate b ottom-up and top-do wn approac hes : : : : : : : : 40

4.2 Reduce the Main tainer's Cognitiv e Ov erhead : : : : : : : : : : : : : : 42

4.2.1 F acilitate na vigation : 43

4.2.2 Pro vide orien tation cues : 44

4.2.3 Reduce disorien tation : 45

4.3 Discussion : 48

5 Graph Presen tation T ec hniques : 50

5.1 Graph Dra wing : 50

5.2 Multiple Views : 52

5.3 Single View: No Con text : 52

5.4 Single View: In tegrated Con text and Detail : : : : : : : : : : : : : : : 53

5.4.1 Static displa y tec hniques : 53

5.4.2 Dynamic displa y tec hniques : : : : : : : : : : : : : : : : : : : 55

5.5 Summary of Graphical Displa y T ec hniques : : : : : : : : : : : : : : : 61

5.6 Ev aluating Graphical Displa y T ec hniques : : : : : : : : : : : : : : : : 61

5.7 Cho osing a Suitable T ec hnique for Visualizing Soft w are : : : : : : : : 64

6 The SHriMP La y out Adjustmen t Algorithm : : : : : : : : : : : : : : 69

6.1 Basic Algorithm : 69

6.2 Preserving the Men tal Map : 71

6.2.1 Preserving orthogonalit y : 73

6.2.2 Preserving pro ximities : 74

6.2.3 An alternativ e pro ximit y preserv ation strategy : : : : : : : : 75

6.2.4 Preserving the top ology of a graph : : : : : : : : : : : : : : : 77

6.3 Hybrid Strategies : 78

6.3.1 T ree la y outs : 78

6.3.2 Directed acyclic graphs : 79

6.3.3 Nested graph la y outs : 79

vii

6.3.4 Orthogonal line dra wings : 80

6.3.5 No de disjoin tness problem : : : : : : : : : : : : : : : : : : : 82

6.4 Summary : 83

7 Do cumen ting Soft w are Structures using SHriMP : : : : : : : : : : : 85

7.1 Rigi { A System for Rev erse Engineering : : : : : : : : : : : : : : : : 85

7.2 Nested Graphs and Soft w are Hierarc hies : : : : : : : : : : : : : : : : : 87

7.3 Fishey e Views of Soft w are Structures : : : : : : : : : : : : : : : : : : : 90

7.4 Bro wsing Source Co de : 93

7.5 Discussion : 93

8 User Study 1 : 97

8.1 Hyp othesis : 98

8.2 Exp erimen tal V ariables : 98

8.2.1 User in terfaces : 98

8.2.2 T est programs : 98

8.2.3 T asks : 99

8.2.4 User exp ertise : 100

8.3 Exp erimen tal Pro cedure : 102

8.3.1 Setup : 102

8.3.2 T raining : 103

8.3.3 T asks : 104

8.3.4 Questionnaire : 104

8.3.5 In terview : 105

8.4 Recording Observ ations : 105

8.5 Analyzing the Results : 106

8.6 Results : 106

8.6.1 T ask results : 106

8.6.2 Questionnaire results : 106

8.6.3 Observ ations : 107

8.6.4 In terpretation of results : 110

8.7 Impro ving the Exp erimen t Design : 110

8.8 Recommendations for Impro ving the Rigi and SHriMP In terfaces : : : 111

9 Redesigning the SHriMP In terface : 113

9.1 Magnifying No des of In terest : 113

viii

9.2 Bro wsing Source Co de : 115

9.3 Implemen tation : 117

9.4 User In terface Con trols : 118

9.5 Discussion : 118

10 User Study 2 : 122

10.1 T o ols Studied : 123

10.1.1 Rigi : 123

10.1.2 SHriMP views : 124

10.1.3 SNiFF+ : 125

10.2 Goals : 127

10.3 P articipan ts : 127

10.4 Exp erimen tal Design : 127

10.4.1 Orien tation : 128

10.4.2 T raining : 128

10.4.3 Practice tasks : 128

10.4.4 F ormal tasks : 129

10.4.5 Questionnaire : 129

10.4.6 In terview and debrie�ng : 130

10.5 Exp erimen ter's Handb o ok : 130

10.6 Exp erimen tal V ariables : 130

10.6.1 T est program : 130

10.6.2 T ask complexit y : 131

10.6.3 User exp ertise : 131

10.7 Results : 131

10.7.1 F ormal tasks : 132

10.7.2 Questionnaires : 138

10.7.3 In terviews : 139

10.8 Exp erimen tal Biases : 140

10.9 Discussion : 141

10.9.1 Supp ort for comprehension strategies : : : : : : : : : : : : : 141

10.9.2 Supp ort for switc hing b et w een comprehension strategies : : : 143

10.9.3 Reducing cognitiv e o v erhead : : : : : : : : : : : : : : : : : : 143

10.9.4 Most useful to ol features : 145

ix

10.9.5 T o w ards an e�ectiv e to ol for soft w are exploration : : : : : : 147

11 Conclusions : 150

11.1 Summary of Con tributions : 151

11.1.1 An iterativ e approac h for designing soft w are exploration to ols 151

11.1.2 A cognitiv e framew ork for describing and ev aluating soft w are

exploration to ols : 152

11.1.3 SHriMP Views { a soft w are exploration to ol protot yp e : : : 153

11.1.4 The SHriMP la y out adjustmen t algorithm : : : : : : : : : : : 153

11.1.5 User studies : 153

11.2 F uture W ork : 154

11.3 Concluding Remarks : 156

App endices

A Obtaining Informed Consen t : 157

B Pre-study Questionnaire F orm : 159

C General Exp erimen ter Instructions : 161

D Exp erimen ter's Handb o ok for SHriMP : 164

E Exp erimen ter's Handb o ok for Rigi : 172

F Exp erimen ter's Handb o ok for SNiFF+ : 178

G T ask F orm : 183

H P ost-study Questionnaire F orm : 185

I In terview Questions : 189

J T est Programs : 190

References : 191

x

List of T ables

2.1 In
uences on program comprehension strategies : : : : : : : : : : : : : : : : : 18

5.1 Exp erimen ts to ev aluate con text+detail displa ys : : : : : : : : : : : : : : : : 63

5.2 Desirable features of a con text+detail displa y metho d : : : : : : : : : : : : : 66

5.3 Cho osing a metho d for visualizing soft w are : : : : : : : : : : : : : : : : : : : 67

8.1 T ask results : 107

9.1 Designing the SHriMP to ol using the cognitiv e framew ork for design : : : : : 121

10.1 T o w ards an e�ectiv e to ol for soft w are exploration : : : : : : : : : : : : : : : : 149

xi

List of Figures

2.1 Explaining the v ariation in program comprehension mo dels : : : : : : : : : : 19

4.1 Cognitiv e design elemen ts for soft w are exploration to ols : : : : : : : : : : : : 36

5.1 A tree view and a nested graph view of a hierarc h y : : : : : : : : : : : : : : : 51

5.2 A taxonom y of graphical presen tation tec hniques : : : : : : : : : : : : : : : : 60

6.1 Basic scaling step in the SHriMP algorithm : : : : : : : : : : : : : : : : : : : 70

6.2 Propagation of scaling from c hild to paren t : : : : : : : : : : : : : : : : : : : 71

6.3 Scaling m ultiple fo cal p oin ts in SHriMP : 72

6.4 Di�eren t la y out strategies in SHriMP : 72

6.5 Calculating the translation v ector when preserving orthogonal relationships : 73

6.6 Calculating the translation v ector when preserving pro ximities : : : : : : : : 75

6.7 An alternativ e strategy for preserving pro ximit y relationships : : : : : : : : : 76

6.8 Applying the pro ximit y and orthogonal preserving strategies to a Spring la y out 77

6.9 Customizing the SHriMP la y out algorithm for a tree la y out : : : : : : : : : : 79

6.10 Customizing the SHriMP la y out algorithm for Sugiy ama la y outs : : : : : : : 80

6.11 Preserving the men tal map of sev eral la y outs in a nested graph : : : : : : : : 81

6.12 Preserving the men tal map of an orthogonal line dra wing : : : : : : : : : : : 82

6.13 Applying the SHriMP la y out algorithm to the no de disjoin tness problem : : : 83

6.14 Customizing the SHriMP algorithm to preserv e the men tal map : : : : : : : : 84

7.1 Graph la y outs in Rigi : 86

7.2 Na vigating soft w are hierarc hies in Rigi : 88

7.3 Na vigating soft w are hierarc hies in SHriMP : 89

7.4 Graph la y outs in SHriMP : 91

xii

7.5 Applying SHriMP to the SQL/DS soft w are : : : : : : : : : : : : : : : : : : : 92

7.6 Bro wsing source co de in SHriMP : 94

7.7 SHriMP views depicting m ultiple lev els of abstraction of a small C program : 96

8.1 Command-Line En vironmen t for the Fish program : : : : : : : : : : : : : : : 100

8.2 Rigi View of the Fish program : 101

8.3 SHriMP View of the Fish program : 102

8.4 Phases of the exp erimen t : 103

8.5 Questionnaire usabilit y scores : 108

9.1 Con text+detail v ersus con text with no detail views in SHriMP : : : : : : : : 114

9.2 Bro wsing HTML'ized source co de in SHriMP : : : : : : : : : : : : : : : : : : 116

9.3 User in terface con trols of the SHriMP reimplemen tation. : : : : : : : : : : : 119

10.1 A view of the Monop oly program using Rigi : : : : : : : : : : : : : : : : : : : 123

10.2 A SHriMP view of the Monop oly program : 125

10.3 A view of the Monop oly program using the SNiFF+ Soft w are Dev elopmen t

En vironmen t : 126

11.1 T o ol impro v emen t cycle : 152

xiii

Chapter 1

In tro duction

1.1 Problem: Understanding Complex Programs

It is widely accepted that time sp en t understanding existing programs is a signi�can t pro-

p ortion of the time required to main tain, debug and reuse existing co de. In particular,

programs whic h ha v e ev olv ed o v er a n um b er of y ears are v ery di�cult to understand. These

programs ha v e b een main tained b y v arious programmers with di�eren t programming st yles

and ma y b e unnecessarily complex and large in size. T o mak e matters w orse, the source

co de of legacy systems ma y b e the only source of information that is complete and up to

date.

A v ariet y of tec hniques ha v e b een prop osed to assist programmers in the di�cult task

of program comprehension. One of these tec hniques, r everse engine ering , is the pro cess

of extracting and syn thesizing high-lev el design information from source co de. A rev erse

engineer analyzes the source co de in order to iden tify system comp onen ts and their in ter-

relationships and creates represen tations of the system in another form, usually at a higher-

lev el of abstraction [28]. Tilley et al. iden ti�ed three basic activit y sets that are c haracteristic

of the rev erse engineering pro cess [163]:

� Data gathering through static analysis of the co de or through dynamic analysis of the

executing program.

� Know le dge or ganization b y organizing the ra w data b y creating abstractions for e�-

cien t storage and retriev al.

� Information explor ation through na vigation, analysis and presen tation.

1

CHAPTER 1. INTR ODUCTION 2

According to Tilley , the exploration of soft w are information \holds the k ey to program

understanding." Soft w are visualization to ols use graphical and textual represen tations for

the na vigation, analysis and presen tation of soft w are information to increase understanding

[119]. F or instance, sev eral soft w are visualization to ols sho w animations to teac h widely used

algorithms and data structures [2 , 19, 20, 21 , 138 , 149 , 150]. Another class of to ols sho ws

the dynamic execution of programs for debugging, pro�ling and for understanding run-

time b eha vior [65 , 130]. Other soft w are visualization to ols mainly fo cus on sho wing textual

represen tations, some of whic h ma y b e pr etty printe d to increase understanding [3, 57] or

use h yp ertext in an e�ort to impro v e the na vigabilit y of the soft w are [117]. T yp ograph y

pla ys a signi�can t role in the usefulness of these textual visualizations.

There are man y to ols whic h use graphical visualizations to comm unicate information

ab out soft w are systems. Although a graphical represen tation of soft w are arc hitecture ma y b e

more accessible and app ealing for some users, some exp erimen ts ha v e sho wn that graphical

formalisms ma y not b e as e�ectiv e as textual represen tations [115]. Although pictures ma y

b e ideal for sho wing a gestalt view of the information, they are not as precise as textual

views.

Despite the fact that graphical views are op en to in terpretation, there seems to b e a

general consensus (at least among the designers of these to ols) that graphical visualizations

should b e useful, and y et there is v ery little, if an y , empirical evidence to indicate that

they are useful. The problem is that man y of these to ols come and go in academia. They

are designed, implemen ted and written ab out, with a promise of ev aluation at a later date.

Ho w ev er, v ery few of these to ols are ev aluated (ev en informally) and little is learned ab out

their w orth.

Curren tly soft w are visualization to ols do not pla y as big a role in industry as w as an tic-

ipated b y some researc hers. The to ols that are used are v ery basic, and consist of mainly

text editors and searc hing to ols [143]. Although graphical views ma y b e useful for sho wing

static structures or dynamic b eha viours in the soft w are, there is often v ery little supp ort

for the main tainer to read and searc h through the source co de and y et some studies sho w

that these activities accoun t for the ma jorit y of the time sp en t b y main tainers [143]. F ur-

thermore, man y soft w are visualization to ols are di�cult to use and this alone ma y b e the

reason for their slo w adoption in industry .

One class of soft w are visualization to ols, whic h w e refer to as softwar e explor ation to ols ,

presen ts graphical represen tations of static soft w are structures link ed to textual views with

CHAPTER 1. INTR ODUCTION 3

the goal of helping a main tainer form a men tal mo del of the structure of the soft w are.

Although the motiv ation for designing these to ols ma y b e ob vious; ho w to design an e�e ctive

to ol is not so ob vious. Man y suc h to ols already exist, but few of them are widely used in

practice [79 , 97, 117 , 119]. These to ols are often criticized b ecause they try to change ho w

programmers understand soft w are, rather than enhanc e their tasks. In general, there has

b een v ery little empirical ev aluation, with corresp ondingly little guidance on the desirable

features of suc h a to ol.

Man y researc hers ha v e, ho w ev er, studied ho w programmers understand programs through

observ ation and exp erimen tation. This researc h has resulted in the dev elopmen t of sev eral

cognitiv e theories to describ e the comprehension pro cess. Although the cognitiv e theories

di�er in st yle and con ten t, they share man y elemen ts and concepts whic h outline k ey ac-

tivities in program understanding. The next section describ es our approac h for designing

a more e�ectiv e to ol to enhance the k ey activities iden ti�ed through examination of these

programmer comprehension mo dels.

1.2 Solution: Design T o ols to Enhanc e Program Compre-

hension

Soft w are exploration to ols are similar in man y w a ys to h yp ermedia do cumen t bro wsers. A

h yp ermedia do cumen t con tains related and link ed represen tations of an information space.

Man y of the di�culties exp erienced b y a h yp erdo cumen t reader are also exp erienced b y

the bro wser of a soft w are visualization. Th • uring et al. [162] describ e comprehension of

a h yp erdo cumen t \as the construction of a men tal mo del that represen ts the ob jects and

seman tic relations describ ed in a text." They sa y that a do cumen t is c oher ent if a reader can

construct a men tal mo del whic h corresp onds to something in the real w orld. In the con text

of soft w are visualization, one could also sa y a visualization (or soft w are do cumen tation)

is coheren t if the main tainer can construct a men tal mo del from the giv en visualization.

A soft w are visualization has lo c al c oher enc e when the main tainer can mak e sense of the

statemen ts and programming units and has glob al c oher enc e if the main tainer can gain an

understanding of the macrostructure of the program.

A hierarc h y of cognitiv e issues for increasing the comprehension of h yp ermedia do cu-

men ts is describ ed b y Th • uring et al. in [162]. Using this idea w e dev elop a related hierarc h y

to guide the dev elopmen t of a to ol to aid in the exploration and comprehension of soft w are

CHAPTER 1. INTR ODUCTION 4

systems. Our hierarc h y has t w o main branc hes. The �rst branc h is in tended to capture

the essen tial pro cesses of v arious strategies that programmers emplo y during comprehen-

sion. The second branc h addresses the cognitiv e o v erhead exp erienced b y a main tainer while

bro wsing and na vigating the visualization of the soft w are structures. This second branc h is

similar to those issues whic h are also relev an t for readers of h yp erdo cumen ts.

In an e�ort to describ e the wide v ariet y of soft w are visualization to ols, sev eral taxonomies

ha v e b een prop osed for classifying these to ols [101 , 119 , 131]. The most complete of these

w as describ ed b y Price et al in [119]. Their taxonom y is based on a generic mo del of a

soft w are visualization to ol and uses categories suc h as sc op e (range of soft w are that can b e

visualized), c ontent (asp ects to b e visualized suc h as co de, datat yp es), metho d (ho w the

visualization is sp eci�ed), inter action (ho w the user in teracts with the visualization), and

e�e ctiveness (whether the visualization ful�lls its ob jectiv es). The cognitiv e framew ork (or

hierarc h y) describ ed in this thesis pro vides an alternativ e taxonom y for classifying existing

soft w are exploration to ols. It is based on the cognitiv e asp ects of the main tainer rather

than the concrete asp ects of the to ols themselv es. The framew ork is explained in detail

with references to a n um b er of existing systems.

W e are curren tly applying the framew ork of cognitiv e design elemen ts to the design and

ev aluation of a to ol for soft w are exploration called SHriMP (S imple H ie r arc h i cal M ulti-

P ersp ectiv e) views [153]. W e p erformed t w o user studies to ev aluate the e�ectiv eness of the

SHriMP in terface and to compare it with other to ols [156 , 159]. Results from these studies

are used to impro v e the cognitiv e framew ork for design. The impro v ed framew ork is then

used for impro ving SHriMP and other soft w are exploration to ols.

1.3 Outline of the Thesis

The thesis is organized as follo ws. Sev eral cognitiv e theories of program comprehension are

review ed in Chapter 2. Chapter 3 reviews v arious in v estigativ e tec hniques for ev aluating

soft w are visualization to ols. Chapter 4 presen ts a hierarc h y of cognitiv e design elemen ts

to b e considered when designing a soft w are exploration to ol. Examples of ho w existing

soft w are visualization to ols address these issues are also pro vided.

Man y soft w are visualization to ols use graphs for presen ting and na vigating soft w are

structures. Chapter 5 pro vides bac kground on graph dra wing and describ es tec hniques for

CHAPTER 1. INTR ODUCTION 5

presen ting large graphs, whic h are t ypical of large soft w are systems on a small screen. Chap-

ter 6 describ es the SHriMP la y out adjustmen t algorithm whic h w e sp eci�cally dev elop ed for

presen ting graphical views of large and complex soft w are structures. Chapter 7 sho ws ho w

the SHriMP algorithm has b een implemen ted in the SHriMP to ol, and ho w it is used for

presen ting and na vigating soft w are structures. A pilot study to ev aluate this early protot yp e

of the SHriMP in terface is describ ed in Chapter 8. The SHriMP in terface w as redesigned

in resp onse to observ ations from the pilot study . The reimplemen tation, using the cognitiv e

framew ork as a design guide, is describ ed in Chapter 9.

A second user study to ev aluate and compare the redesigned SHriMP in terface to other

to ols is describ ed in Chapter 10. This c hapter closes with a summary of the most usable

features in eac h of the three to ols studied (the exp erimen tal materials used in this exp er-

imen t are listed in the app endices). Finally , Chapter 11 presen ts a summary of the main

con tributions of the thesis and outlines areas for future researc h.

Chapter 2

Cognitiv e Mo dels of Program

Comprehension

A mental mo del describ es a main tainer's men tal represen tation of the program to b e under-

sto o d. A c o gnitive mo del describ es the cognitiv e pro cesses and information structures used

to form the men tal mo del. Ov er the past t w o decades, researc hers ha v e prop osed man y cog-

nitiv e mo dels to describ e ho w programmers comprehend co de during soft w are main tenance

and ev olution. The follo wing sections describ e some of the k ey cognitiv e mo dels resulting

from this researc h. All of these cognitiv e mo dels rely on the main tainer's o wn kno wledge

together with the co de and do cumen tation to create a men tal represen tation of the program

[173].

2.1 Bottom-Up Program Comprehension

Exp erimen tation has sho wn that there is a limitation on the n um b er of separate pieces

of information that can b e stored in a p erson's short term memory at an y one time [93].

The phrase chunking [93] describ es the pro cess of reco ding information in to groups so that

more information can b e stored in short term memory . The b ottom-up theory of program

comprehension is related in that it states that programmers �rst read statemen ts in the co de

and then men tally c h unk or group these statemen ts in to higher lev el abstractions. These

abstractions (c h unks) are aggregated further un til a high-lev el understanding of the program

is attained [139].

6

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 7

Shneiderman and Ma y er's cognitiv e framew ork di�eren tiates b et w een syn tactic and se-

man tic kno wledge of programs [140]. Syn tactic kno wledge is language dep enden t and con-

cerns the statemen ts and basic units in a program. Seman tic kno wledge is language inde-

p enden t and is built in progressiv e la y ers un til a men tal mo del is formed whic h describ es

the application domain. The �nal men tal mo del is acquired through the c h unking and

aggregation of other seman tic comp onen ts and syn tactic fragmen ts of text.

P ennington's mo del [112] also has a b ottom-up
a v or. She in v estigated the role of pro-

gramming kno wledge and the nature of men tal represen tations in program comprehension.

She observ ed that programmers �rst dev elop a con trol-
o w abstraction of the program whic h

captures the sequence of op erations in the program. This mo del is referred to as the pr o gr am

mo del and is dev elop ed through the c h unking of microstructures in the text (statemen ts,

con trol constructs and relationships) in to macrostructures (text structure abstractions or

c h unks) and b y cross-referencing these structures. Once the program mo del has b een fully

assimilated, the situation mo del is dev elop ed. The situation mo del encompasses kno wledge

ab out data-
o w abstractions (c hanges in the meaning or v alues of program ob jects) and

functional abstractions (the program goal hierarc h y). The dev elopmen t of the situation

mo del requires kno wledge of the application domain and is also built from the b ottom-up.

An in teresting result from P ennington's exp erimen ts is that the programmers formed

a program mo del after reading the program to answ er comprehension and recall questions

whereas a situation mo del w as formed only after a mo di�cation task. It seems that the

deep er understanding required to mo dify the program forced the programmers to c hange

their dominan t men tal represen tation of the program. Indeed, once they had formed the

situation men tal mo del of the program, their kno wledge ab out con trol-
o w in the program

deteriorated. It w as as if one mo del w as b eing partially replaced b y another.

Although, the exp erimen ts rep orted b y Shneiderman, Ma y er and P ennington supp ort a

b ottom-up comprehension pro cess, b oth used v ery small programs in their exp erimen ts so

these results cannot b e generalized to larger programs.

2.2 T op-Do wn Program Comprehension

Bro oks theorizes that programmers understand a completed program in a top-do wn manner

where the comprehension pro cess is one of reconstructing kno wledge ab out the domain of the

program and mapping this kno wledge to the source co de [16 , 17]. The pro cess starts with a

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 8

h yp othesis ab out the global nature of the program. This initial h yp othesis is then re�ned in

a hierarc hical fashion b y forming subsidiary h yp otheses. Subsidiary h yp otheses are re�ned

and ev aluated in a depth-�rst manner, to reduce the cognitiv e load for the programmer.

The v eri�cation (or rejection) of h yp otheses dep ends hea vily on the absence or presence

of b e ac ons [17]. A b eacon is a set of features that indicates the existence of h yp othesized

structures or op erations. An example of a b eacon ma y b e a function called sw ap in a sorting

program. Wieden b ec k rep orts on an exp erimen t to test the h yp othesis that b eacons exist

as a fo cus for program understanding [178]. The results from this exp erimen t demonstrated

that exp ert programmers recalled lines of a program whic h con tained b eacons more fre-

quen tly than lines with no b eacons. Her exp erimen ts supp orted her h yp otheses (and that of

Bro oks) that b eacons do exist and that they pla y a cen tral role in program comprehension.

Similarly , Ko enemann et al. describ e program comprehension as a goal-orien ted, h yp o-

theses-driv en, problem solving pro cess [73]. Programmers w ere observ ed using b eacons in

the exp erimen ts; function and v ariable names w ere used to guess whether a piece of co de w as

relev an t to their task at hand. Ko enemann observ ed that programmers follo w an as-ne e de d

strategy for reading co de, restricting their understanding to those parts of the program they

think are relev an t.

Solo w a y and Ehrlic h [146] observ ed that top-do wn understanding is used when the co de

or t yp e of co de is familiar. They observ ed that exp ert programmers use t w o t yp es of

programming kno wledge:

� Pr o gr amming plans are generic fragmen ts of co de that represen t t ypical scenarios in

programming. F or example, a sorting program will con tain a lo op whic h compares

t w o n um b ers in eac h iteration.

� R ules of pr o gr amming disc ourse capture the con v en tions of programming, suc h as

co ding standards and algorithm implemen tations.

According to Solo w a y and Ehrlic h's observ ations, a men tal mo del is formed top-do wn

b y forming a hierarc h y of goals and programming plans. Rules of discourse and b eacons

help the programmers decomp ose goals and plans in to lo w er-lev el plans.

Results from these exp erimen ts suggest that programmers comprehend programs in a

top-do wn fashion, but they ha v e b een criticized b y others b ecause the tasks used in the ex-

p erimen ts w ere unrealistic. Solo w a y and Ehrlic h used �ll-in-the-bl ank and total-recall tasks

for their exp erimen ts. Wieden b ec k also studied recall tasks in her exp erimen t. Ko enemann's

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 9

studies in v olv ed more realistic main tenance tasks, but the sub jects w ere pro vided with a

substan tial amoun t of do cumen tation, including global descriptions of the program. These

descriptions pro vided the programmer with application domain kno wledge whic h ma y ha v e

promoted a top-do wn comprehension pro cess. Often, systems ha v e to b e comprehended

with incomplete or no do cumen tation. Ho w ev er, these results do suggest that exp ert pro-

grammers familiar with the application domain ma y comprehend programs top-do wn.

2.3 Systematic and As-Needed Strategies

Littman et al. observ ed programmers enhancing a p ersonnel database program [87]. They

observ ed that programmers either systematic al ly read the co de in detail, tracing through

the con trol-
o w and data-
o w abstractions in the program to gain a global understanding

of the program, or that they tak e an as-ne e de d approac h, fo cusing only on the co de relating

to a particular task at hand.

Sub jects using a systematic strategy acquired b oth static know le dge (information ab out

the structure of the program) and c ausal know le dge (in teractions b et w een comp onen ts in

the program when it is executed). This enabled them to form a men tal mo del of the

program. Ho w ev er, those using the as-needed approac h only acquired static kno wledge

resulting in a w eak er men tal mo del of ho w the program w ork ed. More errors o ccurred since

the programmers failed to recognize causal in teractions b et w een comp onen ts in the program.

The systematic approac h is preferable but is impractical for larger programs as it w ould b e

to o time-consuming and cognitiv ely o v erwhelming.

Leto vsky describ es the observ ation of t w o recurring patterns: asking questions and con-

jecturing answ ers [80]. He calls suc h activities inquiries . An inquiry ma y consist of a

programmer asking a question (for example, what is the purp ose of v ariable x), conjecturing

an answ er (x stores the maxim um of a set of n um b ers), and then searc hing through the co de

and do cumen tation to v erify the answ er (the conjecture is v eri�ed if x is in an assignmen t

statemen t where t w o v alues are compared to see whic h is greater). According to Leto vsky

there are 3 ma jor t yp es of h yp otheses:

� why conjectures (questioning the role of a function or piece of co de),

� how conjectures (what is the metho d for accomplishing a goal),

� and what conjectures (what is a v ariable or one of the program functions).

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 10

Solo w a y et al. describ e a later mo del whic h merges the concepts of systematic strategies,

as-needed strategies and inquiry episo des in to a single mo del [147]:

� Micr o-str ate gies include inquiry episo des whic h consist of a r e ad, question, c onje ctur e

and se ar ch cycle. Suc h episo des o ccur as a result of delo c alize d plans . A delo calized

plan is conceptually related co de lo cated in non-con tiguous parts of the program.

� Macr o-str ate gies are used to ac hiev e an understanding at a more global lev el. Accord-

ing to Solo w a y et al. there are t w o main macro-strategies:

{ Systematic macr o-str ate gies: The programmer traces the
o w of the en tire pro-

gram b y reading all of the co de and do cumen tation, and p erforming sim ulations

as they read. This strategy leads to more correct enhancemen ts b ecause causal

in teractions in the delo calized plans are disco v ered.

{ As-ne e de d macr o-str ate gies: The programmer studies only p ortions of the co de

whic h they think are imp ortan t. This is the most commonly used strategy ev en

though more errors are made using this approac h. The authors concluded that

b etter do cumen tation metho ds are needed to supp ort this strategy .

2.4 Kno wledge-based Understanding Mo del

Leto vsky views programmers as opp ortunistic pr o c essors capable of exploiting b oth b ottom-

up and top-do wn cues [80]. There are three comp onen ts to his mo del:

� The know le dge b ase enco des the programmer's exp ertise and bac kground kno wledge.

The programmer's in ternal kno wledge ma y consist of application and programming

domain kno wledge, program goals, a library of programming plans and rules of dis-

course.

� The mental mo del enco des the programmer's curren t understanding of the program.

Initially it consists of a sp eci�cation of the program goals and later ev olv es in to a

men tal mo del whic h describ es the implemen tation in terms of the data structures and

algorithms used.

� The assimilation pr o c ess describ es ho w the men tal mo del ev olv es using the program-

mer's kno wledge base together with program source co de and do cumen tation. The

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 11

assimilation pro cess ma y b e a b ottom-up or top-do wn pro cess dep ending on the pro-

grammer's initial kno wledge base.

2.5 An In tegrated Metamo del of Program Comprehension

The Inte gr ate d Metamo del , dev elop ed b y v on Ma yrhauser and V ans, consists of four ma jor

comp onen ts [174]. The �rst three comp onen ts describ e the comprehension pro cesses used

to create men tal represen tations at v arious lev els of abstraction and the fourth comp onen t

describ es the kno wledge base needed to p erform a comprehension pro cess:

� The top-down (domain) mo del is usually in v ok ed when the programming language or

co de is familiar. It incorp orates domain kno wledge whic h describ es program function-

alit y as a starting p oin t for form ulating h yp otheses. The top-do wn mo del is usually

dev elop ed using an opp ortunistic or as-needed strategy .

� The pr o gr am mo del ma y b e in v ok ed when the co de and application is completely

unfamiliar. The program mo del is a con trol-
o w abstraction, and ma y b e dev elop ed

as an initial men tal represen tation.

� The situation mo del describ es data-
o w and functional abstractions in the program.

P ennington assumes that the situation mo del is dev elop ed only after the program

mo del has b een formed. V on Ma yrhauser and V ans feel that this is unrealistic for

larger programs [174]. In the in tegrated mo del, a situation mo del ma y b e dev elop ed

after a partial program mo del has b een formed using systematic or opp ortunistic

understanding strategies [175].

� The know le dge b ase consists of information needed to build these three cognitiv e mo d-

els. It represen ts the programmer's initial kno wledge b efore the main tenance task and

is used to store new and inferred kno wledge.

Understanding is formed at sev eral lev els of abstraction sim ultaneously b y switc hing

b et w een the three comprehension pro cesses [175]. According to this mo del an y of the three

comprehension pro cesses ma y b e activ ated at an y time [173]. This di�ers from Leto vsky's

mo del whic h states that comprehension o ccurs either top-do wn or b ottom-up dep ending on

the cues a v ailable.

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 12

2.6 Explaining the V ariation in Program Comprehension

Mo dels

Although there are disparities in the comprehension mo dels, these are due to the v aried

c haracteristics of the main tainer, program to b e understo o d and the goal for comprehending

the program. T o understand ho w programmers understand programs, the factors that can

a�ect the comprehension pro cess m ust b e considered.

Most researc hers ac kno wledge that certain factors will in
uence the comprehension strat-

egy adopted b y a programmer. V essey states that w e m ust con trol the factors whic h in
uence

programmer p erformance [172]. She sp eci�cally men tions program la y out, language design,

programming mo de and programming supp ort facilities. Bro oks noticed b eha vioral di�er-

ences due to the problem domain, di�erences in program text, individual di�erences and

the purp ose for understanding the program [17]. V on Ma yrhauser and V ans discriminate

b et w een the di�eren t strategies required for programs of v arying sizes and di�eren t tasks

[175]. Lakhotia noticed that the a v ailabilit y and v alidit y of do cumen tation had a strong

impact on the comprehension strategy [75]. Tilley et al. describ e ho w the exp erience and

creativit y of the main tainer will ha v e an e�ect, as w ell as the qualit y , size and complexit y

of the program to b e understo o d [163].

This section gathers and analyzes the v arious factors whic h in
uence the comprehen-

sion pro cess. These factors are due to di�erences among main tainers, the programs to b e

comprehended and main tenance tasks. These c haracteristic di�erences are discussed b elo w.

2.6.1 Main tainer c haracteristics

Program familiarit y . A main tainer with prior kno wledge of the program will ha v e an

adv an tage. Extensiv e kno wledge or exp erience with the program w ould encourage an op-

p ortunistic approac h for reading co de.

Application domain kno wledge. Bro ok's theorizes that programmers understand pro-

grams in a top-do wn manner, starting with a h yp othesis ab out the global nature of the

program [17]. Ho w ev er, no suc h initial h yp othesis will b e forthcoming if the main tainer is

lac king in application domain kno wledge. When do cumen tation is lac king, the main tainer

will b e forced to read the co de b ottom-up, at least initially .

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 13

Programming language kno wledge. F amiliarit y with the programming language will

ha v e an e�ect. A main tainer unfamiliar with the programming language will not b e as a w are

of language-dep enden t discourse rules and will not b e able to use these rules as cues. The

extra cognitiv e o v erhead of trying to understand a program in an unfamiliar language will

strongly a�ect the comprehension strategy .

Main tainer exp ertise. Shneiderman observ ed strong di�erences b et w een no vices and

exp erts in his exp erimen ts [139]. In one of his exp erimen ts, participan ts w ere giv en t w o

v ersions of the same F ortran program. One w as sh u�ed

1

and the other w as left in the

prop er order. As the exp erience of the sub jects increased, the abilit y to recall the unsh u�ed

program increased rapidly . No signi�can t di�erence w as observ ed for the sh u�ed program.

Ko enemann et al. observ ed that exp erts mak e use of b eacons when trying to understand

programs, but no vices did not mak e as m uc h use of these cues so w ere not able to use a top-

do wn strategy as e�ectiv ely as the exp ert main tainers [73]. Solo w a y and Ehrlic h describ e

t w o empirical studies whic h v alidate their h yp otheses that exp erts use programming plans

and discourse rules in program understanding, and that exp erts and no vices will p erform

comparably in program understanding tasks in the absence of plans and discourse rules [146].

Their exp erimen ts in v olv ed pairs of the same program, where one w as a plan-lik e v ersion of

the program and the other an unplan-lik e v ersion. The unplan-lik e v ersion w as exactly the

same as the plan-lik e program except that one or t w o discourse rules w ere brok en. They

recorded that exp erts p erformed b etter than no vices for the task of �lling in a missing line

of co de in a plan-lik e program.

CASE to ol exp ertise. Kemerer describ es ho w the learning curv e a�ects CASE to ol

adoption in [71]. Pro ductivit y initially dropp ed when suc h to ols w ere in tro duced. This

suggests that the amoun t of exp erience with an a v ailable to ol will ha v e a strong impact on

the comprehension pro cess. The learning curv e issue is a concern when ev aluating compre-

hension to ols. Ideally participan ts w ould b e adequately trained in their use. Exp erimen ts

whic h attempt to measure the e�ectiv eness of these to ols m ust clearly state if they measure

a p oin t on the learning curv e.

1

This exp erimen t w as executed in the da ys of k eypunc h cards!

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 14

Individual di�erences. Main tainers are often classi�ed as exp ert or no vice based on

their training and y ears of programming exp erience. Ho w ev er, there is a h uge disparit y in

programmer abilit y whic h cannot b e measured simply b y their exp erience [18]. The creativ-

it y of the main tainer greatly a�ects ho w they tac kle a giv en task [163]. V essey presen ts an

exploratory study to in v estigate exp ert and no vice debugging pro cesses [172]. She classi-

�ed programmers as exp ert-no vice based on their abilit y to c h unk e�ectiv ely . Exp erts used

breadth-�rst approac hes and at the same time w ere able to adopt a system view of the prob-

lem area, whereas no vices used breadth-�rst and depth-�rst approac hes but w ere unable to

think in system terms. Of sp ecial in terest is the fact that a classi�cation b y managers on

whether a giv en programmer w as exp ert or no vice did not matc h the classi�cation deriv ed

from the analysis of the programmer's p erformance in the exp erimen ts [172]. This pro vides

strong evidence that there is a h uge disparit y in programmer abilit y not measurable b y their

exp erience and domain kno wledge.

2.6.2 Program c haracteristics

Application domain. The application domain partially determines the size and complex-

it y of the program. A
igh t sim ulator program w ould normally b e m uc h harder to main tain

than a screen sa v er program, with di�eren t comprehension strategies required for eac h pro-

gram. Comprehending co de to implemen t real-time op erating systems w ould normally b e

harder to understand and main tain than a sorting program. Real-time op erating system

co de ma y con tain delo calized plans and w ould b ene�t from a more systematic approac h

rather than an opp ortunistic approac h.

Programming domain. P ennington's exp erimen ts sho w ed that the c hoice of language

has an e�ect on comprehension pro cesses [112]. COBOL programmers consisten tly fared

b etter at answ ering questions related to data-
o w than F ortran programmers, and F ortran

programmers consisten tly fared b etter than COBOL programmers for con trol-
o w questions.

Qualit y of program to b e understo o d. It is widely b eliev ed that exp ert programmers

write programs that are easier to main tain [18]. Exp ert programmers ha v e a signi�can t

men tal library of programming plans and are able to dra w on that kno wledge when writing

a new program. They design programs using soft w are engineering principles whic h result in

more structured programs. In addition, they are familiar with a set of discourse rules and will

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 15

usually follo w them. Programs written b y exp ert programmers are more structured, more

plan-lik e and follo w more rules of discourse than those written b y no vices and are easier to

main tain. Although, these claims ha v e not b een pro v ed empirically , indirect evidence seems

to supp ort them.

In Solo w a y and Ehrlic h's empirical studies, they observ ed exp erts using programming

plans and discourse rules in program understanding [146]. They sho w ed that plan-lik e

programs w ere recalled faster and more accurately than unplan-lik e programs b y exp erts.

Rist in his studies also found that plans w ere used more b y exp erts than no vices [127].

Ko enemann observ ed that incorrect discourse rules and b eacons can act as miscues and

lead to incorrect assumptions [73]. This evidence supp orts the claim that exp erience and

abilit y of the original programmer will ha v e an impact on subsequen t main tenance.

Program size and complexit y . The size and complexit y of a program strongly in
uence

comprehension. These c haracteristics are partially determined b y the application domain

and the programmer's exp ertise. The co de size a�ects the lev el of abstraction in a main-

tainer's men tal mo del [175]. The n um b er of iden ti�ers, n um b er of statemen ts, and amoun t

of branc hing all ha v e an e�ect on comprehension [17]. Sev eral metrics ma y b e used to

measure the size and complexit y , suc h as McCab e's complexit y measure whic h measures

the complexit y of the program to sho w whic h parts of the system require more e�ort for

main tenance [91], Halstead's metrics calculate the amoun t of e�ort required to generate

a program, in addition to measuring the logical structure of the program, v ariable name

mnemonics, length, coupling and cohesiv eness of mo dules [139]. Ho w ev er, these metrics are

limited in their capacit y to predict comprehensibilit y as demonstrated in exp erimen ts b y

Solo w a y and Ehrlic h [146]. These exp erimen ts in v olv ed pairs of the same program, where

one w as a plan-lik e v ersion of the program and the other an unplan-lik e v ersion. The alter-

ation from plan-lik e to unplan-lik e did not c hange the complexit y metrics but had a large

impact on comprehension.

Most of the researc h whic h has b een p erformed to date concerns pr o gr amming-in-the-

smal l comprehension. V on Ma yrhauser and V ans are a notable exception [175]. As far bac k

as 1986, Solo w a y called for the need to p erform pr o gr amming-in-the-lar ge exp erimen ts [145].

He outlined the imp ortance of p erforming the smaller scale exp erimen ts �rst to iden tify

baseline issues and to dev elop con�dence in the metho dologies b eing used. He also recognized

that man y of the metho dologies used in comprehension-in-the-small exp erimen ts w ould not

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 16

scale to the comprehension-in-the-l arge exp erimen ts. F or example, obtaining sev eral 100 line

programs that are ev enly matc hed in complexit y is not that di�cult, but acquiring sev eral

10,000 line programs of the same complexit y w ould b e hard. More exp erimen ts in v olving

larger programs and programs of v arying complexit y are required to determine the e�ect of

these factors on comprehension strategies.

Do cumen tation a v ailabili t y . The amoun t and t yp e of do cumen tation will a�ect ho w

a program is understo o d [17]. In Ko enemann et al. 's exp erimen ts, the global descriptions

of the program quite lik ely had an e�ect on the programmer's comprehension strategy

[73]. The do cumen tation pro vided the programmers with application domain kno wledge,

and ma y ha v e promoted a top-do wn approac h. In these exp erimen ts, the programmers

lo ok ed at do cumen tation when their h yp otheses could not b e ev aluated using the co de alone.

The participan ts resisted using do cumen tation unless they had to. Therefore, Ko enemann

suggests that do cumen tation should only include information not readily a v ailable in the

co de. T o o m uc h do cumen tation is a hindrance since it imp edes lo cating more appropriate

do cumen tation.

Appropriate do cumen tation ma y b e information that helps in the iden ti�cation of causal

in teractions in delo calized plans. Solo w a y et al. stress the need for do cumen tation whic h em-

phasizes m ultiple represen tations of a program at di�eren t lev els of detail, with explicit links

b et w een the represen tations [147]. Do cumen tation describing design decisions w ould also b e

an asset. P ennington observ ed that programmers �rst adopt a program mo del (con trol-
o w

abstraction) of the program follo w ed b y a situation mo del (data-
o w and functional rela-

tionships) [112]. She suggests that do cumen tation describing the real-w orld domain and the

relation of program pro cedures to the domain w ould promote a sim ultaneous construction

of b oth kinds of understanding. Ho w ev er, it is v ery un usual to see do cumen tation of this

sort a v ailable. Often the do cumen tation concerning the real-w orld domain exists, but it is

not adequately link ed to the program represen tations.

Av ailabili t y of CASE to ols will also ha v e an e�ect. A recen t exp erimen t to ev aluate a re-

v erse engineering to ol sho w ed that programmers to ok an as-needed approac h [86]. Ho w ev er,

the to ol probably facilitated this comprehension pro cess through its design. Ko enemann et

al. prop ose that the extensiv e bro wsing b eha viour of programmers should b e supp orted b y

graphical to ols so that co de and do cumen tation can b e b etter link ed [73]. The a v ailabilit y

of suc h a to ol w ould promote top-do wn comprehension.

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 17

2.6.3 T ask c haracteristics

T ask t yp e. The t yp e of task will ha v e an impact on the comprehension pro cess [17].

P ennington's researc h sho w ed that a task requiring recall and comprehension resulted in a

programmer forming a program mo del (con trol-
o w abstraction) of the soft w are whereas a

task to mo dify the program resulted in a programmer forming a situation mo del con taining

data-
o w and functional information ab out the program [112]. Programs ma y b e main tained

for a v ariet y of reasons: p erfectiv e (impro ving a program), correctiv e (�xing a bug), adaptiv e

(altering its functionalit y), reuse (reusing existing co de in another program), and co de

lev erage (adapting existing use for another application) [173]. V on Ma yrhauser and V ans

noted the di�eren t t yp es of main tenance activities p erformed for di�eren t t yp es of tasks and

sho w a c hart of these activities in [174].

T ask size and complexit y . Ob viously , the scop e of a task will ha v e an e�ect. If a task

is a simple one, the c hange will probably only e�ect a small p ortion of the co de. F or more

complex c hanges, the programmer will ha v e to consider global in teractions th us requiring

the programmer to obtain a thorough understanding of the causal relationships in the en tire

program.

Time constrain ts. An imp osing deadline will a�ect ho w a programmer tac kles a task. A

programmer migh t b e tempted to do a quic k hack and adopt an as-needed strategy . More

time w ould allo w the programmer to tak e a more systematic approac h.

En vironmen tal factors. Ob viously , there are man y other factors whic h could a�ect the

comprehension pro cess. General o�ce conditions, noise lev els, ligh ting, ro om temp erature,

computer resources and h uman resources will all ha v e an impact. P ennington observ ed that

a think-aloud metho d used b y programmers had an e�ect on exp erimen t results [112]. The

think-aloud group had b etter results indicating that this activit y help ed them to gain a

b etter understanding of the program as it w as mo di�ed. Of in terest is that the think-aloud

activit y did not ha v e an e�ect on the comprehension or recall questions whic h preceded the

mo di�cation task.

CHAPTER 2. COGNITIVE MODELS OF PR OGRAM COMPREHENSION 18

2.7 Summary

T able 2.1: In
uences on program comprehension strategies

Main tainer Characteristics Program Characteristics T ask Characteristics

application domain kno wledge application domain task t yp e

programming domain kno wledge programmi ng domain task size and complexit y

main tainer exp ertise program qualit y time constrain ts

individual di�erences program size and complexit y en vironmen tal factors

familiarit y with program do cumen tation a v ailabil it y

CASE to ol exp ertise

T able 2.1 summarizes the v arious factors whic h in
uence the comprehension pro cess. The

comprehension mo dels should, and man y do, describ e their mo del in the con text of these

c haracteristics. Figure 2.1 summarizes ho w these factors ma y ha v e in
uenced the outcome

of v arious exp erimen ts. Man y of the exp erimen ters did striv e to limit factors whic h could

in
uence their exp erimen ts, but with the a�ect that their results are then dep enden t on

these con trolled factors. F or example, a main tainer trying to understand unfamiliar co de in

an unfamiliar domain will tak e a b ottom-up approac h, extracting meaning from statemen ts

in the co de and c h unking un til an o v erall understanding of the program is ac hiev ed. A

main tainer familiar with the application domain but unfamiliar with the co de will lik ely

tak e a top-do wn view v erifying h yp otheses, and then at some p oin t switc h to reading co de

systematically if a h yp othesis is rejected or not easily v eri�ed.

Although the main tainer, program and task c haracteristics can b e con trolled (to a certain

exten t) in an empirical study , in real life there is little con trol o v er these factors. The next

c hapter describ es v arious in v estigativ e tec hniques that ha v e b een used to ev aluate program

comprehension to ols.

C
H

A
P

T
E

R
2.

