
On-the-Fly Topological Sort|A Basis for Interactive Debuggingand Live Visualization of Parallel Programs.Doug Kimelman�and Dror ZernikyAbstractThis paper presents an optimal technique for on-the-y ordering and matching of event data records that arebeing produced by a number of distinct processors. This is essential for e�ective interactive debugging andlive visualization of parallel programs. The technique involves on-the-y construction of the causality graphof the execution of the program. A sliding window over the graph is maintained by discarding portions ofthe graph as soon as they are no longer required for ensuring correct order of subsequent program events.The sort places an event record into the causality graph when it is received, places it into the output streamas soon as possible|as soon as all of its predecessors in the causal order have been placed into the output,and discards the event record as soon as possible|as soon as all of its successors in the causal order noticethat it has been output. This technique is optimal in terms of the amount of space required for the sort,and in terms of the amount of additional delay incurred prior to delivery of an event record to its ultimatedestination. We describe the algorithm in detail, show its optimality, and present results from experimentson a Meiko system running with PICL and ParaGraph.1 Introduction: Event Ordering and CorrelationA continuous stream of event data describing the progress of program execution is often required for eitherinteractive debugging or live visualization of parallel programs. This stream is essential for recognizinginteresting points in program execution, which allows breakpointing; and it is essential for tracking changesin program state, which allows dynamic display of program behavior. The event data stream is most e�ectiveif the individual event records are in order by logical time, or \causality", and if event records concerningcorresponding events on various processors have been correlated. For example, the event records for receiptof a broadcast message should not precede the event record for transmission of the broadcast message, andthe time at which a message was sent could be added to the event record for receipt of the message.Unfortunately, it is often the case that a separate stream is produced independently by each processor ofthe system without the bene�t of a global clock. As well, there are often di�erent degrees of bu�ering andlatency involved in delivery of the various streams to some central point.This paper presents a technique for on-the-y ordering and matching of events from a number of inde-pendently produced event data streams in order to produce a single coherent output stream. The techniqueis shown to be optimal in terms of the amount of space required for the sort, and in terms of the amount ofadditional delay incurred prior to delivery of the event records to their ultimate destination.The remainder of this section discusses the motivation for this work in greater detail. Section 2 presentsthe algorithm for ordering and matching events, and section 3 describes experience with an implementationof the algorithm for the Meiko topology-recon�gurable transputer-based parallel machine.1.1 Interactive DebuggingInteractive debugging involves stopping program execution at interesting points (and then examining andpossibly altering state, before resuming execution). For sequential programs, \interesting point" is mostfrequently characterized quite simply as: ow of control past some location, or perhaps: access to a particularpiece of data.�IBM Thomas J. Watson Research Center, Yorktown Heights, NY. dnk@watson.ibm.comyElectrical Engineering Faculty, Technion, Haifa, Israel. dror@ee.technion.ac.il

For a parallel or distributed system, state is much more complex, and \interesting point" is much moredi�cult to characterize. Typically, interesting points are de�ned in terms of events which occur duringprogram execution by the various processors [19, 1, 9, 16, 4, 3].Recognition of interesting points may be based on analysis performed at the various processors by codeplaced there for that purpose, or it may be based on analysis performed at some central location external tothe collection of processors. In cases where analysis is external, the various processors must forward eventdata to the central location in order to provide noti�cation of event occurrence.It is often the case that mechanisms involving code that is embedded on the various processors, and thatmust communicate with counterpart code on other processors in order to recognize interesting points, are notpractical in a given environment, or are not su�ciently general or powerful. Further, with newer generationsof scalable highly-parallel systems [18, 8, 7], trace facilities for collecting event data and forwarding it to acentral location are becoming common. These facilities will increasingly be considered for use in interactivedebugging, and on-the-y ordering and matching of the resulting event data streams will assume increasingimportance.1.2 Live Program VisualizationProgram visualization often includes dynamic displays of program behavior. The displays are driven bytracking interesting changes in the state of a system as it executes a program. For a parallel system, thesechanges in state may arise out of a combination of events occurring on a number of di�erent processors. It ismost often the case, for purposes of visualization, that each processor of a parallel system delivers