C
O

G
N

IT
IV

E
M

O
D

E
LS

O
F

P
R

O
G

R
A

M
C

O
M

P
R

E
H

E
N

S
IO

N
19

Shneiderman Solo w a y & Ehrlic h V essey Leto vsky P ennington Ko enemann v on Ma yrhauser

Main tainer Characteristics:

main tainer exp ertise Mixed Exp ert Mixed Mixed Professionals Exp ert Professionals

application kno wledge No Y es Y es Y es Some Y es

programming kno wledge Mixed Y es Mixed Y es Y es Y es Mixed

individual di�erences Y es Y es Y es Y es Y es Y es Y es

program familiarit y No No No No No No Mixed

CASE to ol exp ertise N/A N/A N/A N/A N/A N/A Some

Program Characteristics:

programmer exp ertise Y es Mixed Y es Y es Y es Y es Lik ely

application domain Computational Sales rep orting P ersonnel DB V aried T ext formatting V aried

programming domain F ortran P ascal COBOL F ortran Cob ol/F ortran P ascal C

size and complexit y 20 LOC 12 LOC 400 LOC 250 LOC 15 LOC 636 LOC 50,000+ LOC

do cumen tation No No Commen ts Extensiv e No Extensiv e Y es

CASE to ols a v ailable No No No No No No PR OCASE

T ask Characteristics:

task t yp e Recall Fill-in-blank Correctiv e Adaptiv e Comprehend,recall Adaptiv e Adaptiv e,correctiv e

task size & complexit y T rivial T rivial In termediate In termediate T rivial In termediate Adv anced

time constrain ts Y es No Y es Y es No No

en vironmen tal factors Unrealistic Unrealistic Think-Aloud Think-Aloud, Unrealistic Think-Aloud Realistic

videotap ed

Comprehension Bottom-up, T op-do wn, Dep ends on Bottom-up and Bottom-up, T op-do wn, Switc hing b et w een

Strategies c h unking. use of plans. exp erience lev el. top-do wn program mo del, used b eacons. top-do wn and

inquiry episo des. situation mo del. b ottom-up.

1

F
igure

2.1:
E

xplaining
the

v
ariation

in
program

com
prehension

m
o

dels

Chapter 3

T o ol In v estigations

This thesis is concerned with the problem of designing more e�ectiv e to ols to help main-

tainers during program comprehension. But ho w do w e measure the success of the to ols or

theories that w e or others dev elop? As other researc hers ha v e noted, there is no agreed-up on

de�nition or test of understanding [30]. It is di�cult to claim that program comprehension

has b een impro v ed when program comprehension itself cannot b e measured.

Despite the lac k of agreemen t on what constitutes a go o d test of program comprehension,

there are sev eral theories whic h describ e the information needs of and the comprehension

strategies used b y main tainers during program understanding. Sev eral researc hers ha v e done

�ne-grained analyses of exp erimen ts to ev aluate these theories.

F urthermore, it is generally agreed that more e�ectiv e to ols could reduce the amoun t of

time that main tainers need to sp end understanding soft w are or that they could impro v e the

qualit y of the programs main tained. Although di�cult to measure, coarse-grained analyses

of these sorts of results can b e attempted.

There are sev eral in v estigativ e tec hniques that ma y b e appropriate for studying the

b ene�ts of soft w are exploration to ols. These include

� exp ert reviews,

� case studies,

� user studies,

� �eld observ ations and

� surv eys.

20

CHAPTER 3. TOOL INVESTIGA TIONS 21

Exp ert r eviews are a set of informal in v estigativ e tec hniques whic h ha v e b een found to b e

v ery e�ectiv e for ev aluating to ols in the area of HCI (Human Computer In teraction) [141].

One of these tec hniques, heuristic evaluation , in v olv es a set of exp ert review ers critiquing the

in terface using a short list of design criteria [102]. Co gnitive walkthr oughs , another exp ert

review tec hnique, in v olv e exp erts sim ulating users w alking through the in terface to carry

out t ypical tasks. Exp ert reviews can b e applied at an y stage in the to ol's design life cycle,

and are normally not as exp ensiv e or as time-consuming as more formal metho ds.

User studies are usually more formal exp erimen ts where k ey factors (indep enden t v ari-

ables) are iden ti�ed and manipulated in order to measure their e�ects on other factors

(dep enden t v ariables). Exp erimen ts can b e conducted either in a lab oratory or in the �eld.

In a lab oratory setting, there is more con trol o v er the indep enden t v ariables in the exp eri-

men t. Ho w ev er, other factors are in tro duced whic h ma y not b e applicable in more realistic

situations. F or example, studen ts are often used to act as sub jects, but studen ts proba-

bly do not comprehend programs in the same w a y that industrial programmers do [143].

Unfortunately , programmers in industry often do not ha v e time to participate in formal

exp erimen ts. F en ton and P
eeger refer to formal exp erimen ts as r ese ar ch in the smal l [42].

User studies are more appropriate for �ne-grained analyses of soft w are engineering activities

or pro cesses.

Field observations can b e v ery insigh tful but often a researc her will only ha v e the op-

p ortunit y to observ e one or t w o programmers. Although the observ ation ma y b e in trusiv e

on the programmers, this tec hnique giv es the researc her the opp ortunit y to observ e main-

tainers using program comprehension to ols in more realistic settings. Ho w ev er, the results

from �eld observ ations ma y also b e di�cult to generalize b ecause of the small n um b er of

sub jects normally in v olv ed.

Case studies o ccur when a particular to ol is applied to a sp eci�c system, and the ex-

p erimen ter, often in trosp ectiv ely , do cumen ts the activities in v olv ed. F en ton and P
eeger

refer to case studies as r ese ar ch in the typic al . Case studies are particularly useful when the

exp erimen ter has v ery little con trol o v er the factors to b e studied. Exp ert reviews can b e

com bined with sp eci�c case studies as a more p o w erful ev aluation tec hnique.

Surveys are normally used as a retrosp ectiv e in v estigativ e tec hnique. F en ton and P
eeger

refer to surv eys as r ese ar ch in the lar ge . F or example, surv eys can ask questions of the nature:

Did the use of to ol A reduce the amoun t of time y ou had to sp end doing main tenance

c hanges?

CHAPTER 3. TOOL INVESTIGA TIONS 22

In general there has b een a lac k of ev aluation of soft w are visualization to ols [79 , 97 , 117 ,

119], but there are some examples of eac h of these in v estigativ e tec hniques b eing applied in

this area. W e discuss the design of and the results from a sample of these exp erimen ts in

this c hapter.

3.1 Exp ert Reviews

Green and P etre describ e a usabilit y analysis of visual programming en vironmen ts using a

cognitiv e dimensions framew ork [52]. They apply a set of cognitiv e dimensions to the ev al-

uation and comparison of three programming languages: Basic, LabVIEW and Prograph.

The results from their ev aluation indicate that although visual programming languages of-

fer substan tial gains o v er textual languages, there are man y HCI issues whic h are not y et

resolv ed. In particular there w as a lot of p oten tial to impro v e the use of secondary notation

(i.e., the use of la y out, colour and other cues) and that editing and searc hing capabilities

could b e impro v ed.

Some of the cognitiv e dimensions relev an t for ev aluating visual programming languages

are also applicable for ev aluating soft w are exploration to ols:

1

� Abstraction gradien t: What are the minim um and maxim um lev els of abstraction?

Can co de fragmen ts b e encapsulated?

� Closeness of mapping: Ho w close is the programming w orld mapp ed to the problem

w orld?

� Hidden dep endencies: Is ev ery dep endency clearly indicated in b oth directions?

� Progressiv e ev aluation: Can programmers execute the program to c hec k their h y-

p otheses?

� Role-expressiv eness: Can the programmer see ho w eac h comp onen t is related to

the whole?

� Secondary notation: Ho w are the la y out, colour, and other cues used to con v ey

extra meaning?

1

W e ha v e c hanged the w ording of some of the dimensions to mak e them more applicabl e to soft w are

visualizati ons.

CHAPTER 3. TOOL INVESTIGA TIONS 23

� Visibilit y: Is ev ery part of the system sim ultaneously visible, and if not, is it p ossible

to displa y an y t w o parts side b y side if necessary?

These cognitiv e dimensions could b e used as a basis for comparing and ev aluating soft w are

visualization to ols.

Erd• os and Sneed describ e sev en questions that a programmer needs to b e able to answ er

in order to do main tenance [39]. These questions are as follo ws:

1. Where is a particular subroutine or pro cedure in v ok ed?

2. What are the argumen ts, results and predicates of a particular function?

3. Ho w do es the
o w of con trol reac h a particular lo cation?

4. Where is a particular v ariable set, used or queried?

5. Where is a particular v ariable declared?

6. Where is a particular data ob ject accessed, i.e. created, read, up dated or deleted?

7. What are the inputs and outputs of a particular mo dule?

Erd• os and Sneed dev elop ed a to ol called sofRedo c whic h pro vides a v ariet y of graphical and

textual represen tations as an aid in soft w are main tenance. They describ e ho w a programmer

can answ er eac h of the sev en questions using one of the a v ailable features in sofRedo c.

These sev en questions could b e used as the basis of an exp ert review for other soft w are

visualization to ol designers so that they ma y ask themselv es ho w main tainers w ould answ er

these questions using the to ols they designed.

Lang and v on Ma yrhauser note that researc hers doing observ ational studies of program-

mer b eha viour tend to use their o wn co ding sc hemes whic h mak es it di�cult to compare

and aggregate results from di�eren t studies [78]. They prop ose that a standard, but
exible,

co ding sc heme should b e used. T o this end, they dev elop ed a co ding sc heme for proto col

analysis of programmer b eha viour [78]. Their co ding sc heme, although not sp eci�cally tai-

lored to w ards observ ations of to ol usages, could b e used e�ectiv ely for this purp ose. The

co ding sc heme is hierarc hical and starts with listing observ ations of the men tal mo del used

b y the programmer (top-do wn, program, situation); the activit y observ ed (noting goal, gen-

erating h yp othesis, supp orting action, h yp othesis resolv e); supp orting action (manipulating

CHAPTER 3. TOOL INVESTIGA TIONS 24

information, sc heduling goal, asking questions, answ ering questions, planning, c hange of di-

rection) and so on. Their co ding sc heme could b e adapted for to ol ev aluations b y assessing

ho w a particular to ol pro vides supp ort for the activities noted in the sc heme.

3.2 User Studies

In general, there ha v e b een relativ ely few formal exp erimen ts to ev aluate soft w are visual-

ization to ols. This ma y b e b ecause of the cost and di�culties inheren t in this t yp e of user

study . This section rep orts some user studies that ha v e b een done to ev aluate soft w are

visualization to ols.

Whorf v ersus pap er-based do cumen tation

Whorf is a main tenance to ol that supp orts an as-ne e de d strategy for program comprehension

[14]. In certain situations, programmers read only the co de they feel is relev an t to the

task at hand. This strategy results in more errors since programmers ma y miss non-lo cal

in teractions in the co de. Whorf w as designed as a to ol to supp ort the as-needed strategy

since pap er-based do cumen tation already suited a systematic comprehension strategy [80].

Brade et al. describ e a study whic h compared the p erformance of main tainers p er-

forming comprehension tasks using the Whorf to ol with pap er based do cumen tation [14].

The exp erimen t included t w o sets of programmers: 6 sub jects (graduate studen ts and lo cal

professionals near the Univ ersit y of Mic higan) used the Whorf to ol (after three hours of

training) and 12 sub jects from the Jet Propulsion Lab p erformed the tasks using pap er

do cumen tation only . Whorf pro vided views suc h as source co de listings, call graphs, v ari-

able cross-reference and function cross-reference views. The pap er do cumen tation included

alphab etically ordered descriptions of functions, program source co de, and call graphs. A

think-aloud proto col w as used and the sub jects w ere videotap ed.

The authors rep orted that the Whorf to ol p ositiv ely a�ected the main tainer's p erfor-

mance, but did not pro vide statistical results. Moreo v er, the comparison ma y not ha v e

b een realistic. Often, main tainers do ha v e access to online do cumen tation that can b e

searc hed. Also, the di�erence in the demographics of the groups and their small size ma y

ha v e in
uenced the results.

CHAPTER 3. TOOL INVESTIGA TIONS 25

CARE v ersus no to ol supp ort

The C omputer- A ided RE -engineering (CARE) en vironmen t is used in the comprehension

of C programs [85]. It supp orts m ultiple views of program dep endencies, and consists of

a rep ository for storing dep endencies from a C program extracted b y a co de analyzer as

w ell as a displa y manager to supp ort graphical editors that pro vide b oth con trol-
o w and

data-
o w sub views.

Linos et al. describ e an exp erimen tal study to ev aluate their h yp othesis that the to ol

w ould impro v e the pro ductivit y and qualit y of c hanges made during the main tenance of

C programs [86]. The exp erimen t in v olv ed 40 senior undergraduate studen ts whic h w ere

ev enly divided in to t w o groups (A and B). The exp erimen t w as executed in t w o phases. In

phase one, group A p erformed a main tenance task using only the source co de, while group B

p erformed the same task using source co de and the CARE to ol. In phase t w o, group A used

source and CARE while group B used just the source co de. Di�eren t programs w ere used

for eac h phase, but with similar size and cyclomatic complexit y (around 1500 lines of co de

in four �les). The co de had no commen ts or an y additional do cumen tation. A think-aloud

proto col w as used and the users completed a questionnaire at the close of the exp erimen t.

In their statistical results, considerably less time w as sp en t on the task using the CARE

en vironmen t. Also, the order of the exp erimen t had an e�ect. Group A p erformed b etter in

the second phase using the source co de, as if the CARE to ol w as still helping ev en though

it w as no longer a v ailable [86]. The studen ts also indicated that they found the CARE to ol

easy to learn and use.

An impro v emen t to this exp erimen t ma y ha v e b een to compare the CARE to ol to a

simple en vironmen t consisting of an editor, searc h to ols, and simple static analyzers.

Comparing la y ered do cumen tation to unstructured do cumen tation

The TLES to ol (T o ol for La y ered Explanation of Soft w are) [121] supp orts the top-do wn

theory of soft w are understanding, where the programmer creates a c hain of h yp otheses and

subsidiary h yp otheses concerning the prop erties of the co de [17]. All information needed

for future main tenance is recorded in la y ers of annotations. Before designing this to ol, an

exp erimen t w as p erformed to ev aluate the viabilit y of a la y ered approac h [121].

39 graduate studen ts, divided in to three equal groups, participated in this exp erimen t.

CHAPTER 3. TOOL INVESTIGA TIONS 26

Eac h group w as giv en the same 520 lines of C++ source co de and a di�eren t set of do cu-

men tation (eac h con taining the same information but in di�eren t forms). The three sets of

do cumen tation w ere:

1. La y ered annotations. This set w as structured in to three la y ers: application domain,

language-indep ende n t algorithm and language-dep enden t represen tation.

2. Non-la y ered annotations. The information w as placed in a single �le without an y

distinction b et w een the three di�eren t t yp es of information.

3. Commen ted co de. The same information w as em b edded in the source co de.

Eac h user receiv ed a m ultiple-c hoice unam biguous question sheet that w as the same for all

groups. Both the application domain and language domain w ere familiar to all sub jects.

The tasks to ok appro ximately 35 min utes to complete. F or eac h question, the sub ject w as

ask ed to iden tify the relev an t p ortion of the co de and do cumen tation.

Their exp erimen tal results sho w ed no signi�can t di�erence b et w een the non-la y ered and

commen ted do cumen tation sets, but the la y ered set w as signi�can tly b etter than the other

t w o. Because of these encouraging results, they designed the TLES to ol to supp ort la y ered

do cumen tation of system ev olution.

The exp erimen ters c hanged all of the v ariable names to b e meaningless so that the

do cumen tation w ould b e more imp ortan t. Ho w ev er, meaningful function and v ariable names

are p o w erful b eacons that assist program comprehension [17]. The remo v al of these b eacons

pro duced an unrealistic situation in their exp erimen t.

Comparing four Prolog tracers in PPVL

Mulholland describ es an empirical in v estigation in to the suitabilit y of four Prolog tracers

for no vice programmers [97]. The Prolog Program Visualization Lab oratory (PPVL) w as

dev elop ed as a test-b ed to incorp orate four soft w are visualization tracers for Prolog [96].

The study in v olv ed 64 Op en Univ ersit y cognitiv e psyc hology studen ts doing an Arti�cial

In telligence pro ject. The exp erimen ters used proto col analysis to dev elop a �ne-grained

accoun t of the user to iden tify: the kinds of information accessed, the strategies used, and the

misunderstandings of the soft w are visualization and execution of the program. The sub jects

w ork ed in pairs v erbalizing their actions and reasonings to one another. This allo w ed the

CHAPTER 3. TOOL INVESTIGA TIONS 27

exp erimen ters to record this proto col without placing to o man y arti�cial demands on the

sub jects.

Eac h tracer w as used as the sole debugging aid for one w eek. Eac h pair of sub jects w as

giv en a prin ted v ersion of a program whic h in v estigated bac ktrac king misconceptions. They

w ere then ask ed to trace through four di�eren t v ersions of the mo di�ed program and to

iden tify di�erences b et w een the prin ted program and the one they w ere tracing. Eac h of

the mo di�cations w as selected so that the no vice w ould ha v e to fo cus on di�eren t t yp es of

information in order to iden tify the c hange.

The results sho w ed o v erall p erformance di�erences across sub jects using the soft w are

visualizations. Their observ ations allo w ed the exp erimen ters to suggest ho w eac h of the

tracers could b e impro v ed.

Ev aluation of the Ja v aZo om in terface

The Ja v aZo om to ol uses the Con tin uous Zo om algorithm [37] to displa y fo cus+con text

displa ys of soft w are structures in com bination with adjacen t h yp ertext displa ys [55]. The

to ol w as implemen ted as a Ja v a applet, and w as in tegrated within the programmer's existing

w eb bro wser. An exp erimen tal study w as conducted to ev aluate the in terface of this to ol,

in particular fo cusing on to ol adoption issues [55].

Heinric hs tested the follo wing h yp otheses in t w o user studies:

� A scalable view in terface as a map of program structure in tegrated with h yp ertext

views of the program source co de is an e�ectiv e to ol for program understanding.

� In tegrating the Ja v aZo om to ol within an existing, w ell-accepted in terface pro vides a

high degree of to ol acceptance among users.

The �rst study in v olv ed 18 sub jects participating remotely through a completely online

exp erimen t. The sub jects w ere v olun teer Ja v a programmers (recruited through newsgroups).

The second study w as an in-p erson study with six sub jects b eing observ ed b y the exp eri-

men ter. The in-p erson study sub jects w ere recruited from industry and from Simon F raser

Univ ersit y . Results from the t w o studies w ere considered together.

The design of the exp erimen t w as based on our exp erimen tal designs rep orted in Chap-

ters 8 and 10 (cf. p.56 [55]). The sub jects had to p erform some simple program under-

standing tasks on a small but complex Ja v a program whic h implemen ted a Chec k ers game.

CHAPTER 3. TOOL INVESTIGA TIONS 28

The program consisted of 1200 lines of co de in 4 classes. The online study used an HTML

v ersion of the questionnaire with h yp erlinks to the Ja v aZo om in terface. The in-p erson study

had the sub jects rep orting a proto col of their activities.

The study results suggested that the in terface p erformed w ell under the exp erimen tal

conditions used, and that the programmers w ere willing to sacri�ce to ol p o w er in fa v our of

in tegration with their existing dev elopmen t to ols.

One problem with this purely online study w as that the exp erimen ter w as not able to

witness ho w the users in teracted with the to ol. In addition, there w as no w a y to iden tify

ho w man y sub jects did not complete the exp erimen t. Some users ma y ha v e started the

exp erimen t, and due to frustration or other reasons giv en up. Despite these dra wbac ks to

the exp erimen tal design, the results are nev ertheless in teresting and seem to indicate that

Ja v a programmers w ould b e amenable to using a program understanding to ol in tegrated in

their familiar W eb en vironmen t.

3.3 Field Observ ations

The results from user studies in a lab oratory setting are limited b ecause they ma y not

generalize to r e al programmers in industrial settings. F ormal user studies in the �eld are

often harder to execute, b ecause they tend to b e more exp ensiv e and time consuming.

Ho w ev er, informal user studies where one or t w o programmers are observ ed in their natural

setting can b e v ery insigh tful.

V on Ma yrhauser and V ans observ ed programmers in an industrial setting p erforming

a v ariet y of main tenance activities [174]. The goal of this study w as to v alidate the in te-

grated co de comprehension mo del (cf. Section 2.5). They deriv ed to ol capabilities from an

analysis of audio-tap ed, think-aloud rep orts of the programmers' information needs during

main tenance activities. The study participan ts w ere professional main tenance programmers

w orking on larger programs (40,000 to 500,000 lines of co de). V on Ma yrhauser and V ans

rep ort the b eha viours of one of the participan ts during a t w o hour session and later an-

alyzed it to determine the participan t's information needs [174]. This participan t w as in

the pro cess of learning a new CASE to ol called PR OCASE. The PR OCASE to ol has sev-

eral useful features, suc h as call-graph displa ys, text reformatting and elision features with

limited cross-referencing capabilit y for viewing v ariable declarations and usages.

CHAPTER 3. TOOL INVESTIGA TIONS 29

Although the fo cus of this exp erimen t w as to study the information needs of the par-

ticipan ts rather than the usages of PR OCASE, their observ ations are used for deriving a

set of desirable to ol capabilities. They observ ed programmers frequen tly switc hing b et w een

three lev els of abstraction: the program mo del, the situation mo del and the domain mo del.

They note that few existing to ols pro vide supp ort for the situation and domain mo dels, and

ev en few er pro vide supp ort for switc hing b et w een these lev els. In addition, they claim that

b etter to ols are needed to alleviate short-term memory constrain ts and to record p ostp oned

h yp otheses and the results of h yp othesis tests.

Singer and Leth bridge describ e another �eld exp erimen t to study the work pr actic es of

soft w are engineers w orking at a large telecomm unications compan y [143]. W ork practices

describ e the activities that programmers normally do to complete their w ork. They p er-

formed a series of studies to collect data on the soft w are engineers' common w ork practices

and analyzed this data to �nd the most time consuming, frequen t and imp ortan t activities.

The term work p attern is used to describ e a sequence of w ork practices to meet a particular

goal.

They com bined v arious in v estigativ e tec hniques to gather information on soft w are en-

gineers' w ork practices. The �rst study consisted of a w eb questionnaire completed b y

six soft w are engineers. Tw o of the questions ask ed them to detail ho w they sp end their

w ork time on a daily basis. The soft w are engineers rep orted that they sp en t most of their

time reading do cumen tation, follo w ed b y lo oking at source co de, writing do cumen tation,

attending meetings and writing source co de.

The second study w as a longitudinal study , observing a soft w are engineer for o v er a

y ear. This soft w are engineer w as new to the compan y and w as therefore deemed to b e an

in teresting sub ject to observ e. Initially they shadowe d the soft w are engineer for 1 1/2 hours

p er w eek for the �rst six mon ths, whic h decreased to ab out half an hour after that. The

most common tasks w ere searc hing and in teracting with the hardw are, follo w ed b y studying

the source co de, with less time sp en t lo oking at do cumen tation.

T o generalize their �ndings, they observ ed a group of eigh t soft w are engineers solving

a problem. Singer and Leth bridge dev elop ed a synchr onize d shadowing tec hnique to �nd

common w ork patterns. Sync hronized shado wing in v olv es one exp erimen ter recording the

lo w-lev el actions of the participan t and a second exp erimen ter recording `think-aloud' rep orts

of the soft w are engineer's higher-lev el goals. Sync hronized time stamps allo w goals to b e

matc hed with the sp eci�c actions tak en to ac hiev e them.

CHAPTER 3. TOOL INVESTIGA TIONS 30

They rep orted that all of the eigh t participan ts read and c hanged the source co de, and

p erformed a searc h at least once during the shado w ed hour. Fiv e of the soft w are engineers

in teracted with the hardw are, debugger or in-house to ols at least once an hour. Reading

do cumen tation accoun ted for only 12 of the total 356 ev en ts coun ted. The soft w are engineers

only o ccasionally lo ok ed at a call trace, wrote notes, p erformed managemen t activities, or

used in-house to ols. They also collected compan y wide to ol usage statistics. Searc h to ols

and editors w ere the most commonly used to ols compan y wide.

They observ ed four imp ortan t w ork patterns [143]:

1. Searc hing for a string, op ening the �le that con tained `hits' from the searc h, searc hing

for the same string within the �le, and then reading the co de surrounding the hit.

2. Sa ving the results of searc hes to use as c hec klists for future w ork, and then w orking

through the c hec klist.

3. Susp ending the in v estigation of an item on the c hec klist to p erform some other task,

and then resuming the in v estigation at a later time. This con text switc hing in v olv ed

considerable o v erhead.

4. W orking b et w een to ols (suc h as Unix command line to ols and editors), using cut and

paste (often a wkw ardly) to transfer data.

They used the results from their studies to motiv ate the design of a soft w are exploration

to ol called tksee (Soft w are Exploration En vironmen t) [143]. This to ol has h yp ertext capa-

bilities for bro wsing co de and hierarc hical lists of items relating to a �le, routine, iden ti�er,

etc. In addition, tksee has a p ersisten t hierarc hical graphical history for recording the en tire

state of ev ery exploration and a visual grep to ol.

They ha v e found that this to ol has b een readily adopted b y a n um b er of soft w are engi-

neers. Although other to ols supp ort the same functionalities (for example, SNiFF+), they

claim that their to ol is a closer �t to the soft w are engineers' true needs. Their next step is

to study ho w the soft w are engineers use the a v ailable to ol features in tksee.

3.4 Case Studies

In this section, w e consider t w o case studies that ha v e b een done to compare sev eral soft w are

visualization to ols.

CHAPTER 3. TOOL INVESTIGA TIONS 31

Bella y and Gall rep ort an ev aluation of four rev erse engineering to ols that analyze C

source co de [11 , 12]: Re�ne/C [166], Imagix 4D [64], SNiFF+ [144] and Rigi [98]. They

in v estigated the capabilities of these to ols b y applying them to a real-w orld em b edded

soft w are system whic h implemen ted part of a train con trol system. The system consisted of

appro ximately 150,000 lines of source co de.

They used a n um b er of assessmen t criteria for ev aluating the to ols: analysis (parsing

tec hniques and capabilities), represen tation (prop erties of textual and graphical rep orts),

editing/bro wsing (bro wsing and editing source co de facilities) and general capabilities (suc h

as supp orted platforms, extensibilit y , output capabilities, searc hing features, on-line help,

etc.). The main fo cus of their case study w as on the to ol capabilities to generate graphical

rep orts suc h as call trees, con trol-
o w graphs and data-
o w graphs [11].

They concluded that there is no single to ol that is the `b est' as the four to ols di�er

considerably in the functionalities they eac h o�er. They concluded that Re�ne C has an

excellen t parser and some in teresting views, but has p o or supp ort for manipulating its

graphical views and lac ks searc hing features; SNiFF+ has an excellen t parser, but the cross-

referencer is the only soft w are view of the system; Imagix 4D has a n um b er of soft w are views

and allo ws the user to create do cumen tation from the source co de; and Rigi's parser is to o

restrictiv e, but its extensibilit y feature is v ery p o w erful. In addition, they found that the

SHriMP views (describ ed in this thesis) and la y ered views in Rigi w ere v ery useful. Bella y

and Gall suggest that the graphical views and graph la y outs in all of the to ols could b e

signi�can tly impro v ed.

Armstrong and T rudeau also ev aluated sev eral rev erse engineering to ols. They based

their ev aluation on the abilities of the to ols to extract an arc hitectural design from the

source co de of CLIPS (C-Language In terface pro cessing System) and for bro wsing the Lin ux

op erating system [1]. The �v e to ols they examined w ere: Rigi [98], the Dali w orkb enc h [69],

the Soft w are Bo okshelf [43], CIA [27] and SNiFF+ [144]. Their in v estigations fo cused on

the abstraction and visualization of system comp onen ts and in teractions. Their case study

summarizes the visualization capabilities of eac h of the to ols. Since the Dali en vironmen t

uses the Rigi graph editor, it has the same visualization capabilities as Rigi. Moreo v er, they

noted that SNiFF+ has limited visualization capabilities.

All of the four to ols considered displa y information using no des and arcs. No des repre-

sen t comp onen ts in the system and arcs represen t relationships b et w een comp onen ts. Rigi

and the Bo okshelf supp ort abstractions using nesting or hierarc hical diagrams. Armstrong

CHAPTER 3. TOOL INVESTIGA TIONS 32

and T rudeau men tioned that this abstraction feature is essen tial for represen ting soft w are

arc hitectures [1]. The Soft w are Bo okshelf uses Landscap e views [113] as a visualization

mec hanism. Armstrong and T rudeau prefer the nesting feature of Landscap e views o v er the

separate windo w approac h used in Rigi.

Rigi and the Bo okshelf supp ort graph editing op erations for mo ving, adding and deleting

no des and arcs. These features allo w users to dra w pictures of their men tal mo dels of the

soft w are arc hitecture [1]. The Bo okshelf allo ws individual no des to b e resized, whic h they felt

w as an imp ortan t feature for comm unicating a main tainer's men tal image of the program.

Rigi has in tegrated sev eral la y out algorithms whic h can b e con trolled b y the user. The

Bo okshelf uses the Sugiy ama la y out as the default la y out. Both Rigi and the Bo okshelf

allo w m ultiple views of the graphs to b e sa v ed. This feature is in tegrated in to Rigi's user

in terface whic h mak es it easier to access.

Graphs can b e annotated in SNiFF+, Rigi and the Bo okshelf. Do cumen ts can easily

b e asso ciated with source �les and pro jects in SNiFF+. Rigi and the Bo okshelf b oth allo w

annotations but Armstrong and T rudeau found that it w as cum b ersome to store and access

annotations in b oth of these to ols. Rigi and the Bo okshelf ha v e supp ort for in tegrating w eb

do cumen ts. SNiFF+ and Rigi w ere found to b e the most e�cien t to ols for loading and

dra wing of large graphs. The Bo okshelf is quite slo w for displa ying large graphs. CIA w as

v ery slo w and could not b e used for ev en mo derately sized systems.

3.5 Surv eys

Although infrequen tly used in the �eld of psyc hology of programming, surv eys can b e useful

as a form of exploratory researc h [13]. In terview studies, an informal surv ey tec hnique, w ere

used b y P etre and Blac kw ell to collect anecdotal evidence indicating that exp ert program-

mers use men tal visual images during program design [116].

Cross et al. designed a preference surv ey to informally ev aluate the GRASP soft w are

visualization to ol [63]. GRASP uses a Con trol Structure Diagram (CSD) whic h is an al-

gorithmic lev el graphical represen tation of the soft w are. The CSD w as compared to four

other graphical diagrams [33]: ANSI
o w c hart; Nassi-Shneiderman Diagram; W arner-Orr

Diagram; and Action Diagram. The CSD w as the preferred diagram for most of the p erfor-

mance c haracteristics measured. Ho w ev er, they note that user preference is not necessarily

an ob jectiv e measure and so this surv ey w as follo w ed b y more formal exp erimen ts [63].

CHAPTER 3. TOOL INVESTIGA TIONS 33

Sim at al. conducted a surv ey using a w eb-based questionnaire to �nd arc het yp es (i.e.,

t ypical or standard examples) of source co de searc hing b y main tainers [142]. They w ere

in terested in studying three questions:

1. Whic h to ols do programmers use to searc h co de?

2. What do they lo ok for when searc hing co de?

3. Whic h tasks motiv ate a searc h?

They had 69 resp onden ts to their surv ey whic h they p osted to sev en newsgroups. The

most commonly used to ols for searc hing w ere (in order of increasing usage): editors, grep,

�nd and IDEs (In tegrated Dev elopmen t En vironmen ts). Some examples of the observ ed

searc hing arc het yp es w ere:

� Searc hing for all uses of a v ariable or function to p erform impact analyses.

� Searc hing for function and v ariable de�nitions and uses to increase program under-

standing.

� Searc hing for function signatures to reuse co de.

� Searc hing for an output string or usages of a v ariable to trac k do wn a bug.

Administering the w eb-based questionnaire o v er the w eb w as found to b e v ery e�ectiv e as

the information gathered from their surv ey could b e used for designing impro v ed searc hing

to ols [142].

3.6 Summary

This c hapter review ed v arious exp erimen tal tec hniques for ev aluating and comparing soft-

w are exploration to ols. Eac h of the in v estigativ e tec hniques just describ ed has adv an tages

and disadv an tages. Ho w ev er, com bining these tec hniques (as Singer and Leth bridge ha v e

done [143]) should pro duce stronger results. Moreo v er, sharing results among researc h

groups is also v ery imp ortan t. Co ding sc hemes, suc h as the one prop osed b y Lang and

Ma yrhauser [78], can b e used for comm unicating results.

Most of the user studies done to ev aluate program comprehension to ols fo cused on mea-

suring ho w w ell the programmers p erformed on their assigned tasks. The results only pro vide

CHAPTER 3. TOOL INVESTIGA TIONS 34

insigh t on the observ ed group of programmers, p erforming a small set of assigned tasks on

a particular program. The ma jorit y of these user studies measured the e�ectiv eness of a

main tainer using a particular to ol compared with no to ol supp ort but t ypically main tainers

do use simple to ols for textual searc hing and basic static analysis [164].

In this thesis, w e prop ose that it ma y b e more instructiv e to compare programmers

using sev eral to ols from a cognitiv e p ersp ectiv e. That is, do the features pro vided b y the

to ols supp ort the programmers' preferred comprehension strategies. In the next c hapter

w e describ e a cognitiv e framew ork of design elemen ts whic h can b e used in the design and

ev aluation of soft w are exploration to ols. These issues w ere deriv ed from a comparativ e

analysis of the cognitiv e theories describ ed in Chapter 2 and existing soft w are exploration

to ols.

Chapter 4

A Cognitiv e F ramew ork

Soft w are exploration to ols pro vide graphical represen tations of soft w are structures link ed

to textual represen tations of source co de and do cumen tation with the goal of helping a

main tainer form a men tal mo del of a soft w are system. Of k ey imp ortance is whether suc h

a to ol supp orts b ottom-up comprehension, top-do wn comprehension or some com bination

of the t w o. Also imp ortan t, esp ecially for larger systems, is ho w the main tainer bro wses or

na vigates the visualization.

In this thesis a framew ork of cognitiv e design elemen ts to guide the dev elopmen t of a to ol

to aid in the exploration and comprehension of soft w are systems is dev elop ed. In total, four-

teen cognitiv e design elemen ts are discussed (E1 { E14 , see Fig. 4.1). The framew ork has

t w o main branc hes. The �rst branc h is in tended to capture the essen tial pro cesses of the v ar-

ious comprehension strategies suc h as the top-do wn, b ottom-up and in tegrated approac hes.

The second branc h addresses cognitiv e o v erhead exp erienced b y a main tainer exploring a

visualization of the soft w are structure. Figure 4.1 sho ws the hierarc hical structure of the

design elemen ts deriv ed.

4.1 Impro v e Program Comprehension

Since the comprehension strategy emplo y ed b y a main tainer is dep enden t on a v ariet y of

factors dictated b y the main tainer, program and task, it w ould b e adv an tageous for a to ol to

supp ort a wide arra y of comprehension activities. Ho w ev er, dev eloping sp ecialized to ols to

suit a particular comprehension strategy ma y result in simpler, easier to use to ols. This sec-

tion further explores the comprehension mo dels describ ed in Section 2 and extracts cognitiv e

35

CHAPTER 4. A COGNITIVE FRAMEW ORK 36

Improve program
comprehension

Reduce the maintainer's
cognitive overhead

Cognitive Design
Elements to support
the construction of
a mental model to
facilitate program
understanding

Enhance top-down
comprehension

Enhance bottom-
up comprehension

Facilitate
navigation

Reduce
disorientation

Reduce the effect of
delocalized plans

Provide an adequate overview
of the system architecture at
various levels of abstraction

Support goal-directed,
hypothesis-driven
comprehension

Indicate the maintainer's
current focus

Display the path that
led to the current focus

Provide directional
navigation

Support arbitrary
navigation

Provide abstraction
mechanisms

Cross-reference mental
models

Provide effective
presentation styles

Integrate bottom-up
and top-down
approaches

Provide
orientation cues

Support the construction
of multiple mental models
(domain,situation,program)

Indicate syntactic and
semantic relations between
software objects

E1

E2

E3

E4

E5

E6

E7

E8

E9

Reduce additional effort for
user-interface adjustment

E10

E11

E12

E13

E14

Indicate options for
further exploration

Figure 4.1: Cognitiv e design elemen ts for soft w are exploration to ols

CHAPTER 4. A COGNITIVE FRAMEW ORK 37

design elemen ts whic h should b e addressed b y a to ol claiming to aid a giv en comprehension

strategy .

4.1.1 Enhance b ottom-up comprehension

Bottom-up comprehension in v olv es reading program statemen ts and constructs and c h unk-

ing these units in to higher-lev el abstractions un til an o v erall understanding of the program

is attained. Bottom-up comprehension in v olv es three main activities: 1) iden tifying soft-

w are ob jects and the relations b et w een them; 2) bro wsing co de in delo calized plans; and 3)

building abstractions (through c h unking) from lo w er-lev el units. A comprehension to ol to

assist in b ottom-up comprehension should address these main activities.

E1: Indic ate syntactic and semantic r elations b etwe en softwar e obje cts

A soft w are visualization should pro vide immediate and visible access to the lo w est lev el

units in a program suc h as the co de or visual icons represen ting these atomic units. The

syn tactic and seman tic relations of these units m ust b e clearly visible and easily accessible.

The syn tactical relationships b et w een these units describ e the text-structure at the micro-

structure and macro-structure lev els. These relationships are easily deriv ed from source

co de listings. Seman tic relations b et w een soft w are ob jects require data-
o w or functional

kno wledge of the program. Man y to ols presen t this information in the form of a graph

where no des represen t soft w are ob jects and arcs sho w the relations b et w een the ob jects.

This metho d is used b y PECAN [125], Rigi [98], VIF OR [120], Whorf [14], CARE [86],

Hy+ [92] and Imagix 4D [64] among others. In some systems, direct links from the soft w are

ob jects to the corresp onding source co de are also pro vided.

E2: R e duc e the e�e ct of delo c alize d plans

A delo calized plan results from the fragmen tation of source co de related to a particular

algorithm or plan. Without to ol assistance, bro wsing co de b elonging to a delo calized plan

can b e cum b ersome as it ma y in v olv e frequen t switc hing b et w een �les and result in a feeling

of disorien tation.

Whorf w as sp eci�cally designed to reduce the e�ects of delo calized plans [14]. It sup-

p orts m ultiple views of the program suc h as source co de listings, call-graphs, v ariable cross-

reference and function cross-reference views. Views are link ed b y displa ying di�eren t in-

stances of an ob ject using the same color in eac h of the views. Co de in delo calized plans is

CHAPTER 4. A COGNITIVE FRAMEW ORK 38

highligh ted reducing the e�ects of fragmen tation.

Static analysis to ols, suc h as pr o gr am slicing , can iden tify co de b elonging to a delo calized

plan. Program slicing is a metho d for decomp osing a program in to comp onen ts where eac h

comp onen t describ es some of the system's functionalit y [177]. A program slice con tains all

of the co de whic h is relev an t to that b eha vior. SeeSlice is a to ol for visualizing program

slices where program �les are displa y ed as columns that con tain line represen tations of

pro cedures [6]. Co de that is not part of a slice is elided. Ghinsu, a to olset for program

understanding, displa ys slicing results in its system dep endence graph to capture the con trol

and data dep endencies in the soft w are [88]. The dev elop ers of Ghinsu recognize that non-

lo cal in teractions in the co de are a ma jor cause of complexit y , and so their to olset sp eci�cally

addresses this problem.

E3: Pr ovide abstr action me chanisms

The pro cess of building men tal hierarc hical abstractions from the lo w-lev el soft w are

ob jects and relations is the hardest part of b ottom-up comprehension for man y main tainers,

and y et man y to ols only supp ort sho wing a previously abstracted view [5]. Main tainers migh t

understand the soft w are b etter through abstractions they created themselv es, rather than

through the prefabricated and less trusted abstractions that man y to ols pro vide. F acilities

should b e a v ailable to allo w main tainers to create their o wn abstractions and lab el and

do cumen t them to re
ect their curren t understanding.

Abstraction can b e supp orted b y selecting lo w er-lev el ob jects and aggregating them in to

higher-lev el abstractions. In sev eral visualization to ols, a subgraph (a set of no des and arcs)

ma y b e c ol lapse d in to a single c omp osite or subsystem no de [38 , 64 , 72 , 99]. This functionalit y

is also a v ailable in CARE [85] using the c omp ose command. Both CIA [27] and Rigi [99]

facilitate abstraction through subsystem identi�c ation . A subsystem is a collection of related

no des and arcs in the soft w are graph. F or example, a subsystem ma y include a function

along with all of the functions and datat yp es it directly or indirectly dep ends on; suc h a

subsystem is referred to as a c ompilable slic e in CIA. Other subsystems ma y b e iden ti�ed

automatically b y analyzing the binding strength b et w een a pair of soft w are ob jects. F or

example, t w o ob jects whic h b oth reference man y other ob jects w ould ha v e common clien ts

or suppliers [27]. In Rigi, subsystem iden ti�cation tec hniques are end-user programmable

using the R CL command language [165]. In this w a y subsystem iden ti�cation can b e semi-

automated b y lev eraging application or programming domain kno wledge. F or example, all

CHAPTER 4. A COGNITIVE FRAMEW ORK 39

no des lab eled with a common pre�x according to some naming con v en tion can b e collapsed

in to a single subsystem [179]. Kimelman et al. describ e an approac h for using arcs to

represen t subgraphs, in addition to using no des for abstraction [72].

Sev eral to ols pro vide the abilit y to �lter visually (temp orarily hide) ob jects whic h results

in a less detailed or abstract graph. Rigi [99], Imagix [64] and CARE [85] all pro vide �lter-

ing mec hanisms. In Hiernet, no des represen t source �les and mo dules, and arcs represen t

sim ultaneous c hange requests to the connected no des [38]. Arcs are assigned a w eigh t to

sho w the n um b er of c hange requests. No des and arcs can then b e �ltered using a threshold

on arc w eigh ts. In SeeSlice, hierarc hies con tain three lev els of abstraction: �les (mo dules),

pro cedures and statemen ts [6]. The user can �lter an y of these three lev els of abstraction

using a slider. VIF OR supp orts �ltering so that only a subset of the soft w are information

need b e displa y ed at a time [120]. No des whic h represen t de ad c o de (functions not called

directly or indirectly) can b e elided in CIA [27] and in Rigi [100].

4.1.2 Enhance top-do wn comprehension

Understanding a program top-do wn requires application domain kno wledge, previous exp o-

sure to the program or access to do cumen tation describing the program design and ev olution

history . The main tainer form ulates h yp otheses and reads the co de in a depth-�rst manner

to v erify or reject these h yp otheses. A to ol supp orts this pro cess b y pro viding a metho d

for do cumen ting h yp otheses and linking the h yp otheses to relev an t parts of the program

co de or do cumen tation. F acilities to re�ne h yp otheses in to subsidiary h yp otheses m ust also

b e pro vided. Alternativ ely , the to ol ma y pro vide a la y ered view of the program (previously

prepared during system ev olution or through rev erse engineering) whic h en tices a main tainer

to explore the program in a top-do wn fashion.

E4: Supp ort go al-dir e cte d, hyp othesis-driven c ompr ehension

Relativ ely few systems facilitate top-do wn comprehension, where the programmer has

an initial men tal mo del or h yp othesis concerning the functionalit y of the program. The

TLES system (T o ol for La y ered Explanation of Soft w are) is compatible with the top-do wn

theory of soft w are understanding and supp orts the creation of a c hain of h yp otheses and

subsidiary h yp otheses concerning the prop erties of the co de [121]. The to ol records these

h yp otheses for future main tenance. All information needed for understanding is stored in

la y ers of annotations for recording the ev olutionary history of source co de constructs. This

CHAPTER 4. A COGNITIVE FRAMEW ORK 40

mec hanism also supp orts recording of p ostp oned or discarded h yp otheses, whic h ma y b e

useful do cumen tation for future main tenance [174].

Hy+ pro vides some supp ort for v erifying h yp otheses concerning the design of the pro-

gram [92]. It is a general purp ose to ol and has b een used for querying and visualizing

ob ject-orien ted systems. It uses a visual query language called Graphlog for querying the

database. The results of a query are then used as a basis for the graphical views. Hy+

is useful for iden tifying design p atterns in the co de [50]. Design patterns are high-lev el de-

sign descriptions in ob ject-orien ted co de. Using Hy+, a main tainer can h yp othesize that a

particular design pattern exists and then searc h for it in the co de b y querying the database.

E5: Pr ovide overviews of the system ar chite ctur e at various levels of abstr action

T o explore programs top-do wn, access to the soft w are arc hitecture should b e pro vided

at v arious lev els of abstraction. In Rigi, a soft w are engineer or rev erse engineer do cumen ts a

program from the b ottom-up b y creating a hierarc h y of abstractions [155]. This hierarc h y is

then a v ailable for top-do wn exploration during subsequen t main tenance. T o facilitate access

to the program at di�eren t lev els of abstraction, Rigi supp orts overview windows whic h sho w

the hierarc hical nature of the soft w are structure and gener al windows whic h con tain slices

of the hierarc h y at selected lev els of abstraction.

Landscap e views [113], Hy+ [32] and Con tin uous Zo om [56] all use a neste d gr aph rep-

resen tation of soft w are arc hitecture. The hierarc hical structure is displa y ed b y the nested

graph. Information at an y lev el of information can b e displa y ed or elided to sho w o v erviews

of the system arc hitecture at selected lev els of abstraction.

Seela, a rev erse engineering to ol, con v erts co de in to a program design language whic h the

user can then edit in the form of structure c harts [110]. In this w a y , high-lev el do cumen tation

is generated describing the co de structure. Seela supp orts the top-do wn comprehension

pro cess b y analyzing the source co de and then displa ying it on the screen so that it app ears

as a readable program-design. Program blo c ks can b e renamed b y the user, and the names

are subsequen tly only sho wn in certain views. It pro vides top-do wn do cumen tation, but this

do cumen tation is also built from the b ottom-up.

4.1.3 In tegrate b ottom-up and top-do wn approac hes

V on Ma yrhauser and V ans observ ed programmers using b oth b ottom-up and top-do wn

approac hes [174]. Programmers create v arious men tal mo dels and frequen tly switc h b et w een

CHAPTER 4. A COGNITIVE FRAMEW ORK 41

them during the course of comprehension. The program mo del describ es the con trol-
o w

abstractions of the program. The situation mo del describ es the data-
o w and functional

abstractions. Both con trol-
o w and data-
o w men tal mo dels can b e presen ted visually using

a graph. Displa ying ho w functional abstractions relate to the application domain is a harder

task. Another mo del whic h can b e visually presen ted sho ws the b eha vior of an executing

program. In addition, access to do cumen tation (when it exists) can b e pro vided. A to ol

addressing the in tegrated comprehension pro cess should supp ort the construction of sev eral

link ed views represen ting a v ariet y of cross-referenced men tal mo dels.

E6: Supp ort the c onstruction of multiple mental mo dels

Not only do men tal mo dels di�er in con text and lev el of abstraction, but they also di�er

from one main tainer to another [148]. Sev eral men tal mo dels of a program ma y b e presen ted

visually using m ultiple views. Man y of the to ols already men tioned supp ort m ultiple views of

textual and graphical views [6 , 14 , 64 , 86, 100, 120 , 124 , 125]. Example graphical views sho w

call-graphs and v ariable usage diagrams. Example textual views include displa ying source

co de, requiremen ts do cumen ts, design sp eci�cations, program slices and soft w are statistics

(metrics). Some to ols, suc h as PECAN [125], also supp ort views sho wing the execution

of the program (e.g., allo cation and deallo cation of heap data). Multiple views are often

sho wn side b y side, or displa y ed using o v erlapping, cascading or scrollable windo ws. V on

Ma yrhauser and V ans note that man y to ols supp ort recording information for the men tal

mo del at the program lev el, but few to ols supp ort recording information for the situation

and domain mo dels [174].

E7: Cr oss-r efer enc e mental mo dels

Main tainers frequen tly switc h from one mo del to another in the course of comprehension

[175]. Often these switc hes are the result of a main tainer men tally cross-referencing di�eren t

men tal mo dels. These men tal mo dels should b e link ed to record the cross-referencing of

information for later use. In some systems, m ultiple views are visually link ed b y highligh ting

instances of the same ob ject in all views. This is ho w m ultiple views are link ed in PECAN

[125], Whorf [14], CARE [86], Imagix [64] and Rigi [100]. Man y systems also supp ort

sync hronized views b y up dating all views when one view is altered in some w a y . F or example,

Hy+ supp orts sync hronized graphical and textual bro wsing of source co de [92].

CHAPTER 4. A COGNITIVE FRAMEW ORK 42

The Programmer's Appren tice to ol has direct supp ort for b oth dev elopmen t of the pro-

gram mo del and situation mo del [126]. This to ol uses Plan Calculus to formally represen t

programs and plans. Plan Calculus has a graphical notation and a formal seman tics whic h

can b e used to sho w a mapping b et w een an abstraction of its implemen tation (the program

mo del) and a sp eci�cation abstraction (the situation mo del). A diagram for eac h mo del

is displa y ed side b y side with ho ok ed lines to indicate corresp ondences b et w een the t w o

diagrams.

Sev eral to ols mak e use of sophisticated graphics tec hniques to displa y a third dimension

on the screen. The protot yp e system, V OGUE, uses the third dimension for monitoring the

p erformance of parallel/concurren t programs [74]. Their 3D framew ork displa ys one relation

in t w o dimensions and assigns another meaning to the third axis. One men tal mo del or view

can b e sho wn in the xy plane, and another men tal mo del is sho wn in the yz plane. By rotating

through the third dimension, the user can men tally in tegrate t w o separate men tal mo dels.

Although this tec hnique has p oten tial, there are sev eral unresolv ed user in terface issues with

resp ect to the manipulation of the t w o views. PLUM [123] and the Durham 3D visualization

to ol [22] also mak e use of a third dimension to cross-reference m ultiple hierarc hies.

4.2 Reduce the Main tainer's Cognitiv e Ov erhead

When comprehending larger soft w are systems, cognitiv e o v erhead increases rapidly . Visual-

ization to ols are often supplied in an e�ort to reduce cognitiv e o v erhead. Cognitiv e o v erhead

can b e alleviated b y pro viding go o d na vigation facilities, meaningful orien tation cues, and

b y e�ectiv ely presen ting the information so that it can con tribute to program comprehen-

sion. Na vigation pro vides the facilities to go from one place to another. Orien tation cues

sho w the user where they are curren tly , ho w they got there and ho w to go somewhere else

[162].

Although a to ol ma y pro vide man y na vigation metho ds and e�ectiv e orien tation cues,

the user ma y still feel o v erwhelmed if presen ted with to o m uc h information. E�ectiv e

presen tation tec hniques can alleviate the e�ects of displa ying large amoun ts of information

[167]. Disorien tation ma y also result from a badly designed user in terface whic h lac ks in a

feeling of con tin uit y b et w een displa ys [162].

CHAPTER 4. A COGNITIVE FRAMEW ORK 43

4.2.1 F acilitate na vigation

Na vigation facilities include mec hanisms for bro wsing source co de, program do cumen tation,

graphical views of soft w are structure and do cumen ted men tal mo dels of the program.

E8: Pr ovide dir e ctional navigation

Directional na vigation describ es mec hanisms for reading source co de and program do cu-

men tation sequen tially , bro wsing the soft w are using data-
o w and con trol-
o w relationships,

tra v ersing soft w are structure in hierarc hical abstractions and b y follo wing user-de�ned pro-

gram or application dep enden t links. Source co de and do cumen tation ma y b e bro wsed

sequen tially using text editors or b y follo wing con trol-
o w or data-
o w paths b y linking

no des and arcs in graphical represen tations to the corresp onding source co de. Alternativ ely ,

co de and do cumen tation ma y b e na vigated using h yp ertext links. In Imagix, co de and do c-

umen tation are generated in HTML format to b e view ed b y a w eb bro wser [64]. Subsystem

hierarc hies are na vigated in Whorf [14], CARE [86], Imagix [64] and Rigi [100] b y op ening

a windo w to sho w a view of the subsystem no de selected.

E9: Supp ort arbitr ary navigation

Arbitrary na vigation is supp orted when a main tainer na vigates to lo cations not nec-

essarily reac hable b y follo wing application or user-de�ned links. It is supp orted in b o oks

b y readers do g-e aring the corners of pages, and in h yp ermedia do cumen ts b y sym b olically

marking pages of in terest. F ew to ols (other than to ols whic h pro vide h yp ertext-lik e access

to source co de and do cumen tation) pro vide this form of na vigation access. Sa ving views

(supp orted in PECAN [125] and Rigi [100]) ma y b e used as a mec hanism for storing ar-

bitrary na vigation steps: a main tainer ma y create a snapshot of the curren t view so that

it ma y b e immediately accessed in the future without ha ving to follo w de�ned links in the

soft w are visualization. Plaisan t et al. men tion the imp ortance of b eing able to sa v e p oin ts

for rapid return and automatic na vigation for information exploration [118]. Searc hing capa-

bilities are a v ailable in sev eral to ols to pro vide another mec hanism for arbitrary na vigation

[14 , 64 , 86 , 98].

Na vigation among the v arious men tal mo dels is the k ey to successfully using them for

comprehension [174]. This is a non-trivial problem, as there ma y b e one-to-man y and man y-

to-one links from one mo del to another. F or example, a one-to-man y mapping o ccurs when

a description of some of the program functionalit y p ertains to man y c h unks of co de in

CHAPTER 4. A COGNITIVE FRAMEW ORK 44

sev eral source �les. Some to ols sho w mappings b et w een t w o views visually . Ho w ev er, this

approac h requires that b oth mo dels are displa y ed concurren tly on the screen whic h ma y not

b e feasible for larger soft w are systems. The application of a third dimension for sho wing

an alternativ e view (as in V OGUE [74] and PLUM [123]) pro vides a na vigation mec hanism

b et w een t w o views as they can b e na vigated b y rotating from one view to another. This is

an in teresting approac h but there is the extra o v erhead of ha ving to displa y and na vigate

in three dimensions on a t w o-dimensional surface.

4.2.2 Pro vide orien tation cues

Orien tation cues indicate to the main tainer where they are curren tly exploring in the soft-

w are structure, ho w and wh y they are there, and ho w to switc h to a di�eren t fo cus.

E10: Indic ate the maintainer's curr ent fo cus

Dep ending on the task at hand, a main tainer ma y b e in terested in viewing source co de

for a function, examining a diagram whic h describ es some of the program's functionalit y or

bro wsing a set of do cumen tation. The fo cus of in terest ma y b e fragmen ted as the main tainer

tries to understand non-lo cal in teractions in the co de. The use of judicious orien tation cues

can indicate the user's curren t p oin t of in terest in a complex displa y .

Indicating the main tainer's curren t fo cus requires not only sho wing the artifacts that

are of immediate in terest, but also displa ying con text for those artifacts. T extual views of

source co de implicitly sho w the fo cus since the co de of in terest is directly visible. Ho w ev er,

other related co de ma y not b e visible. Man y systems, suc h as Rigi [100] and Whorf [14],

use highligh ting tec hniques to emphasize no des and arcs in a graph but in larger graphs

highligh ted no des and arcs ma y not alw a ys b e ob vious.

Some soft w are visualization systems (Hy+ [92], Con tin uous Zo om [56] and PLUM [123])

mak e use of �sheye displa y tec hniques [81] whic h allo cate more screen space to more imp or-

tan t information b y displa ying it larger than secondary information. Both PLUM [123] and

GraphVisualizer3D [176] use the third dimension where more imp ortan t no des are dra wn

closer to the user's view p oin t and app ear larger due to p ersp ectiv e pro jection. VIPR, a

scalable in terface for visualizing Tcl programs, pro vides zo oming and �shey e view metho ds

where nested circles represen t program constructs [29]. An execution view sho ws dynamic

execution for debugging purp oses. The co de curren tly b eing executed is dra wn larger using

their �shey e view tec hnique.

CHAPTER 4. A COGNITIVE FRAMEW ORK 45

E11: Show the p ath that le d to the curr ent fo cus

In graph represen tations of soft w are structures, no des and arcs are often used to access

other parts of the soft w are. Accessed no des in the graph ma y b e highligh ted in an o v erview

windo w to sho w the path tra v eled in the soft w are hierarc h y . Recording wh y a main tainer is

in terested in a particular soft w are ob ject is v ery imp ortan t.

In h yp ermedia do cumen t bro wsers there are often histories or br e adcrumb tr ails of tra v-

eled paths to indicate to the reader ho w a particular do cumen t in the structure w as reac hed.

Similar facilities w ould b e useful when bro wsing HTML'ized soft w are do cumen ts. The rea-

son for reading a piece of co de ma y b e the result of v erifying a particular h yp othesis or

b ecause the co de m ust b e c hanged or adapted in some w a y . There is t ypically little to ol

supp ort for recording this sort of temp orary information.

E12: Indic ate options for further explor ation

Giv en that a user is at a certain p oin t in the exploration of a soft w are system, this design

elemen t addresses not whic h facilities are a v ailable for further exploration, but rather ho w

the user is made a w are of these facilities. In textual views, a main tainer can bro wse related

co de b y op ening other source �les explicitly . Some to ols pro vide HTML views of the source

co de and do cumen tation [64, 45]. W eb bro wsers are used to bro wse related co de using

h yp erlinks. The h yp erlinks are visual cues for accessing other parts of the do cumen tation.

The EDSA (Exp ert Data
o w and Static Analysis) to ol allo ws a main tainer to follo w data-

o w or con trol-
o w paths in program slices [110]. In graphical represen tations of soft w are

structure, the graph itself can b e used to displa y further na vigation options. F or example,

in Rigi, the user can bro wse other subsystems b y selecting subsystem no des in the graphs

and op ening further windo ws [98].

4.2.3 Reduce disorien tation

F or the exploration of larger systems, reducing disorien tation e�ects is critical. Users ma y

feel disorien ted when scrolling through views of large systems, or when na vigating amongst

n umerous windo ws. Disorien tation can b e alleviated b y remo ving some of the unnecessary

cognitiv e o v erhead resulting from p o orly designed user in terfaces and b y using sp ecialized

graphical views for presen ting large amoun ts of information.

CHAPTER 4. A COGNITIVE FRAMEW ORK 46

E13: R e duc e additional e�ort for user-interfac e adjustment

P o orly designed in terfaces will of course induce extra o v erhead. Av ailable functionalit y

should b e visible and relev an t [107] and should not imp ede the more cognitiv ely c hallenging

task of understanding a program.

Signi�can t cognitiv e o v erhead ma y b e in tro duced due to the disorien tation caused b y

switc hing views for di�eren t men tal mo dels. SeeSys pro vides a slider whic h the main tainer

can use to animate the views with resp ect to time [4]. Ho w ev er, there is a discon tin uit y

b et w een the views whic h ma y cause disorien tation. Kimelman et al. describ e the application

of morphing tec hniques to iterate smo othly b et w een di�eren t la y outs [72]. Although there is

extra o v erhead in v olv ed in computing the transitions b et w een views, the e�ects of reduced

disorien tation ma y b e w orth the additional e�ort. The cognitiv e o v erhead of switc hing

b et w een views at v arious lev els of detail can b e alleviated b y animating zo om-in (enlarge)

and zo om-out (shrink) actions. This functionalit y is supp orted in Con tin uous Zo om [56]

and VIPR [29].

E14: Pr ovide e�e ctive pr esentation styles

F or complex graphs t ypical of larger soft w are systems, la y out algorithms are frequen tly

used to displa y the graph in a more esthetically pleasing manner. Although soft w are has

no inheren t shap e or color, a graph can b e dra wn in suc h a w a y that it comm unicates

k ey c haracteristics ab out the soft w are. F or example, a graph whic h con tains man y cross-

ing arcs ma y giv e the impression of increased complexit y in the soft w are. Graph la y outs

ma y b e comp osed b y the user man ually p ositioning eac h of the no des and arc endp oin ts.

Alternativ ely , automatic or semi-automatic la y out algorithms can b e used to dra w the

graphs. Man y soft w are visualization to ols recognize the imp ortance of automatic graph la y-

outs and pro vide sp ecialized or customized la y outs suitable for presen ting soft w are graphs

[4 , 27 , 32, 86, 120 , 123 , 165].

VIF OR has a sp ecial la y out for visualizing soft w are called a two c olumn gr aph ; the left

column is used to displa y functions, and the righ t column sho ws common v ariables [120].

Arcs on the left side of the la y out sho w the call relations, and arcs in the middle sho w

references to the common v ariables. The CARE system extended the t w o column graph to

a graph called the Colonnade [85]. The Colonnade la y out displa ys eac h class of en tities in a

separate column, with relationships dra wn as sets of lines b et w een the columns. The la y out

ensures that the relationship lines connecting columns do not cross. Multiple dep endency

CHAPTER 4. A COGNITIVE FRAMEW ORK 47

t yp es are displa y ed sim ultaneously . It is limited in that it cannot sho w dep endencie s b et w een

non-adjacen t columns, but there is a move op eration so that t w o columns ma y b e sw app ed.

CARE also has tr e e la y outs for sho wing call graphs.

Hy+ uses the graphite to ol [32] for sev eral parametric graph la y out algorithms in 2D

and 3D. Some of the la y outs it supp orts are: cluster, circle, grid la y out, hier (a tree la y-

out), o v erlap (ensures that no des do not o v erlap one another using the no de disjoin tness

algorithms describ ed in [94]), pac king la y outs (to use space compactly), random la y outs,

spring la y outs (based on a ph ysical mo del where connected no des attract one another and

unconnected no des rep el one another [47]) and stac k la y outs.

Hiernet pro vides a la y out for p ositioning no des that assigns a meaning to their relativ e

p ositions and sizes [38]. F or example, if a no de represen ts a mo dule, the width of the no de

represen ts the n um b er of source �les it represen ts, and its heigh t represen ts the n um b er

of c hanges to the �les. Hiernet supp orts animation b et w een views, where a slider is used

to c hange the view with resp ect to time or some other v ariable. It also describ es a la y out

whic h places m utually connected no des in clusters. It is similar to a spring la y out, but it

has b etter results [38] b ecause the spring la y out places highly connected no des in a single

cluster.

The CIA system describ es a layering la y out algorithm whic h top ologically sorts di�eren t

com binations of reference relationships [27]. F or example, all non-called functions are placed

in lev el 0, all functions called b y lev el 0 functions are placed in lev el 1, all functions called b y

functions in lev els 0 or 1 are placed in lev el 2, and so on. The CIA system w as later in tegrated

with the dott y customizable graph editor [109]. The dott y to ol has a pro cedural in terface

and therefore can b e programmed to suit v arious di�eren t domains and applications. The

to ols supp orts v arious spring based la y outs and nested graph la y outs. A more recen t pap er

describ es incremen tal heuristic for dra wing rank ed digraphs [108]. This means a hierarc hical

la y out can b e adjusted (no des ma y b e added, deleted or �ltered b y the user) and the la y out

can b e up dated without completely redra wing the graph. Incremen tally up dating the graph

is imp ortan t for con tin ually c hanging large soft w are graphs.

Some soft w are visualization to ols use a third dimension to increase the readabilit y of the

soft w are graphs. The designers of GraphVisualizer3D felt that 3D la y outs w ould b e b etter

at sho wing more information than 2D la y outs [176]. Their strategy com bines partially

automatic la y out with man ual la y out. In GraphVisualizer3D, attributes of soft w are ob jects

(t yp e, structure, size) are mapp ed to graphical attributes of the 3D graphical ob jects (colour,

CHAPTER 4. A COGNITIVE FRAMEW ORK 48

shap e, size). Their concerns are that an automatic la y out cannot b e b ene�cial b ecause a

go o d la y out dep ends on the seman tics of the underlying graph whic h at presen t cannot b e

determined automatically [176]. Their metho d con trasts to the fully automatic tec hniques

in Hiernet [38] and in PLUM [123] where the la y outs use only the structure of the graph,

and not the seman tics.

SeeSlice uses a la y out whic h abstracts co de b y displa ying eac h line of co de in the form of

a thin line, prop ortional to the original length of the line of co de and inden ted accordingly

[6]. SeeSys uses a similar tec hnique for visualizing statistics (soft w are metrics) asso ciated

with hierarc hically organized subsystems, directories and �les [4]. The size of the en tities

sho ws the relativ e sizes of comp onen ts. SeeSys uses a higher lev el of abstraction and can

therefore b e used for larger systems.

Rigi supp orts v arious tree la y out algorithms, grid, spring and Sugiyama la y outs [165].

The Sugiy ama la y out algorithm p erforms a top ological sort of the graph, initially giving a

la y ered tree la y out whic h tries to minimize edge crossings b et w een la y ers in the tree [161].

Since Rigi is end-user programmable using the Tcl scripting language, it can b e extended

to supp ort a v ariet y of la y out algorithms and to implemen t customized algorithms whic h

use the seman tics of the graph dep enden t on a giv en application domain. In addition, Rigi

has extensiv e �ltering capabilities whic h can b e used together with the scripting facilit y to

pro duce more readable graphs.

4.3 Discussion

On review of the literature, there are sev eral issues p ertinen t to program comprehension

whic h are not adequately addressed b y curren t soft w are exploration to ols. Although man y

to ols do supp ort b ottom-up comprehension, relativ ely few to ols supp ort the in tegrated and

top-do wn comprehension mo dels. In particular, more supp ort for mapping domain kno wl-

edge to co de and switc hing b et w een men tal mo dels w ould b e useful. Better na vigation

metho ds whic h encompass meaningful orien tation cues and e�ectiv e presen tation st yles for

bro wsing large soft w are systems are also needed.

In this c hapter a set of cognitiv e design issues w as iden ti�ed b y examining v arious cogni-

tiv e mo dels of program comprehension and examples of existing soft w are exploration to ols.

This framew ork of cognitiv e design issues is in tended to b e used as a guide during the

design of soft w are exploration to ols. The framew ork b y itself do es not pro vide su�cien t

CHAPTER 4. A COGNITIVE FRAMEW ORK 49

insigh t as to ho w the iden ti�ed issues should b e resolv ed, nor do es it prescrib e when or if

certain information (suc h as histories of program c hanges [62]) should b e made a v ailable to

the main tainer. It do es, ho w ev er, highligh t issues whic h ma y b e imp ortan t concerns when

designing and ev aluating to ols.

W e ha v e used this cognitiv e framew ork as a guide for designing a soft w are exploration

to ol protot yp e. In particular w e fo cused on in tegrating sev eral graphical tec hniques for vi-

sualizing soft w are structures to enhance program comprehension. Although there are man y

di�eren t graphical displa y approac hes a v ailable for displa ying large amoun ts of information,

not all are suitable for exploring soft w are systems. The next c hapter reviews these tec h-

niques and describ es ho w the framew ork w as used to deriv e recommendations for suitable

graphical visualization tec hniques for this application.

Chapter 5

Graph Presen tation T ec hniques

Graphs are often used to depict soft w are structure. In addition to sho wing the size, complex-

it y and structure of soft w are, graphs can also b e used to pro vide orien tation cues, facilitate

na vigation and reduce the disorien tation e�ects while bro wsing a large soft w are system.

These additional functionalities are dep enden t on the presen tation of the graph and the

access it pro vides. As the size of soft w are systems increase, so to o do their represen tations

as graphs. Adv anced graphics and abstraction tec hniques are needed to manage the vi-

sual complexit y of these large graphs. This c hapter pro vides some bac kground on graph

terminology , graph dra wing and tec hniques for displa ying and bro wsing large graphs.

5.1 Graph Dra wing

A gr aph G = (V ; E) is a set V of no des and a set E of edges where eac h edge is an unordered

pair of no des [51]. G is dir e cte d when the edge set E is a set of ordered pairs. Throughout

this thesis the term graph is used to denote a directed graph and an ar c is used to denote

a directed edge. A neste d gr aph , in addition to no des and arcs, con tains c omp osite no des

whic h are used to implicitly comm unicate the hierarc hical nature of the graph [54]. In a

nested graph, a c omp osite ar c abstracts arcs to lo w er lev el no des in the hierarc h y . Nested

graphs are often called inclusion or c omp ound graphs. Figure 5.1 sho ws ho w the structure

of a tree ma y b e expressed through spatial con tainmen t in a nested graph.

A gr aph dr awing is a visual represen tation of the geometrical description of a graph

[89]. No des are usually dra wn as b o xes, p oin ts or circles and arcs ma y b e dra wn as one or

more straigh t-line segmen ts connecting no des. A high n um b er of line segmen ts ma y giv e the

50

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 51

A

B C

D E F G

(a)

A
B

C

D

E F

G

(b)

Figure 5.1: (a) A tree view of a hierarc h y . (b) A nested graph view of the same hierarc h y

with comp osite no des A, B, and C.

impression of curv ed lines connecting no des. A graph where arcs are dra wn with single line

segmen ts are called str aight-line dra wings. A p olyline dra wing displa ys arcs using m ultiple

line segmen ts where segmen ts connect at b end p oints . An ortho gonal-line dra wing constrains

the arc segmen ts to b e parallel to the horizon tal or v ertical axes of a grid.

A gr aph layout sp eci�es co ordinates in the plane for eac h of the no des and arc b end

p oin ts [34]. One example is a grid la y out where no des are p ositioned on a rectangular grid.

A gr aph dr awing algorithm automatically calculates a la y out for an input graph [36]. Graph

dra wing algorithms mak e use of additional information or constrain ts to compute a la y out

to impro v e the readabilit y of a graph. They ma y b e designed to minimize the n um b er of

arc crossings, minimize the total area o ccupied b y the dra wing, displa y symmetries in the

graph or simply a v oid no de and arc in tersections. Graph la y outs for nested or comp ound

graphs are presen ted in [103 , 132 , 160].

F or the purp ose of visualizing soft w are, the graph should ha v e esthetic app eal and it

should also mak e use of secondary cues (colour, la y out, white space) so that it is me aningful

[115]. The la y out of the graph is crucial to the information it comm unicates. T uk ey describ es

a list of general principles that should b e adhered to when designing go o d graphic displa ys

[168]. They include the follo wing: ob jects are p erceiv ed in relation to their surroundings;

straigh t lines are easier to p erceiv e than curv es; horizon tal lines are easier to p erceiv e than

oblique lines; and things of equal imp ortance should ha v e the same visual impact. These

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 52

principles (among others) are v ery relev an t to graphs displa ying soft w are structure.

An original graph la y out ma y b e adjusted for sev eral reasons: to add or delete no des in

the graph; to abstract a subgraph in to a comp osite no de; or to allo cate more space to certain

structures in the graph. Misue et al. describ e three prop erties whic h should b e main tained

in adjusted la y outs to preserv e the user's mental map : orthogonal ordering, pro ximit y and

top ology [94]. The orthogonal ordering b et w een no des is preserv ed if the horizon tal and

v ertical ordering of no des is main tained. Pro ximit y is preserv ed b y k eeping no des close in

the distorted view if they w ere close in the original view. The top ology is preserv ed if the

distorted view of the graph and the original graph ha v e the same dual graph.

Manipulating large graphs on a small screen can b e problematic. V arious metho ds ha v e

b een prop osed for displa ying and manipulating large graphs. Some of these tec hniques rely

on multiple views whic h segmen t the graph in to subgraphs, while others displa y the graph

in a single view . These tec hniques are describ ed in the next three sections.

5.2 Multiple Views

F or industrial sized soft w are visualizations, represen tativ e graphs con tain on the order of

thousands of no des and arcs. Man y to ols partition the graph in to comp onen ts and displa y

eac h piece in a distinct windo w. The resulting windo ws are cascaded or arranged in suc h

a fashion that the user can selectiv ely c ho ose whic h part of the graph to examine. F or

man y applications this approac h for displa ying large graphs is less than satisfactory as the

user will ha v e di�cult y conceptualizing the relationships b et w een the individual windo ws.

F requen tly an overview or a map view is pro vided to sho w the big pictur e view of the en tire

graph in less detail. Ho w ev er, it is a di�cult task for a user to asso ciate the t w o views with

one another.

5.3 Single View: No Con text

Sev eral approac hes displa y a single view of the graph, and th us eliminate the need for the

user to men tally in tegrate information in separate windo ws. The user views the graph in

v arying amoun ts of detail b y zo oming in (enlarging) and zo oming out (shrinking) the view.

The user ma y also p an through the view using scroll bars or b y dragging the view using the

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 53

mouse. The problem with this approac h is that for v ery large graphs the pan and zo om ac-

tions need to b e animated in suc h a w a y that the user has the feeling that the hidden part of

the graph is readily accessible. The P ad++ system ac hiev es this using sophisticated graph-

ical programming tec hniques to ac hiev e smo oth panning and zo oming [10 , 114]. Ho w ev er,

panning and zo oming approac hes do not address the issue of sho wing con text and detail

sim ultaneously . As the in tegrated cognition mo del for program comprehension indicates,

users often need to p eruse di�eren t lev els of abstraction sim ultaneously to assist them in

understanding certain relationships. Con text and detail views (or �shey e view tec hniques)

are more suited to this mo del of program comprehension. These tec hniques are describ ed

in the next section.

An alternativ e in terface, is describ ed b y Lieb erman in [84]. This tec hnique uses translu-

cen t la y ers to pro vide con text to the higher scaled images. Images at di�eren t lev els of

scale share the same space and are visible in sev eral translucen t la y ers. Since this approac h

has not y et b een ev aluated, it is not clear ho w confusing and cognitiv ely demanding this

approac h migh t b e.

5.4 Single View: In tegrated Con text and Detail

V arious tec hniques ha v e b een dev elop ed to view and na vigate detailed information while

pro viding the user with imp ortan t con textual cues [23]. These tec hniques w ere dev elop ed

in resp onse to di�culties observ ed with the m ultiple view and pan+zo om viewing meth-

o ds. These metho ds are divided in to t w o categories, non-in teractiv e static views of the

information space and in teractiv e views whic h can b e altered dynamically b y the user.

5.4.1 Static displa y tec hniques

P olyfo cal displa ys: This tec hnique, dev elop ed in 1978 b y Kadmon et al. , pro vides a

distortion tec hnique for displa ying statistical data on cartographic maps [67]. Although

it w as used in a non-in teractiv e setting, it formed the mathematical basis for more recen t

distortion-orien ted tec hniques. Kadmon dev elop ed the concept of p e aks for fo cal displa ys,

where t w o sets of parameters are used to con trol the magni�cation at the p oin t of fo cus and

the rate of c hange of magni�cation with distance from the fo cal p oin t. T r oughs in the view

are used to comp ensate for the high magni�cation factors of the p eaks. A magni�cation

factor of zero can b e used so that a p ortion of the displa y can b e hidden from the view.

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 54

Negativ e magni�cation factors ma y also b e used for o v erlapping or folding parts of the view.

Fishey e views: The term �sheye view , used frequen tly to describ e sim ultaneous con text

and detail viewing, w as coined b y George F urnas in 1986 [48]. A �shey e lens is a sp ecial lens

through whic h ob jects closer to the cen ter of the lens app ear increasingly larger. F urnas

dev elop ed this tec hnique after observing that naturally o ccurring �shey e views are prev alen t

in ho w p eople observ e and p erceiv e the w orld. F or example, newspap er editors use a �shey e

editorial strategy in that lo cal news is describ ed in more detail than global news. In F urnas'

original form ulation, a thr esholding tec hnique is emplo y ed to suppress less imp ortan t ob jects

from the view. Eac h elemen t is assigned a v alue based on its relev ance to the user (a priori

imp ortance) and a v alue describing its distance from a fo cal p oin t. A de gr e e of inter est

(DOI) function uses these v alues to determine eac h elemen t's priority . Elemen ts with a

priorit y b elo w a certain threshold are �ltered from the view. F urnas applied these ideas

to displa ying program source co de (text) and for displa ying calendars. Although these

ideas w ere not applied directly to graphs, this w ork pro vided the foundation for graphical

applications of �shey e views.

T reemaps: T reemaps are used to displa y hierarc hies b y represen ting eac h ob ject as a

rectangle, where c hild ob jects are dra wn inside their paren t [66]. The T reemap visualization

tec hnique uses 100% of the displa y space b y mapping the full hierarc h y on to a rectangular

region in a space-�lling manner. Sections of the hierarc h y con taining more imp ortan t in-

formation are allo cated more displa y space. The size of eac h rectangle is determined b y a

user assigned w eigh t with the constrain t that the w eigh t is greater than or equal to the sum

of the w eigh ts of its c hildren. Their approac h uses a top-do wn slic e and dic e algorithm to

p osition and size rectangles. The slice and dice algorithm allo cates space to rectangles b y

carving up the a v ailable space in t w o directions, horizon tally and v ertically . This algorithm

has linear time complexit y pro vided the w eigh ts ha v e already b een assigned b y the user. A

later pap er [169], describ es another algorithm whic h dices in only one direction, along the

horizon tal axis. Although this la y out is more familiar for some users, it do es not use the

screen displa y space as e�ectiv ely as the slice and dice metho d. The T reemap tec hnique w as

initially dev elop ed for visualizing large directory structures.

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 55

In teractiv e graph la y out: Henry describ es an in teractiv e la y out tec hnique suitable for

dra wing large graphs [58 , 59 , 60]. His premise is that although la y out algorithms can b e

go o d for sho wing go o d global information, they are not suited to sho wing minor graph sub-

structures. He suggests that users should b e able to in teract with the la y out and customize

it to suit their needs. In teractiv e graph la y outs are comp osed hierarc hically b y decomp osing

the graph in to subgraphs and applying an appropriate la y out algorithm to eac h subgraph.

Fishey e-lik e views can b e created b y assigning more space to no des or subgraphs of more

imp ortance. In this w a y , static views can b e created in teractiv ely b y the user to sho w b oth

con text and detail.

La y out-indep enden t �shey e views of nested graphs: Noik describ es this tec hnique

as a step whic h precedes graph la y out rather than a step whic h adjusts an existing la y out

[103 , 106]. It is a la y out for nested graphs, whic h allo cates more space to subgraphs of more

imp ortance. Sup er�cially this algorithm is similar to T reemaps as it could b e customized to

pro duce a T reemap la y out. The graph is dra wn from the b ottom-up computing the size and

p osition of eac h no de b y �rst p ositioning the c hildren no des. No des are resized b y uniformly

scaling the b ounding b o x in prop ortion to the user assigned priorit y . This approac h has b een

applied to exploring large nested h yp ertext net w orks to alleviate the \lost in h yp erspace"

phenomenon so frequen tly encoun tered b y users of h yp ertext systems [105]. A dra wbac k

of this approac h is that there is no stabilit y in the la y out tec hnique; one view can alter

drastically from a previous view due to a small c hange in no de sizes. F or this reason, the

metho d is not ideally suited as a dynamically c hanging displa y for graph bro wsing.

5.4.2 Dynamic displa y tec hniques

These tec hniques allo w the user to in teract with and alter the la y outs dynamically . The user

can select an area in the graph, and then enlarge it in teractiv ely using one of the follo wing

metho ds:

Bifo cal displa ys: The Bifo cal displa y dra ws ob jects in the screen using t w o magni�cation

factors, hence the name Bifo cal [82]. This simple algorithm splits the screen in to nine

regions, where the cen tral region is the fo cus, and the surrounding regions are uniformly

scaled to mak e ro om for the larger cen ter panel. The three regions ab o v e and b elo w the

fo cus are scaled uniformly in the y direction, and lik ewise the three regions to the left and

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 56

to the righ t of the fo cus are scaled uniformly in the x direction. No des that are orthogonal

in the original view remain orthogonal in the distorted view.

SemNet: SemNet w as dev elop ed for exploring and mo difying large information spaces

[40]. Kno wledge bases are represen ted as directed graphs in a three-dimensional space [40].

SemNet uses clustering (�ltering b y abstraction) and 3D p oin t p ersp ectiv e (closer ob jects

are displa y ed larger than ob jects further a w a y) to create �shey e views. An adv an tage of

the 3D dra wing is that the view can b e rotated un til arcs of in terest do not o v erlap. The

SemNet designers discuss sampling density in their pap er, a tec hnique used b y our h uman

ey e for p erceiving closer ob jects in more detail than ob jects further a w a y . Ho w ev er, sampling

densit y w as not implemen ted in their system. SemNet w as one of the earliest systems to

view soft w are in 3D. Their pap er sho ws an example of visualizing Prolog mo dules. Criticism

of this tec hnique has b een that its displa y ed graphs tend to b e cluttered and th us imp ede

the understanding of the structure it w as supp osed to help rev eal [129].

MVP: Misue et al. describ e three approac hes for visualizing comp ound (nested) graphs

[95]: the Biform Display Metho d (BF), the Fisheye Display Metho d (FE) and the Ortho g-

onal Fisheye Display Metho d (OFE). The BF metho d uses view areas, where items inside

the view areas are uniformly magni�ed, and items outside of the areas are uniformly de-

magni�ed. View areas are determined b y pro jections of fo cal p oin ts on to the x and y axes.

Although the tec hnique used is di�eren t, the result is the same as the Bifo cal tec hnique in

app earance. This tec hnique preserv es straigh tness of lines and orthogonal ordering of no des

in the distorted view.

The FE metho d uses an in v erse tangen t function to pro duce a �shey e view.

1

This

approac h supp orts m ultiple fo cal p oin ts. Ho w ev er, the orthogonal ordering of p oin ts is not

main tained using this approac h. OFE, a v arian t of FE, preserv es straigh tness of lines and

lines that are parallel to the x and y axes in the original view will remain parallel in the

distorted view. It also main tains the orthogonal orderings, but b oth the OFE and the FE

metho ds tend to ha v e to o m uc h distortion for some parts of the graph, esp ecially at the

edges where ob jects app ear to b e extremely compressed.

1

The same approac h is used b y the CA TGraph algorithm [68].

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 57

Cone trees: Cone trees displa y hierarc hical information structures using 3D graphics and

in teractiv e animation [129]. It displa ys the hierarc hical structure as a tree where eac h lev el

is disp ersed in a 3D ring b elo w the paren t. No des closer to the viewp oin t will app ear larger

than those further a w a y using 3D p oin t p ersp ectiv e. No des are dra wn transparen tly so

that no des at the bac k of the ring are still visible. Con tin uous rotations and shading giv es

insigh t to substructures in the hierarc h y . Animation is a v ery imp ortan t p erceptual cue in

this system. This approac h is suitable for displa ying up to 200 no des [134].

P ersp ectiv e w all: The p ersp ectiv e w all folds a 2D la y out on to a 3D w all in tegrating

detail and con text [90]. The cen ter panel sho ws detail, while the t w o side panels recede

in the distance sho wing the con text [134]. The distortion in the side panels dep ends on

the user's viewp oin t. As the viewp oin t mo v es closer to the cen ter panel, the distortion

increases, w asting v aluable screen space in the corners [81]. As the viewp oin t mo v es out to

in�nit y , items in the side panels will app ear uniformly scaled giving the same results as the

Bifo cal algorithm applied in one dimension. This tec hnique mak es use of sp ecial hardw are

to ac hiev e 3D in teractiv e animation. It is suitable for linearly structured information spaces

since it distorts in one dimension only .

Graphical �shey e views: Sark ar and Bro wn extended F urnas' ideas for creating graph-

ical �shey e views of graphs [133 , 134]. Their tec hnique magni�es p oin ts of greater in terest

and corresp ondingly demagni�es p oin ts of lo w er in terest b y distorting the space surround-

ing the fo cal p oin t. No des that are further a w a y from the fo cal p oin t app ear increasingly

smaller. Sark ar and Bro wn describ e using t w o transformations, c artesian and p olar transfor-

mations. The p olar transformation w as used e�ectiv ely for creating �shey e views of maps.

The cartesian transformation w as found to b e b etter suited for applications whic h needed to

preserv e v ertical and horizon tal lines suc h as VLSI la y outs. Sark ar and Bro wn's tec hnique

can b e extended to supp ort m ultiple fo cal p oin ts. An imp ortan t issue is that real-time

resp onse is only attainable for 150 no des and 350 edges [134]. Noik describ es this approac h

as a h ybrid �ltering/distorting tec hnique [104]. Ob jects with a priorit y b elo w a certain

threshold are completely �ltered from the view, and other ob jects are sized and p ositioned

according to their relev an t imp ortance.

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 58

Do cumen t lens: This visualization to ol is useful for bro wsing text when the structure is

not kno wn [128]. The idea is that a rectangular lens mo v es o v er the text enlarging sections

of it. T ext under the lens is displa y ed at a desired magni�cation, while text areas not

under the lens shrink to displa y the global con text. It is similar to P ersp ectiv e w all, except

that it distorts v ertically as w ell as horizon tally . Their implemen tation in v olv es translating,

rotating and scaling in �v e regions: in the lens, ab o v e the lens, b elo w the lens, and regions

to the righ t and left of the lens. This tec hnique results in scale discon tin uities at the

b oundaries b et w een regions. They use sp ecial clipping plane soft w are to implemen t their

approac h e�cien tly . Do cumen t lens do es not supp ort m ultiple fo cal p oin ts.

Rubb er sheet: Tw o metho ds based on a rubb er sheet metaphor are describ ed b y Sark ar

et al. [135]. The �rst metho d, Ortho gonal Str etching , uses handles to stretc h an area of the

graph in the x and y directions. Items whic h fall in these areas are stretc hed uniformly , while

those outside con tract uniformly . This approac h can b e extended to structured la y outs suc h

as nested graphs. Multiple fo cal p oin ts are p ossible although ghost fo cal areas will b e created

in the in tersection of horizon tal and v ertical view areas of t w o fo cal areas. In app earance,

this approac h is the same as the MVP Biform tec hnique and the Bifo cal displa y . The second

metho d, Polygonal Str etching , allo ws a user to sp ecify a p olygonal region. Items inside the

p olygon are scaled as the p olygon is stretc hed and the rest of the view is scaled smo othly

to in tegrate it with the enlarged region. The p olygonal stretc hing metho d do es not ha v e an

in v erse mapping once a region is scaled.

Con tin uous zo om: The Continuous Zo om A lgorithm b y Dill et al. , is in tended for in ter-

activ ely displa ying hierarc hically-organized, t w o-dimensional net w orks [37]. This approac h

allo ws users to view and na vigate nested graphs b y expanding and shrinking no des. This

algorithm uniformly resizes no des to pro vide space for fo cal p oin ts. The Con tin uous Zo om

algorithm w as preceded b y the V ariable Zo om algorithm whic h had an additional constrain t

that no des could not o v erlap in the the x or y directions in the initial la y out [136]. The

algorithm uses a budgeting pro cess to distribute space among no des in the net w ork. No de

in terv als are assigned space based on the maxim um scale factor of all the no des that are

pro jected on to an in terv al. A more recen t pap er describ es a De gr e e of Inter est (DOI) func-

tion, whic h can b e used to automatically resize no des relativ e to their imp ortance to the

user [8]. This leads to more e�cien t use of space and b etter user con trol. The approac h

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 59

is e�cien t for 50-100 visible no des. Heinric hs uses this algorithm in a Ja v a-based graphical

user in terface for na vigating hierarc hical soft w are structures [56].

Hyp erb olic �shey e views: This tec hnique is suitable for hierarc hies. The hierarc h y is

mapp ed on to a h yp erb olic space, where a c hange of fo cus is accommo dated b y translating

the function on the h yp erb olic plane [76]. Their approac h is an e�cien t one, ho w ev er, it

supp orts only one fo cal p oin t and it is not suitable for nested graphs. It is similar to the

tec hnique used b y the VIPR to ol, except that in VIPR a spherical pro jection is used to

sho w the fo cus at the cen ter of the view [29].

Generalized �shey e views of graphs: F ormella and Keller [46] extend the metho ds

dev elop ed b y Sark ar and Bro wn [134]. This approac h supp orts m ultiple fo cal p oin ts and

fo cal areas where an area ma y b e a simple closed con v ex or conca v e p olygon. The tec hnique

has b een applied to tra v el planning and ra y tracing. The tec hnique could b e extended to

hierarc hical represen tations.

3DPS: Carp endale et al. dev elop ed the 3-Dimensional Pliable Surfaces (3DPS) metho d

whic h uses gaussian curv es to pro vide �shey e views with supp ort for arbitrarily shap ed

m ultiple fo ci (con v ex and conca v e) [24]. Their distortion function is an impro v emen t o v er

similar tec hniques since they use a half sine curv e to alleviate compression at the edges of the

graph and blending functions to smo oth distortion b et w een m ultiple fo cal areas. Visually ,

their distorted graphs are similar to graphs depicted b y the P olyfo cal static displa y metho d

for visualizing cartographic maps [81]. Comprehension factors of shading and grid lines are

used to alleviate disorien tation e�ects. This is imp ortan t for certain applications (suc h as

maps) where the distortion ma y not alw a ys b e directly visible. Their approac h has b een

extended to include gr aph folding for eliding non-in teresting parts of the graph [25]. The

metaphor used b y 3DPS is a nice one: detail is increased/decreased b y pulling/pushi ng a

fo cus to w ards/a w a y from the user. Keahey and Rob ertson describ e a similar approac h using

nonlinear magni�cation �elds [70]. A metaphorical description whic h pro vides a unifying

theory for all of these approac hes is describ ed b y F urnas and Bederson in [49].

F o cus line: This geometric distortion metho d is an in teractiv e extension of and an im-

pro v emen t o v er the non-in teractiv e P olyfo cal displa y metho d. F o cus Line w as designed to

solv e the problem of sym b ol cluttering in maps [53]. The to ol w as originally dev elop ed for

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 60

Multiple Views Single View

Context+Detail No Context Context+Detail

Map View/
Overview

Pad++ Polyfocal Displays

Fisheye Views

Treemaps

Interactive
Graph Layout

Layout-independent
Fisheye Views

Bifocal Displays
SemNet
MVP

Cone Trees

Perspective Wall

Document Lens

Rubber Sheet

Continuous Zoom

Hyperbolic
Fisheye Views

3DPS
Focus Line

No Context

Multiple
Windows

Static Display
Techniques:

Dynamic Display
Techniques:

Pan+Zoom: Layers:

Translucent
Layers

RigiSNiFF+

Figure 5.2: A taxonom y of graphical presen tation tec hniques

tactile route maps for visually impaired p eople, and later extended for maps for sigh ted

p eople. The approac h supp orts m ultiple fo cal areas, where damping metho ds are applied to

reduce the distortion b et w een fo cal areas. Their distortion metho d can b e parameterized

to giv e di�eren t distortion e�ects. Their c hoice of distortion function is nice in that it do es

not c hange the shap e of the map b oundary and the distortion smo othly dissipates in to the

rest of the view.

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 61

5.5 Summary of Graphical Displa y T ec hniques

As is eviden t from the large n um b er of tec hniques just describ ed, there are man y di�eren t

approac hes for displa ying large graphs; Fig. 5.2 pro vides a summary . Some to ols use m ultiple

windo ws to displa y di�eren t p ortions of the graph on the computer screen. Some m ultiple-

view approac hes rely on map or o v erview windo ws to pro vide con text for the information

displa y ed. In con trast to m ultiple-views, other systems use a single view for displa ying large

graphs. Along the single-view dimension, some systems sho w con text or detail within their

windo w but not b oth at the same time. F or example, the pan+zo om tec hniques allo w the

user to enlarge some parts of the graph using a zo oming metaphor.

Man y single-view systems displa y b oth con text and detail at the same time. Of these

systems, some are static displa y tec hniques and are primarily suitable for creating graph

la y outs whic h emphasize certain parts of the information displa y ed. Dynamic displa y tec h-

niques allo w a user to in teract with and explore the information displa y ed b y the graph.

The user can select a fo cus (or fo ci) and the system resp onds b y dynamically enlarging those

parts within the con text of the rest of the graph.

Figure 5.2 pro vides a simple taxonom y of the v arious approac hes a v ailable. Leung and

App erley [81], Noik [104] and Plaisan t et al. [118] ha v e compiled more detailed taxonomies.

5.6 Ev aluating Graphical Displa y T ec hniques

The recen t proliferation in con text+detail views ma y p erhaps giv e the impression that this

approac h is a go o d solution for displa ying large amoun ts of information on a small screen.

Ho w ev er, there is little concrete evidence to supp ort this supp osition. Relativ ely few exp er-

imen ts ha v e b een done to ev aluate the e�ectiv eness of these displa ys.

An early ev aluation of a non-in teractiv e �shey e view displa y w as p erformed b y F urnas

in 1986 [48]. This exp erimen t in v olv ed 20 sub jects na vigating an unfamiliar hierarc hical

structured �le. The �shey e views w ere fa v oured o v er the
at views of the �le.

T uro and Johnson ev aluated T reemaps using t w o exp erimen ts [169]. The �rst exp erimen t

in v olv ed bro wsing directory structures using T reemaps compared to bro wsing the same

directory structure in UNIX. Tw elv e sub jects participated in this exp erimen t. Questions

whic h had lo cal scop e in the directory structure w ere answ ered more correctly using UNIX,

but global tasks w ere answ ered b etter using T reemaps. T uro and Johnson suggest that

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 62

UNIX migh t ha v e fared b etter for lo cal questions b ecause of the learning e�ect. The second

exp erimen t in v olv ed eigh teen sub jects bro wsing �nancial data using T reemaps compared to

hard cop y rep orts. T reemaps fared signi�can tly b etter for this task. Although one iden ti�ed

problem w as that the users found it di�cult to di�eren tiate b et w een rectangles close in size;

it w as easier for the users to see small di�erences using n um b ers in the hard cop y rep orts.

T uro and Johnson noticed that users tended to mistrust the diagrams at �rst, probably

b ecause they w ere not as used to them [169].

SemNet, used b y linguists in a Natural Language Pro ject, w as ev aluated at the Micro-

electronics and Computer T ec hnology Corp oration (MCC) [40]. The results are describ ed in

a proprietary pap er whic h is not a v ailable to non-pro ject participan ts. These results formed

the basis of man y of the ev aluativ e statemen ts made in [40].

The Bifo cal Displa y tec hnique w as ev aluated in t w o exp erimen ts [82]. These exp erimen ts

presen ted v arious views of underground train systems and the sub jects had to p erform sev-

eral na vigation tasks using the views. In the �rst exp erimen t, �v e in terfaces w ere compared:

w all map, p oin t and sho ot Bifo cal displa y , scrolling windo w of a Bifo cal displa y , m ultiple

windo w view, and a split screen view. Thirteen sub jects participated in the exp erimen t.

The results from this exp erimen t w ere inconclusiv e although one imp ortan t result w as that

sub jects tended to o v erlo ok stations in the split screen approac h b efore mo ving on to the

next displa y . This problem w as not observ ed for users of the Bifo cal Displa y .

Thirt y-four sub jects participated in the second exp erimen t. F our in terfaces w ere com-

pared: scrolling Bifo cal displa y , Bifo cal p oin t and sho ot, split-screen scrolling, and windo w ed

view scrolling. The tasks w ere timed and the order of in terfaces randomized. The results

sho w ed that the v arious in terfaces w ere suited for di�eren t tasks. They found that a scrolling

Bifo cal w as b etter than a p oin t and sho ot Bifo cal.

An earlier exp erimen t b y Hollands et al. also ev aluated underground map na vigation

using t w o views: scrolling views and �shey e views [61]. Hollands et al. found that the

�shey e view w as preferable when the destination station w as not initially visible and that the

scrolling view w as preferable when the initial station w as visible. A p oin t w orth men tioning

is that their �shey e view metho d caused the displa y to c hange abruptly when the fo cal

p oin t switc hed from one station to another. This disorien ting e�ect w ould ha v e a�ected the

results of their exp erimen ts [82].

The v ariable zo om �shey e view metho d w as compared to a full zo om metho d b y Sc ha�er

et al. [137]. Tw en t y sub jects na vigated a sim ulated telephone system and had to reroute

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 63

T able 5.1: Exp erimen ts to ev aluate con text+detail displa ys

Static Users In terfaces T ask Results

Displa ys

Fishey e views 20 Fishey e view;
at Na vigation in a Fishey e view b etter

hierarc hical view structured �le

T reemaps 12 T reemaps; UNIX Bro wsing directory Lo cal queries: UNIX b etter

directories structures initially . Global queries:

T reemaps b etter o v erall

18 T reemaps; hard Visualizing �nancial T reemaps

cop y rep orts data signi�can tly faster

Dynamic

Displa ys

Bifo cal 13 W all map; Na vigating London Inconclusiv e. Users

p&s

2

Bifo cal; Underground preferred w all map

scrolling Bifo cal; and p&s Bifo cal

windo w ed view;

split screen;

34 p&s split screen; Na vigating London Scrolling Bifo cal b etter

scrolling split; Underground than p&s Bifo cal

p&s Bifo cal;

scrolling Bifo cal

V ariable zo om 20 Fishey e view; Sup ervising Fishey e view faster;

full zo om telephone net w orks preferred b y users

CZW eb 12 Fishey e view; Bro wsing a w eb site CZW eb impro v ed the

Netscap e users' global visualization

of the site

brok en links in it. Success w as measured b y the n um b er of zo oms p erformed, time to com-

plete a task and the correctness of the task. Quan titativ e data w as collected automatically

b y the system (using scripts) and qualitativ e data w as collected b y rating sub ject commen ts

and a questionnaire. The results indicated that the tasks w ere p erformed m uc h more quic kly

using the �shey e view metho d with few er zo oms needed. Ho w ev er, no statistically signif-

ican t e�ect w as observ ed on task correctness. Qualitativ e results indicated that the users

preferred the �shey e views. A related exp erimen t compared the con tin uous zo om metho d to

con tin uous zo om with in telligen t assistance for managing a sup ervisory con trol system [7].

The exp erimen t w as carried out in a sim ulated p o w er plan t net w ork managemen t system.

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 64

Although this w as a small exp erimen t, early results suggested that the users appreciated

implicit assistance.

The CZW eb to ol uses the con tin uous zo om algorithm for na vigating the w eb. This in-

terface w as compared to standard w eb na vigation aids pro vided within Netscap e [44]. They

studied 12 univ ersit y studen ts accessing a w eb site to answ er sp eci�c questions concerning

1996 Olympic sailing ev en ts. After completing the tasks, the sub jects completed a question-

naire. The questionnaire ask ed the users to rate v arious asp ects of the CZW eb in terface.

Their results sho w ed that CZW eb p ositiv ely impro v ed the users' global visualizations of the

w eb.

The results from these exp erimen ts are summarized in T able 5.1. In general, the results

fa v our the con text+displa y metho ds. Ho w ev er, more exp erimen ts are needed to ev aluate

whic h applications are suited to these metho ds. In the next section, the cognitiv e framew ork

of design elemen ts is used for de�ning a set of useful features for the soft w are exploration

application.

5.7 Cho osing a Suitable T ec hnique for Visualizi ng Soft w are

The framew ork of cognitiv e design elemen ts dev elop ed in Chapter 4 highligh ts imp ortan t

issues and di�culties to b e addressed in the design of a soft w are exploration to ol. Although

the framew ork in itself do es not pro vide enough insigh t as to ho w these issues should b e

resolv ed, it ma y b e used in limited circumstances for deriving sets of guidelines for making

k ey in terface design decisions.

The graphical displa y tec hniques, just describ ed, eac h ha v e the p oten tial to stretc h the

displa y capabilities of a small computer screen. Ho w ev er, it is not clear whic h of these

tec hniques are suitable for presen ting and na vigating soft w are structures. These metho ds

di�er in the functionalities they eac h supp ort. The framew ork of design elemen ts is used to

extract a set of desirable features for exploring and visualizing soft w are systems.

Single view Switc hing b et w een windo ws in a m ultiple view displa y increases a user's

cognitiv e o v erhead if the relationship b et w een op en windo ws is not apparen t. A single

view approac h (or one whic h uses a small n um b er of windo ws) should reduce the additional

e�ort caused b y switc hing b et w een m ultiple windo ws (cf. Cognitiv e Design Elemen t E13 in

Fig. 4.1).

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 65

Con text and detail The con text+detail approac hes ha v e the adv an tage of sho wing rele-

v an t, detailed information in a larger con text. Other metho ds obscure parts of the soft w are

structure and therefore also obscure the relationships b et w een non-visible and visible ob-

jects. Since more of the soft w are is visible in a con text+detail displa y (alb eit at a reduced

scale), it has the p oten tial to pro vide mec hanisms for displa ying e�ectiv e orien tation cues

(cf. E10, E11 and E12). A con text+detail approac h, com bined with a single view, means

that graphical ob jects relev an t to a delo calized plan can b e more easily highligh ted (cf. E2).

Dynamic displa y A user should b e able to in teract with the displa y using direct ma-

nipulation. Ideally the tec hnique should allo w the user to select structures in the soft w are

and then enlarge those structures automatically in suc h a w a y that the user has a sense

of ho w the structures in teract with the rest of the soft w are. The animation comp onen t of

a displa y+con text tec hnique is critical for user p erformance. Smo oth animation of fo cus

c hanges w ould ensure reduced user in terface adjustmen t o v erhead for the user (cf. E13).

Nested graphs Nested graph la y outs are an e�ectiv e represen tation of soft w are struc-

tures, whic h are often hierarc hical. Nested graphs are used b y Hy+ [92], VIPR [29] and

Landscap e views [113]. The IGD (In teractiv e Graphical Do cumen ts) h yp ertext system uses

nested graphs to sho w the underlying structure of h yp ertext do cumen ts [41]. Nested graphs

can b e used to supp ort visual na vigation in hierarc hies (E8) and as a cue for na vigating

to di�eren t lev els of abstractions in the soft w are structure (E9). A highligh ted trail can b e

used to sho w the path that led to the curren t fo cus (E11). No des in the nested graph serv e

as cues for further na vigation (E12). Multiple men tal mo dels at v arying lev els of abstraction

ma y b e displa y ed concurren tly in a nested graph (E5).

Multiple fo cal p oin ts The main tainer's fo cus is often disp ersed throughout the soft w are

system p erhaps due to delo calized plans and non-lo cal in teractions. Ideally all parts of the

soft w are relev an t to the user's task should b e visible in enough detail to b e useful (E10). A

soft w are main tainer ma y b e in terested in di�eren t parts of the soft w are at v arying lev els of

detail. Therefore m ultiple fo cal p oin ts should b e supp orted at v arious lev els of abstraction

(E5). User adjustmen t for switc hing atten tion from one part of the soft w are to another can

b e alleviated b y temp orarily sho wing b oth areas of in terest at the same lev el of detail b efore

sho wing the new fo cus in greater detail (E13).

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 66

T able 5.2: Desirable features of a con text+detail displa y metho d

Single Con text Dynamic Nested Multiple Preserv e E�ciency

View + Detail Displa y Graphs F o ci Men tal

Map

E2: reduce e�ects of

p p

delo calized plans

E5: sho w v arious

p p

lev els of abstraction

E8: directional

p

na vigation

E9: arbitrary

p

na vigation

E10: curren t

p p p

fo cus visible

E11: displa y path

p p

that led to fo cus

E12: sho w options

p p

for new no des

E13: reduce UI

p p p p p p

adjustmen t

E14: e�ectiv e

p p p p

presen tation st yles

Preserving the men tal map In a con text+detail view, the graph will ha v e to b e altered

or distorted to c hange fo cal areas. A graph la y out cannot b e distorted without c hanging

some of the original la y out prop erties. The st yle of graph la y out and its application should

b e considered when deciding whic h prop erties to preserv e or distort. This is particularly

imp ortan t for soft w are visualization where v arious graph la y out algorithms are used to

con v ey information concerning di�eren t asp ects of the soft w are. Preserving the men tal map

ensures that the distorted la y out will con v ey the same information as the original la y out

(E13, E14). Another imp ortan t comp onen t for preserving the men tal map is rev ersibilit y .

The user should b e able to bro wse the graph in suc h a w a y that an y action is fully rev ersible

(E13). Rev ersibilit y facilitates na vigation since the user can step bac k at an y time to a

previous view (E9).

E�ciency An imp ortan t consideration, esp ecially for legacy soft w are systems, is the ef-

�ciency of a displa y tec hnique. Graphs represen tativ e of large soft w are systems tend to b e

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 67

T able 5.3: Cho osing a metho d for visualizing soft w are

Nested Graphs Multiple F o ci Preserving the E�cien t

Men tal Map

Bifo cal Displa ys

p p

SemNet

p p

MVP

p p p

Cone T rees

p

P ersp ectiv e W all

Do cumen t Lens

Rubb er Sheet

p p

Con tin uous Zo om

p p p

Hyp erb olic Views

p

Graphical FEVs

p p

3DPS

p p p

F o cus Line

p p p

SHriMP

p p p p

v ery large. Man y of the tec hniques just describ ed are suitable for only a couple of h undred

no des, or require sp ecial hardw are. An e�cien t displa y for in teractiv ely selecting fo cal areas

in large graphs is v ery imp ortan t to reduce unnecessary cognitiv e o v erhead (E13, E14).

T able 5.2 summarizes ho w the hierarc h y of cognitiv e design issues is useful for extracting

a set of desirable features for a suitable graphical displa y metho d for the na vigation and

visualization of soft w are structures. The single-view, con text+detail, dynamic displa y tec h-

niques sho wn in the righ t hand column of Fig. 5.2 are candidate approac hes for displa ying

soft w are graphs. Ho w ev er, all of the other desirable features (supp ort for nested graphs,

m ultiple fo cal p oin ts, preserving the men tal map and e�ciency) are not supp orted b y an y

one of these tec hniques (cf. T able 5.3

3

). The con tin uous zo om metho d is the closest, but

it is not suitable for preserving the men tal map of sophisticated graph la y outs used for

presen ting complex soft w are structures.

T o satisfy the requiremen ts suggested b y the cognitiv e framew ork of design elemen ts,

3

The c hec kmarks indicate if a particular feature is supp orted b y the systems listed. Ho w ev er, the author

w as not able to run all of the systems and had to rely on pap ers in man y cases. In addition, some of the

systems describ e v ariations whic h ha v e supp ort for one feature but at the exp ense of another (for example,

the rubb er sheet tec hnique w orks for m ultiple la y outs, but not all are e�cien t). F or simplicit y sak e, this

taxonom y do es not pro vide a detailed analysis of these tradeo�s.

CHAPTER 5. GRAPH PRESENT A TION TECHNIQUES 68

w e dev elop ed the Simple Hierarc hical Multi-P ersp ectiv e (SHriMP) la y out adjustmen t algo-

rithm. The algorithm and its features are describ ed in the next c hapter.

Chapter 6

The SHriMP La y out Adjustmen t

Algorithm

In this c hapter, the SHriMP la y out adjustmen t algorithm for creating con text+detail views

of nested graphs is describ ed. This algorithm can b e customized to suit a v ariet y of di�eren t

graph la y outs.

6.1 Basic Algorithm

The SHriMP la y out adjustmen t algorithm is elegan t in its simplicit y . No des in the graph

uniformly give up screen space to allo w a no de of in terest to gro w.

Figure 6.1 sho ws an example where one no de is enlarged in a grid la y out of nine no des.

Figure 6.1(a) sho ws the graph b efore the no de of in terest (the cen ter no de) is scaled b y

the desired factor. The no de gro ws b y pushing its sibling

1

no des out w ard as if there w ere

in�nite screen space (cf. Fig. 6.1(b)). The no de and its siblings are then scaled around the

cen ter of the screen so that they will �t inside the a v ailable space (cf. Fig. 6.1(c)).

Eac h sibling is pushed out w ard b y adding a translation v ector [T = T

x

; T

y

] to its co-

ordinates and then uniformly scaled b y a factor s around the cen ter of the screen (x

p

; y

p

).

The scale factor s is equal to the ratio of the size of the b ounding b o x divided b y the size

of the b ounding b o x after applying T . Equations 6.1 and 6.2 sho w the functions applied to

1

No des whic h ha v e the same paren t in a nested graph are called siblings.

69

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 70

(a) (b) (c)

Figure 6.1: (a) The graph b efore an y scaling is done. (b) The no de of in terest (cen ter no de)

gro ws b y the desired scale factor and pushes its siblings out w ard. (c) Finally , the no de and

its siblings are scaled to �t inside the paren t. This last step is the only step visible to the

user of SHriMP .

the co ordinates (x,y) of the sibling no des to determine the new p osition (x

0

; y

0

):

x

0

= x

p

+ s (x + T

x

� x

p

) (6.1)

y

0

= y

p

+ s (y + T

y

� y

p

) (6.2)

T o shrink a no de that has previously b een enlarged, the follo wing in v erse equations are

used:

x = (x

0

� x

p

) =s + x

p

� T

x

(6.3)

y = (y

0

� y

p

) =s + y

p

� T

y

(6.4)

In a nested graph, the no de of in terest pushes the b oundaries of its paren t no de out w ard

also. The paren t in turn pushes its siblings out and so on un til the ro ot is reac hed. As a

�nal step, ev erything is scaled to �t inside the ro ot. In Figure 6.2, the no de lab eled A is

enlarged causing its siblings, B and C to b e pushed out. Its paren t no de, D , also gro ws in

resp onse to A 's request for more space. D in turn pushes its siblings out w ard. As a �nal

step, ev erything is scaled to �t in the ro ot no de H since it cannot gro w an y larger due to

limited screen space.

A simple extension allo ws for m ultiple fo cal p oin ts of v arying scaling factors. T o scale

m ultiple no des, eac h no de in turn ma y gro w (or shrink) pushing out w ard (or pulling in w ard)

their siblings. Finally , no des are scaled to �t inside the a v ailable space (cf. Fig. 6.3). This

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 71

A

B

C

D

E
F

G

Center of H

H

Figure 6.2: The no de A is enlarged. This c hange is propagated from c hild to paren t. Because

H is �xed in size, its descendan ts are scaled to �t inside H . Dotted lines denote the new

p ositions of the no des.

is more e�cien t since the scaling step do es not need to b e rep eated for ev ery fo cal p oin t. In

addition, this ensures that the set of m ultiple fo cal p oin ts can b e scaled uniformly .

This algorithm is simple, fast and e�ectiv e. When considering only one fo cal p oin t, the

algorithm is linear with resp ect to the n um b er of no des in the graph. When scaling m ultiple

no des, it is O (k n) where k equals the n um b er of fo cal p oin ts and n is the total n um b er

of no des in the graph. F or most applications, k is a small n um b er (i.e., 1, 2 or 3) and

hence the algorithm is linear for most applications. The next section describ es ho w di�eren t

translation v ectors ma y b e used for rep ositioning siblings when a no de is resized.

6.2 Preserving the Men tal Map

When zo oming a no de in a graph la y out it is often desirable to main tain p ertinen t prop erties

in the la y out suc h as orthogonalit y , pro ximit y , straigh tness of lines and the o v erall top ology

of the graph. It is not p ossible to preserv e all of a graph's la y out prop erties using a �xed

screen size. Dep ending on the graph la y out and its application, it is often only necessary to

preserv e some of these prop erties.

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 72

(a) (b) (c) (d)

Figure 6.3: (a) Grid b efore an y scaling is done; t w o no des are selected to b e enlarged. (b)

The �rst no de pushes the other no des a w a y to pro vide ro om for it to gro w. (c) Similarly ,

the second no de pushes a w a y no des to allo w it to gro w. (d) Finally , ev erything is scaled to

�t in the a v ailable space.

With the SHriMP la y out adjustmen t algorithm, a no de gro ws (or shrinks) b y pushing

(pulling) its sibling no des out w ard (in w ard) along translation v ectors. These v ectors de-

termine ho w the sibling no des are rep ositioned when a request for more space is made.

This section describ es three metho ds for setting the magnitude and direction of a v ector.

Figure 6.4 summarizes ho w customizing the translation v ectors results in di�eren t la y outs

when the view is distorted.

SLxcomp SLxcomp SLxcomp SLxcomp

(a) (b) (c) (d)

Figure 6.4: (a) Grid b efore an y scaling is done. (b) The cen ter no de is enlarged using a

la y out strategy whic h preserv es orthogonalit y in the graph. (c) and (d) The cen ter no de is

scaled using la y out strategies whic h are more suited to preserving pro ximities in the graph.

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 73

6.2.1 Preserving orthogonalit y

} d
y

{ x
d

x
d-[, -d

y
] 0 ,[-d

y
]

x
d-[, d

y
]

0 ,[0]x
d-[, 0]

-d
y
]

x
d[,

0 ,[d
y

]
x

d[, d
y

]

x
d[,0]

A

Figure 6.5: In the OR THO la y out strategy , the translation v ector for eac h sibling no de is

determined b y the partition con taining its cen ter.

One la y out strategy , called OR THO , preserv es orthogonal relationships among no des.

The graph is divided in to nine partitions b y extending the edges of the no de to b e scaled. The

translation v ector for eac h sibling no de is calculated according to the partition con taining

its cen ter. Figure 6.5 sho ws the translation v ectors for eac h of the nine partitions. F or

example, the translation v ector for no des in the top left partition is T = [� d

x

; d

y

], where

d

x

and d

y

are the x and y di�erences b et w een the desired size of the no de to b e scaled

and its previous size. All sibling no des ab o v e (b elo w) the scaled no de are pushed up w ard

(do wn w ard) b y the same amoun t, thereb y main taining the orthogonal relationships of these

no des with resp ect to the y axis. Similarly , no des to the righ t (left) are pushed righ t (left)

b y the same amoun t, main taining the orthogonalit y relationships with resp ect to the x axis.

The follo wing equations sho w the translation v ectors to b e applied to a sibling no de B

when the no de of in terest A is scaled; (x

a

; y

a

) and (x

b

; y

b

) are the origins of the no des A

and B resp ectiv ely:

T

x

=

8

>

>

>

>

<

>

>

>

>

:

0 if x

b

= x

a

� d

x

if x

a

> x

b

d

x

if x

a

< x

b

(6.5)

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 74

T

y

=

8

>

>

>

>

<

>

>

>

>

:

0 if y

b

= y

a

� d

y

if y

a

> y

b

d

y

if y

a

< y

b

(6.6)

Figure 6.4(a) displa ys a simple grid la y out b efore an y no des ha v e b een scaled. Fig-

ure 6.4(b) demonstrates ho w OR THO main tains the grid-lik e app earance of the graph

when a no de is resized. This strategy has a similar visual result to the Con tin uous Zo om

algorithm [37], Biform Displa y Metho d [95] and Bifo cal Displa y [82].

6.2.2 Preserving pro ximities

Man y la y out algorithms p osition no des in groups or clusters to depict certain relationships

in the graph. F or example, a spring la y out algorithm p ositions no des whic h are highly

connected closer to one another [36]. F or these t yp es of la y outs, a strategy whic h k eeps those

no des that are close in the original view close in the distorted view w ould b e b ene�cial.

A la y out strategy , called PR O X1 , preserv es clusters b y constraining eac h sibling no de

to sta y on the line connecting its cen ter to that of the no de b eing resized. When a no de

is resized, it pushes a sibling no de out w ard along this line. The direction of eac h sibling

no de's translation v ector is equal to the direction of the line connecting the cen ters. The

magnitude j � j of this v ector is equal to the distance that a corner p oin t of the scaled no de

mo v es as it is enlarged.

In Figure 6.6, the no de A is to b e enlarged. d

x

and d

y

are the x and y di�erences b et w een

the desired size of A and its previous size. (x

a

; y

a

) is the cen ter of A and (x

b

; y

b

) is the cen ter

of B (a sibling of A). The direction of B 's translation v ector is equal to the dir e ction of the

connecting line, and its magnitude is equal to � as p er Equation 6.7. Equations 6.8 and 6.9

sho w ho w to calculate the translation v ector T = [T

x

; T

y

]. Note that � is constan t for all

sibling no des, and need only b e calculated once.

� =

q

d

2

x

+ d

2

y

(6.7)

T

x

= �

x

b

� x

a

p

(x

b

� x

a

)

2

+ (y

b

� y

a

)

2

(6.8)

T

y

= �

y

b

� y

a

p

(x

b

� x

a

)

2

+ (y

b

� y

a

)

2

(6.9)

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 75

A

B

{

),y(x

{

xd

yd

direction}

}

)(x ,y
b b

a a

u

u

Figure 6.6: Sibling no de B is pushed out w ard along the line connecting its cen ter and the

cen ter of A , the no de b eing scaled.

This strategy has b een used to enlarge the cen ter no de of the grid in Figure 6.4(c). The

�gure demonstrates that this strategy do es not preserv e all of the orthogonal relationships

of OR THO , but it do es app ear to k eep those no des whic h w ere close in the original view,

close in the transformed view. Ho w ev er, the screen space is not b eing used e�ectiv ely b y

this metho d, v aluable screen space in the corners is w asted. PR O X2 , describ ed in the next

subsection, mak es b etter use of screen space while main taining similar pro ximit y relations.

6.2.3 An alternativ e pro ximit y preserv ation strategy

An alternativ e pro ximit y preserving strategy , PR O X2 , mak es use of the fact that no des

are often dra wn as rectangles.

2

As in PR O X1 , the direction of the translation v ectors is

determined b y the relativ e lo cation of the sibling no de to the no de of in terest. Ho w ev er, the

magnitude (i.e. the amoun t they are pushed a w a y from the no de of in terest) is not the same

for all sibling no des. Instead, a no de pushes out sibling no des only as m uc h as is necessary

to mak e ro om for the no de of in terest to gro w. Therefore, the magnitude of the translation

v ector is also dep enden t on the relativ e lo cation of the sibling no de to the no de of in terest.

F or example, in Fig. 6.7, no de A is to b e enlarged. The T

y

comp onen t of the translation

v ector is set to d

y

. Since the sibling no de is ab o v e A , it m ust b e pushed up w ards b y at

2

The PR O X1 strategy can b e applied to circular no des.

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 76

least this amoun t to pro vide ro om for A to gro w in that direction. The T

x

comp onen t is

calculated b y solving for T

x

in a p oin t-line equation of the line through (x

b

; y

b

) and (x

a

; y

a

).

A

B

T x{

T {y

T x{
{Ty

{

{

x
d

yd

)(x ,yb b

),y(x aa

Figure 6.7: A sibling no de, B , is pushed along the v ector b et w een its cen ter and that of

A , the no de b eing scaled. The distance it is pushed along this v ector is dep enden t on the

relativ e lo cation of B to A .

In general, the T

x

and T

y

comp onen ts ma y b e calculated using the follo wing simpli�ed

equations. m is equal to the slop e of the line connecting the cen ters of A and B and the

negativ e v alues are selected for T

x

and T

y

when x

b

< x

a

and y

b

< y

a

resp ectiv ely .

T

x

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 if j m j = 1

� d

x

if j m j < = 1

�

d

y

j m j

otherwise

(6.10)

T

y

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 if j m j = 0

� d

y

if j m j > = 1

� d

x

� j m j otherwise

(6.11)

PR O X2 is applied to a grid la y out in Figure 6.4(d). Figure 6.8 sho ws the b ene�ts

of applying the pro ximit y preserving approac h when enlarging sev eral no des in a spring

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 77

la y out. In Fig. 6.8(a), the original spring la y out is sho wn. Sev eral no des are enlarged using

the OR THO strategy in Fig. 6.8(b). Note that this strategy distorts some of the clusters

in the spring la y out and destro ys the user's men tal map in the pro cess. The same no des

are scaled in Fig. 6.8(c) using the pro ximit y relationships preserving strategy , PR O X2 .

The general app earance of the spring la y out is main tained b y preserving the pro ximit y

relationships b et w een no des in the adjusted view.

BaseSystem BaseSystem BaseSystem

(a) (b) (c)

Figure 6.8: (a) A spring la y out of a graph b efore an y no des are scaled. (b) Sev eral no des are

enlarged using OR THO , whic h preserv es orthogonal relationships. Note ho w some of the

clusters created b y the spring la y out are distorted. (c) The same no des are scaled using the

pro ximit y preserv ation la y out strategy , PR O X2 . The clusters are b etter preserv ed using

this strategy .

6.2.4 Preserving the top ology of a graph

The orthogonal and pro ximit y preserving strategies also preserv e the top ology of the graph

no des. That is, no des that do not o v erlap in the original view will not o v erlap in the

adjusted view. Ho w ev er, additional arc in tersections ma y b e in tro duced in an adjusted

view. This could b e a v oided b y dra wing arcs as curv ed line segmen ts instead of straigh t

line segmen ts and then translating arc segmen t end p oin ts [26]. Ho w ev er, mapping man y

p oin ts (to preserv e the app earance of curv ed lines) w ould adv ersely a�ect the e�ciency of

the approac h.

The next section in this thesis describ es ho w the strategies just describ ed ma y b e cus-

tomized and blended to preserv e imp ortan t prop erties of more sophisticated la y outs.

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 78

6.3 Hybrid Strategies

T o preserv e the men tal map of more sophisticated la y outs other considerations ma y need to

b e tak en in to accoun t. By dev eloping h ybrid strategies based on the OR THO and PR O X2

strategies, it is p ossible to preserv e the men tal map of more sophisticated graph la y outs.

Sev eral examples are describ ed next.

6.3.1 T ree la y outs

In a tree la y out it is desirable to preserv e orthogonal relationships b et w een lev els in the

hierarc h y while rep ositioning a no de's descendan ts so that they remain close to one an-

other. This can b e ac hiev ed b y applying a v ariation of the orthogonal preserving strategy ,

OR THO . If the T

x

comp onen t of the translation v ector for descendan ts of the no de to b e

scaled is set to 0, the descendan ts' relativ e horizon tal p ositions do not c hange. The follo w-

ing equations describ e the translation v ector for this constrained v ariation of the OR THO

strategy:

T

x

=

8

>

>

>

>

<

>

>

>

>

:

0 if x

b

= x

a

or B is a descendan t of A

� d

x

if x

a

> x

b

and B is not a descendan t of A

d

x

if x

a

< x

b

and B is not a descendan t of A

(6.12)

T

y

=

8

>

>

>

>

<

>

>

>

>

:

0 if y

b

= y

a

� d

y

if y

a

> y

b

d

y

if y

a

< y

b

(6.13)

Figure 6.9 sho ws the adv an tage of applying this h ybrid strategy to a tree graph. Fig-

ure 6.9(a) sho ws the tree la y out b efore an y no des are scaled. In Fig. 6.9(b) t w o no des are

scaled using the orthogonalit y preserv ation la y out strategy . Note ho w the c hildren of these

scaled no des are spread apart. The same no des are scaled using the pro ximit y preserv ation

la y out strategy in Fig. 6.9(c). Here the la y out of the no de's c hildren and the rest of the

graph are distorted. The h ybrid strategy describ ed ab o v e is applied in Fig. 6.9(d) whic h

preserv es orthogonal relationships b et w een lev els in the tree, but k eeps c hildren close to

their paren t no des. This h ybrid strategy more e�ectiv ely preserv es the men tal map of a tree

la y out.

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 79

collapse collapse collapse collapse

(a) (b) (c) (d)

Figure 6.9: (a) A tree la y out b efore an y scaling is done. (b) Tw o no des are scaled using

the orthogonalit y preserv ation la y out strategy . (c) The same t w o no des are scaled using the

pro ximit y preserv ation la y out strategy . (d) Here a h ybrid strategy based on OR THO is

used to preserv e parallel relationships b et w een lev els in the tree, and k eep c hildren close to

their paren ts.

6.3.2 Directed acyclic graphs

The Sugiy ama algorithm pro duces a nice la y out for directed acyclic graphs [161]. F or

Sugiy ama la y outs it is desirable to preserv e orthogonal relationships b et w een lev els in the

hierarc h y when adjusting the la y out. Ho w ev er, since no des ma y ha v e more than one ances-

tor in the hierarc h y , the strategy just describ ed for tree la y outs is not suitable. A b etter

approac h is to main tain the relativ e spacing b et w een no des in the horizon tal direction.

A h ybrid of OR THO and PR O X2 can b e used to preserv e b oth of these prop erties for

Sugiy ama la y outs. The orthogonalit y preserv ation strategy is used to preserv e the parallel

relationships b et w een lev els in the tree, and the pro ximit y preserving strategy is applied to

no des on the same lev el.

F or this h ybrid strategy , the equation for the T

x

comp onen t is calculated using Equation

6.10 from PR O X2 and the equation for the T

y

comp onen t is calculated using Equation 6.6

from OR THO . Figure 6.10 sho ws the b ene�ts of using this approac h for scaling no des in a

Sugiy ama la y out.

6.3.3 Nested graph la y outs

In a nested graph la y out, di�eren t la y out algorithms ma y b e used to dra w subgraphs for

di�eren t la y ers in the hierarc h y . F or example, in Fig. 6.11, the top lev el in the hierarc h y

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 80

mylistprint

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

src

list

elementinfolistfirst elementsetnext

new

listinitlistidelementsetnext

new

elementsetnext

element

elementnext

listnext

listcreate

main

elementcreate listinsert

newnewnew new

mylistprint

src

list

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

mylistprint

src

list

(a) (b) (c)

Figure 6.10: (a) A Sugiy ama la y out. (b) A no de is scaled using the tree la y out preserv ation

strategy , causing the la y out of c hildren with more than one ancestor to b e p o orly p ositioned.

(c) Here, the no de is scaled using a h ybrid strategy whic h preserv es orthogonal relationships

b et w een lev els in the tree and pro ximit y relationships b et w een no des on the same lev el.

w as laid out in a grid. T ree, spring and grid la y outs w ere used to dra w subgraphs in other

la y ers of the hierarc h y . When scaling a no de in this graph the men tal map of eac h of these

la y outs can b e preserv ed b y applying appropriate translation v ectors to the no des. Eac h

no de is rep ositioned according to its original la y out. When a no de is scaled, it pushes (pulls)

its siblings out w ard (in w ard) using a strategy to preserv e the la y out with whic h they w ere

dra wn. When this c hange propagates to a paren t, the paren t pushes (pulls) its siblings

out w ard (in w ard) using a strategy whic h preserv es the la y out for that la y er of the hierarc h y .

Children no des simply mo v e according to their paren t, th us preserving the la y outs in lo w er

la y ers.

6.3.4 Orthogonal line dra wings

An orthogonal line dra wing constrains arc segmen ts to b e parallel to the horizon tal or

v ertical axes of a grid [34]. The OR THO strategy ma y b e extended to preserv e the men tal

map of orthogonal line dra wings. Edge b end p oin ts are also translated and scaled when a

no de is enlarged. Figure 6.12(a) sho ws an orthogonal line dra wing with edge b end p oin ts

dra wn as small blac k circles. A single no de is selected in Fig. 6.12(b) so that it ma y b e

enlarged. This no de pushes out its siblings and the edge b end p oin ts. Finally , the en tire

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 81

chance

printmeslux_tax

cardcc
get_cardret_card

move_jail
move

do_moveshow_move

goto_jail

rest_f set_up

getplayersinit_decks

init_players

restore

init_monops

main

PlayGame

ExitingGame

printhold

printsqprop_worth

list_all

where printboard

printmorg

PlayerandBoardInfo

paynotify

getinp

roll

isnot_monop

cpy_st

set_ownlist

is_monopcomp

getyn

get_int

buy_h

sell_housesforce_morgbuy_houses

fix_ex

list_cur

sell_h

sqr_st

dk_st

prp_st

plr_st

mon_st

trd_st

own_st

bid

rentbuy

inc_tax

unm
mortgageunmortgage
set_mlist

set_umlist
m

do_trade
move_em

trade
summate

MonoPoly-Game

Rent_Trade_Mortgage

Trade

Mortgage

Rent

Utils_And_GameInfo

DataTypes

Buy&Sell

Utilities

List

list

StartGame

Inits/Setup

Move

Moves

Cards

Figure 6.11: Preserving the men tal map of sev eral la y outs in a nested graph

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 82

dra wing is scaled to �t the a v ailable space (cf. Fig. 6.12(c)).

(a) (b) (c)

Figure 6.12: Extending the OR THO strategy to preserv e the men tal map of an orthogonal

line dra wing.

6.3.5 No de disjoin tness problem

The SHriMP la y out algorithm can also b e used for making adjustmen ts to a graph with

o v erlapping no des. The goal is to redra w the graph so that no de images will b e disjoin t.

This task is referred to as the no de disjointness pr oblem [94] or cluster busting [89].

According to Misue et al. , an algorithm whic h addresses this problem should satisfy

three requiremen ts [94]:

1. no des in the new dra wing should b e disjoin t;

2. the new dra wing should b e compact and should �t in the a v ailable space;

3. and the user's men tal map (in
uenced b y the original la y out) should b e preserv ed.

The SHriMP la y out adjustmen t algorithm ma y b e applied as follo ws. An initial pass

through the set of graph no des should b e made to determine whic h no des (if an y) o v erlap.

Sorting the no des �rst will impro v e the e�ciency of this step. If t w o no des o v erlap, one

of these no des should push out the rest of the graph b y the amoun t of the o v erlap so that

they no longer o v erlap (Requiremen t (1)). Finally , if it is necessary , the graph is scaled

to �t in the a v ailable screen space (Requiremen t (2)). Appropriate selection of the v arious

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 83

la y out preserving strategies, will help to main tain the user's men tal map (Requiremen t (3)).

Figure 6.13 demonstrates ho w the SHriMP algorithm is used to rep osition no des in a graph

with o v erlapping no des.

(a) (b) (c)

Figure 6.13: (a) A grid la y out. (b) Here the user has man ually rep ositioned the no des

in a more meaningful la y out, resulting in o v erlapp ed no des. (c) The user runs the no de

disjoin tness feature (using a strategy to preserv e pro ximit y relationships b et w een no des) so

that no des do not o v erlap.

6.4 Summary

The SHriMP la y out adjustmen t algorithm is suitable for uniformly resizing no des when

requests for more screen space are made. It preserv es straigh tness of lines and the graph

top ology of no des in adjusted views. Moreo v er, the SHriMP algorithm is
exible in its

distortion tec hnique and can b e customized to suit v arious graph la y outs. Sev eral v arian ts

w ere describ ed for preserving orthogonal and pro ximit y relationships. Hybrid strategies w ere

also sho wn to b e feasible, and are useful when trying to preserv e the men tal map of more

sophisticated la y outs. The e�ects of the di�eren t la y out adjustmen t strategies on v arious

graph la y outs are summarized in Fig. 6.14. The SHriMP algorithm can also b e applied to

the no de disjoin tness problem.

This tec hnique, due to its simplicit y , can b e easily in tegrated with existing graph dra wing

to ols. The algorithm has b een implemen ted in SHriMP Views, a protot yp e for visualizing

hierarc hical soft w are structures. The implemen tation is describ ed in the next c hapter.

CHAPTER 6. THE SHRIMP LA YOUT ADJUSTMENT ALGORITHM 84

Original La y out Preserving

Orthogonalities

Preserving

Clusters

Hybrid

Strategies

Grid

SLxcomp SLxcomp SLxcomp

N/A

Spring

BaseSystem BaseSystem BaseSystem

N/A

T ree

collapse collapse collapse collapse

Sugiy ama

mylistprint

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

src

list

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

mylistprint

src

list

listid
listinit

elementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

new

newnew
new

new new

mylistprint

src

list

listidlistinitelementsetnextelementsetnextelementinfo

element

listfirst

elementnext

elementsetnext

main

listnext

elementcreate listcreate listinsert

newnewnew new

new new

mylistprint

src

list

Figure 6.14: This �gure summarizes ho w di�eren t strategies distort or preserv e the men tal

map of v arious graph la y outs.

Chapter 7

Do cumen ting Soft w are Structures

using SHriMP

This c hapter describ es ho w SHriMP ma y b e used for do cumen ting and manipulating soft w are

structures. The SHriMP visualization tec hnique has b een in tegrated in the Rigi rev erse

engineering en vironmen t. The �rst section pro vides some bac kground on the Rigi to ol.

7.1 Rigi { A System for Rev erse Engineering

Rigi is a rev erse engineering system designed to extract, na vigate, analyze, and do cumen t

the structure of ev olving soft w are systems [98]. The Rigi system is cen tered around a

language-indep enden t graph editor for presen ting soft w are artifacts. The �rst phase of

rev erse engineering a sub ject soft w are system is fully automatic and in v olv es parsing the

soft w are and storing the extracted artifacts. Rigi has parsers for sev eral imp erativ e lan-

guages, including C and COBOL. This �rst phase results in a
at resource-
o w graph whic h

is manipulated using the Rigi editor.

The next phase is semi-automatic, where the ob jectiv e for the rev erse engineer is to

obtain a men tal mo del of the structure of the soft w are system and then build abstractions on

the
at graph to capture this mo del. T o manage the complexit y of large soft w are systems,

the second phase in v olv es pattern-recognition skills and features subsystem-comp osition

tec hniques to generate m ultiple, la y ered hierarc hies of higher-lev el abstractions [99]. In

this disco v ery phase, the rev erse engineer emplo ys v arious visualization aids to recognize

patterns, iden tify candidate subsystems, and understand soft w are structures in the graph.

85

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 86

This disco v ery phase can b e partially automated, but the p erceptual abilities and domain

kno wledge of the rev erse engineer pla y a cen tral role.

V arious visualization to ols are a v ailable in the Rigi editor to aid the rev erse engineer in

disco v ering and do cumen ting system design information. Some of these to ols include selec-

tion algorithms, �ltering (elision) algorithms, soft w are metrics, and graph la y out algorithms

[100 , 165]. F or example, in Fig. 7.1, the resource-
o w graph of a small COBOL example

is displa y ed using three graph la y outs: Spring [47], Sugiy ama [161], and T ree [122]. These

three la y outs presen t three di�eren t views of the soft w are structure. A single set of no des

is selected (highligh ted) in eac h of the graphs. Note that these no des are placed close to

one another (forming a cluster) in b oth the Sugiy ama and spring la y outs. This kind of

visual information giv es strong evidence to the rev erse engineer that suc h a cluster is a go o d

candidate for a subsystem abstraction.

Figure 7.1: Three graph la y outs of the same COBOL program. The left windo w displa ys a

Sugiy ama la y out, the top-righ t windo w sho ws a tree la y out, and the b ottom-righ t windo w

displa ys a spring la y out.

In addition, the Rigi editor supp orts editing, manipulation, annotation, h yp ertext, and

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 87

exploration capabilities on the graph. The subsystem hierarc hies are presen ted using m ul-

tiple windo ws, with o v erview windo ws to pro vide an o v erall p ersp ectiv e. A user na vigates

the hierarc h y b y op ening a windo w to sho w the next la y er in the hierarc h y . An o v erview

windo w pro vides con text for the individual windo ws. Figure 7.2 sho ws ho w the hierarc h y of

a C program can b e visualized and na vigated using the Rigi editor. This small C program

implemen ts a link ed list.

A problem with the m ultiple windo w approac h used in Rigi is that relationships b et w een

artifacts in the di�eren t windo ws are implicit and ma y not b e easy for the user to infer. F or

example in Fig. 7.2, functions in the List subsystem call functions in the Element subsystem.

Ho w ev er these relationships are not ob vious from the view sho wn here. Another windo w

(called a Pr oje ction windo w) w ould need to b e op ened to visually sho w this relationship.

Although Rigi is a sophisticated to ol for visualizing soft w are structures, more e�ectiv e

metho ds are required for visualizing soft w are structures in large legacy systems. While

bro wsing graphs consisting of thousands of no des and arcs, the user needs to b e able to

insp ect smaller groups of no des and arcs in more detail. Ideally , the user should b e able to

fo cus on parts of the system without losing sigh t of the whole. When trying to understand

smaller substructures, it is desirable to retain sigh t of the o v erall structure and to see ho w

an artifact of in terest relates to the rest of the soft w are.

Rigi is end-user programmable through the Rigi Command Language (R CL) [165], whic h

is based on the Tcl/Tk scripting language [111]. As a result, extending the Rigi editor with

new visualization tec hniques, suc h as SHriMP , is feasible. The remainder of this c hapter

describ es ho w SHriMP is used for visualizing soft w are structures.

7.2 Nested Graphs and Soft w are Hierarc hies

In SHriMP , nested graphs are used to presen t soft w are structures. The nesting of no des

represen ts the hierarc hical structure of the soft w are (e.g., subsystem con tainmen t). The C

program that w as used to demonstrate the Rigi views in Fig. 7.2 is again used to sho w the

soft w are hierarc h y in SHriMP (cf. Fig. 7.3).

With SHriMP , a user na vigates the hierarc h y b y op ening (expanding) c omp osite no des

whic h represen t subsystems in the soft w are. No des and arcs represen ting the next la y er of

the hierarc h y are displa y ed inside the op ened comp osite no de, as opp osed to b eing displa y ed

in a separate windo w. In Fig. 7.3(a), the src no de is displa y ed as a large b o x. A user op ens

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 88

(a) (b)

(c) (d)

Figure 7.2: (a) This windo w con tains the ro ot no de of the program, en titled src . A user

ma y op en this no de b y double clic king on it. (b) This newly op ened windo w con tains the

c hildren of src : main , List and Element . Arcs in this windo w are called comp osite arcs since

they relate comp osite (subsystem) no des. (c) This windo w is created when a user op ens

the List no de. The presen ted no des are called leaf no des since they ha v e no c hildren. Arcs

in this windo w represen t call and data dep endencies in the program. (d) This windo w is

an o v erview windo w and pro vides con text for the other windo ws. It sho ws the subsystem

hierarc h y and structure of the program. Arcs b et w een lev els in this o v erview windo w depict

the paren t-c hild relationships among no des.

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 89

src

(a)

src

main

element

list

(b)

src

element

main

list
listinsertlistinit

listid

listfirst listnext listcreate

list

mylistprint

(c)

listinit listinsertmylistprint

listfirst listcreatelistnext

elementcreate
elementnext

elementsetnextelementinfo

src

list

element

element

main

listid list

(d)

Figure 7.3: (a) The ro ot no de of the program is en titled src . A user ma y op en this paren t

no de to see its c hildren b y double clic king on it. (b) The c hildren of src : main , list and

element , are displa y ed within src . (c) The c hildren of list are displa y ed within list when it is

op ened. A comp osite arc b et w een main and list has also b een expanded to displa y lo w er-lev el

dep endencies. (d) The element no de has also b een op ened to displa y its c hildren. This view

no w serv es a similar function to the Rigi o v erview windo w previously sho wn. The nesting

of no des sho ws paren t-c hild relationships.

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 90

this no de b y double clic king on it. This causes the c hildren of the src no de to b e displa y ed

inside the src no de, as sho wn in Fig. 7.3(b). Similarly , in Fig. 7.3(c), the c hildren of list are

displa y ed inside the list no de when it is op ened b y the user. By op ening the element no de,

Fig. 7.3(d) sho ws the same information as the o v erview windo w of Fig. 7.2(d). A leaf no de

in the hierarc h y corresp onds to a soft w are artifact extracted b y the parser.

Comp osite no des are dra wn in grey and ha v e a sunk en or raised e�ect to indicate if they

are op en or closed, resp ectiv ely . Leaf no des are colored according to the t yp e of soft w are

artifact represen ted (e.g., functions (blue), data t yp es (orange), and v ariables (green)). A

no de ma y b e dragged around within the can v as, limited to the b oundaries of its paren t

no de. Automatic la y out algorithms can b e applied to eac h of the subgraphs, including: grid

(no des are p ositioned in a rectangular matrix), spring [47], tree [122], and Sugiy ama [161].

Arcs are directed and are dra wn fr om the b ottom of the source no des to the top of the

destination no des. In Fig. 7.3(c), a c omp osite ar c , whic h is similar in functionalit y to a

comp osite no de, has b een op ened to displa y the lo w er-lev el dep endencies b et w een the main

and list subsystems. This feature pro vides details on the functions that main calls within

the list subsystem.

7.3 Fishey e Views of Soft w are Structures

Figure 7.4 sho ws sev eral views of a graphics program consisting of ab out thirt y mo dules.

This program w as written in C using a design based on abstract data t yp es. Figure 7.4(a)

sho ws a grid la y out of the initial,
at graph of artifacts and dep endencies extracted b y the

Rigi C parser. A spring la y out algorithm has b een applied to the graph in Fig. 7.4(b). The

complex area in the cen ter of the graph has b een magni�ed using the SHriMP �shey e view

algorithm in Fig. 7.4(c). The magni�cation rev eals that a single no de is causing m uc h of

the visual complexit y . This no de represen ts an error prin ting routine that is called b y man y

functions. T ypically an error routine do es not con tribute v ery m uc h to the structure of the

system, so the user ma y c ho ose to hide this no de to reduce the complexit y of this region.

This no de has b een �ltered in Fig. 7.4(d).

F or larger systems, SHriMP views should b e w ell suited to exp osing structures and

patterns in the soft w are. The �shey e view mec hanism pro vides an alternativ e to scrolling

b y expanding no des in a user de�ned area of in terest and concurren tly reducing, but not

hiding, the remainder of the graph. By �shey e-zo oming on di�eren t p ortions of a large

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 91

BaseSystem

(a)

PolygonPrint

SphereInt

ReadColor

PlaneClipPoint

PrintUsage

SLInit

SLtrace

Screen

QuadCreate

Quadric

IsectMerge

Visible

SLplasticPrint

SLmattePrint

quickcos

Plane

blip

PlaneInitialize

PlaneListInit

grand

PolygonExtents

SLmatteInit

VoxelSubdivision

itimerval

Isect

SLfaceforward

PlaneTransform

ReadPolygon

VoxelFreeAll

SLdiffuse

SphereNorm

slmatte.c_unnamed0

BitCode

PolygonCreate

IsectCopy

SLShaderShader

QuadExtents

slmirror.c_unnamed0

SLmatteDebugPrint

ReadSphere

InitTime

SLspecular

PlaneListFree

SLmetalPrint

CheckExtentPoint

SphereExtents

PlaneInitError

debugoff

SLmirrorShade

SLnormalize

CommandParse

Voxel

ReadFile

SphereData

rusage

ReadAttributes

ReadLight

SLnoise_float

IsectAdd

Trace

NextVoxel

slmetal.c_unnamed0

PlaneListClose

sltable.c_unnamed0

SphereCreate

PlaneListAdd

ComputeIntersection

SLmetalInit

Procs

ShadeBackground

SLBindShader

MatrixCopy

PlaneListTransform

SLmetalDebugPrint

SphereStats

MatrixMult

SLmetalShade

SLPrintShaders

Shadow

Ray

SLplasticInit

TracePixel

VoxelPrint

QuadInt

PolygonFree
freetree

Display

Polygon

SLgraniteInit

MatrixDump

SubdivideVoxel

InitScene

PlaneCreateWithPointsPlaneListGet

SphereTouchVoxel

Shader

SLmirrorDebugPrint

SLInitNoise

PrintStats

SphereTransform

SLphong

SampleRay

SLnoise12

SLmax

SpherePrint

ReadQuadric PlaneListGetNum

Light

QuadNorm

PolygonVoxel

SLBindNull

PolygonData

slgranite.c_unnamed0

SLabs

GetType

SLnoise13

GetSurface

main

Prim

MatrixInvert

PolygonStats

ReadView

rand1

PolygonInt

SphereVoxel

PlaneListSet

SLClose

SLgranitePrint

InitError

ReadBackground

SLShaderConstructor

ReadOpacity

ObjectFreeAll

GFXIsect.h_unnamed0

rayerror

SLShaderName

SetPixelAngle

Sphere

QuadTransform

SLShaderPrint

SLplasticDebugPrint

Camera

SLplasticShade

ReadAmbient

QuadData

InitDefaults

PlaneListClipPoint
MatrixTransform

slplastic.c_unnamed0

SLmirrorPrint

EdgeVoxel

VoxelTrace

MatrixTransformVector

ReadDisplay

compute_normal

SLreflect

timeval

MatrixTranspose

PolygonNorm

Surf

Shade

SLambient

PolygonTransform

QuadPrint

quickinvcos

SLmatteShade

ClipPolygon2Plane

ComputeRayT

SLnoise11

rnd

SLgraniteShade

SLNumShaders

VoxelGetWorld

MatrixInit

FindVoxel

SLgraniteDebugPrint

SLmirrorInit

SLilluminance

QuadStats

BaseSystem

(b)

BaseSystem

(c)

BaseSystem

(d)

Figure 7.4: (a) A grid la y out of a graphics program written in C. (b) A spring la y out of the

same graph. (c) The complex area in the cen ter of the graph is magni�ed using the SHriMP

algorithm, exp osing a hea vily used no de. (d) The iden ti�ed no de is �ltered to reduce the

visual complexit y .

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 92

graph, the user should b e able to iden tify busy no des, candidate subsystems, and other

imp ortan t features more easily . The �ltering of busy no des should also considerably impro v e

the comprehensibili t y of the graph.

In addition, a user ma y select a group of no des whic h are not necessarily adjacen t

in the graph, and then enlarge these no des for further study . Figure 7.5 presen ts a call

graph extracted from SQL/DS, a million-li ne legacy soft w are system that has ev olv ed o v er

nearly t w o decades [179]. Disco v ering patterns in suc h large, complex systems is particularly

di�cult. Figure 7.5(b) sho ws the result of selecting and expanding the no des in the forw ard

dep endency tree of pro cedure calls from the ARIXI20 mo dule in SQL/DS. By expanding

related but distributed sets of no des, structures in the graph can b e emphasized without

adv ersely a�ecting the general la y out of the graph.

(a) (b)

Figure 7.5: (a) The spring la y out algorithm has b een applied to the SQL/DS soft w are

system. This algorithm help ed to exp ose clusters of no des on the fringe of the graph, whic h

are candidates for subsystems. (b) One of the clusters of no des is scaled to sho w more detail.

By concurren tly enlarging sev eral di�eren t substructures, a soft w are main tainer can see

their relativ e lo cations in the o v erall structure, examine their similarities and di�erences,

and visualize an y dep endencie s among them.

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 93

7.4 Bro wsing Source Co de

In Rigi, a user selects a leaf no de and displa ys the �le con taining the artifact's corre-

sp onding source co de in a separate text editor. In SHriMP , the source co de is displa y ed

directly inside the no de. Only the relev an t section of source co de corresp onding to the arti-

fact is displa y ed inside the no de, as opp osed to displa ying the en tire �le. Figure 7.6 sho ws

a SHriMP view of the sample program, where three leaf no des ha v e b een op ened to displa y

their represen tativ e source co de.

F or soft w are main tainers, an understanding of the high-lev el structure is often a pre-

requisite to understanding the co de of the mo dules or functions. With this approac h for

displa ying co de, the source co de is in tegrated within the structural do cumen tation, as op-

p osed to b eing a separate en tit y . The goal is to allo w the soft w are main tainer to seamlessly

switc h b et w een the implemen tation and the do cumen tation of a system.

7.5 Discussion

When trying to understand a large soft w are system, main tainers will often need to switc h

b et w een high-lev el views and lo w-lev el views of the soft w are structure. The nested graph

formalism is particularly suitable for sho wing sev eral lev els of abstraction in a system's

arc hitecture at the same time. A single SHriMP view allo ws the user to fo cus on smaller

details of the soft w are within an o v erall p ersp ectiv e of the high-lev el soft w are structure.

The user incremen tally exp oses the structure of the soft w are b y op ening subsystems and

presen ting the c hildren no des within their paren ts. This should b e an impro v emen t o v er a

m ultiple windo w approac h as the user need not men tally syn thesize a men tal mo del from

information in di�eren t windo ws.

In addition, the SHriMP tec hnique can presen t dep endencies b et w een subsystems at

v arious lev els of abstraction b y op ening comp osite arcs to rev eal their constituen t, lo w er-

lev el dep endencies. Figure 7.7 sho ws the structure of a small C program that implemen ts a

game. In Fig. 7.7(a), a high-lev el view of the ma jor subsystems in this program is sho wn.

One of these subsystems is op ened in Fig. 7.7(b). In Fig. 7.7(c), further subsystems are

op ened to sho w more detail ab out the program structure. Comp osite arcs are used to

elide lo w er-lev el dep endencies b et w een the subsystems. Comp osite arcs can b e expanded

(op ened) to sho w lo w er-lev el dep endencies in the program when more detail is needed (cf.

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 94

Figure 7.6: The relev an t source co de for soft w are artifacts represen ted b y leaf no des is

displa y ed directly inside the no des in a SHriMP View. This allo ws the user to bro wse source

co de while sim ultaneously visualizing the lo cation of the co de in the soft w are hierarc h y .

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 95

Fig. 7.7(d)).

Expanding comp osite arcs pro vides �ne-grained details of the dep endencies in the system

while the nesting of subsystem no des concurren tly sho ws a high-lev el view of the program's

o v erall structure. F or larger programs, ho w ev er, displa ying man y arcs can quic kly complicate

the view. Deciding what to displa y (or elide) is critical for an e�ectiv e visualization.

As with an y large information space, the na vigation of large soft w are systems is non-

trivial. In a m ultiple windo w approac h, the user tra v els through the hierarc h y b y op ening

new windo ws as they mo v e from one lev el to the next. It is not un usual for users to

b ecome \lost" as they mo v e deep er in the hierarc h y . The SHriMP tec hnique should b e an

impro v emen t as b etter con textual cues are pro vided as they na vigate through the hierarc h y .

All steps in the path tra v eled are visible in the form of nested no des. A user can elect

to return to an y subsystem along the branc h tra v eled, and elide the information con tained

in that subsystem b y closing the no de. By using the nested graph formalism in a single

�shey e view, previously man ual op erations to op en, close, resize, and rep osition windo ws

are automatically p erformed b y the �shey e view algorithm.

Nev ertheless, the m ultiple windo w approac h originally pro vided b y Rigi ma y b e desired

in certain situations. F or example, for a v ery large pro ject, a main tainer ma y only b e

in terested in one small part of the system and a SHriMP view ma y con tain more information

than is necessary . The Rigi o v erview windo w is e�ectiv e at presen ting a tree-lik e view of

a hierarc h y; this ma y b e a more familiar visualization of a hierarc h y for certain users.

Therefore, com binations of the nested graph view and traditional visualization tec hniques

ma y b e the b est approac h. F or example, a soft w are main tainer ma y c ho ose to op en separate

Rigi windo ws un til the subsystem of curren t in terest is reac hed, and then pro duce a SHriMP

view to fo cus in on the con ten ts and the relationships in this subsystem.

A small user study w as conducted to compare the e�ectiv eness of the di�eren t visual-

ization approac hes used b y the Rigi and SHriMP in terfaces. This pilot study is describ ed

next.

CHAPTER 7. DOCUMENTING SOFTW ARE STR UCTURES USING SHRIMP 96

(a) (b)

(c) (d)

Figure 7.7: SHriMP views depicting m ultiple lev els of abstraction of a small C program.

Increasing amoun ts of detail are rev ealed b y expanding comp osite no des and comp osite arcs.

Chapter 8

User Study 1

This c hapter describ es the design of a user exp erimen t to compare the e�ectiv eness of the

di�eren t visualization tec hniques used b y the Rigi and SHriMP in terfaces. A small pilot

study w as conducted at the Univ ersit y of Victoria and Simon F raser Univ ersit y using 12

sub jects. The in ten t of this study w as to ev aluate the exp erimen tal design as w ell as to

gather preliminary feedbac k on the usabilit y of the t w o to ols.

A Command-Line in terface w as included in the exp erimen t design to serv e as a baseline

for the other t w o in terfaces. Although man y researc hers stress that graphical visualizations

are a useful aid in program comprehension to ols, there is v ery little empirical evidence to

supp ort this claim [117]. The three user in terfaces studied w ere:

Command-Line: online source co de and do cumen tation, with vi and grep Unix Command-

Line to ols;

Multi-Win: m ultiple windo w approac h in Rigi; and

SHriMP: SHriMP views.

Eac h in terface w as tested b y asking the users to complete a series of soft w are main tenance

tasks under con trolled and sup ervised conditions. After �nishing the tasks, the users w ere

ask ed to complete a prepared questionnaire. Finally , informal in terviews w ere conducted

to stim ulate the users in to rev ealing relev an t though ts not expressed while answ ering the

questionnaire.

97

CHAPTER 8. USER STUD Y 1 98

8.1 Hyp othesis

Null h yp othesis: Command-Line, Multi-Win, and SHriMP ar e (p airwise) e qual ly e�e ctive

under the same c onditions.

8.2 Exp erimen tal V ariables

The indep enden t v ariables in the exp erimen t w ere:

� the user in terface,

� complexit y of the test program,

� complexit y of soft w are main tenance task, and

� lev el of user exp ertise.

The follo wing dep enden t v ariables w ere assumed to b e in
uenced:

� correctness of tasks,

� time tak en to complete tasks,

� sub jectiv e user satisfaction, con�dence, and pro ductivit y .

8.2.1 User in terfaces

T o e�ectiv ely increase the n um b er of users in the pilot study , eac h user w as assigned tasks

using eac h of the three in terfaces. This had the added adv an tage that the users could also

compare the usabilit y of the three in terfaces. F or eac h user, the Command-Line in terface

w as tested �rst, follo w ed b y Multi-Win, then SHriMP . Although some bias w as in tro duced

b ecause of this �xed order, it w as una v oidable b ecause the group of users w as to o small to

allo w a randomized order.

8.2.2 T est programs

If a single program w as used for all three phases of the exp erimen t, then kno wledge gained

from examining the program using one in terface could ha v e b een exploited while using a

subsequen t in terface. T o prev en t this, a di�eren t program w as needed for eac h in terface

CHAPTER 8. USER STUD Y 1 99

tested b y a user. Since eac h user tests three in terfaces, three di�eren t programs w ere re-

quired. Some bias w as in tro duced since the programs w ere necessarily di�eren t. T o o�set

this bias, the assignmen t of a program to a user in terface w as randomized uniformly o v er

all users in the exp erimen t.

Because of this randomization, the three programs did not need to b e of similar size or

complexit y . By selecting programs of v arying size, it w as p ossible to examine the e�ect of

program size on the use of eac h in terface. In the pilot study , w e used three programs that

w ere similar in complexit y but di�ered in size. The programs used are implemen tations of

games written in the C language:

Fish: appro x. 300 lines, one source �le;

Hangman: appro x. 300 lines, 12 source �les; and

Monop oly: appro x. 1700 lines, 18 source �les.

These lines-of-co de coun ts do not include commen ts. All of the programs w ere sparsely

commen ted. Figures 8.1, 8.2 and 8.3 sho w a Command-Line view, a Rigi view and a

SHriMP view displa ying the Fish program, resp ectiv ely .

8.2.3 T asks

A common series of tasks w as assigned to eac h user. Ideally , complex soft w are main tenance

tasks in v olving sev eral steps could ha v e b een prepared. Due to time constrain ts, a trade-o�

b et w een task complexit y and completion time w as necessary . Instead of asking users to

p erform particular tasks (suc h as �xing a soft w are bug), w e c hose to ha v e them p erform

small tasks that are commonly done b y soft w are main tainers to attain larger goals of �xing

errors or adding new features.

W e distinguish t w o categories of program understanding tasks: abstr act and c oncr ete .

Abstract tasks are high-lev el tasks that in v olv e gaining an understanding of the o v erall

structure or design of the program. Concrete tasks are lo w-lev el tasks that ma y in v olv e

understanding only small p ortions of the test program. Answ ers to the concrete tasks

should b e unam biguous.

Reasonable time limits on the individual tasks w ere imp osed to ensure that all tasks

w ere at least attempted. Users w ere giv en 20 min utes to complete all eigh t tasks, where

eac h task had a set time limit. Time allotted to one task could not b e used for other tasks.

CHAPTER 8. USER STUD Y 1 100

Figure 8.1: Command-Line En vironmen t for the Fish program

If a user could not �nish a task b y the allotted time, w e w ould remind the user to lea v e it

and mo v e on to the next task.

8.2.4 User exp ertise

The lev el of user exp ertise and skill a�ects an individual 's p erformance. User familiarit y

with the vi and grep to ols ga v e an unfair adv an tage o v er the Rigi in terfaces. Ho w ev er,

w e tried to o�set this adv an tage b y training the users on the Rigi in terfaces and b y ha ving

exp erts prepare soft w are hierarc hies of the test programs for eac h of the in terfaces. In the

exp erimen ts, 12 users of similar skill lev el participated. The users v olun teered their time and

CHAPTER 8. USER STUD Y 1 101

Figure 8.2: Rigi View of the Fish program

w ere unpaid. These 12 users consisted of 10 graduate studen ts and 2 senior undergraduate

studen ts from the Univ ersit y of Victoria and Simon F raser Univ ersit y .

Domain kno wledge can giv e a user a head start b y pro viding useful preconceptions. This

kno wledge ma y con tribute signi�can tly to program understanding and m ust b e considered.

The �rst task ask ed whether a user w as familiar with the game implemen ted b y the test

program.

CHAPTER 8. USER STUD Y 1 102

Figure 8.3: SHriMP View of the Fish program

8.3 Exp erimen tal Pro cedure

The exp erimen tal pro cedure for eac h user is outlined in Fig. 8.4. Exp erimen ts w ere run

in parallel but in separate ro oms. W e found it w as preferable to train m ultiple users at

the same time. Eac h user exp erimen t lasted b et w een 1.5 and 2 hours. The exp erimen tal

pro cedure is describ ed in the remainder of this section.

8.3.1 Setup

In an y exp erimen t, prop erly con trolled conditions are needed to obtain results with reason-

able con�dence. W e dev elop ed an exp erimen ter's handb o ok as a guide to b e follo w ed during

CHAPTER 8. USER STUD Y 1 103

SHriMP Tasks SHriMP Questionnaire

Rigi Tasks Rigi Questionnaire

Training

Setup

Overall Questionnaire

Interview

Command-Line Tasks Command-Line Questionnaire

Figure 8.4: Phases of the exp erimen t

eac h phase of the exp erimen t. The handb o ok sp eci�ed ho w to in tro duce the users to the

exp erimen t and pro vided instructions on setting up the w orkstation for eac h phase. These

proto cols ensured that the exp erimen t pro ceeded smo othly and consisten tly , reducing the

lik eliho o d of mishaps that migh t a�ect user p erformance.

8.3.2 T raining

F or eac h user in terface, a sp eci�c training mo dule in the exp erimen ter's handb o ok outlined

the features to b e used, along with demonstrations of sev eral example tasks.

W e emphasized that the in terfaces w ere b eing tested, not the users. T o reduce frustration

due to time constrain ts, w e also told them that w e did not exp ect them to complete all the

tasks, but that w e w ere more in terested in ho w they attempted to solv e a task using a

particular in terface. This help ed relax the users considerably , although it app eared that

they did striv e to complete the tasks correctly . The training phase to ok b et w een 30 and 40

min utes for eac h user. The user did not p erform an y practice tasks. W e stressed that users

did not ha v e to remem b er ho w to access all of the features. They could ask for help during

the exp erimen t, but not ask for assistance in completing a task.

CHAPTER 8. USER STUD Y 1 104

8.3.3 T asks

The abstract tasks used in the pilot study w ere:

1. Sho w familiarit y with the game.

2. Summarize what subsystem x do es.

3. Describ e the purp ose of artifact x .

4. On a scale of 1-5, ho w w ell w as the program designed?

The concrete tasks for the pilot study w ere:

5. Find all artifacts on whic h artifact x directly or indirectly dep ends.

6. Find all artifacts that directly or indirectly dep end on artifact x .

7. Find an artifact that is not used.

8. Find an artifact that is hea vily used.

A set of tasks w as giv en to eac h of the users for eac h of the three in terfaces, where the

order of the programs w as randomized o v er the sub jects.

8.3.4 Questionnaire

The questionnaire w as designed to ev aluate and compare the usabilit y of the in terfaces

through user feedbac k. The design of the usabilit y questionnaire is based on the IBM P ost-

Study System Usabilit y Questionnaire (PSSUQ) [83]. A questionnaire w as presen ted to a

user after all tasks w ere completed with a giv en user in terface.

F or the pilot study , w e adapted the PSSUQ sligh tly to ask 20 questions in 5 categories:

Ov erall: all 20 questions ev aluate o v erall user satisfaction;

Sysuse: 8 questions ev aluate in terface usefulness;

In terqual: 3 questions ev aluate in terface qualit y;

Organization: 4 questions ev aluate helpfulness of mo dule organizations in the in terface;

Con�dence: 4 questions ev aluate user con�dence in the answ ers generated b y the in terface.

CHAPTER 8. USER STUD Y 1 105

Questions in a category w ere subtle rew ordings of eac h other to help stim ulate resp onses.

The ordering of all questions w as randomized.

In addition, the follo wing questions w ere ask ed in the pilot study after a user had com-

pleted testing all of the user in terfaces.

1. Rank the three systems in order of their p erceiv ed e�ectiv eness at helping to under-

stand the soft w are.

2. Hyp othetically c ho ose a system for a future soft w are main tenance pro ject.

3. Name the three most preferred features in the user in terfaces tested.

8.3.5 In terview

An informal in terview w as held at the close of eac h exp erimen t. The purp ose here w as to

determine what di�culties the users encoun tered in using eac h in terface and to extract more

opinions on the usabilit y of the three in terfaces.

8.4 Recording Observ ations

It w as not p ossible to extract all the required results from task answ ers and questionnaires

alone. T o determine exp ected and unexp ected di�culties, the exp erimen ters recorded ob-

serv ations of the users completing the task sets. F or example, a user ma y ha v e correctly

answ ered a task b y pure c hance. The exp erimen ter had to v erify assumptions ab out what

the user w as thinking b y asking appropriate questions, taking care not to unduly in terrupt.

After the task set w as completed and while the user w as �lling in the questionnaire, the

exp erimen ter recorded a summary of ho w the user p erformed. W e used sev eral metho ds for

recording observ ations:

Think aloud: The users w ere ask ed to v erbalize their though ts as they attempted a task.

This allo w ed the exp erimen ter to gain a b etter understanding of what eac h user w as

trying to accomplish.

Video taping: One or t w o video cameras recorded eac h of the exp erimen ts, where one

camera captured actions on the computer screen and the other captured the user's

facial expressions and v erbal commen ts.

CHAPTER 8. USER STUD Y 1 106

Exp erimen ter commen ts: Most of the exp erimen ts had t w o exp erimen ters presen t. One

exp erimen ter in teracted with the user while the other serv ed as a silen t observ er.

8.5 Analyzing the Results

T o main tain consistency while assessing the correctness of the tasks, exp erimen ters made

use of prepared answ er k eys. The assessmen t of answ ers to the abstract tasks w as somewhat

sub jectiv e.

8.6 Results

The main goal of the pilot study w as to ev aluate the exp erimen tal design, rather than the

in terfaces. Nev ertheless some in teresting results w ere observ ed that could serv e as in teresting

h yp otheses for future exp erimen ts.

8.6.1 T ask results

The tasks w ere judged using a prepared answ er k ey . Due to the small sample size, T asks 1

and 4 w ere not included in the analysis. (T ask 1 determined the user's domain kno wledge

of the game and T ask 4 enquired ab out the user's men tal mo del of the program.) The

results of the other tasks app ear in T able 8.1. There w ere some �ndings where the n ull

h yp othesis w as rejected (one in terface w as found less e�ectiv e or w orse than another) using

t w o-sample t tests [35]. F or concrete tasks on the large Monop oly program, Command-

Line w as w orse than Multi-Win (P = 0.01) and Command-Line w as w orse than SHriMP

(P = 0.0005). F or concrete tasks on the v ery small Fish program, Command-Line w as

w orse than SHriMP (P = 0.05) and Multi-Win w as w orse than SHriMP (P = 0.005), with

Command-Line tending to b e somewhat b etter than Multi-Win (P = 0.1).

8.6.2 Questionnaire results

Preliminary results seem to suggest that the users w ere more satis�ed with SHriMP than

with Multi-Win, and more satis�ed with Multi-Win than with Command-Line. A di�eren t

picture emerges, ho w ev er, when the results are divided according to the three test programs

(cf. Fig. 8.5). Lo oking at the \o v erall" questionnaire category , user satisfaction with SHriMP

CHAPTER 8. USER STUD Y 1 107

T able 8.1: T ask correctness results.

User In terface T est Program T ask T yp e Mean Std Dev V ariance

Command-Line Fish Abstract 0.72 0.36 0.13

Concrete 0.75 0.38 0.14

Hangman Abstract 0.83 0.30 0.09

Concrete 0.56 0.44 0.19

Monop oly Abstract 0.47 0.47 0.22

Concrete 0.52 0.45 0.20

Multi-Win Fish Abstract 0.84 0.23 0.05

Concrete 0.55 0.42 0.18

Hangman Abstract 0.65 0.43 0.18

Concrete 0.68 0.47 0.22

Monop oly Abstract 0.60 0.42 0.18

Concrete 1.00 0.00 0.00

SHriMP Fish Abstract 0.88 0.31 0.09

Concrete 0.96 0.10 0.01

Hangman Abstract 0.88 0.23 0.05

Concrete 0.79 0.40 0.16

Monop oly Abstract 0.75 0.35 0.13

Concrete 0.95 0.15 0.02

is lo w er than Multi-Win for the Monop oly test program. The same pattern holds for the

other questionnaire categories.

When ask ed to h yp othetically c ho ose a user in terface for their next soft w are main tenance

pro ject, 8 users c hose SHriMP , 3 users c hose Multi-Win, and only 1 user c hose Command-

Line.

8.6.3 Observ ations

This subsection describ es observ ations made for eac h of the three in terfaces. The quotes

relating to eac h of the in terfaces w ere made b y users during the exp erimen ts.

Command-Line

\If I knew the structur e of the pr o gr am mayb e I c ould guess what is c al le d fr e-

quently."

CHAPTER 8. USER STUD Y 1 108

Fish Hangman Monopoly

Command-Line

Multi-Win

SHriMP

Test Program

U
sa

bi
lit

y
S

co
re

Better

Worse

Figure 8.5: This c hart sho ws the usabilit y scores for the \o v erall" questionnaire category .

F or the most part, the users w ere able to e�ectiv ely utilize the vi and grep to ols, due to

previous programming exp erience with these to ols. F or those with extensiv e programming

exp erience, their p erformance with this in terface w as quite successful.

Some of the tasks ma y ha v e b een unrealistic for the Command-Line to ols and ma y ha v e

b een biased to w ards the Multi-Win and SHriMP in terfaces. F or example, a task whic h asks

to name all functions called directly or indirectly b y another function is a m uc h easier task

for the Rigi to ol. More exp erienced users often used heuristics, or \guesses" to try to answ er

these t yp es of tasks. When a user had an understanding of ho w the games are pla y ed, they

w ould use this kno wledge to answ er the question. Other users w en t ab out these tasks in an

ad ho c manner, and quic kly ga v e up. Only a few attempted to thoroughly and accurately

complete the tasks.

Multi-Win

\It would b e ne c essary to get mor e familiar with R igi [Multi-Win] in or der to

pr op erly judge it."

In general, man y of the users seemed quite pleased with the graphical represen tation of

the soft w are. Ho w ev er, some problems w ere observ ed. Most of the users had di�culties

CHAPTER 8. USER STUD Y 1 109

understanding the purp ose of the o v erview windo w. Arcs in this windo w sho w the paren t-

c hild relationships of subsystems, but these arcs w ere often confused with call or data

dep endency relationships that are sho wn in the general windo ws.

In addition, man y users did not at �rst remem b er that a comp osite arc represen ts one

or more lo w er-lev el arcs. Indeed, they had to b e reminded that a pro jection feature in

Multi-Win should b e used to view the lo w er-lev el dep endencies. Some had to b e reminded

of this more than once.

The training time for Multi-Win w as to o short. This w as ob vious since the users w ere

initially unsure ho w to solv e the �rst few tasks using Multi-Win. They did impro v e their

p erformance during the exp erimen t, but they still had to ask for help with the in terface.

Also, users often op ened windo ws that w ere already displa y ed. This increased the user's

cognitiv e load as they scanned the windo ws trying to iden tify p ertinen t artifacts.

SHriMP

\When you gave the tutorial ... I thought that SHriMP would b e the worst ...

but it turne d out that it was e asier."

The SHriMP in terface app eared to b e quite in tuitiv e. The users lik ed b eing able to see all of

the no des in one windo w b ecause they could more easily see ho w ev erything w as connected.

In particular, op ening comp osite arcs w as in tuitiv e. Ho w ev er, w e did observ e some users

w ould only op en comp osite arcs connected to the immediate paren t no de when trying to

view lo w er-lev el dep endencies connected to a particular no de. They w ould often o v erlo ok

comp osite arcs whic h w ere connected to higher lev els of subsystem abstractions.

Displa ying ev erything in one windo w did lead to some complain ts. Users had di�culties

in determining the no des that an arc connected. This happ ened esp ecially when sev eral

comp osite arcs w ere op ened to sho w man y lo w er-lev el arcs. Most users dealt with this

complexit y b y mo ving irrelev an t no des to one side to giv e a clearer view of the arcs of

in terest.

Tcl/Tk w as useful for rapidly protot yping the SHriMP in terface. Ho w ev er, the resp on-

siv eness of the resulting in terface w as p o or for large graphs. Op erations to mo v e and scale

no des w ere particularly tedious. Man y users quic kly realized this and ga v e up trying to mo v e

or scale no des in larger graphs. In addition, the feature for displa ying em b edded source co de

CHAPTER 8. USER STUD Y 1 110

inside no des w as not included in the v ersion of SHriMP presen ted to the sub jects. This fea-

ture adv ersely a�ected the e�ciency of the in terface and w as therefore omitted. Instead,

the source co de for a selected no de w as displa y ed in a separate text editor windo w.

8.6.4 In terpretation of results

F rom the task results (whic h measure the e�ectiv eness of the systems), there w as a sligh t

tendency for Multi-Win to outp erform Command-Line and for SHriMP to outp erform Multi-

Win. Ho w ev er, this ma y b e due to the bias of �xing the order of the in terfaces for eac h

user. The users probably gained kno wledge on ho w to tac kle the tasks using the �rst t w o

in terfaces (Command-Line and Rigi) ev en though test programs di�ered.

Based on the concrete task results, the users seemed to use Command-Line more e�ec-

tiv ely than Multi-Win for smaller programs. This con trasted with the questionnaire results

whic h suggested that the users preferred Multi-Win ev en for the smaller test programs. This

con�rms other exp erimen ts that compared graphical and textual represen tations of soft w are.

In those exp erimen ts, user p erformance did not impro v e with graphical represen tations, ev en

though the users p erceiv ed them as more e�ectiv e [115].

The questionnaires rank ed the Multi-Win in terface o v er the SHriMP in terface for the

larger Monop oly program. This suggested that user satisfaction migh t b e sensitiv e to the

program size; users w ere less satis�ed with SHriMP when dealing with a large program.

Tw o plausible explanations are: (1) resp onsiv eness of the SHriMP in terface w as slo w; (2)

to o man y arcs cluttered the SHriMP windo w.

8.7 Impro ving the Exp erimen t Design

The pilot study unco v ered sev eral minor di�culties and a few ma jor problems with our ini-

tial exp erimen t design. The training phase w as to o short for the users to learn ho w to use all

three in terfaces e�ectiv ely . Practice tasks should ha v e b een a part of the training. Also, the

users ma y ha v e learned from p erforming tasks with preceding in terfaces, in
uencing their

p erformance with subsequen t in terfaces. This is a realistic concern since a similar learning

e�ect w as observ ed in the exp erimen t to ev aluate the CARE to ol [86]. This confounding

factor could b e reduced b y randomizing the order of the in terfaces o v er the sub jects. Ho w-

ev er, the three test programs w ould also need to b e randomized for eac h of the in terfaces.

T o supp ort a useful statistical analysis, a large n um b er of users w ould need to participate

CHAPTER 8. USER STUD Y 1 111

in this exp erimen t. Ho w ev er, it ma y b e infeasible to �nd a large enough group of users

with similar programming exp erience who w ould b e able to sp end su�cien t time on suc h

an exp erimen t.

The exp erimen t design could b e re�ned so that eac h user tests one in terface only . The

users w ould b e randomly distributed in to three groups: Command-Line, Multi-Win and

SHriMP . This w ould allo w more time for training and practice tasks. This re�nemen t to

the design w ould reduce the time required of eac h user, and reduce the exp erimen ters'

w orkload signi�can tly . An y statistical analysis and proto col analysis w ould b e easier with

this simpli�ed design.

8.8 Recommendations for Impro ving the Rigi and SHriMP

In terfaces

All users had di�cult y o v ercoming idiosyncrasies in the Multi-Win and SHriMP in terfaces,

due to the protot ypical nature of b oth in terfaces. Based on observ ations and user commen ts,

sev eral impro v emen ts to these in terfaces w ere recommended.

In Multi-Win, users often forgot (or nev er disco v ered) the meaning and con text of indi-

vidual windo ws. They often op ened sev eral windo ws of the same view, failing to recognize

that these views w ere already a v ailable in other windo ws. Some w a y of emphasizing the

relationship of the op en windo ws to the corresp onding comp osite no des w ould b e b ene�cial.

There w as also confusion b et w een the in terpretation of the general windo ws and the

subsystem hierarc h y o v erview. Some users misin terpreted the paren t-c hild relationships

in the o v erview as call or data dep endencies. The app earance of the o v erview windo w

should di�er from the general windo ws. This migh t b e ac hiev ed b y simply ha ving di�eren t

bac kground colors for the di�eren t windo w t yp es.

The single most imp ortan t problem with SHriMP views w as the slo w resp onse of the

in terface. Since SHriMP views are based on direct manipulation, users exp ecting immediacy

w ere disturb ed b y the slo w resp onse.

F or the exp erimen ts, four Rigi exp erts created soft w are hierarc hies for eac h of the three

programs. One set of hierarc hies w as then selected to b e used in the pilot study . F or the

smaller programs (Fish and Hangman), the creation of a subsystem hierarc h y to ok around

30 min utes; for the Monop oly program, this to ok around 45 min utes. These exp erts made

use of b oth in terfaces, but w ere particularly satis�ed with the abilit y to see m ultiple lev els of

CHAPTER 8. USER STUD Y 1 112

abstraction concurren tly in the SHriMP views. Although this feature w as not implemen ted,

the SHriMP in terface w as deemed more natural for the dr ag and dr op paradigm of mo ving

no des b et w een subsystems. The exp erimen ters suggested that this feature should b e added

to the SHriMP in terface.

Another problem with SHriMP w as that it w as p ossible to b ecome in timidated b y the

large n um b er of arcs rev ealed b y op ening sev eral comp osite arcs. The visible presence

of these arcs caused disorien tation in SHriMP; y et, their absence caused disorien tation in

Multi-Win.

The next c hapter describ es a redesign of the SHriMP in terface. The c hanges that w ere

made resulted from observ ations collected during the pilot study and from examination of

the cognitiv e framew ork of design elemen ts describ ed in Chapter 4.

Chapter 9

Redesigning the SHriMP In terface

The observ ations from the pilot study describ ed in the previous c hapter and the cognitiv e

design elemen ts describ ed in Chapter 4 led to a redesign of the SHriMP in terface. In par-

ticular, SHriMP w as tailored to address issues relev an t to the in tegrated mo del of program

comprehension with added supp ort for switc hing b et w een men tal mo dels at v arious lev els

of abstraction. This c hapter describ es the redesign and reimplemen tation of the SHriMP

visualization tec hnique and its user in terface features for na vigating and bro wsing soft w are.

9.1 Magnifying No des of In terest

The reimplemen tation of SHriMP in tegrates con text+detail and pan+zo om approac hes for

magnifying no des of in terest.

The in teractiv e �shey e view is in tended to reduce cognitiv e o v erhead for user in terface

adjustmen t since it sho ws b oth con text and detail in a single view. Figure 9.1(c) sho ws a

�shey e view of the GamePla y subsystem in the Hangman program. The GamePla y subsystem

has b een magni�ed to sho w more detail while the rest of the graph w as shrunk to allo cate

more space to the GamePla y no de. If desired, m ultiple no des of in terest can b e selected and

magni�ed b y shrinking the remainder of the graph to allo cate more space to these no des.

A more traditional pan+zo om approac h allo ws the user to pan and zo om around a single

view. T o sho w more detail for a no de of in terest, the user selects the no de and zo oms in un til

the required lev el of detail is visible. Figure 9.1(d) sho ws the enlarged GamePla y subsystem

whic h �lls the a v ailable screen area.

The SHriMP �shey e view approac h has the adv an tage of sho wing b oth con text and

113

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 114

(a) (b)

(c) Fishey e View (d) Zo omed View

Figure 9.1: (a) An abstract view of a program whic h implemen ts a Hangman game. (b)

The main subsystems are op ened to sho w their structure. (c) The GamePla y subsystem has

b een magni�ed using the SHriMP �shey e view algorithm. (d) GamePla y has b een magni�ed

further, remo ving most of the con text from the view.

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 115

detail, but dep ending on the giv en task and required information, con textual cues ma y

not alw a ys b e needed. The pan+zo om approac h, ho w ev er, only supp orts one fo cal p oin t.

A programmer often needs to bro wse t w o in teracting subsystems concurren tly in a single

view. It is an ticipated that the SHriMP �shey e view approac h w ould b e more suitable for

magnifying t w o or more fo cal p oin ts.

A user bro wsing a soft w are hierarc h y migh t com bine these t w o approac hes to magnify

no des of in terest. F or example, in Fig. 9.1(c) the GamePla y subsystem no de is magni�ed

b y zo oming in (without con text), but within GamePla y , three of its c hildren no des are sized

larger than their siblings using the SHriMP �shey e algorithm.

9.2 Bro wsing Source Co de

As with the �rst implemen tation of SHriMP , the user can easily access the source co de for

a program; eac h leaf no de directly corresp onds to a c h unk of co de in the program. Previously ,

the user w ould view the co de b y displa ying it inside a no de. In this implemen tation, a user

can bro wse the co de using an y of three metho ds. In the �rst metho d, a separate text editor

windo w ma y b e op ened to displa y the corresp onding source �le and co de for a selected

no de. The other t w o w a ys represen t the co de as h yp ertext [31]. F unction calls, data t yp e

references, and v ariable references are presen ted as h yp erlinks in a h yp ertextual co de view.

The second metho d uses the user's preferred w eb bro wser, suc h as Netscap e Na vigator,

for exploring the h yp ertext co de. The third metho d em b eds the h yp ertext co de inside the

no des. The source co de can then b e bro wsed within the con text of the soft w are structure

view. Moreo v er, within the co de, some con textual information is pro vided b y the presence

of the h yp erlinks.

In addition to em b edding the co de inside no des, SHriMP in tegrates the h yp ertext link-

follo wing metaphor (at the co de lev el) with animated panning and zo oming motions o v er

the nested graph (at the structural lev el). Consequen tly , follo wing a link to another func-

tion pans and zo oms the view so that this function's co de is presen ted within its no de.

By seamlessly com bining co de and structural bro wsing, this new feature in SHriMP should

b etter supp ort and encourage switc hing within h ybrid comprehension strategies. The h y-

p erlinks also pro vide complemen tary path w a ys for na vigation b ey ond follo wing the nested

graph structure.

Figure 9.2(a) displa ys the pla ygame() function as a fo cal p oin t with its co de visible. The

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 116

(a) (b)

(c) (d)

Figure 9.2: (a) The pla ygame() function no de is magni�ed so that its source co de is readable.

The user selects the endgame() h yp erlink to see the called function's co de. (b) As an

animated in termediate step, the SHriMP view sho ws b oth the pla ygame() and endgame()

no des. (c) The SHriMP view animates so that the endgame() function's co de is readable.

(d) T o see endgame more clearly , the user can zo om in so that the no de �lls the a v ailable

screen area.

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 117

pla ygame() function calls endgame() (see the last line in the b o dy of pla ygame()). When the

user clic ks on the endgame() h yp erlink, the to ol animates the view so that b oth no des are

visible (cf. Fig. 9.2(b)). This in termediate step is imp ortan t to a v oid disorien ting the user

as the view is panned and zo omed from one no de to another. SHriMP then animates the

view so that the co de for endgame() is readable, as in Fig. 9.2(c). T o see the co de more

clearly , the user can fully zo om the endgame() no de as sho wn in Fig. 9.2(d).

Displa ying the co de inside the no des and animating the view as the fo cus is c hanged

should reduce disorien tation e�ects often encoun tered b y programmers when bro wsing the

co de of complex soft w are systems.

9.3 Implemen tation

The �rst protot yp e of the SHriMP in terface [155] w as implemen ted in Tcl/Tk [111]. Tcl/Tk

is a scripting language and user in terface library useful for rapidly protot yping graphical

in terfaces. Ho w ev er, its graphics capabilities are not optimized for e�cien tly displa ying the

large graphs t ypical of soft w are systems.

The second protot yp e has b een implemen ted using P ad++ [10], a graphics extension

for Tcl/Tk. P ad++ is a substrate for building m ultiscale, dynamic user in terfaces. It is

highly optimized for e�cien tly displa ying large n um b ers of ob jects and smo othly animates

the motions of panning and zo oming. F or SHriMP , the nested graph views and �shey e view

algorithm are implemen ted in Tcl/Tk using the P ad++ widgets. P ad++ supp orts HTML

items in its can v as, this feature w as used to displa y source co de inside the no des. The

P ad++ panning and zo oming features are used extensiv ely in SHriMP .

In con trast to Tcl/Tk, P ad++ supp orts scalable fon ts. No de lab els are sized to �t in the

no de irresp ectiv e of the size of the no de. Previously , no de lab els w ere �ltered when the size

of the no de w as to o small to con tain the en tire lab el. In addition, the HTML'ized source

co de can also b e scaled as the no des are resized. This should b e an adv an tage as no des that

are op ene d to rev eal the co de can remain op en ev en when they are scaled to b e v ery small

(as depicted in Fig. 9.2).

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 118

9.4 User In terface Con trols

In the �rst implemen tation of SHriMP , v arious mouse button and k eyb oard actions con-

trolled the zo oming actions in a mo deless in terface. Ho w ev er, in the pilot study w e observ ed

that users had di�culties remem b ering the button and k eyb oard com binations to p erform

the v arious zo oming op erations and they had to frequen tly refer to a legend on the frame

of the windo w (cf. Fig 7.6). Although it is often desirable to ha v e a mo deless in terface, w e

tried to simplify the in terface b y in tro ducing some mo des to reduce the cognitiv e o v erhead

of the users when na vigating in the system.

There are v arious mo des whic h the user can select to manipulate the user in terface.

Mo des are selected from a set of radio buttons dra wn on the righ t hand edge of the can v as

(cf. Fig. 9.3). In standard mo de (selected b y c ho osing the �rst radio button), the user

op ens and closes no des (b y double-clic ki ng) and rep ositions no des on the can v as b y dragging

them to the desired lo cation. In SHriMP mo de (selected b y c ho osing the second radio

button) the buttons lab eled Zo om In and Zo om Out c hange the view using the SHriMP

�shey e view algorithm to enlarge (or shrink) the curren tly selected no de. In Magnify mo de

(third radio button), the Zo om In and Zo om Out buttons c hange the view using a full

zo om metaphor (i.e., with no con text) to fo cus on the curren tly selected no de. Selecting the

pan mo de (last radio button) allo ws the user to drag the en tire view around the can v as.

A Bac k button enables the user to \go bac k" to the last no de visited. This feature is

particularly useful when a user bro wses the HTML'ized source co de. A Sho w All button

scales ev erything to �t in the view able screen area.

9.5 Discussion

T able 9.5 lists the set of features incorp orated in SHriMP and ho w they should pro vide

some supp ort for the design elemen ts outlined in the cognitiv e framew ork. T o enhance

b ottom-up comprehension, SHriMP pro vides access to the lo w est lev el units in the program

through the source co de views and access to the syn tactic and seman tic relationships through

the graphical represen tations (cf. cognitiv e design elemen t E1 in Figure 4.1). The e�ects

of delo calized plans should b e reduced b y follo wing h yp erlinks in the HTML'ized source

co de (cf. E2). Abstraction mec hanisms are pro vided b y allo wing the main tainer to create

abstractions using comp osite no des and arcs (cf. E3).

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 119

Figure 9.3: User in terface con trols of the SHriMP reimplemen tation.

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 120

Some supp ort is pro vided for h yp othesis-driv en comprehension b y allo wing the user to

annotate the subsystem no des with relev an t commen ts to re
ect h yp otheses that ma y ha v e

b een formed during understanding (cf. E4). Ov erviews of the soft w are structures can b e

sho wn at v arious lev els of abstraction b y closing (collapsing) comp osite no des and arcs (cf.

E5). Supp ort for the in tegrated comprehension mo del is pro vided b y in tegrating the source

co de views closely with the graphical views (cf. E6, E7).

The h yp ertext links in the em b edded co de coupled with the animation of the graphical

displa y w ere designed to reduce the cognitiv e o v erhead exp erienced b y a user while follo wing

w ell de�ned paths in the system (cf. E8). The bro wser-lik e bac k button pro vides supp ort

for arbitrary na vigation steps (cf. E9). The �shey e views and the nested graphs should b e

useful for indicating the user's curren t fo cus as w ell as displa ying the path that led to the

curren t p oin t of in terest (cf. E10, E11). The h yp ertext links, as w ell as subsystems no des

in the graph and the th um bnail images indicate options for further exploration (cf. E12).

Finally , the smo oth animation b et w een views, few er windo ws, and graph la y outs should

mak e the user in terface and the information displa y ed in it easier to use and understand (cf.

E13, E14).

By applying a v ariet y of empirical metho ds, w e need to study if the prescrib ed features

adequately supp ort the corresp onding cognitiv e design elemen ts. In particular, w e wish to

study the e�ects of v arious in
uen tial factors (suc h as main tainer exp ertise, programming

domain and task purp ose) on programmer strategy com bined with the use of the SHriMP

to ol.

A second user study , a follo w-up to the pilot study , is describ ed in the next c hapter. The

goals of this study w ere to ev aluate the new implemen tation of SHriMP , and to compare it

to alternativ e program comprehension to ols. In particular, the exp erimen t w as designed to

highligh t the e�ects of di�eren t program comprehension to ols on programmer comprehension

strategies.

CHAPTER 9. REDESIGNING THE SHRIMP INTERF A CE 121

Cognitiv e Design Elemen t Corresp onding feature in SHriMP

(Enhanc e b ottom-up c ompr ehension)

E1: Indicate syn tactic/seman tic relationships Source co de view; graph no des and arcs

E2: Reduce the e�ects of delo calized plans Hyp ertext links in source co de; arcs

E3: Pro vide abstraction mec hanisms Subsystem no des and comp osite arcs

(Enhanc e top-down c ompr ehension)

E4: Supp ort h yp othesis-driv en comprehension Annotations of subsystem no des when created

E5: Pro vide o v erviews at v arious lev els of Subsystem no des in the nested graph

abstraction

(Inte gr ate b ottom-up and top-down appr o aches)

E6: Pro vide views of m ultiple men tal mo dels Source co de views; high-lev el graphical views

E7: Cross-reference m ultiple men tal mo dels In tegrating source co de in graphical views

(F acilitate navigation)

E8: Pro vide directional na vigation Hyp ertext links; subsystem no de na vigation

E9: Pro vide arbitrary na vigation Hyp ertext bro wser bac k button

(Pr ovide orientation cues)

E10: Indicate the curren t fo cus Fishey e views and zo omed views

E11: Displa y path that led to curren t fo cus Nested graph

E12: Indicate options for further exploration Hyp ertext links; no des in the graph;

th um bnail images

(R e duc e disorientation e�e cts)

E13: Reduce user-in terface cog. o v erhead Animation b et w een views; few er windo ws

E14: Pro vide e�ectiv e presen tation st yles Graph la y outs

T able 9.1: Designing the SHriMP to ol using the cognitiv e framew ork for design

Chapter 10

User Study 2

This c hapter describ es an exp erimen t in whic h 30 participan ts w ere observ ed p erforming a

v ariet y of program understanding tasks using three to ols: Rigi, SHriMP , and SNiFF+. The

SNiFF+ system is a commercial, in tegrated dev elopmen t en vironmen t for C and C++ that

pro vides source co de bro wsing and cross referencing features [144].

In the �rst study (cf. Section 8) w e compared Rigi and SHriMP to a command line

in terface consisting of the vi and grep UNIX to ols. W e w ere in terested in studying if the

visualizations o�ered b y Rigi and SHriMP w ere an impro v emen t o v er the textual in terface of

the UNIX to ols. Ho w ev er, b oth Rigi and SHriMP use a p o w erful parser to extract artifacts

and relationships from the source co de. F or this exp erimen t, w e decided to use SNiFF+

instead of vi and grep. SNiFF+'s in terface is predominan tly textual, but it uses a fuzzy

parser

1

to extract sym b ols and dep endencies from the co de. Using SNiFF+ instead of vi

and grep allo w ed us to study the impact of the Rigi and SHriMP visualizations rather than

their parsing abilities.

Before our exp erimen t, w e susp ected that eac h to ol w ould primarily supp ort a sp eci�c

set of comprehension strategies. T o gain some insigh t, w e fo cused on observing the strategies

used b y the participan ts as they p erformed a set of high-lev el program understanding tasks.

W e discuss ho w w ell the implicit strategies imp osed b y the to ols' features supp orted the

users' preferred strategies.

1

The SNiFF+ parser w orks with syn tactically incorrect or partial co de.

122

CHAPTER 10. USER STUD Y 2 123

10.1 T o ols Studied

Only a small subset of the features of eac h to ol w as tested in the exp erimen t. This section

pro vides a brief description of these selected features.

10.1.1 Rigi

Figure 10.1: A view of the Monop oly program using Rigi.

In Rigi a subsystem con tainmen t hierarc h y is presen ted using individual, o v erlapping

windo ws that eac h visually displa y a sp eci�c slice of the hierarc h y . Ov erview windo ws sho w

the subsystem hierarc h y in a tree-lik e form, with arcs b et w een lev els to sho w con tainmen t.

By default, no de lab els in Ov erview windo ws are hidden. Children windo ws sho w the

CHAPTER 10. USER STUD Y 2 124

c hildren no des con tained in a subsystem. Pro jection windo ws can
atten a (sub)hierarc h y

in to a single view. No des and arcs in these windo ws can b e �ltered b y t yp e, or they can

b e selected b y name and highligh ted using a searc h dialog. Ho w ev er, Rigi do es not directly

supp ort searc hing through the source co de text. No de and arc information windo ws pro vide

a detailed rep ort of lo cal dep endencie s and neigh b oring no des. T ext editor windo ws can b e

op ened for certain lo w-lev el no des to sho w the relev an t source �le, p ositioned to the start

of the appropriate co de fragmen t. The windo ws are all distinguished b y lab els in their title

bars. Figure 10.1 sho ws some of the windo w t yp es and to ols in Rigi. F or a more detailed

discussion of the Rigi editor's in terface, please refer to Section 7.1.

Rigi's true strength is its supp ort for unco v ering subsystem abstractions and the creation

of subsystem hierarc hies. This information can b e used as a form of do cumen tation for

subsequen t program understanding during soft w are main tenance. In this exp erimen t w e

simply considered ho w Rigi could b e used for bro wsing previously comp osed hierarc hies of

subsystem abstractions.

10.1.2 SHriMP views

In the exp erimen t, w e w ere in terested in exploring the usefulness of the nested graph

formalism for presen ting the structure of a soft w are system in a single windo w. In addition,

w e w ere in terested in comparing the �shey e view and pan+zo om approac hes for magnifying

no des of in terest in the graph. The pan+zo om approac h allo ws the user to pan and zo om

around the view without distortion, but critical information migh t b e panned o� the edge

of the view. Then again, some tasks ma y not need man y con textual cues if they in v olv e

only lo calized fragmen ts of program co de.

As with Rigi, certain lo w-lev el soft w are artifacts are tied to sp eci�c fragmen ts of source

text (e.g., a function b o dy). F or SHriMP , ho w ev er, these co de fragmen ts are displa y ed

within the no des of the nested graph. Moreo v er, function calls, data t yp e references, and

v ariable references are presen ted as clic k able h yp ertext links in the fragmen ts. SHriMP in te-

grates this h yp ertext metaphor for follo wing lo w-lev el dep endencies with animated panning,

zo oming, and �shey e view actions o v er the nested graph. Consequen tly , follo wing a link to

another function pans and zo oms the view so that this function's co de is presen ted within

its no de. Alternativ ely , the user can view the h yp ertext co de using the Netscap e Na vigator

w eb bro wser. The v ersion of SHriMP used in the exp erimen t lac k ed a searc hing to ol, had

no �ltering capabilit y , and w as not v ery robust. Figure 10.2 sho ws a SHriMP view of a

CHAPTER 10. USER STUD Y 2 125

Figure 10.2: A SHriMP view of the Monop oly program.

Monop oly program (the test program used in our exp erimen ts).

10.1.3 SNiFF+

SNiFF+ is a commercial soft w are dev elopmen t en vironmen t that pro vides pro ject man-

agemen t, source co de bro wsing, cross referencing, and searc hing features [144]. These fea-

tures are accessed through sev eral in tegrated to ols, eac h with a windo w con taining a men u

of options. These to ols op erate on a sym b ol table that is generated b y SNiFF+ from pars-

ing the source co de. The Pro ject Windo w lists the header and implemen tation �les of the

program. The Sym b ol Bro wser accesses the sym b ol table to displa y lists of functions, con-

stan ts, macros, v ariables, etc. that can b e �ltered b y name. The Source Editor windo w

CHAPTER 10. USER STUD Y 2 126

Figure 10.3: A view of the Monop oly program using the SNiFF+ Soft w are Dev elopmen t

En vironmen t

displa ys a view of the source co de with coloring of some syn tactic constructs. The Cross

Referencer windo w displa ys a dep endency tree of what a sym b ol refers to or is referred b y .

The Retriev er windo w displa ys the result of a textual searc h through the source co de. T o

manage the man y windo ws, a user can reuse an existing windo w; to a v oid reusing a windo w,

the user can \freeze" its con ten ts b y clic king a c hec kb o x on the windo w. The windo ws are

all distinguished b y lab els in their title bars and di�erences in in terior la y out. Figure 10.3

sho ws some of the windo w t yp es and to ols a v ailable in SNiFF+.

CHAPTER 10. USER STUD Y 2 127

10.2 Goals

W e had three main goals in mind.

1. Study the factors a�ecting the participan t's c hoice of comprehension strategy (cf.

Section 2.6).

2. Observ e whether the three to ols w ould e�ectiv ely enhance the participan t's preferred

comprehension strategies while solving the tasks.

3. Pro vide feedbac k for the dev elop ers of these and other similar to ols.

10.3 P articipan ts

F or the exp erimen t, 30 participan ts w ere recruited from a computer science course on h uman-

computer in teraction at the Univ ersit y of Victoria. Fiv e of the participan ts w ere graduate

studen ts and t w en t y-�v e w ere senior undergraduate studen ts. Prior to the actual exp erimen t

sessions, the participan ts w ere ask ed to sign an informe d c onsent form (cf. App endix A)

whic h w as appro v ed b y the ethical review committee of the Univ ersit y of Victoria. W e also

ask ed eac h participan t to complete a questionnaire ab out their programming exp erience and

relev an t domain kno wledge (cf. App endix B).

10.4 Exp erimen tal Design

The general exp erimen t design follo w ed impro v emen ts from the pilot study describ ed in

Section 8. In this second, larger exp erimen t, 30 participan ts w ere eac h randomly assigned

to only one of the three to ols. This allo w ed more time for training and practice tasks. The

additional time also p ermitted more meaningful and realistic main tenance tasks.

Eac h to ol in terface w as tested b y asking the participan ts to complete a series of soft w are

main tenance tasks under con trolled and sup ervised conditions. Eac h t w o-hour session with

a participan t con tained the follo wing phases (with appro ximate time limits in min utes):

� orien tation (5),

� training tasks (20),

� practice tasks (20),

� formal tasks (50),

CHAPTER 10. USER STUD Y 2 128

� p ost-study questionnaire (15), and

� p ost-study in terview and debrie�ng (10).

10.4.1 Orien tation

A t the start of eac h session, eac h participan t w as reminded of the purp ose of the exp erimen t

whic h w as to ev aluate the e�ectiv eness of a program understanding to ol. The participan ts

w ould also learn some basic features of a to ol to help understand soft w are. The di�eren t

phases of the session w ere outlined with an assurance that the collected information w ould

remain anon ymous. Also, w e men tioned that the participan ts should not feel undue pressure

to pro duce the \righ t" answ er or feel rushed to �nish all the tasks in the limited time. W e

w ere more in terested in observing ho w the giv en to ol w as used to solv e a particular task.

10.4.2 T raining

During the training phase, the exp erimen ter demonstrated a subset of the to ol's features.

The handb o oks listed the minimal set of features whic h w ere in tended to b e su�cien t for

the up coming tasks. W e realized that omitted but a v ailable essential features could a�ect

the comprehension strategy of the participan ts but to o man y to ol features could o v erload

or disorien t the user. W e tried to strik e a w ork able tradeo�, taking a
exible approac h of

explaining c onvenienc e features as appropriate to receptiv e users.

T o w ard the end of training, the exp erimen ter demonstrated ho w to solv e some simple

queries suc h as �nding all functions called b y main() in a small C program.

10.4.3 Practice tasks

The purp ose of the practice tasks w as to allo w the participan ts to b ecome familiar with the

to ol and its �ner p oin ts in a freest yle setting. The participan ts w ere encouraged to explore

and ask questions ab out the to ol. In the pilot study , the lac k of hands-on exp erience mean t

that the participan ts often struggled with a to ol's user in terface rather than fo cusing on the

program understanding task itself.

The practice tasks (cf. App endix D) in v olv ed using the assigned to ol to bro wse a Hang-

man program written in C (cf. App endix J). This program con tained 300 lines of co de in 12

�les. These tasks progressed in di�cult y to allo w the participan ts time to grasp the to ol fea-

tures and com bine them appropriately . F or example, one practice task required disco v ering

CHAPTER 10. USER STUD Y 2 129

the purp ose of a v ariable called Errors and �nding the functions using this v ariable.

10.4.4 F ormal tasks

During the formal part of the session, the participan ts p erformed sev eral tasks on a Monop oly

game program (cf. App endix G). These tasks w ere videotap ed (with the participan ts' p er-

mission) and the exp erimen ter recorded observ ations. The participan ts w ere encouraged to

\think-aloud" as they did the tasks. The formal tasks w ere designed to b e realistic and

t ypical of what a main tenance programmer w ould b e ask ed to do. Also, these tasks w ere

distinctly di�eren t and somewhat broader than the training and practice tasks. W e did not

w an t the participan ts to merely mimic a similar solution from a previous task. After all,

w e w ere in terested in observing ho w the participan ts w ould c ho ose to solv e these tasks with

the assigned to ol.

Realistic soft w are main tenance tasks w ere ac hiev ed b y couc hing the tasks in an imaginary

main tenance scenario whic h w as presen ted to eac h participan t:

Y ou work for a softwar e c omp any that develops games. Assume that your man-

ager has ac quir e d the sour c e c o de for a Monop oly game with the intent of im-

pr oving and extending it for c ommer cial purp oses. Y our manager would like to

know if adapting the pr o gr am is a viable option. Some tasks have b e en set for

you to do which wil l help in evaluating the pr o gr am for further use.

10.4.5 Questionnaire

Up on �nishing the formal tasks, the participan ts w ere ask ed to complete a brief usabilit y

questionnaire (cf. App endix H). The questionnaire consisted of 15 questions in �v e sets

of three. The questions in a set w ere actually subtle rew ordings of eac h other. All the

questions w ere randomly ordered. The sets w ere designed to gather opinions on:

1. o v erall ease of use,

2. pleasan tness of use,

3. con�dence in results generated,

4. abilit y to generate results, and

5. abilit y to �nd dep endency relationships.

The questionnaire also pro vided space for general commen ts.

CHAPTER 10. USER STUD Y 2 130

10.4.6 In terview and debrie�ng

Finally , an informal in terview w as conducted to stim ulate the participan ts in to rev ealing

though ts not expressed while answ ering the questionnaire. App endix I lists the questions

ask ed b y the exp erimen ters during the in terviews.

10.5 Exp erimen ter's Handb o ok

A detailed exp erimen ter's handb o ok w as written for eac h to ol to pro vide some consistency

and con trol o v er the running of eac h exp erimen tal session (cf. App endices D, E and F).

General instructions (common to all to ols) outlined the structure of the exp erimen t, the rules

of conduct, and v arious pro cedures to b e follo w ed b y the exp erimen ter (cf. App endix C).

T o ol-sp eci�c descriptions con tained detailed instructions for eac h of the exp erimen tal phases.

F or example, the descriptions of the training and practice tasks detailed the features to

b e taugh t. A ttac hed to the handb o ok w ere forms to b e �lled out b y the exp erimen ter

(observ ations and in terview questions) and b y the participan ts (formal task questions and

usabilit y questionnaire). A fresh cop y of the handb o ok w as used for eac h session.

10.6 Exp erimen tal V ariables

This section explores some of the factors that w ould a�ect the participan ts' p erformance

and c hoice of comprehension strategy in our exp erimen t.

10.6.1 T est program

The formal tasks in v olv ed understanding a text-based, Monop oly game program written in

C (cf. App endix J). This program con tains 1700 lines of co de in 17 �les, with only sparse

commen ts. The con trol-
o w of this program is fairly complex, due to some GOTOs and a

table of function p oin ters for most commands in the game.

F or Rigi and SHriMP , one of the exp erimen ters created a subsystem hierarc h y for

Monop oly using the Rigi graph editor. The subsystems w ere created mostly using the �le-

based mo dularization of the source co de. Higher-lev el subsystems w ere formed to gather

related mo dules together and simplify the graph. The selection of meaningful subsystem

names w as particularly imp ortan t.

CHAPTER 10. USER STUD Y 2 131

10.6.2 T ask complexit y

W e tried to devise higher-lev el program understanding tasks for the formal tasks. Some tasks

required the participan t to understand part of the program to answ er a question ab out its

functionalit y . F or example, one task ask ed the participan t to determine if a certain feature

in the game had b een implemen ted. Other tasks required a deep er understanding, asking

the participan t to describ e ho w to c hange the program to implemen t a new feature. F or

example, one task ask ed the participan t to describ e ho w to c hange a rule in the game.

Ho w ev er, since the users did not actually need to mak e the c hanges, they could tak e a

nonc halan t approac h to the main tenance tasks and mak e educated guesses at the solutions.

10.6.3 User exp ertise

The lev el of exp ertise and skill a�ects a user's p erformance b y con tributing signi�can tly

to understanding a program or learning a to ol's in terface. A pre-study questionnaire in-

quired ab out C programming exp erience, main tenance exp erience, n um b er of y ears as a

programmer, exp erience writing games, etc. Programming exp erience, ho w ev er, do es not

highly correlate with programming pro�ciency [172]. Nev ertheless, w e used the question-

naire resp onses to ev enly spread the no vice and more exp erienced programmers among the

to ols. 17 of the 30 sub jects had more than �v e y ears of programming exp erience. All of

the participan ts said they w ere familiar with the C programming language. Tw elv e sub jects

had exp erience programming games.

Domain kno wledge ab out the Monop oly b oard game could b e an asset b y pro viding

useful preconceptions. T o striv e for consistency across participan ts, w e set up a ph ysical

Monop oly b oard b eside eac h participan t and, if needed, explained the rules of the game.

W e encouraged them to review the rules and use the b oard throughout the formal tasks.

10.7 Results

In this section, w e describ e some observ ations from the formal tasks, an analysis of the

questionnaires, and some �ndings from the in terviews.

CHAPTER 10. USER STUD Y 2 132

10.7.1 F ormal tasks

The most in teresting results w ere in observing ho w the users p erformed the program under-

standing tasks with the assigned to ol and the Monop oly program. The formal tasks w ere

designed without detailed kno wledge of the co de, and w ere therefore not tailored to suit the

co de or the program structure. There w ere sev en tasks in three classes: preparatory (T asks

1 and 2), high-lev el program understanding (T asks 3, 4 and 7), and main tenance (T asks 5

and 6).

T ask 1: L o ok at the r e al Monop oly game until you understand the gener al c onc ept and

rules of the game. Have you playe d Monop oly b efor e?

This task queried the amoun t of Monop oly kno wledge that eac h user had. All users (with

one exception) w ere familiar with the game. W e did not ask this question in the pre-study

questionnaire to a v oid giving a hin t that Monop oly kno wledge w ould b e useful.

T ask 2: Sp end a while br owsing the pr o gr am using the pr ovide d softwar e maintenanc e to ol

and try to gain a high-level understanding of the structur e of the pr o gr am.

F or this task, w e sa w a h uge v ariation in approac hes. Some users sp en t as little as t w o

min utes and then ask ed to con tin ue with the next task, whereas others happily sp en t 20

min utes or more bro wsing the program. Users bro wsing the program in detail set themselv es

a task or goal for understanding the program. In terestingly , some users predicted tasks that

w ere to follo w. F or example, one of the SHriMP sub jects said the follo wing while bro wsing

the program: \the �rst thing I w ould ask m yself is do es the program supp ort a computer

mo de?" (cf. T ask 4). Other sub jects indicated that they w ould prefer to lo ok at the tasks

b efore exploring the program in detail. As one user said: \actually most of the time when

I try to understand a program, I actually lo ok at the task itself. It giv es me a reason to

understand a concept or a p oin ter to searc h for something."

In SNiFF+, the most common approac h w as to select the monop.c �le from the list of

�les and then read the co de for the main() function. Others used the Retriev er windo w

or the Sym b ol Bro wser to �nd the main() function. Once found, the users w ould read the

source co de of the main() function and follo w calls to other functions, p erusing them to

v arying lev els of detail. Tw o users started this task b y examining the data structures b efore

reading the source co de of the main() function.

CHAPTER 10. USER STUD Y 2 133

Most of the Rigi users sp en t sev eral min utes viewing the visual displa y of the subsystem

hierarc h y b efore reading an y co de. Most of the users started b y op ening an Ov erview

windo w to displa y the hierarc h y . F or the most part they used the names of the subsystems

and the depth of subsystems in the hierarc h y to pic k out imp ortan t parts of the program.

Tw o users noticed that the Pla y subsystem w as the deep est in the hierarc h y and guessed

that it w ould b e imp ortan t. Another user though t that the GeneralGlobals subsystem w ould

b e imp ortan t based on its name. A couple of the users did not bro wse an y source co de and

instead concen trated on the higher-lev el views of the soft w are structures.

In SHriMP , the visible subsystems w ere fo cal p oin ts for further exploration. Almost all

of the sub jects quic kly directed their atten tion to the source co de, bro wsing either the main()

function in the Control subsystem and/or the initialization functions in the Setup subsystem.

All of the users explored what they p erceiv ed to b e the most imp ortan t subsystems in the

program (Control , Setup , Pla y , and DataStructures) b y zo oming in and out. A couple of

sub jects systematically op ened and enlarged the subsystem no des one b y one, follo wing

the o ccasional h yp erlink to other called functions, referenced data structures, or accessed

v ariables. Only one of the sub jects used Netscap e for bro wsing the source co de.

T ask 3: In the c omputer game, how many players c an play at any one time?

In Monop oly , the main() function calls the getpla y ers() function, whic h most users examined.

The getpla y ers() function prompts the pla y er to en ter a n um b er b et w een one and nine for

the desired n um b er of pla y ers. The en tered n um b er is then compared to MAX PL (a macro

de�ned in the monop.h header �le).

In SNiFF+, the users lo ok ed for MAX PL using the Sym b ol Bro wser. Ho w ev er, they

often though t that MAX PL w as a constan t or v ariable and did not think to c hec k the list

of macros. As a last resort, some users used the Retriev er to �nd the de�nition of MAX PL .

The parser used b y Rigi and SHriMP to generate the graphs did not emit information

ab out macros. Consequen tly , there w as no MAX PL no de in the graph. In Rigi, some

users tried to use its name-based selection feature to �nd a MAX PL no de. Since this

no de did not exist, most users then resorted to searc hing for \ *.h " no des and op ening the

corresp onding header �les one b y one. They skimmed or searc hed through eac h �le to �nd

the MAX PL macro. Most users had di�culties seeing the highligh ted \ *.h " no des in the

Ov erview windo w, b ecause of the small size of the no des. Rescaling the no des to b e larger

w as a cum b ersome action in Rigi.

CHAPTER 10. USER STUD Y 2 134

In SHriMP , the users also w an ted to searc h for the de�nition of MAX PL and th us found

the lac k of a searc h to ol frustrating. Without a searc h to ol, the users resorted to pic king

out the no des that represen ted header �les. This pro cess w as feasible since there w ere only

17 �les and a few header �les. Some users said that there should ha v e b een a h yp erlink

from the o ccurrence of MAX PL to its de�nition. Ho w ev er, the parser could not pro duce

this information for the h yp ertext generator. A couple of the SHriMP users solv ed this task

b y bro wsing the source co de using the Netscap e windo w.

T ask 4: Do es the pr o gr am supp ort a \c omputer" mo de wher e the c omputer wil l play against

one opp onent?

This task, a natural question to ask when trying to understand a game program, w as

an ticipated b y man y users. In k eeping with the scenario, the users w ere told that they

could not run the game to answ er this question.

F rom T ask 3, man y users recalled that the getpla y ers() function prompted for one to

nine pla y ers. This led man y to b eliev e, incorrectly , that the program supp orted a computer

mo de. Ho w ev er, most users (with some pro dding) decided to c hec k their h yp otheses b y

studying the co de further.

In SNiFF+ and Rigi, the main strategy w as to searc h for a string suc h as \computer,"

\auto," or \AI." One SNiFF+ user lo ok ed in the Sym b ol Bro wser for a �le that implemen ted

the mo de. One Rigi user guessed that there migh t b e strings lik e \y our turn" and \m y

turn." Since there w as no computer mo de, these searc hes did not yield an ything useful.

Consequen tly , most SNiFF+ and Rigi users read the co de somewhat systematically b y

follo wing the con trol-
o w and lo oking for clues. The lac k of an y b eacons to supp ort their

h yp otheses led the users to conclude the mo de did not exist.

In SNiFF+, there w ere sev eral w a ys to get the de�nition of a called function (some more

con v enien t than others). T ypically , users used the Sym b ol Bro wser, Retriev er, or Cross Ref-

erencer. Ho w ev er, most users preferred a h yp ertext approac h of clic king or double-clic ki ng

on a function call and jumping to the called function's de�nition. They w ere surprised that

this did not \w ork." Actually , this action can b e in v ok ed from a men u but w as in ten tion-

ally (and p erhaps unfortunately) left o� our minimal feature subset for training. In most

instances, w e taugh t this con v enience feature later in the exp erimen t to a v oid an y undue

frustration.

In Rigi, reading co de systematically b y follo wing the con trol
o w is quite cum b ersome.

CHAPTER 10. USER STUD Y 2 135

The users had to use the searc h dialog, en ter the name of the called function, clic k a button

to highligh t its no de, visually lo cate that no de in a cro wded Ov erview windo w, and double-

clic k the no de to op en a text editor on the source �le con taining the function. Going from an

artifact in a graph windo w to its co de in a text editor w as hard enough; doing the opp osite

w as not ev en supp orted. This lac k of in tegration w as frustrating for some users.

In SHriMP , the lac k of a searc h feature w as frustrating for the users. They could not

quic kly lo ok for a b eacon or cue to v erify their b elief in a computer mo de. These users

w ere forced to bro wse the co de and follo w function calls systematically . Ho w ev er, this

bro wsing w as fairly easy , aided b y clic k able h yp erlinks in the co de from function calls to

their function b o dies. F or these users, the animated view seemed to help them main tain a

sense of orien tation while bro wsing the program. Again, for this task only one of the users

c hose to use Netscap e to bro wse the co de, the rest bro wsed the co de within SHriMP .

The w ording of the task ma y ha v e a�ected the strategies used. If the question had

ask ed the user to v erify that there w as no computer mo de, the strategy used ma y ha v e b een

initially more systematic for more users. By p erhaps implying that there w as a computer

mo de, coupled with the apparen t p ossibilit y of a single pla y er game, the users to ok a more

ad ho c approac h to try to v erify that the mo de existed.

T ask 5: Ther e should b e a limite d total numb er of hotels and houses; how is this limit

implemente d and wher e is it use d? If this functionality is not curr ently implemente d, would

it b e di�cult to add? What changes would this enhanc ement r e quir e?

In the real Monop oly game, there are 32 houses and 12 hotels. The limited total n um b er of

houses can b e used b y seasoned pla y ers in their pla ying strategy . F or example, b y using up

all the houses and not building hotels, other pla y ers ma y b e prev en ted from getting houses

for their prop erties.

This task w as particularly in teresting since these limits w ere not implemen ted in the pro-

gram. Also, hotels w ere implicitl y represen ted as �v e houses, making the required c hanges

more di�cult than �rst exp ected b y the users.

The participan ts �rst lo ok ed for some evidence of the total limits. In SNiFF+, this

in v olv ed searc hing for strings suc h as \max," \house," and \hotel" in the source text. A few

users exploited their Monop oly kno wledge and searc hed for \32" and \12." In SNiFF+, the

Retriev er returned 62 matc hes for \house," but only one for \hotel" (in a p rintf() string).

The users quic kly realized that the hotel limit w as lik ely not implemen ted. When the searc h

CHAPTER 10. USER STUD Y 2 136

strategy failed to quic kly pro duce an answ er, the users switc hed to lo oking at header �les for

p ossible hin ts, suc h as related constan ts or macros. When no limits w ere clearly eviden t, the

users resorted to bro wsing the source co de systematically . The users bro wsed the houses.c

�le, whic h seemed appropriate for �nding the house limit since it con tained the functions

buy houses() and buy h() for buying houses. Ho w ev er, one or t w o users did not immediately

think of bro wsing houses.c and b ecame frustrated trying to �nd an y relev an t co de.

The Rigi and SHriMP users (b y this stage in the exp erimen t) had b ecome accustomed

to the fact that they could not searc h for strings in the co de, although a couple of Rigi

users tried to searc h for no de lab els to see if this w ould pro duce an ything useful. T o w ork

around this, the SHriMP users pic k ed out the header �les and lo ok ed through them to see

if an y relev an t constan ts or v ariables w ere de�ned. In Rigi, the header �les w ere harder to

select in the Ov erview windo w, so they to ok a more ad ho c approac h to bro wsing through

the source co de lo oking for signs of implemen ted limits.

When no limits w ere eviden t, the Rigi and SHriMP users insp ected the main subsystems.

The Buying&Selling subsystem w as an imp ortan t cue, whic h most users noticed. The Rigi

users sp en t a lot of time lo oking at no des in the Ov erview windo w and op ening Children

windo ws, whereas the SHriMP users found the relev an t no des more quic kly . This w as

p erhaps due to easier na vigation in SHriMP and b ecause Rigi hides no de lab els b y default

in Ov erview windo ws. The Buying&Selling subsystem con tained a House subsystem, whic h

in turn con tained the buy houses() and buy h() function no des.

Once the users found the house buying functions, they w ere easily able to suggest the

appropriate c hanges in fairly general terms. Ho w ev er, most users (irresp ectiv e of the to ol

used) failed to men tion that the co de for selling houses (and breaking up hotels) w ould also

need to b e considered.

T ask 6: Wher e and what ne e ds to b e change d in the c o de to implement a new rule which

states that a player in jail (and not just visiting) c annot c ol le ct r ent fr om anyone landing

on his or her pr op erties?

As p eople pla y Monop oly , they ma y follo w p opular v ariations to the o�cial rules [15].

Implemen ting suc h a v ariation in the program w ould b e a realistic main tenance task. This

task asks the user to implemen t a v ariation where pla y ers in jail lose their citizenship whic h

means that they cannot collect ren t from other pla y ers.

A high-lev el solution is that when a pla y er lands on a prop ert y with houses or hotels,

CHAPTER 10. USER STUD Y 2 137

the program should c hec k if the prop ert y's o wner is in jail. Therefore, to ful�ll this task in

more detail, t w o pieces of co de needed to b e lo cated:

1. co de to determine if a pla y er is in jail (and not just visiting), and

2. co de to trac k a pla y er's p osition on the b oard.

W e sa w t w o basic approac hes used to solv e this task, with some users lo oking for jail related

co de �rst and others lo oking for pla y er p osition co de �rst. W e susp ect the ordering of w ords

in the task or user exp erience with b oard game programs had an e�ect.

A common mistak e w as that man y users prop osed c hec king whether the curren tly activ e

pla y er w as in jail (and p erhaps c hec king if other pla y ers land on his or her prop erties). Some

realized this approac h w as wrong and switc hed to the high-lev el solution ab o v e.

By this stage in the tasks, most users understo o d that the program con tained a pla y er

data structure. Man y guessed that there w ould b e a �eld to record if a pla y er w as in jail.

There w ere actually t w o related �elds: in jail and lo c . Man y users mistak enly suggested

that the in jail v ariable b e used. Ho w ev er, this v ariable coun ted the n um b er of turns that

a pla y er had b een in jail and did not accurately re
ect whether the pla y er w as in jail. The

lo c �eld should ha v e b een compared to a macro called JAIL to test if a pla y er w as truly in

jail. Only one or t w o users noticed this subtlet y .

Man y users correctly guessed that they needed to �nd the ren t functions, to add a

condition for not pa ying ren t to a user in jail. The c hange needed to b e added to the rent()

function de�ned in the rent.c �le. The top of this function already has a condition for

not pa ying ren t when the o wner of the prop ert y has the prop ert y mortgaged. Some users

realized the similarit y of this condition with the necessary c hange.

In SNiFF+, the rent.c �le w as eviden t in a �le listing. In Rigi and SHriMP , ho w ev er,

the Rent subsystem w as p erhaps p o orly placed in the Buying&Selling subsystem (or the

latter p o orly named). Placing the Rent subsystem higher in the hierarc h y migh t ha v e

help ed. In terestingly enough, this did not seem to unduly impact these users (p erhaps

c hallenging the imp ortance of higher-lev el subsystems for relativ ely small programs). In

Rigi, the users searc hed for the rent() function b y name. In SHriMP , the users bro wsed the

Moving subsystem, zo omed in to the sho w move() function co de, then follo w ed a h yp erlink

to rent() .

CHAPTER 10. USER STUD Y 2 138

T ask 7: Over al l, what was your impr ession of the structur e of the pr o gr am? Do you think

it was wel l written?

The answ ers to this task w ere v aried, partly due to the mixed skill lev els of the users. Man y

Rigi and SHriMP users p erceiv ed the subsystem hierarc h y as an in trinsic asp ect of the

program itself (not partly fabricated). They made commen ts lik e \ev erything w as where

I though t it should b e" and \the subsystems had v ery logical names." Some users w ere

appalled at the presence of GOTOs and function p oin ters and the absence of commen ts.

Without subsystem abstractions, the SNiFF+ users tended to fo cus on the �le structure

and co ding st yle.

Some of our observ ations led us to b eliev e that the subsystem abstractions pro vided b y

Rigi and SHriMP mask ed the fact that the monop oly co de w as p o orly written and w as not

particularly w ell structured. Some of the Rigi and SHriMP users' initial opinions seemed to

b e based more on the subsystem hierarc h y rather than the structure of the program itself.

Although some users realized that the abstractions in Rigi and SHriMP w ere arti�cial. One

of the Rigi users initially said \go o d mo dule names, global v ariables are group ed together"

but after pausing for a few seconds, adds: \actually the co de w as kind of lame".

10.7.2 Questionnaires

The usabilit y questionnaire consisted of user opinions, with eac h answ er on a �v e p oin t

scale from strongly disagree, disagree, neutral, agree, to strongly agree. W e discarded the

answ ers from the �rst user (who used Rigi), b ecause w e had mo di�ed the questionnaire for

the subsequen t users (i.e., the scale, some w ording, and n um b er of questions). Am biguities

in the original w ording of some of the questions caused us to c hange it. Consequen tly , for

eac h of the �v e question sets in the usabilit y questionnaire, there w as a sample of 27 answ ers

for Rigi and 30 answ ers for SHriMP and SNiFF+.

W e compared the to ols pairwise in eac h set using a t w o-sample, single-tailed Z test

[35]. F or ease of use, Rigi w as deemed w orse than SHriMP (P = 0.004) and SNiFF+

(P = 0.02). F or pleasan tness of use and con�dence in results, the di�erences w ere not

statistically signi�can t. F or the abilit y to generate results, Rigi w as judged w orse than

SHriMP (P = 0.06) and SNiFF+ (P = 0.05). F or the abilit y to �nd dep endencie s, Rigi

w as considered b etter than SHriMP (P = 0.06) and SNiFF+ (P = 0.08). In general, the

questionnaire analysis sho w ed no signi�can t di�erences b et w een SHriMP and SNiFF+.

CHAPTER 10. USER STUD Y 2 139

10.7.3 In terviews

The in terviews w ere particularly useful for collecting information ab out the �ner p oin ts

of the user in terfaces and ho w they could b e impro v ed. The in terview and questionnaire

commen ts are imp ortan t in that they w ere notable impressions still fresh on the minds of

the users. These impressions could serv e as useful feedbac k for the to ols' dev elop ers and

guide the designers of other to ols.

F or SNiFF+, man y users commen ted that they lik ed the Retriev er, Cross Referencer,

and Sym b ol Bro wser windo ws and that the to ol w as in tuitiv e. Ho w ev er, some users had

concerns with the confusing m ultitude of di�eren t windo ws, the managemen t and reuse of

these windo ws, and the dep endencies among the windo ws. Some users w an ted to clic k or

double-clic k on a function name in the editor as an in tuitiv e h yp ertext-lik e w a y to see the

b o dy of the function. Some kind of global mo dule o v erview w as desired b y a few users,

although the Pro ject Windo w partly pro vided this feature in a textual listing.

F or Rigi, some users said they lik ed the abilit y to select no des b y name, but w an ted to

searc h through the source co de as w ell. Some lik ed the v arious o v erview and subsystem views

for sho wing a graphical o v erview of the system and the pro jection view for seeing lo w-lev el

dep endencies in a single windo w. Ho w ev er, the o v erview windo w of tin y no des w as found

to o dense; b etter automatic scaling, highligh ting, and la y out capabilities w ere requested.

A few users desired b etter feedbac k when a view w as already op en, suc h as automatically

bringing certain windo ws to the fron t rather than op ening another cop y . A few users had

di�culties understanding the signi�cance of the di�eren t colors used to distinguish no de

t yp es. One user suggested using icons for no des and another wished for a color legend for

the no de t yp es.

F or SHriMP , sev eral users men tioned that they appreciated the h yp ertext-st yle na vi-

gation of co de fragmen ts, the hierarc hical represen tation of the subsystems, and the arcs

for sho wing dep endencies. A few lik ed the abilit y to zo om in to see co de and zo om out

to see a more global picture. Ho w ev er, a few users felt that the large n um b er of visible

arcs w as o v erwhelming and a couple of users men tioned that some of the animation e�ects

w ere over done . Most SHriMP users wished for a searc h capabilit y of some sort and a few

ask ed for b etter �ltering. There w ere some complain ts ab out the c hoice or placemen t of

user in terface con trols to activ ate an op eration (e.g., mouse bindings or men u buttons). As

with Rigi, a few SHriMP users w an ted to see lo cal v ariables and macro constan ts as no des;

CHAPTER 10. USER STUD Y 2 140

this problem is due to the domain mo del used b y the parser and is not a fault of the t w o

visualization to ols.

Almost all of the users (irresp ectiv e of the to ol used) said they w ould try the assigned

to ol again if it w as impro v ed to address their commen ts and made readily a v ailable.

10.8 Exp erimen tal Biases

There w ere man y practical di�culties in running a study of this complexit y . Although w e

did not en tirely prev en t exp erimen tal biases from arising, w e tried to realize, con trol, and

minimize them.

In carrying out the study , w e used �v e exp erimen ters. W e trained the exp erimen ters

in adv ance of the exp erimen ts and encouraged them to follo w the handb o oks. Despite

these e�orts, inconsistencies among the sessions run b y di�eren t exp erimen ters a�ected the

observ ations. There w ere a few instances where an exp erimen ter forgot to sho w an essen tial

feature of a to ol, thereb y signi�can tly altering the comprehension strategies used. The

di�eren t p ersonalities of the exp erimen ters also in tro duced a bias. The use of the Rigi and

SHriMP to ol designers as exp erimen ters in tro duced y et another bias. F or example, one

SHriMP user knew the SHriMP designer and w ork ed more in tensely with the to ol than

usual. T o reduce these biases, w e rotated the exp erimen ters among t w o or three to ols,

videotap ed the formal tasks for most users, and tried not to rev eal the to ol designer.

Videotaping and the think-aloud conditions lik ely a�ected user p erformance [112]. A

few users w ere in timidated b y the test situation, and three c hose not to b e videotap ed.

P articipation in the study w as also part of a class assignmen t. Ho w ev er, the studen ts w ere

not required to participate in the study and 9 studen ts c hose not to participate.

The w ording of a task a�ected the strategies used. F or example, if T ask 4 had b een

rew orded to ask the user to v erify that there is no computer mo de, the strategy used ma y

ha v e b een initially more systematic. By hin ting that there w as a computer mo de, coupled

with the apparen t p ossibilit y of a single pla y er game, the users to ok a more ad ho c approac h

to try to v erify that the mo de existed.

W e b eliev e that a statistical analysis of the task answ ers w ould not serv e our particular

goals in this study . There is no single righ t w a y for p erforming the tasks; attac hing a

scale to the v ariet y of p ossible answ ers w ould in tro duce other biases. Timings for the

tasks also cannot b e analyzed, since the information required to answ er one task ma y ha v e

CHAPTER 10. USER STUD Y 2 141

actually b een gathered as the user p erformed a di�eren t task. Man y users sp en t considerable

time gathering information as part of T ask 1 (cf. Section 10.7). This information w as

subsequen tly used to answ er other tasks.

A detailed analysis of the videotap ed exp erimen ts w ould ha v e b een useful. Unfortu-

nately , the p o or qualit y of the videotap es made this di�cult. By trying to discreetly place

the camera at a distance from the user, the camera did not alw a ys pic k up the v erbal com-

men ts made b y the user. In retrosp ect, w e should ha v e used t w o cameras p er session, with

one camera trained on the screen and the other capturing the facial expressions and v erbal

commen ts of the user.

In usabilit y exp erimen ts, ho w ev er, the most useful information is often gathered from

w atc hing users and asking for feedbac k, rather than from the analysis of videotap ed ses-

sions [77]. Videotap es are suitable for v erifying details of particular b eha viors. Ho w ev er, a

meaningful analysis w ould require considering all of the factors whic h could ha v e in
uenced

the users' p erformances.

Mean while, the users' commen ts together with our observ ations from this exp erimen t

ha v e resulted in useful feedbac k for the dev elop ers of these and other similar to ols.

10.9 Discussion

W e b eliev e that program understanding to ols should supp ort a v ariet y of comprehension

strategies, facilitate switc hing among these strategies, and reduce cognitiv e o v erhead when

bro wsing a large soft w are system. In this section, w e critique the e�ectiv eness of the to ols

for supp orting program comprehension. Finally , w e summarize the most useful features for

eac h of the three to ols and close b y recommending a list of features whic h should b e included

in future soft w are exploration to ols.

10.9.1 Supp ort for comprehension strategies

Pr eferr e d c ompr ehension str ate gies wer e not always supp orte d

F or all three to ols, there w ere times when the users' preferred comprehension strategies w ere

not adequately supp orted. F or example, SNiFF+ w as more suited to b ottom-up approac hes;

few facilities w ere a v ailable for sho wing higher-lev el information ab out the program struc-

ture. In Rigi, man y users had problems trying to systematically read co de and follo w the

CHAPTER 10. USER STUD Y 2 142

con trol-
o w. In SHriMP , the biggest problem w as the lac k of a searc hing to ol, whic h w as

often the desired approac h for �nding cues or b eacons to v erify h yp otheses.

R igi and SHriMP c ommunic ate d a mental map of the pr o gr am structur e

The answ ers to T ask 7 and other observ ations indicated that the graphical subsystem hi-

erarc h y presen ted b y Rigi and SHriMP w as e�ectiv e at con v eying a mental map of the

program. Man y users men tioned that the presen ted structure w as logical and help ed them

understand the program. Ho w ev er, w e also susp ect that b y imp osing a structure on the

Monop oly program, the users p erceiv ed it as b eing more mo dular than it actually w as.

Naming of subsystems critic al in R igi and SHriMP

The naming of subsystem no des w as critical to the e�ectiv eness of Rigi and SHriMP . F or

example, the Buying&Selling subsystem w as an imp ortan t cue when trying to lo cate the

houses and hotel limits for T ask 5. Ho w ev er, a b etter name for this subsystem migh t ha v e

b een T ransactions , since it also con tained the Rent and Mo rtgage subsystems. The users

found ren t-related co de b y other means in T ask 6.

Expr essive se ar ching to ols lacking in R igi and SHriMP

In Rigi and SHriMP , the lac k of a searc hing to ol to �nd text strings in the source co de

de�nitely hindered the users. In Rigi, some users mistak enly though t they w ere searc hing

for strings in the co de rather than searc hing for no de lab els in the graph. Ho w ev er, the abilit y

to searc h on no de lab els w as v ery useful. In con trast, the SHriMP users felt constrained

when they could not ev en searc h for no des lab els. Some SHriMP users commen ted that

they could probably do b etter with a text editor and searc hing to ol suc h as grep.

\Sightse eing" b ehaviors observe d in SHriMP

W e noticed that the SHriMP users tended to sightse e when they na vigated to a particular

part of the program. They w ould examine nearb y no des and men tally store that kno wledge

for later use. This sort of information gathering is re
ectiv e of the opp ortunistic b eha v-

iors describ ed b y Leto vsky [80]. In SHriMP , ho w ev er, these opp ortunistic b eha viors w ere

augmen ted b y a feeling of \
ying" b ecause of the animated e�ects when mo ving b et w een

no des. Also, previously bro wsed SHriMP subsystem no des acted as imp ortan t na vigational

cues. In essence, some subsystems b ecame thumbnail images, serving as a history mec ha-

nism to indicate previous paths of in terest. Although the co de w as not legible in the smaller

CHAPTER 10. USER STUD Y 2 143

no des, the co de la y out, length, inden tation, and colored h yp erlinks all pro vided imp ortan t

recognition cues.

10.9.2 Supp ort for switc hing b et w een comprehension strategies

Of crucial imp ortance is the abilit y to switc h from one comprehension strategy to another.

These b eha viors ha v e b een do cumen ted b y v on Ma yrhauser and V ans in [174]. W e also

observ ed users frequen tly switc hing b et w een a v ariet y of comprehension strategies during

our exp erimen ts.

Switching b etwe en top-down and b ottom-up str ate gies e asier in SHriMP

W e noticed that the SHriMP to ol b etter supp orts frequen tly switc hing b et w een top-do wn

and b ottom-up comprehension strategies. W e sa w users zo oming in and out b et w een the

lo w-lev el co de and more abstract subsystem lev els. Zo oming out to higher-lev el views w as

often done when a user paused to rethink a strategy , to obtain more con text, or to switc h

b et w een subtasks.

In Rigi, na vigating from a textual view of the source co de to a graphical view of the

subsystem hierarc h y w as not w ell supp orted. SNiFF+ lac k ed higher-lev el subsystem views.

Switching b etwe en systematic and as-ne e de d str ate gies supp orte d in SNiFF+

SNiFF+ supp orted b oth systematic and as-needed approac hes to understanding. SNiFF+

listed all program �les in the Pro ject Windo w, whic h the user could view one-b y-one or

as-needed (e.g., only the header �les). SNiFF+ also listed all the de�ned functions and

data t yp es in the Sym b ol Bro wser and allo w ed easy access to the corresp onding source co de

for systematic or as-needed bro wsing. The Retriev er windo w allo w ed the user to searc h

the co de for cues to v erify curren t h yp otheses. The use of a searc h engine ma y ha v e b een

opp ortunistic, but the running of the searc h itself is a systematic scan of the co de. By ha ving

all these windo ws easily accessible, a user could switc h b et w een systematic and as-needed

strategies to suit the task at hand.

10.9.3 Reducing cognitiv e o v erhead

F or larger soft w are systems, the true strength of a program understanding to ol lies in its

abilit y to manage the inheren tly large amoun ts of information. Although our test program

w as relativ ely small, there w ere sev eral issues related to managing complexit y , minimizing

CHAPTER 10. USER STUD Y 2 144

disorien tation, and reducing cognitiv e o v erhead.

Multiple windows disorienting in R igi and SNiFF+

Both Rigi and SNiFF+ are capable of represen ting large soft w are systems. Ho w ev er, the

m ultiple windo w approac h used b y these to ols often disorien ted the users. The users w ere

faced with the di�cult task of accurately conceptualizing and in tegrating implicit relation-

ships among the con ten ts of individual windo ws. In SNiFF+, the reuse of existing windo ws

w as not w ell accepted b y some users. They preferred to op en new windo ws and w an ted

windo ws frozen b y default, but often complained ab out the m ultitude of windo ws that the

freezing feature w ould cause. A few men tioned that this asp ect of SNiFF+ w ould b e some-

thing \to get used to."

Fisheye views infr e quently use d in SHriMP

Fishey e views w ere though t to b e useful, since they pro vided the abilit y to view b oth detail

and con text at the same time. Some users did o ccasionally use the �shey e view metho d

in SHriMP , esp ecially when they w an ted to see ho w a no de of in terest in teracted with the

rest of the program. Ho w ev er, w e noticed that users often w ould not use the �shey e view

feature. Instead, they zo omed in to see detail and then zo omed out when more con text w as

desired.

There could b e sev eral reasons for this b eha vior. First, the h yp ertext co de in the no des

already pro vided some con text through the colored h yp erlinks to called functions and refer-

enced data t yp es. Second, the pan+zo om metho d w as e�cien tly implemen ted and, there-

fore, con textual information w as just a clic k a w a y . Third, the SHriMP v ersion used in

the exp erimen t did not supp ort m ultiple fo cal p oin ts (a c hief adv an tage of its �shey e algo-

rithm o v er pan+zo om). Some users w an ted to expand m ultiple, non-adjacen t no des, but

w ere unable to do so. Finally , w e susp ect that the �shey e view metho d is more b ene�cial

when creating subsystem hierarc hies, rather than bro wsing existing hierarc hies. F or this

task, more con text is needed when assigning no des to di�eren t subsystems in a subsystem

hierarc h y .

Filtering e�e ctive in R igi and SNiFF+

Both Rigi and SNiFF+ pro vide the abilit y to �lter irrelev an t information in their views.

These �lters w ere used e�ectiv ely and increased the scalabilit y of these to ols considerably .

In Rigi, the no de lab els w ere �ltered in the Ov erview windo ws. This reduced some visual

CHAPTER 10. USER STUD Y 2 145

clutter, but the lab els of imp ortan t subsystem no des w ere also �ltered. Consequen tly , the

users had to searc h for no des b y name to highligh t the matc hing no des in the Ov erview, or

they had to turn o� the no de lab el �lter for a selected set of no des. Some users found this

a wkw ard.

Information overlo ad in SHriMP

In SHriMP , man y users w ere o v erwhelmed b y the large amoun t of information displa y ed

in a single windo w. The biggest concern w as with the large n um b er of visible arcs. This

concern increased when comp osite arcs w ere op ened. The disorien tation could ha v e b een

reliev ed b y the judicious use of �lters (if they had b een a v ailable). Indeed, t w o of the users

suggested that all arcs should b e hidden b y default. Arcs of a giv en t yp e or connected to

a selected set of no des should b e displa y ed only up on request. This feature migh t b etter

supp ort an as-needed comprehension strategy .

Emb e dde d sour c e c o de e�e ctively use d in SHriMP

The displa y of source co de as h yp ertext fragmen ts within the graphical view w as used

e�ectiv ely and with ease b y the SHriMP users. During the training phase a couple of

the users an ticipated that they w ould not use this feature, and w ould instead mak e use of

Netscap e when they wished to view the co de. Ho w ev er, ev en these users quic kly resorted

to bro wsing the em b edded h yp ertextual co de in the SHriMP graphical view. This ma y b e

b ecause Netscap e w as not tigh tly in tegrated with SHriMP . Going from a no de in SHriMP

to the relev an t source co de in Netscap e w as straigh tforw ard, but returning to the relev an t

lo cation in the SHriMP view from the source co de w as not supp orted.

10.9.4 Most useful to ol features

All of the to ols had some features whic h w ere used e�ectiv ely b y the sub jects to solv e the

assigned tasks. These features are summarized for eac h of the three to ols.

SNiFF+:

� R etriever. The SNiFF+ searc hing feature w as frequen tly used to searc h for cues or

b eacons in the co de. Ho w ev er, some users found it frustrating when the Retriev er

windo w disapp eared b ehind other windo ws in b et w een requests. A couple of users

suggested that it should b e in tegrated in other windo w t yp es.

CHAPTER 10. USER STUD Y 2 146

� Symb ol Br owser. The Sym b ol Bro wser w as used to displa y lists of functions, datat yp es

and v ariables in the program. It w as used extensiv ely for na vigating to the source co de

of selected functions and datat yp es.

� Pr oje ct Window. The Pro ject windo w w as useful b ecause it sho w ed a list of the .c

and .h �les in the program. This ga v e man y of the users some in tuition on the size

and structure of the program. Man y of the sub jects used this windo w for na vigating

to particular �les.

� Sour c e Co de Window. These w ere the most frequen tly used windo ws. Man y of the

users wished for h yp erlinks within the co de, and did not lik e that they had to select

a men u option for na vigating to other parts of the program.

� Cr oss R efer enc e Window. The Cross Reference windo w w as used b y sev eral sub jects

for viewing call graphs, usually ro oted at the main() function or one of the k ey initial-

ization functions suc h as getpla y ers() . Some users had di�culties using the pro vided

�lters on the cross reference information.

Rigi:

� Overview window. The Ov erview windo w w as used for displa ying the subsystem ab-

stractions in the soft w are hierarc h y and w as used b y the sub jects to gain a gestalt of

the general structure. The fact that no de lab els w ere �ltered b y default in this windo w

caused some confusion. The small no de size w as also problematic.

� Se ar ch window. This feature w as used frequen tly to searc h for no des of a giv en name.

Ho w ev er, it w as often misused as users felt it should searc h in the co de as w ell as

through the no de names.

� Filters. The �ltering options w ere used extensiv ely b y some of the users. This allo w ed

them to fo cus on particular asp ects of the program.

� T ext e ditor. The users bro wsed the source co de using text editor windo ws. Ho w-

ev er, they had di�culties bro wsing con trol-
o w relationships b ecause of the lac k of

in tegration b et w een the text editor windo ws and other Rigi windo ws.

� No de Information window. These windo ws w ere used o ccasionally to pro vide addi-

tional information on dep endencies and relationships in the program.

CHAPTER 10. USER STUD Y 2 147

SHriMP:

� Neste d gr aphs. An imp ortan t adv an tage of the nested graph view of the soft w are

hierarc h y w as that it mean t that only one windo w needed to b e op en at an y one time.

This reliev ed the users from ha ving to manage windo ws.

� Zo oming fe atur es. Most of the users w ere able to zo om in and out of subsystems

e�ortlessly . Thumbnail images of previously visited subsystems pro vided imp ortan t

recognition cues as they explored the program.

� Emb e dde d HTML'ize d sour c e c o de views. The em b edded source co de within the graph-

ical view w as fa v oured b y most of the users. Most said they lik ed it, but a couple of

users found it a bit disorien ting. The Netscap e view of the source co de w as an tici-

pated to b e e�ectiv e b y a couple of users, but ev en these users resorted to using the

em b edded co de in the SHriMP view b y the end of the exp erimen tal session.

10.9.5 T o w ards an e�ectiv e to ol for soft w are exploration

\The p e ople with most in
uenc e on the futur e ar e those designing new visual-

izations to day, who should b e c onscious of the c on
ict b etwe en their desir e for

unfetter e d originality and the value of widely ac c epte d c onventions."

P etre, Green and Blac kw ell, Cognitiv e Questions in Soft w are Visualization.

Using the observ ations from our user studies, and results from other exp erimen ts (cf.

Chapter 3), w e prop ose a list of features whic h if com bined should result in a more e�ectiv e

to ol for soft w are exploration. T able 9.5 in Chapter 9 summarized ho w the v arious features

in SHriMP eac h supp orted the framew ork of cognitiv e design elemen ts. W e revisit this

table and add additional features to form a set of ide al features for an e�ectiv e soft w are

exploration to ol. T able 10.9.5 sho ws the revised set of features.

Searc hing is one of the main activities in program understanding [79]. W e observ ed that

the Rigi and SHriMP users had serious problems when they could not searc h through the

source co de. These users w ere forced to use alternativ e strategies to solv e their tasks. A

searc hing to ol should b e tigh tly in tegrated in the to ol, with capabilities to searc h through

source co de and do cumen tation, as w ell as through no des and arcs in the graphical repre-

sen tations.

CHAPTER 10. USER STUD Y 2 148

Rigi's o v erview windo w w as v ery e�ectiv e at sho wing the hierarc hical nature of the

soft w are structures. Although the nested graph view in SHriMP also sho ws the hierarc hical

structures, the o v erview pro vides an alternativ e, more compact view, whic h in com bination

with the nested graph view could b e v ery informativ e. W e observ ed that the sym b ol bro wser

and the pro ject windo w in SNiFF+ w ere also b oth useful. The sym b ol bro wser pro vides

lists of functions, datat yp es and other en tities in the program; the pro ject windo w sho ws

the �les and directories in the soft w are.

Large soft w are systems generate large graphs. No de and arc �lters, suc h as those pro-

vided b y Rigi, reduce the cognitiv e o v erhead of the users viewing large visualizations. Filters

w ere also fa v oured b y the users of the SNiFF+ to ol.

Singer and Leth bridge devised a p ersisten t hierarc hical graphical history feature for

recording the en tire state of ev ery exploration [143]. Similarly , in Rigi the user can sa v e

views to capture concepts or to highligh t certain kinds of information. These features are

imp ortan t during top-do wn comprehension pro cesses for storing the results of h yp otheses.

An e�ectiv e soft w are exploration to ol should help main tainers understand programs

more easily . In particular, it should pro vide supp ort for the k ey activities iden ti�ed b y

the cognition mo del whic h b ests suits the giv en c haracteristics of the main tainer, program

and task. Ho w ev er, it is unlik ely that a single to ol w ould b e able to assist in all activities

whic h are represen tativ e of the v arious cognition mo dels. Determining appropriate com bi-

nations of to ol features to supp ort v arious com binations of main tenance tasks, programmer

c haracteristics and programming domains is op en for future researc h.

CHAPTER 10. USER STUD Y 2 149

Cognitiv e Design Elemen t Corresp onding T o ol F eature

(Enhanc e b ottom-up c ompr ehension)

E1: Indicate syn tactic/seman tic relationships Source co de view; graph no des and arcs;

sym b ol bro wser; pro ject windo w

E2: Reduce the e�ects of delo calized plans Hyp ertext links in source co de; arcs;

cross-reference information

E3: Pro vide abstraction mec hanisms Subsystem no des and comp osite arcs

(Enhanc e top-down c ompr ehension)

E4: Supp ort h yp othesis-driv en comprehension Annotations of subsystem no des when created;

p ersisten t graphical history

E5: Pro vide o v erviews at v arious lev els of Subsystem no des in the nested graph;

abstraction o v erview windo w; pro ject windo w

(Inte gr ate b ottom-up and top-down appr o aches)

E6: Pro vide views of m ultiple men tal mo dels Source co de views; high-lev el graphical views;

o v erview windo w; sym b ol bro wser;

pro ject windo w

E7: Cross-reference m ultiple men tal mo dels In tegrating source co de in graphical views;

searc hing to ol; p ersisten t graphical history

(F acilitate navigation)

E8: Pro vide directional na vigation Hyp ertext links; subsystem no de na vigation

E9: Pro vide arbitrary na vigation Searc h to ol; h yp ertext bro wser bac k button;

sa ving views; pro ject windo w; sym b ol bro wser

(Pr ovide orientation cues)

E10: Indicate the curren t fo cus Fishey e views and zo omed views

E11: Displa y path that led to curren t fo cus Nested graph; p ersisten t graphical history

E12: Indicate options for further exploration Hyp ertext links; no des in the graph;

th um bnail images; pro ject windo w;

sym b ol bro wser; o v erview windo w

(R e duc e disorientation e�e cts)

E13: Reduce user-in terface cog. o v erhead Animation b et w een views; few er windo ws

E14: Pro vide e�ectiv e presen tation st yles Graph la y outs; no de/arc �lters

T able 10.1: Using the cognitiv e framew ork to select features for an impro v ed to ol for soft w are

exploration

Chapter 11

Conclusions

The main goal of this researc h has b een to impro v e the to ols used b y programmers dur-

ing soft w are main tenance. Soft w are programs, esp ecially legacy systems, are often large,

complex and p o orly do cumen ted. T o main tain these programs soft w are engineers require a

v ariet y of e�cien t analytical to ols. In particular, soft w are exploration to ols pro vide graph-

ical views of static and dynamic soft w are structures link ed to textual views of the program

source co de and do cumen tation. Although man y soft w are exploration to ols exist, the ma-

jorit y of them are not v ery e�ectiv e in practice [117]. These to ols are often criticized b ecause

they try to force programmers to use a sp eci�c approac h to understanding soft w are rather

than supp orting their o wn approac hes. P art of the problem is that they are designed in an

ad ho c manner where designers implemen t features whic h they feel are suitable based on

their o wn p ersonal exp eriences. Unfortunately there has b een v ery little empirical ev alua-

tion of these to ols, with corresp ondingly little guidance on the desirable features of suc h a

to ol.

This thesis dev elop ed an iterativ e metho d of to ol dev elopmen t for designing more e�ec-

tiv e to ols usable b y a v ariet y of programmers. The metho dology emerged with a cognitiv e

framew ork for design dev elop ed from a comparativ e analysis of existing to ols and the liter-

ature [151]. The framew ork has b een applied to the design of a soft w are exploration to ol

protot yp e (SHriMP) [157] and w as follo w ed b y t w o user studies [156 , 158]. The lessons

learned from these user studies w ere applied in an iterativ e manner to enhance the usabilit y

and e�ectiv eness of the SHriMP to ol.

150

CHAPTER 11. CONCLUSIONS 151

11.1 Summary of Con tributions

The main con tributions from this thesis are as follo ws:

� an iterativ e approac h for building soft w are exploration to ols;

� a cognitiv e framew ork for designing and ev aluating soft w are exploration to ols;

� a classi�cation of to ol features based on the cognitiv e framew ork;

� a protot yp e to ol for soft w are exploration (SHriMP Views);

� a customizable graph la y out algorithm for creating �shey e views of nested graphs;

� a practical implemen tation of the SHriMP algorithm for visualizing soft w are struc-

tures;

� a user study to compare the use of SHriMP , Rigi and vi/grep for lo w-lev el program

exploration tasks;

� a second user study to ev aluate SHriMP , Rigi and SNiFF+ for sev eral program un-

derstanding tasks; and

� a prop osed list of ide al features for more e�ectiv e soft w are exploration to ols.

11.1.1 An iterativ e approac h for designing soft w are exploration to ols

This thesis describ es an iterativ e approac h for designing soft w are exploration to ols. The

metho dology consists of sev eral iterativ e phases of design, dev elopmen t and ev aluation.

The cycle starts with a framew ork of cognitiv e design elemen ts to highligh t those activities

whic h require to ol supp ort. The to ol, once designed and implemen ted, is studied using

the framew ork as a basis for ev aluation. Observ ations from these studies are then used

to impro v e the to ol, and to re�ne the framew ork if necessary . The to ol is then impro v ed

further using the revised framew ork and so on. Figure 11.1 sho ws an instan tiation of the

to ol impro v emen t cycle based on the SHriMP to ol.

CHAPTER 11. CONCLUSIONS 152

Figure 11.1: T o ol impro v emen t cycle

11.1.2 A cognitiv e framew ork for describing and ev aluating soft w are ex-

ploration to ols

F rom a comparativ e analysis of existing soft w are exploration to ols and a literature review of

the v arious theories of program comprehension, w e dev elop ed a framew ork of cognitiv e de-

sign elemen ts for building soft w are exploration to ols (cf. Chapter 4). These design elemen ts

are organized in a hierarc h y so that to ols can b e describ ed at v arious lev els of detail. F or

example, it ma y b e su�cien t to sa y that a to ol supp orts b ottom-up program comprehension

strategies rather than top-do wn approac hes and that it has a v ariet y of na vigation facilities

for bro wsing program do cumen tation and co de. Ho w ev er, often it ma y b e necessary to de-

scrib e a to ol in more detail. F or example, stating ho w it pro vides supp ort for delo calized

plans and subsystem abstractions, and listing the na vigation mec hanisms incorp orated in a

particular to ol.

The framew ork is also useful for classifying existing to ol features. In con trast to other

taxonomies [119 , 131], this classi�cation is based on the cognitiv e asp ects of the main tainers

rather than on concrete asp ects of the to ols. F urthermore, the framew ork can b e used for

ev aluating ho w the individual to ol features supp ort or hinder main tenance activities from a

cognitiv e p ersp ectiv e.

CHAPTER 11. CONCLUSIONS 153

11.1.3 SHriMP Views { a soft w are exploration to ol protot yp e

The framew ork of cognitiv e design elemen ts w as applied to the design and ev aluation of

SHriMP views, a to ol for soft w are exploration (cf. Chapter 9). SHriMP uses a nested

graph view to displa y hierarc hical soft w are structures [151 , 153, 155 , 157]. It in tegrates a

�shey e view (sho wing b oth con text and detail) with traditional pan+zo om approac hes for

magnifying in teresting parts of the soft w are graph. These zo oming approac hes pro vide the

main tainer with an in teractiv e in terface for bro wsing structures in the soft w are at selected

lev els of detail.

Man y soft w are visualization systems do not e�ectiv ely harness one of the most ob vious

adv an tages of using graphs; that of making the source co de and do cumen tation directly

accessible through the graphical represen tations of the soft w are structure. T o address this

problem, SHriMP em b eds HTML'ized source co de fragmen ts within the leaf no des of the

nested graph view. This no v el feature com bines a h yp ertext link-follo wing metaphor (at

the co de lev el) with animated panning and zo oming motions o v er the nested graph view

(at the structural lev el). This feature w as used v ery e�ectiv ely b y man y of the sub jects in

the second user study as it pro vided supp ort for switc hing b et w een v arious comprehension

strategies.

11.1.4 The SHriMP la y out adjustmen t algorithm

The SHriMP la y out adjustmen t algorithm w as dev elop ed for sho wing b oth con text and detail

in large graphs (cf. Chapter 6.1). The algorithm uses a \�shey e" metaphor for displa ying

more in teresting parts of the graph larger than other parts of the graph b y uniformly resizing

no des when requests for more screen space are made [154]. This no v el algorithm is
exible

in its distortion tec hnique and can b e customized to suit v arious graph la y outs [152]. The

algorithm has man y di�eren t practical application and has b een implemen ted in the SHriMP

to ol for visualizing soft w are structures. In addition, it has b een implemen ted in a to ol for

visualizing medical images at Simon F raser Univ ersit y [170 , 171].

11.1.5 User studies

SHriMP has b een ev aluated and compared to other to ols in t w o user studies [156 , 159]. In the

�rst study , 12 sub jects (graduate and undergraduate computer science studen ts) p erformed

simple program exploration tasks using SHriMP , Rigi and a command-line in terface (cf.

CHAPTER 11. CONCLUSIONS 154

Chapter 8). In the second exp erimen t, 30 sub jects (graduate and undergraduate computer

science studen ts) w ere observ ed while solving more realistic soft w are main tenance tasks (cf.

Chapter 10). SHriMP w as compared to t w o other to ols: Rigi and SNiFF+. Observ ations

from these exp erimen ts led to man y re�nemen ts and impro v emen ts in the SHriMP to ol and

the other to ols ev aluated. The observ ations from these studies w ere used to deriv e a list of

desirable to ol features for a more e�ectiv e to ol for soft w are exploration (cf. Section 10.9.5).

Despite the v ast n um b er of soft w are visualization to ols that exist, relativ ely few ha v e

b een formally ev aluated. Chapter 3 reviews some in v estigativ e tec hniques whic h ha v e b een

used for ev aluating these to ols. Sev eral to ols w ere ev aluated with user exp erimen ts. Ho w-

ev er, in the ma jorit y of these exp erimen ts, a single to ol w as compared with no to ol supp ort

rather than with other viable options. In addition, most of these studies fo cused on mea-

suring ho w w ell the programmers did on the tasks assigned. In our t w o studies, SHriMP

w as compared with other to ols. In the second study w e emphasized observing ho w the to ols

hindered or supp orted v arious comprehension strategies rather than measuring ho w w ell the

tasks w ere p erformed.

The �eld of soft w are engineering is still a relativ ely new disciplin e with a lot of op en

questions; sharing exp erimen tal materials and results from exp erimen ts is one w a y to in-

crease this kno wledge more rapidly [9]. The exp erimen tal designs of our studies ha v e b een

carefully do cumen ted to allo w replication b y other researc hers for ev aluating related to ols.

The app endices con tain the relev an t materials and do cumen tation.

11.2 F uture W ork

The main result from this researc h program is a cognitiv e framew ork for designing and

ev aluating soft w are exploration to ols. This framew ork should b e extended to consider other

sources of information suc h as dynamic information and do cumen tation. Similar framew orks

for other classes of to ols, suc h as forw ard engineering en vironmen ts and debuggers, can b e

dev elop ed follo wing the same metho dology .

Although there are man y soft w are exploration to ols in existence, few of them are suc-

cessful in industry . This is b ecause man y of these to ols do not supp ort the righ t tasks.

Section 10.9.5 prop oses a set of features for a more e�ectiv e to ol. These prop osed features

resulted from an examination of observ ations from sev eral user studies. In addition, a soft-

w are exploration to ol should b e extensible and end-user programmable so that it can b e

CHAPTER 11. CONCLUSIONS 155

tailored for other domains and tasks. Scalabilit y issues are also imp ortan t, esp ecially if the

to ols are to b e used in industry on real programs. The to ol should in tegrate other forms of

do cumen tation (when a v ailable), suc h as requiremen ts do cumen ts and histories of c hanges,

enabling the main tainers to bro wse these do cumen ts as w ell as the source co de.

Observ ations from our t w o user studies ha v e resulted in some in teresting questions to b e

explored in future studies. One of our early researc h ob jectiv es w as to dev elop a soft w are

exploration to ol with a single view. This ob jectiv e arose b ecause of the observ ed di�culties

that programmers had using the m ultiple represen tations in Rigi. A single view w as though t

to b e preferable b ecause it used less screen space and a v oided the problems of ha ving to

switc h b et w een views. Ho w ev er, follo wing our studies, w e no w conjecture that sometimes

it is desirable and often necessary to ha v e more than one view. In Section 10.9.5, w e

suggest that a com bination of views w ould b e more useful, suc h as com bining nested graph

views; o v erview windo ws from Rigi; sym b ol bro wsers; pro ject windo ws and searc hing to ols.

Ho w ev er, more researc h is needed to �nd more e�ectiv e w a ys of managing and linking

m ultiple views. Most of the researc h that has b een done so far has only considered ho w

certain diagrams can b e used in isolation. Relativ ely little researc h has b een done to study

ho w di�eren t views can b e used together [117].

The �shey e view w as not used v ery m uc h in the second exp erimen t. W e susp ect that the

�shey e view metho d ma y b e more b ene�cial when creating subsystem hierarc hies, rather

than bro wsing existing hierarc hies. When building abstractions, more con text is needed

when assigning no des to di�eren t subsystems in a subsystem hierarc h y . In our studies,

w e fo cused on observing users exploring previously prepared do cumen tation and soft w are

hierarc hies. It w ould also b e in teresting to observ e ho w to ols, suc h as Rigi and SHriMP , are

used for cr e ating soft w are do cumen tation rather than merely br owsing previously prepared

do cumen tation.

F or all of the tasks in b oth of the studies, the abstractions pro vided b y Rigi and SHriMP

w ere v ery imp ortan t. In particular, the naming of subsystem no des and the depth of the

hierarc h y w ere critical. Although it ma y seem ob vious that a go o d subsystem hierarc h y

is imp ortan t for understanding, w e are not a w are of an y studies that compare the e�ects

of di�eren t abstractions on program comprehension. The TLES exp erimen t (describ ed in

Chapter 3) compared the use of la y ered do cumen tation with unla y ered do cumen tation, but

do es not compare t w o la y ered examples with one another. F or example, a decomp osition

based on the �le and directory structure could b e compared to a decomp osition based on

CHAPTER 11. CONCLUSIONS 156

selected soft w are engineering principles.

The biggest question that w e ha v e left unansw ered is when do main tainers b ene�t from

visualizations in the soft w are main tenance pro cess? F rom our observ ations, w e susp ect that

they ma y b e more useful for programmers unfamiliar with the program. These visualizations

can b e used b y suc h programmers for getting a gestalt of the size and structure of the

program. Once the programmers are familiar with the program and ha v e in ternalized a

men tal map of its structure, these visualizations ma y not b e as useful.

Also giv en the resources, future exp erimen ts should ha v e few er but more exp erienced

participan ts as they solv e broader soft w are main tenance tasks o v er longer p erio ds of time.

Programmers should b e studied longitudinally as they apply main tenance to ols to real ex-

amples. Ho w ev er, the true v alue of these to ols will only b e apparen t if they are adopted b y

main tainers in industry and if they help main tainers do their w ork more e�cien tly .

11.3 Concluding Remarks

Dealing with legacy soft w are systems has demonstrated that soft w are main tainers ha v e a

di�cult task when c hanging and up dating programs that are large, complex and lac king in

do cumen tation. Some estimates suggest that soft w are main tenance activities accoun t for

as m uc h as 80% of soft w are dev elopmen t costs. T o ols to help main tainers p erform their

w ork more e�cien tly w ould ha v e a h uge impact economically . Curren tly , the to ols that are

commonly used are quite basic. With increasingly fast computing platforms, main tainers

are lo oking for more p o w erful to ols to help them in their tasks. Although there are already

a v ariet y of soft w are main tenance to ols, there is still a big need for more p o w erful to ols

that b etter serv e the main tainers needs for their ev eryda y tasks. The cognitiv e framew ork

whic h w e dev elop ed for designing and ev aluating soft w are exploration to ols, brings us one

step closer to that goal.

App endix A

Obtaining Informed Consen t

Consen t F orm F or P articipation in the Study En titled:

\Ev aluating the User In terfaces of Soft w are Main tenance T o ols"

Purp ose of the Study

This researc h pro ject is designed to ev aluate the user in terfaces of three soft w are main-

tenance to ols: SNiFF+, Rigi and SHriMP . SNiFF+ is a commercial to ol dev elop ed b y

T ak eFiv e Soft w are. Rigi and SHriMP are researc h to ols curren tly b eing dev elop ed at the

Univ ersit y of Victoria.

As part of Margaret-Anne's researc h as a graduate studen t, w e w ould lik e to ascertain

if the user in terfaces of these three to ols w ould hinder or aid programmers if used during

soft w are main tenance.

W e are not in teresting in assessing y our computer programming skills. Anon ymous

results ma y b e published in a sc holarly journal and ma y b e used to mak e c hanges to the

user in terfaces of the researc h to ols to impro v e their e�ectiv eness. Observ ations ma y serv e

as anon ymous user feedbac k to T ak eFiv e Soft w are, the mak ers of SNiFF+.

Pro cedure

After some training, y ou will b e ask ed to complete some tasks, t ypical in soft w are main te-

nance, using one of the three in terfaces b eing ev aluated. An example task ma y b e to bro wse

a computer program and describ e its functionalit y . W e will ask y ou to \think-aloud" or v er-

balize y our actions as y ou attempt to complete the tasks. This will enable us to understand

y our use of the to ol's user in terface. The exp erimen t will b e videotap ed. If y ou c ho ose not

157

APPENDIX A. OBT AINING INF ORMED CONSENT 158

to b e videotap ed, please indicate this b elo w.

On completion of the tasks, y ou will b e ask ed for feedbac k describing y our exp erience

with the user in terface and y ou will b e ask ed to complete a short questionnaire. In addition,

y ou will b e ask ed for information describing y our previous programming exp erience. Y our

participation should require ab out 2 hours of y our time.

Y our righ ts

Y our participation is completely v olun tary and y ou can withdra w from the study at an y

time, without explanation. Y ou ha v e the righ t to refuse to answ er an y questions y ou do not

wish to answ er. If y ou c ho ose to withdra w, data collected will b e immediately destro y ed.

Whether y ou participate or c ho ose not to participate will ha v e no b earing on y our grade

receiv ed for Csc483B/583.

An y data collected in the study will remain con�den tial; in terview results, transcripts

and questionnaires will b e k ept in a lo c k ed �ling cabinet in a lo c k ed o�ce. Y our name will

not b e attac hed to an y of the exp erimen tal records. Co de n um b ers will b e used to iden tify

results obtained from individual sub jects. Only the principal in v estigator (Margaret-Anne

Storey) will ha v e access to the k ey linking co de n um b ers to names. The r aw data and

k ey will b e destro y ed within 2 y ears. Anon ymous resp onses ma y b e published without

further p ermission. An y videotap es made will b e erased immediately after y our resp onses

are transcrib ed.

App endix B

Pre-study Questionnaire F orm

Exp erimen ter:

Sub ject Co de ID:

User In terface:

Date:

This questionnaire asks y ou for information concerning y our previous programming ex-

p erience. Previous programming exp erience and domain kno wledge (kno wledge ab out the

program y ou will b e examining) will a�ect the results in this exp erimen t.

Y ou ha v e the righ t to refuse to answ er an y of these questions.

1. Ho w man y y ears/mon ths of programming exp erience do y ou ha v e in total?

2. Ho w man y y ears/mon ths ha v e y ou sp en t main taining co de written b y someone else?

3. Ha v e y ou written or main tained an y programs to implemen t b oard games? (If so,

pro vide details.)

4. Whic h programming languages/scripting languages ha v e y ou programmed in?

5. Ho w man y y ears/mon ths of programming exp erience in C do y ou ha v e?

159

APPENDIX B. PRE-STUD Y QUESTIONNAIRE F ORM 160

6. What is the largest program y ou ha v e written or main tained (lines of co de, n um b er

of �les)?

7. Whic h programming en vironmen ts (visual/textual) ha v e y ou used b efore (if an y)?

8. Ho w m uc h exp erience ha v e y ou had designing ob ject-orien ted programs?

App endix C

General Exp erimen ter

Instructions

In tro duction

Eac h exp erimen t in v olv es at least one exp erimen ter (y ou) and one user. Y ou ma y also ha v e

a second exp erimen ter for silen tly recording observ ations and op erating the video equipmen t

during the exp erimen t.

This do cumen t is a guideline to b e follo w ed b y y ou for running eac h user in terface exp er-

imen t. This do cumen t con tains an o v erview of the exp erimen ts and the general pro cedures

and rules.

The exp erimen ter's handb o ok presen ts a guide for y ou to precisely follo w during the

separate phases in the exp erimen t:

1. orien tation instructions,

2. training instructions,

3. practice instructions,

4. task instructions,

5. p ost-study questionnaire instructions,

6. p ost-study in terview instructions,

7. �nishing instructions and

161

APPENDIX C. GENERAL EXPERIMENTER INSTR UCTIONS 162

8. an app endix con taining 2 sheets for y our observ ations.

There is a distinct handb o ok for eac h user in terface. A fresh cop y of this handb o ok should

b e used in eac h exp erimen t. Y ou should use it for recording observ ations and as a c hec klist

to ensure y ou follo w ed eac h step.

The follo wing are the do cumen ts whic h y ou will need to giv e to the sub ject to �ll out:

1. task sets

2. p ost-study questionnaire

The task sets and questionnaires are the same for all three user in terfaces.

Exp erime n t Goal

The purp ose of the exp erimen t is to observ e ho w a user in teracts with the pro vided user

in terface to p erform a set of soft w are main tenance tasks. During the exp erimen t, the user

should not feel undue pressure to pro duce the \righ t" answ er. T o a v oid frustration, y ou

should try to b e as helpful as p ossible to the user on ho w to use the in terface. Ho w ev er,

tak e care that the user sta ys alw a ys in con trol.

Phases

Eac h t w o-hour exp erimen t con tains the follo wing phases with appro ximate time limits in

min utes:

1. orien tation (5),

2. training (20),

3. practice (20),

4. tasks (50),

5. p ost-study questionnaire (15),

6. p ost-study in terview (5), and

7. �nishing (5).

APPENDIX C. GENERAL EXPERIMENTER INSTR UCTIONS 163

Eac h user has a time limit to complete eac h phase b efore b eing ask ed to pro ceed on to

the next phase. It is imp ortan t that these time limits not b e exceeded. There are also time

limits for eac h task in the tasks phase.

The orien tation phase in tro duces the user to the exp erimen ter(s) and the exp erimen t

itself. The training phase giv es the user the required skills to use the pro vided in terface.

The practice phase allo ws the user to practice using the in terface on a sample program. The

tasks phase is where the user attempts to complete a set of soft w are bro wsing tasks with the

in terface on a larger sample program. During the questionnaire phase, the user completes

a usabilit y questionnaire. The in terview phase in v olv es a short informal discussion b et w een

the user and exp erimen ter(s). Finally , the last phase pro vides time for y ou to complete this

exp erimen t and prepare for the next one.

Subsequen t sections pro vide sp eci�c instructions to prop erly guide the user through these

phases.

Rules

The follo wing rules are to b e follo w ed during eac h exp erimen t:

1. Y ou are to inform the user of the purp ose of the study and their righ ts as stated on

the sample consen t form (see App endix A).

2. Y ou are to o�er help with the lo w-lev el features of the in terface as required (acting as

a surrogate online help system).

3. Y ou m ust not suggest ho w the soft w are bro wsing tasks should b e carried out.

Making Observ ations

Encourage the user to talk aloud during the exp erimen t. T alk with the user, asking them

wh y they did what they did. Help them with the in terfaces, but not directly with the tasks.

Mak e lots of observ ations and tak e lots of notes throughout the exp erimen t. Record

these notes on the observ ations form attac hed to the bac k of the Exp erimen ter's handb o ok.

Y ou can also mak e notes next to the instructions and pro cedures describ ed b y this

handb o ok to, for example, mak e observ ations ab out the in terfaces that w ere di�cult to

describ e or teac h during training. Tic k o� steps as y ou go through them in the handb o ok.

This will ensure that eac h step w as co v ered in ev ery exp erimen t.

App endix D

Exp erimen ter's Handb o ok for

SHriMP

Exp erimen ter:

User Co de:

Mac hine:

Date:

A fresh cop y of this handb o ok should b e used in eac h exp erimen t. Tic k o� items as they are

co v ered in the exp erimen t. Remo v e the observ ations form from the bac k of this handb o ok, and use

it for recording y our notes.

164

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 165

Orien tation

Time limit: 5 min.

1. In tro duce y ourself to the user. Help the user to feel relaxed.

2. Review the sample consen t form in App endix D, see if the user requested not to b e

videotap ed. If so, mak e sure the recorder is turned o�.

3. Their pre-study questionnaire should b e attac hed to bac k of this pac k age. Brie
y go

o v er it with them and �ll in an y missing or am biguous answ ers.

4. Brie
y state the purp ose of the exp erimen t:

\W e w an t to test the e�ectiv eness of a to ol (and user in terface) for bro wsing and

understanding soft w are to aid soft w are main tenance."

5. Remind the user that the ra w information collected is con�den tial.

6. Ask the user again to relax.

Y ou are not testing them; y ou are testing the user in terface.

The imp ortan t information is to observ e ho w the in terface help ed or hindered the

user's p erformance on the tasks in the allotted time.

It is more in teresting to see ho w the user attempts to solv e a task with the giv en to ol.

7. Outline the phases of the exp erimen t (see b elo w) and clearly state that the time to

complete these phases and the tasks is limited.

� training (20)

� practice (20)

� tasks (50)

� p ost-study questionnaire (15)

� p ost-study in terview (5)

8. State that the user is not exp ected to b e able to complete all the tasks in the giv en

time.

This is p erfectly ok a y .

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 166

T raining instructions for SHriMP

Time limit: 20 min.

Sample program: List.

The user will need to b e trained to use the SHriMP user in terface.

Y ou will in tro duce v arious features and sho w the user ho w to p erform v arious tasks with

the user in terface. Y ou should tic k o� the co v ered features and tasks as they are sho wn to

the user. This will help ensure that the user is giv en the correct training. Mak e notes of

an y di�culties or questions ask ed. This will also help us to determine if a user's di�cult y

w as due to a lac k of training with some features.

Setup

1. cd /home/mstorey/shrimp

2. T yp e list

F eatures

The follo wing describ es the minim um set of features that the user should kno w.

1. In tro duce the user to the List sample program (an implemen tation of a link ed list of

elemen ts).

2. Encourage the user to ask questions and to in terrupt an y time to ha v e a feature

clari�ed.

3. Explain that SHriMP presen ts a graph mo del of a soft w are program, with no des and

arcs.

4. First describ e leaf (coloured) no des and dep endencies, �nally describ e c omp osite (grey)

no des and subsystem (comp osite) no des. functions are blue, user de�ne d typ es are

orange, glob al variables are green and �les are pink.

5. Describ e the arcs (dep endencies) b et w een no des. c al l arcs are blue, green arcs are

ac c ess (function to user t yp es or global v ariables), in�le dep endencies are pink, and

c omp osite arcs are grey . Y ou will ha v e to remem b er this legend and constan tly remind

the user.

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 167

6. Brie
y tell the user ab out the di�eren t mo des for mouse actions { p oin ter , shrimp ,

zo om and pan .

7. In p oin ter mo de the left mouse button can b e used to drag, select and op en/close

no des (b y double clic king). The righ t mouse p ops up the no de's men u.

8. Comp osite arcs ma y b e op ened b y double clic king the left mouse button o v er the arc

while concurren tly holding do wn the Control k ey . T o close a comp osite arc, close and

then op en one of the asso ciated no des.

9. In the shrimp mo de the left mouse button enlarges the selected no de, while concur-

ren tly shrinking other no des to mak e ro om for the selected no de. The righ t mouse

button shrinks the selected no de, whic h ma y allo w other no des to enlarge to �ll the

un used space.

10. In the zo om mo de (indicated b y the magnifying glass), the left mouse zo oms in on

the p oin t indicated b y the mouse, and the righ t mouse zo oms out.

11. In the pan mo de, the left mouse button drags the view around (pro viding the same

functionalit y as scrollbars).

12. Sho w ho w to displa y the source co de and to na vigate in it b y displa ying co de inside

the leaf no des (see the kno wn bugs b elo w).

13. Hyp erlinks in the source co de (displa y ed in blue) will zo om the view to a no de asso-

ciated with the h yp erlink. Ho w ev er, if this no de has not b een created, the resp ectiv e

co de will instead displa y inside the curren t no de. T o redispla y the original co de for

the curren t no de, close and op en the no de.

14. Sho w ho w to displa y the source co de in a netscap e editor (righ t mouse button on a

no de brings up a p op-up men u when in p oin ter mo de). Note this men u will ha v e

no option for op ening a netscap e editor for no des whic h are not tied to co de (e.g.

comp osite no des are curren tly not link ed to an y h tml �les).

15. F or h tml displa ying inside no des, scrollbars w ould b e useful for scrolling through large

pages of text. This feature has not b een added y et. T o comp ensate for that, there

are Up and Do wn links whic h mo v e up and do wn through the do cumen t (see kno wn

bugs b elo w).

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 168

16. Describ e ho w to use the Bac k (zo oms the view to the previously selected no de), Zo om

In (zo oms the view to the selected no de), Zo om Out (zo oms out one step b y scaling

the selected no de's paren t to �t the view), and Sho w All (scales the view and cen ters

it so that all of the no des are visible in the view) buttons.

Kno wn Bugs

� Zo oming in shrimp mo de on the ro ot no de causes problems, clic k ok to mak e the

dialog windo w go a w a y .

� Error message windo ws come up when the user tried to op en the h tml for a no de with

no link to a h tml �le, clic k ok to mak e this message windo w go a w a y .

� Some of the global v ars ha v e links to incorrect co de.

� Sometimes pressing the Up and Do wn h yp erlinks in the h tml source co de will cause

the view to c hange to another no de and the co de will b e displa y ed inside this no de.

Use the Bac k button to go bac k to the original no de if necessary .

Demo T asks

1. Sho w ho w to �nd the main function.

2. Sho w ho w to view the source co de for the main function.

3. Sho w ho w to �nd all functions called b y main .

4. Sho w ho w to �nd all functions using the List data t yp e.

Completion

Quit SHriMP .

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 169

Practice

Time limit: 20 min.

Sample program: Hangman.

In the practice phase, the user will do some hands-on practice and exploration of the

SHriMP features to ac hiev e some lo w-lev el tasks.

Setup

1. cd /home/mstorey/shrimp

2. T yp e hangman

3. close the small (iconify { do not kill) extra windo w whic h p ops up

Practice T asks

1. In tro duce the user to the Hangman sample program (an implemen tation of the Hang-

man game). Describ e the basic concepts of the game.

2. Where is the main function?

3. View the source co de for the main function. Describ e what the main function do es.

4. Ho w man y functions are called b y main? What do eac h of these functions do?

5. What is the purp ose of the v ariable called Err ors ? Whic h functions dep end on (use)

this v ariable?

6. Ho w man y wrong guesses can a pla y er mak e?

7. Is there a hangman dictionary and if so, ho w large is it?

Completion

Quit SHriMP .

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 170

F ormal T asks

Time limit: 50 min.

Sample program: Monop oly .

During the task phase of the exp erimen t, the user will attempt some program under-

standing tasks on a larger program using the features of the SHriMP to ol.

Setup

1. cd /home/mstorey/shrimp

2. T yp e monopoly

3. close the small (iconify { do not kill) extra windo w whic h p ops up

Scenario

In order to add some realism to the tasks, y ou should set up the follo wing scenario:

The sub ject w orks for a soft w are compan y that dev elops games.

Assume that the compan y has acquired the source co de for the Monop oly game with

the in ten t of impro ving and extending the program for commercial purp oses.

The compan y manager w ould lik e to kno w if adapting the program is a viable option,

or if it w ould b e b etter to thro w a w a y the program and start from scratc h.

The manager has set some tasks for the emplo y ee to do whic h will help in ev aluating

the program for further use.

T asks

1. Review the task form with the user.

2. Answ er questions of ho w to use the SHriMP to ol as needed.

3. Ask the users to write do wn their answ ers and to think-aloud (v erbalize) their actions.

Y ou will probably ha v e to remind them of this often { b y prompting \Wh y did y ou

just do that?"

4. W rite do wn y our o wn observ ations as they progress through the tasks.

5. W rite do wn ho w long it to ok the user to complete eac h individual task.

APPENDIX D. EXPERIMENTER'S HANDBOOK F OR SHRIMP 171

Completion

Quit SHriMP .

P ost-Study Questionnaire

Time limit: 15 min.

1. Giv e the questionnaire form to the user for completion.

2. Encourage the user to complete the questions on the form quic kly; �rst impressions

are �ne.

3. Do not talk to the user as he or she is �lling out the form.

P ost-Study In terview

Time limit: 5 min.

The p ost-study in terview pro vides an opp ortunit y for the user to describ e the exp erience

with the exp erimen ter.

See App endix I.

Debrie�ng

Time limit: 5 min.

Thank the user for their time, and tell them that the preliminary results of the exp eri-

men t will b e discussed b y Margaret-Anne Storey on the 3rd of April in class.

Observ ations F orm

User Co de:

Observ ations

App endix E

Exp erimen ter's Handb o ok for Rigi

Exp erimen ter:

User Co de:

Mac hine:

Date:

A fresh cop y of this handb o ok should b e used in eac h exp erimen t. Tic k o� items as they are

co v ered in the exp erimen t. Remo v e the observ ations form from the bac k of this handb o ok, and use

it for recording y our notes.

172

APPENDIX E. EXPERIMENTER'S HANDBOOK F OR RIGI 173

Orien tation

The Orien tation instructions are the same as those listed in the SHriMP handb o ok (cf.

App endix D).

T raining instructions for Rigi

Time limit: 20 min.

Sample program: List.

The user will need to b e trained to use the Rigi user in terface.

Y ou will in tro duce v arious Rigi features and sho w the user ho w to p erform v arious tasks

with the user in terface. Y ou should tic k o� the co v ered features and tasks as they are sho wn

to the user. This will help ensure that the user is giv en the correct training. Mak e notes of

an y di�culties or questions ask ed. This will also help us to determine if a user's di�cult y

w as due to a lac k of training with some features.

Setup

1. cd next (y our w orking directory should no w b e

/pro ject/rigi/pro j/exp erimen t/list/rigi)

2. rigiedit

3. Load list.rsf using Load Graph from the File men u.

4. Load list.view using Load View from the File men u.

F eatures

The follo wing describ es the minim um set of features that the user should kno w.

1. In tro duce the user to the List sample program (an implemen tation of a link ed list of

elemen ts).

2. Encourage the user to ask questions and to in terrupt an y time to ha v e a feature

clari�ed.

APPENDIX E. EXPERIMENTER'S HANDBOOK F OR RIGI 174

3. Explain that Rigi presen ts a graph mo del of a soft w are program, with no des and arcs.

Men tion that arcs are directed from the b ottom of the source no de to the top of the

destination no de.

4. Describ e to the user the concept of the subsystem hierarc h y , collapse no des, and

comp osite arcs.

T ell the user that understanding ho w Rigi presen ts a subsystem hierarc h y is v ery

imp ortan t.

Explain that Rigi presen ts di�eren t \slices" of this hierarc h y in di�eren t t yp es of

windo ws.

(Keep reinforcing these concepts as y ou op en windo ws, select no des, and na vigate the

hierarc h y .)

5. Sho w double-clic ki ng on a collapse no de to op en a Children windo w of that no de's

c hildren.

Explain what a Children windo w sho ws.

6. Select the ListProgram ro ot no de and c ho ose Overview from the Navigate men u to

op en an Overview windo w of the subsystem hierarc h y (ro oted at ListProgram).

Explain what an Ov erview windo w sho ws.

Recommend that the user k eep an Ov erview windo w op en at all times to serv e as

con text.

P oin t out that windo w t yp es can b e distinguished b y the title bar text and/or the

color of the message �eld text.

7. Sho w clic king, shift-clic king, and rubb er-banding on no des to select them and dragging

no des to mo v e them. Sho w deselecting.

The message �eld in the windo w sho ws what w as just selected.

Explain that most features apply to the curren t selection in the activ e windo w.

8. Righ t-clic k the can v as of the general \ro ot" windo w to mak e it activ e. (If helpful, y ou

ma y need to explain what is the activ e windo w and ho w to mak e a windo w activ e, but

this is usually transparen t.)

APPENDIX E. EXPERIMENTER'S HANDBOOK F OR RIGI 175

9. Cho ose By No de T yp e from the Filter men u and c ho ose By Arc T yp e from the Filter

men u.

Explain the no de and arc t yp es of in terest and the color co ding sc heme using these

t w o dialogs.

Recommend that the user op en these t w o dialogs from an activ e ro ot windo w to serv e

as a legend.

10. Sho w righ t-clic king on a no de to presen t a p opup men u of actions relev an t to that

no de.

11. Cho ose View Info rmation from this no de p opup to view information ab out this no de

(its t yp e, incoming arcs, outgoing arcs, etc.)

This presen ts a useful rep ort of ho w a no de relates to an y other no des, ev en to no des

not visible in the activ e windo w.

12. Cho ose Edit Source from the no de p opup men u on a Pro c no de to launc h a text editor

on the source co de of that pro cedure.

Demo T asks

1. Sho w ho w to �nd the main function.

2. Sho w ho w to view the source co de for the main function.

3. Sho w ho w to �nd all functions called b y main .

4. Sho w ho w to �nd all functions using the List data t yp e.

Completion

Exit Rigi.

APPENDIX E. EXPERIMENTER'S HANDBOOK F OR RIGI 176

Practice

Time limit: 20 min.

Sample program: Hangman.

In the practice phase, the user will do some hands-on practice and exploration of the

Rigi features to ac hiev e some lo w-lev el tasks.

Setup

1. cd next (y our w orking directory should no w b e

/pro ject/rigi/pro j/exp erimen t/hangman/rigi)

2. rigiedit

3. Load hangman.rsf using Load Graph from the File men u.

4. Load hangman.view using Load View from the File men u.

Practice T asks

The practice tasks are the same as those listed in the SHriMP handb o ok (cf.App endix D).

Completion

Exit Rigi.

F ormal T asks

Time limit: 50 min.

Sample program: Monop oly .

During the task phase of the exp erimen t, the user will attempt some program under-

standing tasks on a larger program using the features of the Rigi to ol.

Setup

1. cd next (y our w orking directory should no w b e

/pro ject/rigi/pro j/exp erimen t/monop oly/rigi)

APPENDIX E. EXPERIMENTER'S HANDBOOK F OR RIGI 177

2. rigiedit

3. Load monopoly.rsf using Load Graph from the File men u.

4. Load monopoly.view using Load View from the File men u.

The Scenario, T asks, Completion, P ost-Study Questionnaire, P ost-Study In-

terview, Debrie�ng and Observ ations F orm instructions are the same as those listed

in the SHriMP handb o ok (cf.App endix D).

App endix F

Exp erimen ter's Handb o ok for

SNiFF+

Exp erimen ter:

User Co de:

Mac hine:

Date:

A fresh cop y of this handb o ok should b e used in eac h exp erimen t. Tic k o� items as they are

co v ered in the exp erimen t. Remo v e the observ ations form from the bac k of this handb o ok, and use

it for recording y our notes.

178

APPENDIX F. EXPERIMENTER'S HANDBOOK F OR SNIFF+ 179

Orien tation

The Orien tation instructions are the same as those listed in the SHriMP handb o ok (cf.

App endix D).

T raining instructions for SNiFF+

Time limit: 20 min.

Sample program: List.

The user will need to b e trained to use the SNiFF user in terface.

Y ou will in tro duce v arious SNiFF features and sho w the user ho w to p erform v arious

tasks with the user in terface. Y ou should tic k o� the co v ered features and tasks as they are

sho wn to the user. This will help ensure that the user is giv en the correct training. Mak e

notes of an y di�culties or questions ask ed. This will also help us to determine if a user's

di�cult y w as due to a lac k of training with some features.

Setup

1. cd next

2. sniff list.proj

F eatures

The follo wing describ es the minim um set of features that the user should kno w.

1. In tro duce the user to the List sample program (an implemen tation of a link ed list of

elemen ts).

2. Encourage the user to ask questions and to in terrupt an y time to ha v e a feature

clari�ed.

3. Explain that SNiFF is a complete soft w are dev elopmen t en vironmen t for C/C++, but

w e will fo cus on its abilities to bro wse source co de.

4. P oin t out the Pro ject Editor windo w.

This windo w lists the �les con tained in the List pro ject.

APPENDIX F. EXPERIMENTER'S HANDBOOK F OR SNIFF+ 180

5. Double-clic k on a source �le name in this windo w to op en it in a Source Editor windo w

(a co de editor).

This windo w uses color co ding to sho w commen ts, structures, �elds, function headings,

etc.

SNiFF reuses windo ws of the same t yp e to a v oid clutter. T o a v oid reusing a windo w,

clic k on its F rozen c hec k b o x.

6. Double-clic k an iden ti�er in the co de and then c ho ose < name > Refers T o from the Info

men u of the Source Editor windo w.

A Cross Referencer windo w is op ened, sho wing what the selected iden ti�er refers to

(or uses).

Similarly , one can c ho ose < name > Referred By from the Info men u to sho w ho w the

selected iden ti�er is referred b y other sym b ols.

7. Sho w ho w to use the Cross Referencer (follo wing more dep endencies, �ltering, etc.)

8. Sho w ho w to use the Sym b ol Bro wser (�ltering b y t yp e, etc.).

9. Sho w ho w to use the Retriev er to ol to do grep-lik e searc hes o v er the source co de of

the List pro ject.

Demo T asks

1. Sho w ho w to �nd the main function.

2. Sho w ho w to view the source co de for the main function.

3. Sho w ho w to �nd all functions called b y main .

4. Sho w ho w to �nd all functions using the List data t yp e.

Completion

Close windo ws do wn to the original set and quit SNiFF.

APPENDIX F. EXPERIMENTER'S HANDBOOK F OR SNIFF+ 181

Practice

Time limit: 20 min.

Sample program: Hangman.

In the practice phase, the user will do some hands-on practice and exploration of the

SNiFF features to ac hiev e some lo w-lev el tasks.

Setup

1. cd next (y our curren t w orking directory should b e

/pro ject/rigi/pro j/exp erimen t/hangman/sni�)

2. sniff hangman.proj

Practice T asks

See App endix D.

Completion

Close windo ws do wn to the original set and quit SNiFF.

F ormal T asks

Time limit: 50 min.

Sample program: Monop oly .

During the task phase of the exp erimen t, the user will attempt some program under-

standing tasks on a larger program using the features of the Rigi to ol.

Setup

1. cd next (y our w orking directory should no w b e

/pro ject/rigi/pro j/exp erimen t/monop oly/sni�)

2. sniff monopoly.proj

APPENDIX F. EXPERIMENTER'S HANDBOOK F OR SNIFF+ 182

The Scenario, T asks, Completion, P ost-Study Questionnaire, P ost-Study In-

terview, Debrie�ng and Observ ations F orm instructions are the same as those listed

in the SHriMP handb o ok (cf.App endix D).

App endix G

T ask F orm

User Co de:

Time limit: 50 min.

T asks

1. Lo ok at the real monop oly game un til y ou understand the general concept and rules

of the game. Ha v e y ou pla y ed monop oly b efore?

2. Sp end a while bro wsing the program using the pro vided soft w are main tenance to ol

and try to gain a high-lev el understanding of the structure of the program.

3. In the computer game, ho w man y pla y ers can pla y at an y one time?

4. Do es the program supp ort a \computer" mo de where the computer will pla y against

one opp onen t? (Unfortunately w e can't run the program to �nd out the answ er to

this, it hasn't b een p orted to our en vironmen t).

5. There should b e a limited total n um b er of hotels and houses; ho w is this limit imple-

men ted and where is it used?

If this functionalit y is not curren tly implemen ted, w ould it b e di�cult to add? What

183

APPENDIX G. T ASK F ORM 184

c hanges w ould this enhancemen t require?

6. Where and what needs to b e c hanged in the co de to implemen t a new rule whic h states

that a pla y er in jail (and not just visiting) cannot collect ren t from an y one landing on

his/her prop erties.

7. Ov erall, what w as y our impression of the structure of the program? Do y ou think it

w as w ell written?

8. Assuming the compan y had p ermission, w ould it b e cost-e�ectiv e to extend the pro-

gram for further use, or do y ou think it w ould b e b etter to rewrite the program

en tirely?

App endix H

P ost-study Questionnaire F orm

User Co de:

Time limit: 15 min.

This p ost-study questionnaire giv es an opp ortunit y for y ou to tell us y our opinions of

the usabilit y of the tested to ol.

Please read eac h statemen t carefully and indicate ho w strongly y ou agree or disagree

with the statemen t b y circling a n um b er on the scale.

If y ou ha v e an y additional commen ts, please use the space pro vided to record them.

Questions

1. Ov erall, I w as satis�ed with ho w easy it w as to use this to ol.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

2. The monop oly program w as organized in suc h a w a y that I w as certain ab out the

answ ers I ga v e.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

185

APPENDIX H. POST-STUD Y QUESTIONNAIRE F ORM 186

3. I could e�ectiv ely complete the soft w are main tenance tasks using this to ol.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

4. With the help of this to ol, the qualit y of m y w ork w as assured.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

5. Using this to ol, I could disco v er the functional dep endencies b et w een the program

mo dules easily .

Strongly Strongly

Disagree Disagree Neutral Agree Agree

6. The in terface of this to ol w as pleasan t to use.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

7. This to ol had all of the functions and capabilities that I exp ected it to ha v e.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

8. Using this to ol, I w as able to comprehend the structure of the program mo dules with

ease.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

9. This to ol w as simple to use.

APPENDIX H. POST-STUD Y QUESTIONNAIRE F ORM 187

Strongly Strongly

Disagree Disagree Neutral Agree Agree

10. I felt comfortable using this to ol.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

11. The la y out of the information in this to ol made it easy to �gure out ho w program

mo dules w ere related to eac h other.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

12. I w as able to e�cien tly complete the soft w are main tenance tasks using this to ol.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

13. I enjo y ed using the in terface of this to ol.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

14. This to ol w as easy to learn.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

15. I kno w that the results generated with the help of this to ol w ere reliable.

Strongly Strongly

Disagree Disagree Neutral Agree Agree

APPENDIX H. POST-STUD Y QUESTIONNAIRE F ORM 188

Other commen ts

The p ost-study questions w ere categorized using the follo wing classes (the sub jects did not

see this information):

� o v erall, ease of use (questions 1, 9 and 14)

� pleasan tness of use (questions 6, 10 and 13)

� con�dence in results generated (questions 2, 4 and 15)

� abilit y to generate results (questions 3, 7 and 12)

� abilit y to �nd dep endency relationships (questions 5, 8 and 11)

App endix I

In terview Questions

1. Did y ou �nd the to ol useful while solving the prescrib ed tasks?

2. Whic h parts of the to ol's in terface did y ou �nd useful?

3. What did y ou �nd di�cult or cum b ersome in the user in terface?

4. Do y ou ha v e an y suggestions of ho w the user in terface or the to ol's functionalit y could

b e impro v ed?

5. W ould y ou b e inclined to use a to ol lik e this for future main tenance tasks if it w ere

readily a v ailable?

189

App endix J

T est Programs

See h ttp://www.csr.uvic.ca/ mstorey/studies.h tml for a listing of the source co de for

the follo wing programs:

� the list program (used for the training tasks);

� the hangman program (used for the practice tasks); and

� the monop oly program (used for the formal tasks).

190

Biblio graph y

[1] M.N. Armstrong and C. T rudeau. Ev aluating arc hitectural extractors. In Pr o c e e dings

of the 5th Working Confer enc e on R everse Engine ering (WCRE'98), Ha w aii, U.S.A.,

pages 30{39, Octob er 1998.

[2] R. M. Baec k er. Sorting out sorting (16mm �lm). A CM SIGGRAPH'81. Morgan

Kaufman, Los Altos, Calfornia, 1981.

[3] R.M. Baec k er and A. Marcus. Human F actors and T yp o gr aphy for Mor e R e adable

Pr o gr ams . A CM Press, Addison-W esley Publishing Compan y , 1990.

[4] M.J. Bak er and S.G. Eic k. Space-�lling soft w are visualization. Journal of Visual

L anguages and Computing , 6:119{133, 1995.

[5] M.J. Bak er and S.G. Eic k. Soft w are visualization in the large. IEEE Computer , pages

33{43, April 1996.

[6] T. Ball and S.G. Eic k. Visualizing program slices. In Pr o c e e dings 1994 IEEE Symp o-

sium on Visual L anguages , pages 288{295, 1994.

[7] L. Bartram and T. Calv ert. Ev aluating the role of in telligen t supp ort in user in terfaces

to sup ervisory con trol systems. In IEEE International Confer enc e on Systems, Man

and Cyb ernetics , pages 717{722, Octob er 1994.

[8] L. Bartram, A. Ho, J. Dill, and F. Henigman. The con tin uous zo om: A constrained

�shey e tec hnique for viewing and na vigating large information spaces. In Pr o c e e dings

of A CM UIST'95 , pages 207{215, No v em b er 1995.

[9] V. Basili. Editorial. Journal of Empiric al Softwar e Engine ering , 1(2):105{108 , 1996.

191

BIBLIOGRAPHY 192

[10] B.B. Bederson and J.D. Hollan. P ad++: A zo oming graphical in terface for exploring

alternate in terface ph ysics. In User Interfac e Softwar e T e chnolo gy (UIST'94) , pages

17{26, No v em b er 1994.

[11] B. Bella y and H. Gall. An ev aluation of rev erse engineering to ol capabilities. Journal

of Softwar e Maintenanc e: R ese ar ch and Pr actic e , 10:305{331, 1998.

[12] B. Bella y and H. Gall. A comparison of four rev erse engineering to ols. In Pr o c e e dings

of the 4th Working Confer enc e on R everse Engine ering (WCRE'97), Amsterdam, The

Netherlands, pages 2{11, Octob er 1997.

[13] A.F. Blac kw ell. Questionable practices: The use of questionnaires in psyc hology of

programming researc h. The Psycholo gy of Pr o gr amming Inter est Gr oup Newsletter ,

(22), July 1998.

[14] K. Brade, M. Guzdial, M. Stec k el, and E. Solo w a y . Whorf: A visualization to ol for

soft w are main tenance. In Pr o c e e dings 1992 IEEE Workshop on Visual L anguages,

(Seattle, W ashington), pages 148{154, Septem b er 1992.

[15] M. Brady . The Monop oly Bo ok: Str ate gy and T actics of the World's Most Popular

Game . Da vid McKa y Compan y , Inc., New Y ork, 1974.

[16] R. Bro oks. T o w ards a theory of the cognitiv e pro cesses in computer programming.

International Journal of Man-Machine Studies , 9:737{751, 1977.

[17] Ruv en Bro oks. T o w ards a theory of the comprehension of computer programs. Inter-

national Journal of Man-Machine Studies , 18:543{554, 1983.

[18] F.P . Bro oks Jr. No silv er bullet: Essence and acciden ts of soft w are engineering. IEEE

Computer , pages 10{19, April 1987.

[19] M. H. Bro wn. ZEUS: A system for algorithm animation and m ulti-view editing. In

Pr o c e e dings of the IEEE 1991 Workshop on Visual L anguages, Kob e Japan, pages

4{9, Octob er 1991.

[20] Marc H. Bro wn. Exploring algorithms using Balsa-I I. Computer , pages 136{157, Ma y

1988.

BIBLIOGRAPHY 193

[21] M.H. Bro wn and M.A. Na jork. Algorithm animation using 3d in teractiv e graphics. In

UIST, Pr o c e e dings of the A CM Symp osium on User Interfac e Softwar e and T e chnolo gy ,

pages 93 { 100, No v em b er 1993.

[22] E.L. Burd, P .S. Chan, I.M.M. Duncan, M. Munro, and P . Y oung. Impro ving visual

represen tations of co de. T ec hnical Rep ort 10/96, Univ ersit y of Durham, Cen tre for

Soft w are Main tenance, Octob er 1996.

[23] M.M. Burnett, M.J. Bak er, C. Boh us, P . Carlson, S.Y ang, and P . v an Zee. Scaling up

visual programming languages. IEEE Computer, Sp e cial Issue on Visual L anguages ,

28(3):45{54, Marc h 1995.

[24] M. S. T. Carp endale, D. J. Co wp erth w aite, and F. D. F racc hia. 3-dimensional pliable

surfaces: F or e�ectiv e presen tation of visual information. In Pr o c e e dings of A CM

UIST'95 , pages 217{227, No v em b er 1995.

[25] M.S.T. Carp endale, D.J. Co wp erth w aite, F.D. F raccia, and T. Shermer. Graph fold-

ing: Extending detail and con text viewing in to a to ol for subgraph comparisons. In

Pr o c e e dings of Gr aph Dr awing 1995, P assau, German y , pages 127{139. Springer V er-

lag, Septem b er 1995. Lecture Notes in Computer Science.

[26] M.S.T. Carp endale, D.J. Co wp erth w aite, M.-A.D. Storey , and F.D. F racc hia. Explor-

ing distinct asp ects of the distortion viewing paradigm. T ec hnical Rep ort TR 97-08,

Sc ho ol of Computing Science, Simon F raser Univ ersit y , Septem b er 1997.

[27] Y.-F. Chen, M.Y. Nishimoto, and C.V. Ramamo orth y . The C information abstraction

system. IEEE T r ansactions on Softwar e Engine ering , 16(1):325{3 34, Marc h 1990.

[28] E.J. Chik ofsky and J.H. Cross I I. Rev erse engineering and design reco v ery: A taxon-

om y . IEEE Softwar e , pages 13{17, Jan uary 1990.

[29] W. Citrin, C. San tiago, and B. Zorn. Scalable in terfaces to supp ort program com-

prehension. In Pr o gr am Compr ehension Workshop, Berlin, German y , pages 123{132,

Marc h 1996.

[30] R. Cla yton, S. Rugab er, and L. Wills. On the kno wledge required to understand

a program. In Pr o c e e dings of the 5th Working Confer enc e on R everse Engine ering

(WCRE'98), Ha w aii, U.S.A., pages 69{78, Octob er 1998.

BIBLIOGRAPHY 194

[31] J. Conklin. Hyp ertext: An in tro duction and surv ey . IEEE Computer , 20(9):17{41,

Septem b er 1987.

[32] M.P . Consens, F.Ch. Eigler, M.Z. Hasan, A.O. Mendelzon, E.G. Noik, A.G. Ryman,

and D. Vista. Arc hitecture and applications of the Hy+ system. IBM Systems Journal ,

33(4):458{476 , August 1994.

[33] J.H. Cross and S. Maghso o dlo o ad T.D. Hendrix. The con trol structure diagram: An

initial ev aluation. Empiric al Softwar e Engine ering , 3(2):131{156, 1998.

[34] I.F. Cruz and R. T amassia. Ho w to visualize a graph: Sp eci�cation and algorithms,

a graph dra wing tutorial. Presen ted at Graph Dra wing '94, DIMA CS In ternational

W orkshop, Princeton, New Jersey, Octob er 1994.

[35] J.L. Dev ore. Pr ob ability and Statistics for Engine ering and the Scienc es . Bro oks/Cole

Publishing Compan y , 1987.

[36] G. Di Battista, P . Eades, R. T amassia, and I. T ollis. Algorithms for graph dra wing:

An annotated bibliograph y . Comput. Ge om. The ory Appl. , 4:235{282, 1994.

[37] J. Dill, L. Bartram, A. Ho, and F. Henigman. A con tin uously v ariable zo om for

na vigating large hierarc hical net w orks. In IEEE Confer enc e on Systems, Man and

Cyb ernetics , pages 386{390, Octob er 1994.

[38] S.G. Eic k and G.J. Wills. Na vigating large net w orks with hierarc hies. In Pr o c e e dings

Visualization '93, San Jose, California, pages 204{210, Octob er 1993.

[39] K. Erd• os and H.M. Sneed. P artial comprehension of complex programs (enough to

p erform main tenance). In 6th International Workshop on Pr o gr am Compr ehension

(WPC'98), Isc hia, Italy, pages 98{105, June 1998.

[40] K.M. F airc hild, S.E. P oltro c k, and G.W. F urnas. SemNet: Three-dimensional graphic

represen tations of large kno wledge bases. In Ra ymonde Guindon, editor, Co gnitive Sci-

enc e and its Applic ations for Human-Computer Inter action , pages 201{233. La wrence

Erlbaum Asso ciates, Publishers, 1988.

[41] S. F einer. Seeing the forest for the trees: Hierarc hical displa y of h yp ertext structure. In

1988 Confer enc e on O�c e Information Systems, P alo Alto, California, pages 205{212,

Marc h 1988.

BIBLIOGRAPHY 195

[42] N.E. F en ton and S. La wrence P
eeger. Softwar e Metrics: A R igor ous and Pr actic al

Appr o ach . PWS Publishing Compan y , 1997.

[43] P .J. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kon togiannis, H.A. Muller, J. Mylop ou-

los, S.G. P erelgut, M. Stanley , and K. W ong. The soft w are b o okshelf. IBM Systems

Journal , 36(4):564{59 3, 1997.

[44] B. Fisher, G. Agelidis, J. Dill, P . T an, G. Collaud, and C. Jones. Czw eb: Fish-

ey e views for visualizing the w orld-wide w eb. In Pr o c e e dings of the 7th International

Confer enc e on Human-Computer Inter action (HCI International '97) , pages 719{722,

1997.

[45] D. Flanagan. Java T utorial . O'Reilly , F ebruary 1996.

[46] A. F ormella and J. Keller. Generalized �shey e views of graphs. In Pr o c e e dings of

Gr aph Dr awing 1995, P assau, German y, pages 242{253. Springer V erlag, Septem b er

1995. Lecture Notes in Computer Science.

[47] T. F ruc h termann and E. Reingold. Graph dra wing b y force-directed placemen t. T ec h-

nical Rep ort UIUC CDS-R-90-1609, Departmen t of Computer Science, Univ ersit y of

Illinois at Urbana-Champaign, 1990.

[48] G.W. F urnas. Generalized �shey e views. In Pr o c e e dings of A CM CHI'86, (Boston,

MA), pages 16{23, April 1986.

[49] G.W. F urnas and B.B. Bederson. Space-scale diagrams: Understanding m ultiscale

in terfaces. In Pr o c e e dings of A CM CHI'95, Den v er, CO, pages 234{242, Ma y 1995.

[50] E. Gamma, R. Helm, R. Johnson, and John Vlissides. Design Patterns: Elements of

R eusable Obje ct-Oriente d Softwar e . Addison-W esley , 1995.

[51] A. Gibb ons. A lgorithmic Gr aph The ory . Cam bridge Univ ersit y Press, 1989.

[52] T.R.G. Green and M. P etre. Usabilit y analysis of visual programming en vironmen ts:

a \cognitiv e dimensions" framew ork. Journal of Visual L anguages and Computing ,

7:131{174, 1996.

BIBLIOGRAPHY 196

[53] J. Hamel, R. Mic hel, and T. Strothotte. Visibili t y through inaccuracy: Geometric

distortions to solv e the cluttering in route maps. In Pr o c e e dings of the F ourth In-

ternational Confer enc e in Centr al Eur op e on Computer Gr aphics and Visualization

(WCSG'96), Univ ersit y of W est Bohemia, Czec h Republic, F ebruary 1996.

[54] D. Harel. On visual formalisms. Communic ations of the A CM , 31(5):514{5 30, Ma y

1988.

[55] M. Heinric hs. Ev aluating a fo cus+con text zo om in terface in complemen t with h yp er-

text as a program understanding to ol. Master's thesis, Sc ho ol of Computing Science,

Simon F raser Univ ersit y , 1998.

[56] M. Heinric hs. Con tin uous zo om: A ja v a-based graphical user in terface for na vigating

hierarc hical structures. h ttp://fas.sfu.ca/ heinrica/p ersonal/CZo om/, Octob er 1997.

[57] T.D. Hendrix, J.H. Cross I I, L.A. Baro wski, and K.S. Mathias. T o ol supp ort for rev erse

engineering m ulti-lingual soft w are. In Pr o c e e dings of the 4th Working Confer enc e

on R everse Engine ering (WCRE'97), Amsterdam, The Netherlands, pages 136{143,

Octob er 1997.

[58] T.R. Henry . Ph.D. Dissertation, in teractiv e graph la y out: The exploration of large

graphs. T ec hnical Rep ort TR 92-03, Departmen t of Computer Science, The Univ ersit y

of Arizona, June 1992.

[59] T.R. Henry and S.E. Hudson. Viewing large graphs. T ec hnical Rep ort TR 90-13,

Departmen t of Computer Science, The Univ ersit y of Arizona, Ma y 1990.

[60] T.R. Henry and S.E. Hudson. In teractiv e graph la y out. In Pr o c e e dings of UIST '91,

Hilton Head, South Carolina, pages 55{64, No v em b er 1991.

[61] J.G. Hollands, T.T. Carey , M.L. Matthews, and C.A. McCann. Presen ting a graphical

net w ork: A comparison of p erformance using �shey e and scrolling views. In G. Sal-

v endy and M. Smith, editors, Designing and using human-c omputer interfac es and

know le dge-b ase d systems , pages 313{320. Elsevier, 1989.

[62] R. Holt and J.Y. P ak. Gase: Visualizing soft w are ev olution-in-the-large. In Pr o c e e d-

ings of the 3r d Working Confer enc e on R everse Engine ering (WCRE'96), Mon terey ,

California, pages 163{167, No v em b er 1996.

BIBLIOGRAPHY 197

[63] J.H. Cross I I, T.D. Hendrix, L.A. Baro wski, and K.S. Mathias. Scalable visualizations

to supp ort rev erse engineering: A framew ork for ev aluation. In Pr o c e e dings of the

5th Working Confer enc e on R everse Engine ering (WCRE'98), Ha w aii, U.S.A., pages

201{209, Octob er 1998.

[64] Imagix 4D. Imagix Corp oration. h ttp://www.imagix.com/index.h tml.

[65] S. Iso da, T. Shimom ura, and Y. Ono. VIPS: A visual debugger. IEEE Softwar e , pages

8{19, Ma y 1987.

[66] B. Johnson and B. Shneiderman. T ree-maps: A space-�lling approac h to the visual-

ization of hierarc hical information structures. In Pr o c e e dings of Visualization '91, San

Diego, California, pages 284{291, Octob er 1991.

[67] N. Kadmon and E. Shlomi. A p olyfo cal pro jection for statistical surfaces. Carto gr aphy

Journal , 15(1):36{41, 1978.

[68] K. Kaugars, J. Reinfelds, and A. Brazma. A simple algorithm for dra wing large graphs

on small screens. In Gr aph Dr awing , Lecture Notes in Computer Science, pages 278{

281. Springer-V erlag, Octob er 1994.

[69] R. Kazman and S.J. Carriere. Pla ying detectiv e: Reconstructing soft w are arc hitecture

from a v ailable evidence. T ec hnical Rep ort CMU/SEI-97-TR-010, Carnegie Mellon

Univ ersit y , Soft w are Engineering Institute, 1997.

[70] T.A. Keahey and E.L. Rob ertson. Nonlinear magni�cation �elds. In IEEE Symp o-

sium on Information Visualization (INF O VIS '97), Pho enix, Arizona., pages 51{58,

Octob er 1997.

[71] C.F. Kemerer. Ho w the learning curv e a�ects case to ol adoption. IEEE Softwar e ,

pages 23{28, Ma y 1992.

[72] D. Kimelman, B. Leban, T. Roth, and D. Zernik. Dynamic graph abstraction for

e�ectiv e soft w are visualization. The A ustr alian Computer Journal , 27(4):129{13 7,

No v em b er 1995.

[73] J. Ko enemann and S.P . Rob ertson. Exp ert problem solving strategies for program

comprehension. In Human F actors in Computing Systems, Confer enc e Pr o c e e dings of

CHI'91, New Orleans, Louisiana, pages 125{130, April 1991.

BIBLIOGRAPHY 198

[74] H. Koik e. The role of another spatial dimension in soft w are visualization. A CM

T r ansactions on Information Systems , 11(3):266{28 6, July 1993.

[75] A. Lakhotia. Understanding someone else's co de: Analysis of exp erience. Journal of

Systems and Softwar e , 23:269{275, 1993.

[76] J. Lamping and R. Rao. La ying out and visualizing large trees using a h yp erb olic

space. In Pr o c e e dings of A CM UIST'94, (Marina del Rey , California), pages 13{14,

No v em b er 1994.

[77] T.K. Landauer. The T r ouble with Computers: Usefulness, Usability, and Pr o ductivity .

A Bradford Bo ok, MIT Press, 1995.

[78] S. Lang and A. v on Ma yrhauser. T o w ards a systematic analysis of program compre-

hension strategies for legacy soft w are. T ec hnical Rep ort TUV-1841-97-06, T ec hnical

Univ ersit y of Vienna, Marc h 1997.

[79] T. Leth bridge and J. Singer. Understanding soft w are main tenance to ols: Some em-

pirical researc h. In IEEE Workshop on Empiric al Studies of Softwar e Maintenanc e

(WESS'97), Bari, Italy, pages 157{162, Octob er 1997.

[80] S. Leto vsky . Cognitiv e pro cesses in program comprehension. In Empiric al Studies of

Pr o gr ammers , pages 58{79. Ablex Publishing Corp oration, 1986.

[81] Y.K. Leung and M.D. App erley . A review and taxonom y of distortion-orien ted presen-

tation tec hniques. A CM T r ansactions on Computer-Human Inter action , 1(2):126{16 0,

June 1994.

[82] Y.K. Leung, R. Sp ence, and M.D. App erley . Applying bifo cal displa ys to top ological

maps. International Journal of Human-Computer Inter action , 7(1):79{98, 1995.

[83] James R. Lewis. IBM Computer Usabilit y Satisfaction Questionnaires: Psyc homet-

ric Ev aluation and Instruction for Use. International Journal of Human-Computer

Inter action , 7(1):57{78, 1995.

[84] H. Lieb erman. P o w ers of ten thousand: Na vigating in large information spaces. In

Pr o c e e dings of A CM UIST'94, Marina del Rey , California, pages 15{16, No v em b er

1994.

BIBLIOGRAPHY 199

[85] P . Linos, P . Aub et, L. Dumas, Y. Helleb oid, P . Lejeune, and P . T ulula. F acilitating

the comprehension of c programs: An exp erimen tal study . In Pr o gr am Compr ehension

Workshop , pages 55{63, 1993.

[86] P . Linos, P . Aub et, L. Dumas, Y. Helleb oid, P . Lejeune, and P . T ulula. Visualizing

program dep endencies: An exp erimen tal study . Softwar e{Pr actic e and Exp erienc e ,

24(4):387{403 , April 1994.

[87] D.C. Littman, J. Pin to, S. Leto vsky , and E. Solo w a y . Men tal mo dels and soft w are

main tenance. In Empiric al Studies of Pr o gr ammers , pages 80{98. Ablex Publishing

Corp oration, 1986.

[88] P .E. Liv adas and S.D. Alden. A to olset for program understanding. T ec hnical rep ort,

Univ ersit y of Florida, 1994.

[89] K.A. Ly ons. Cluster busting in anc hored graph dra wing. In Pr o c e e dings of the 1992

CAS Confer enc e , v olume I I, pages 327{337, No v em b er 1992.

[90] J.D. Mac kinla y , G.G. Rob ertson, and S.K. Card. The p ersp ectiv e w all: Detail and

con text smo othly in tegrated. In Pr o c e e dings of A CM CHI'91, New Orleans, Louisiana,

pages 173{179, April 1991.

[91] T.J. McCab e and C.W. Butler. Design complexit y and measuremen t and testing.

Communic ations of the A CM , 32(12):1415{1 425, Decem b er 1989.

[92] A. Mendelzon and J. Sametinger. Rev erse engineering b y visualizing and querying.

Softwar e { Conc epts and T o ols , 16:170{182, 1995.

[93] G.A. Miller. The magical n um b er sev en, plus or min us t w o: Some limits on our

capacit y for pro cessing information. Psycholo gic al R eview , 63(2):81{96, 1956.

[94] K. Misue, P . Eades, W. Lai, and K. Sugiy ama. La y out adjustmen t and the men tal

map. Journal of Visual L anguages and Computing , 6(2):183{210, 1995.

[95] K. Misue and K. Sugiy ama. Multi-viewp oin t p ersp ectiv e displa y metho ds: F orm ula-

tion and application to comp ound graphs. In 4th International Confer enc e on Human-

Computer Inter action, Stuttgart, German y , v olume 1, pages 834{838. Elsevier Science

Publishers, Septem b er 1991.

BIBLIOGRAPHY 200

[96] P . Mulholland. Using a �ne-grained comparativ e ev aluation tec hnique to understand

and design soft w are visualization to ols. In Empiric al Studies of Pr o gr ammers: 7th

Workshop, New Y ork, pages 91{108. A CM Press, 1997.

[97] P . Mulholland. A principled approac h to the ev aluation of soft w are visualization: a

case-study in prolog. In M. Bro wn J. Stask o, J. Domingue and B. Brice, editors,

Softwar e Visualization: Pr o gr amming as a multi-me dia exp erienc e , pages 1{16. MIT

Press: Cam bridge, MA, 1998.

[98] H.A. M • uller and K. Klashinsky . Rigi | A system for programming-in-the-large. In

Pr o c e e dings of the 10th International Confer enc e on Softwar e Engine ering (ICSE '10),

Ra�es Cit y , Singap ore, pages 80{86, April 1988. IEEE Computer So ciet y Press (Order

Num b er 849).

[99] H.A. M • uller, M.A. Orgun, S.R. Tilley , and J.S. Uhl. A rev erse engineering approac h

to subsystem structure iden ti�cation. Journal of Softwar e Maintenanc e: R ese ar ch and

Pr actic e , 5(4):181{204, Decem b er 1993.

[100] H.A. M • uller, S.R. Tilley , M.A. Orgun, B.D. Corrie, and N.H. Madha vji. A rev erse

engineering en vironmen t based on spatial and visual soft w are in terconnection mo dels.

In Pr o c e e dings of the Fifth A CM SIGSOFT Symp osium on Softwar e Development En-

vir onments (SIGSOFT '92), T yson's Corner, Virginia, pages 88{98, Decem b er 1992.

In A CM Softwar e Engine ering Notes , 17(5).

[101] Brad A. My ers. Visual programming, programming b y example, and program visu-

alization: A taxonom y . In CHI '86: Human F actors in Computing Systems , pages

55{66, 1986.

[102] J. Nielsen. Usability Engine ering . Academic Press, New Y ork, 1994.

[103] E.G. Noik. La y out-indep enden t �shey e views of nested graphs. In VL'93: IEEE

Symp osium on Visual L anguages, Bergen, Norw a y, pages 336{341, August 1993.

[104] E.G. Noik. A space of presen tation emphasis tec hniques for visualizing graphs. In

Pr o c e e dings of Gr aphics Interfac e '94, (Ban�, Alb erta), pages 225{233, Ma y 1994.

[105] E.G. Noik. Exploring large h yp erdo cumen ts: Fishey e views of nested net w orks. In

Hyp ertext '93 Pr o c e e dings, Seattle, W ashington, pages 192{205, No v em b er 1993.

BIBLIOGRAPHY 201

[106] E.G. Noik. Enco ding presen tation emphasis algorithms for graphs. In Gr aph Dr awing ,

v olume 894 of L e ctur e Notes in Computer Scienc e , pages 428{435. Springer V erlag,

Octob er 1994.

[107] D.A. Norman. The Design of Everyday Things . Currency and Doubleda y , 1990.

[108] S.C. North. Incremen tal la y out in DynaD A G. In Pr o c e e dings of Gr aph Dr awing 1995,

(P assau, German y), pages 409{418. Springer V erlag, Septem b er 1995. Lecture Notes

in Computer Science.

[109] S.C. North and E. Koutso�os. Applications of graph visualization. In Gr aphics Inter-

fac e '94, Ban�, Alb erta, pages 235{245, Ma y 1994.

[110] P . Oman. Main tenance to ols. IEEE Softwar e , pages 59{65, Ma y 1990.

[111] J. K. Ousterhout. Tcl and the Tk T o olkit . Addison-W esley , 1994.

[112] N. P ennington. Stim ulus structures and men tal represen tations in exp ert comprehen-

sion of computer programs. Co gnitive Psycholo gy , 19:295{341, 1987.

[113] D.A. P enn y . The Softwar e L andsc ap e: A Visual F ormalism for Pr o gr amming-in-the-

L ar ge . PhD thesis, Departmen t of Computer Science, Univ ersit y of T oron to, 1992.

[114] K. P erlin and D. F o x. P ad: An alternativ e approac h to the computer in terface. In

Pr o c e e dings of 1993 A CM SIGGRAPH Confer enc e , pages 57{64, 1993.

[115] M. P etre. Wh y lo oking isn't alw a ys seeing: Readership skills and graphical program-

ming. Communic ations of the A CM , 38(6):33{44, June 1995.

[116] M. P etre and A.F. Blac kw ell. A glimpse of exp ert programmer's men tal imagery . In

Pr o c e e dings of the 7th Workshop on Empiric al Studies of Pr o gr ammers , pages 109{123,

1997.

[117] M. P etre, A.F. Blac kw ell, and T.R.G. Green. Cognitiv e questions in soft w are visual-

ization. In Softwar e Visualization: Pr o gr amming as a Multi-Me dia Exp erienc e , pages

453{480. MIT Press, 1997.

[118] C. Plaisan t, D. Carr, and B. Shneiderman. Image bro wsers: T axonom y , guidelines, and

informal sp eci�cations. T ec hnical rep ort, Human Computer In teraction Lab oratory ,

Univ ersit y of Maryland, August 1994.

BIBLIOGRAPHY 202

[119] B. A. Price, R. M. Baec k er, and I. S. Small. A principled taxonom y of soft w are

visualization. Journal of Visual L anguages and Computing , pages 211{266, June 1993.

[120] V. Ra jlic h, N. Damaskinos, and P . Linos. VIF OR: A to ol for soft w are main tenance.

Softwar e{Pr actic e and Exp erienc e , 20(1):67{77, Jan uary 1990.

[121] V. Ra jlic h, J. Doran, and R.T.S. Gudla. La y ered explanations of soft w are: A metho d-

ology for program comprehension. In Workshop on Pr o gr am Compr ehension, W ash-

ington, D.C., pages 46{52, No v em b er 1994.

[122] E.M. Reingold and J.S. Tilford. Tidier dra wing of trees. IEEE T r ansactions on

Softwar e Engine ering , 7(2):223{228 , Marc h 1981.

[123] S.P . Reiss. An engine for the 3D visualization of program information. Journal of

Visual L anguages and Computing , 6:299{323, 1995.

[124] S.P . Reiss. The Field Pr o gr amming Envir onment: A F riend ly Inte gr ate d Envir onment

for L e arning and Development . The Klu w er In ternational Series in Engineering and

Computer Science. Klu w er Academic Publishers, 1995.

[125] S.P . Reiss. P ecan: Program dev elopmen t systems that supp ort m ultiple views. IEEE

T r ansactions on Softwar e Engine ering , SE-11(3):276{285, Marc h 1985.

[126] C. Ric h and R.C. W aters. A researc h o v erview. IEEE Computer , pages 11{25, No v em-

b er 1988.

[127] R.S. Rist. Plans in programming: De�nition, demonstration, and dev elopmen t. In

Empiric al Studies of Pr o gr ammers , pages 28{45. Ablex Publishing Corp oration, 1986.

[128] G.G. Rob ertson and J.D. Mac kinla y . The do cumen t lens. In Pr o c e e dings of A CM

UIST'93, A tlan ta, Georgia, pages 101{107, No v em b er 1993.

[129] G.G. Rob ertson, J.D. Mac kinla y , and S.K. Card. Cone trees: Animated 3d visu-

alizations of hierarc hical information. In Pr o c e e dings of A CM CHI'91, (New Or-

leans,Louisiana), pages 189{194, April 1991.

[130] G.-C. Roman, K. C. Co x, C. D. Wilco x, and J. Y. Plun. P a v ane: A system for

declarativ e visualization of concurren t computations. T ec hnical Rep ort WUCS-91-26,

W ashington Univ ersit y , St. Louis, April 1991.

BIBLIOGRAPHY 203

[131] G.-C. Roman and K.C. Co x. A taxonom y of program visualization systems. IEEE

Computer , 26(12):11{24, Decem b er 1993.

[132] G. Sander. La y out of comp ound directed graphs. T ec hnical Rep ort A/03/96, Univ er-

sit• at des Saarlandes, June 1996.

[133] M. Sark ar and M.H. Bro wn. Graphical �shey e views of graphs. In Pr o c e e dings of A CM

CHI'92, New Y ork, pages 83{91, 1992.

[134] M. Sark ar and M.H. Bro wn. Graphical �shey e views. Communic ations of the A CM ,

37(12):73{84, Decem b er 1994.

[135] M. Sark ar, S.S. Snibb e, O.J. Tv ersky , and S.P . Reiss. Stretc hing the rubb er sheet: A

metaphor for viewing large la y outs on small screens. In Pr o c e e dings of A CM UIST'93,

A tlan ta, Georgia, pages 81{91, No v em b er 1993.

[136] D. Sc ha�er, Z. Zuo, L. Bartram, J. Dill, S. Dubs, S. Green b erg, and M. Roseman.

Comparing �shey e and full-zo om tec hniques for na vigation of hierarc hically clustered

net w orks. In Pr o c e e dings of Gr aphics Interfac e '93 , pages 87{97, Ma y 1993.

[137] D. Sc ha�er, Z. Zuo, S. Green b erg, L. Bartram, J. Dill, S. Dubs, and M. Roseman.

Na vigating hierarc hically clustered net w orks through �shey e and full-zo om metho ds.

A CM T r ansactions on Information Systems , pages 162{188, 1995.

[138] P . Sc horn, A. Brungger, and M. de Lorenzi. The XYZ Geob enc h: Animation of

geometric algorithms. In M. H. Bro wn and J. Hersh b erger, editors, A nimations for

Ge ometric A lgorithms: A Vide o R eview , P alo Alto, California, 1992. Digital Systems

Researc h Cen ter.

[139] B. Shneiderman. Softwar e Psycholo gy: Human F actors in Computer and Information

Systems . Win throp Publishers, Inc., 1980.

[140] B. Shneiderman and R. Ma y er. Syn tactic/seman tic in teractions in programmer b e-

ha vior: A mo del and exp erimen tal results. International Journal of Computer and

Information Scienc es , 8(3):219{23 8, 1979.

[141] Ben Shneiderman. Designing the User Interfac e: Str ate gies for E�e ctive Human-

Computer Inter action . Addison-W esley , 1998.

BIBLIOGRAPHY 204

[142] S.E. Sim, C.L.A. Clark e, and R.C. Holt. Arc het ypal source co de searc hes: A surv ey

of soft w are dev elop ers and main tainers. In Pr o c e e dings of the 5th Working Confer enc e

on R everse Engine ering (WCRE'98), Ha w aii, U.S.A., pages 180{187, Octob er 1998.

[143] J. Singer and T. Leth bridge. Studying w ork practices to assist to ol design in soft w are

engineering. In 6th International Workshop on Pr o gr am Compr ehension (WPC'98),

Isc hia, Italy, pages 173{179, June 1998.

[144] SNiFF+. User's Guide and Reference, T ak eFiv e Soft w are, v ersion 2.3.

h ttp://www.tak e�v e.com, Decem b er 1996.

[145] E. Solo w a y . What to do next: Meeting the c hallenge of programming-in-the-large.

In Empiric al Studies of Pr o gr ammers , pages 263{268. Ablex Publishing Corp oration,

1986.

[146] E. Solo w a y and K. Ehrlic h. Empirical studies of programming kno wledge. IEEE

T r ansactions on Softwar e Engine ering , SE-10(5):595{609, Septem b er 1984.

[147] E. Solo w a y , J. Pin to, S. Leto vsky , D. Littman, and R. Lamp ert. Designing do cumen ta-

tion to comp ensate for delo calized plans. Communic ations of the A CM , 31(11):1259{

1267, 1988.

[148] W. Stacy and J. MacMillian. Cognitiv e bias in soft w are engineering. Communic ations

of the A CM , 38(6):57{63 , June 1995.

[149] J. T. Stask o. T ango: A framew ork and system for algorithm animation. IEEE Com-

puter , pages 27{39, Septem b er 1990.

[150] M.-A.D. Storey , F. D. F racc hia, and S. Carp endale. A top do wn approac h to algorithm

animation. T ec hnical Rep ort CMPT 94-05, Simon F raser Univ ersit y , Burnab y B.C.,

Canada, Septem b er 1994.

[151] M.-A.D. Storey , F.D. F racc hia, and H.A. M • uller. Cognitiv e design elemen ts to supp ort

the construction of a men tal mo del during soft w are exploration. Journal of Softwar e

Systems. T o app e ar.

[152] M.-A.D. Storey , F.D. F racc hia, and H.A. M • uller. Customizing �shey e views to preserv e

the men tal map. Journal of Visual L anguages and Computing. T o app e ar.

BIBLIOGRAPHY 205

[153] M.-A.D. Storey and H.A. M • uller. Manipulating and do cumen ting soft w are structures

using SHriMP views. In Pr o c e e dings of the 1995 International Confer enc e on Softwar e

Maintenanc e (ICSM '95) Opio (Nice), F rance, pages 275{284, Octob er 1995.

[154] M.-A.D. Storey and H.A. M • uller. Graph la y out adjustmen t strategies. In Pr o c e e dings

of Gr aph Dr awing 1995, P assau, German y, pages 487{499. Springer V erlag, Septem b er

1995. Lecture Notes in Computer Science.

[155] M.-A.D. Storey , H.A. M • uller, and K. W ong. Manipulating and do cumen ting soft w are

structures. In P . Eades and K. Zhang, editors, Softwar e Visualization , pages 244{263.

W orld Scien ti�c Publishing Co., 1996.

[156] M.-A.D. Storey , K. W ong, P . F ong, D. Ho op er, K. Hopkins, and H.A. M • uller. On

designing an exp erimen t to ev aluate a rev erse engineering to ol. In Pr o c e e dings of the

3r d Working Confer enc e on R everse Engine ering (WCRE'96), Mon terey , California,

pages 31{40, No v em b er 1996.

[157] M.-A.D. Storey , K. W ong, F.D. F racc hia, and H.A. M • uller. On in tegrating visu-

alization tec hniques for soft w are exploration. In IEEE Symp osium on Information

Visualization (INF O VIS '97), Pho enix, Arizona., pages 38{45, Octob er 1997.

[158] M.-A.D. Storey , K. W ong, and H.A. M • uller. Ho w do program understanding to ols

a�ect ho w programmers understand programs. Submitte d to the Scienc e of Computer

Pr o gr amming (in vited submission), 1998.

[159] M.-A.D. Storey , K. W ong, and H.A. M • uller. Ho w do program understanding to ols

a�ect ho w programmers understand programs. In Pr o c e e dings of the 4th Working

Confer enc e on R everse Engine ering (WCRE'97), Amsterdam, Holland, pages 12{21,

Octob er 1997.

[160] K. Sugiy ama and K. Misue. Visualization of structural information: Automatic dra w-

ing of comp ound digraphs. IEEE T r ansactions of Systems Man and Cyb ernetics ,

21(4):876{892 , 1991.

[161] K. Sugiy ama, S. T aga w a, and M. T o da. Metho ds for visual understanding of hierar-

c hical systems. IEEE T r ansactions on Systems, Man, and Cyb ernetics , 11(4):109{12 5,

1981.

BIBLIOGRAPHY 206

[162] M. Th • uring, J. Hannemann, and J.M. Haak e. Hyp ermedia and cognition: Designing

for comprehension. Communic ations of the A CM , 38(8):57{66, August 1995.

[163] S.R. Tilley , S. P aul, and D.B. Smith. T o w ards a framew ork for program understanding.

In WPC'96: 4th Workshop on Pr o gr am Compr ehension, Berlin, German y, pages 19{

28, Marc h 1996.

[164] S.R. Tilley and D.B. Smith. Persp e ctives on L e gacy System R e engine ering . Unpub-

lished man uscript, 1995.

[165] S.R. Tilley , K. W ong, M.-A.D. Storey , and H.A. M • uller. Programmable rev erse engi-

neering. International Journal of Softwar e Engine ering and Know le dge Engine ering ,

4(4):501{520, Decem b er 1994.

[166] J. T roster, J. Hensha w, and E. Buss. Filtering for qualit y . In the Pro ceedings of

CASCON'93, T oron to, On tario, pages 429{449, Octob er 1993.

[167] E.R. T ufte. Envisioning Information . Graphics Press, 1990.

[168] P . T uk ey . Visual p erception and scien ti�c data displa y . In Pr o c e e dings of the First

IEEE Confer enc e on Visualization, San F ranciso, California, pages 401{403, Octob er

1990.

[169] D. T uro and B. Johnson. Impro ving the visualization of hierarc hies with treemaps:

Design issues and exp erimen tation. In IEEE Confer enc e on Visualization (VIS'92),

Boston, Masac h usetts, pages 124{131, Octob er 1992.

[170] J. v an der Heyden. MR image viewing and the \screen real estate" problem. Master's

thesis, Sc ho ol of Computing Science, Simon F raser Univ ersit y , 1998.

[171] J. v an der Heyden, M.S.T. Carp endale, K. Inkp en, and M.S. A tkins. Visual presen-

tation of magnetic resonance images. In IEEE Confer enc e on Visualization (VIS'98) ,

pages 423{426, Octob er 1998.

[172] I. V essey . Exp ertise in debugging computer programs: A pro cess analysis. Interna-

tional Journal of Man-Machine Studies , 23:459{494, 1985.

[173] A. v on Ma yrhauser and A.M. V ans. Program comprehension during soft w are main te-

nance and ev olution. IEEE Computer , pages 44{55, August 1995.

BIBLIOGRAPHY 207

[174] A. v on Ma yrhauser and A.M. V ans. F rom co de understanding needs to rev erse engi-

neering to ol capabilities. In Pr o c e e dings of CASE'93, Singap ore, pages 230{239, July

1993.

[175] A. v on Ma yrhauser and A.M. V ans. Comprehension pro cesses during large scale main-

tenance. In Pr o c e e dings of the 16th International Confer enc e on Softwar e Engine ering,

Sorren to, Italy, pages 39{48, Ma y 1994.

[176] C. W are, D. Hui, and G. F ranc k. Visualizing ob ject orien ted soft w are in three dimen-

sions. In CASCON'93 Pr o c e e dings , pages 612{620, 1993.

[177] M. W eiser. Program slicing. IEEE T r ansactions on Softwar e Engine ering , SE-

10(4):352{357 , July 1984.

[178] S. Wieden b ec k. Pro cesses in computer program comprehension. In Empiric al Studies

of Pr o gr ammers , pages 48{57. Ablex Publishing Corp oration, 1986.

[179] K. W ong, S.R. Tilley , H.A. M • uller, and M.-A.D. Storey . Structural redo cumen tation:

A case study . IEEE Softwar e , 12(1):46{54 , Jan uary 1995.