a streamof data records concerning these events to a central program visualization system.Visualization may be performed \post-mortem"|after completion of program execution and after all ofthe event data has been gathered, as in [5, 14, 17], or visualization may be performed \live"|concurrent withprogram execution as event data arrives, as in [10, 2]. Live program visualization is essential for integrationof debugging and visualization, as in [13]. The visualization system displays program behavior, as eventdata are received, while the debugger allows the program to advance from one breakpoint to the next duringcontrolled replay, and allows detailed inspection of program state. As well, live visualization is preferable formonitoring the progress of long-running programs on large-scale systems, either to verify continued correctbehavior of the program, or to determine the point at which problems arise. An essential component of liveprogram visualization is on-the-y ordering and matching of incoming event data.1.3 Event Stream CollectionAs event data records arrive at the central location, they must be ordered and correlated for purposesof debugging and visualization. Often, records from di�erent processors arrive via di�erent independentstreams, and they must be passed on to the rest of the debugging or visualization system in a single stream.Causal order, not just arrival order, must be preserved as the data is passed on. For example, receipt ofa message must not be reported before transmission of the message. Without causal order, state analysisand display is meaningless. Further, event data must be passed on as soon as possible. With large delaysbetween the occurrence of a high-level event and its recognition, use of mechanisms such as breakpointing,undo and replay becomes prohibitively expensive.Correlation of data from events which arrive at di�erent times is often necessary for purposes of visual-ization. For example, the time at which a message was sent must be available when receipt of the messageis being processed. This is required in order to drive the ubiquitous display of processor timelines withsuperimposed interprocessor communication [12, 5].Unfortunately, varying degrees of bu�ering and transmission delays are encountered in delivery of theevent data from the various processors to the central location. In this case, even with globally consistentsynchronized clocks, the approach commonly employed in post-mortem systems to ensure correct order(repeatedly choosing the oldest of the arrived events with respect to timestamps which were derived fromthe global clock) can fail, when the event which should be recognized as the oldest is missed because it isheld up in transit.Continual transmission of event data, and on-the-y techniques, do introduce greater overhead into asystem. Nonetheless, they are warranted, as they facilitate interactive debugging and live program visualiza-

tion. Further, in some cases, such as during controlled replay, the overhead is not a concern. In other cases,such as for debugging communication libraries or operating system loaders for parallel machines, on-the-ytechniques are the only possible alternative because problems often leave the system in a state which makesgathering of bu�ered traces impossible.2 On-The-Fly Topological SortingTo provide an e�ective basis for interactive debugging and live visualization of parallel programs, orderingand correlation of arriving event data must be based on topological sorting that preserves the causal orderof the events|that is, the order imposed by the semantics of the operations constituting the events.2.1 Basic AlgorithmThe basic algorithm involves on-the-y construction of the causality graph of the execution of the program.A sliding window over the graph is maintained by discarding portions of the graph as soon as they are nolonger required for ensuring correct order of subsequent program events.The causal order is de�ned by two rules: an event is an immediate predecessor in the causal order tothe event which occurred next on its processor; and, a communication event which corresponds to databeing sent to other processors is an immediate predecessor in the causal order to the events correspondingto receipt of the data by the other processors.For non-blocking communication, this means that the beginning of a send operation is a predecessorto the end of the receive. For a representative selection of collective communication operations, as in [6]:the beginning of a group multicast operation, on the group member sending the data, must precede theend of the operation on all other members; the end of a combine or concatenate operation, on the groupmember receiving the data, must follow the beginning of the operation on all other members; the end of apre�x or shift operation, for each group member, must follow the beginning of the operation on its precedingneighbor; and, the end of an exchange operation, on both members of a pair, must follow the beginning ofthe operation on the other member.Figure 1 provides an overview of the data maintained for a node in the graph and Figure 2 provides anoverview of the basic algorithm. An event is referred to as observed when it is placed into the graph, andit is referred to as reported when it is placed into the output. The sort repeatedly takes an event record asinput (line 1), and places it into the graph as a node (line 3) according to the causal order|edges connectit to each of its immediate predecessors and successors. The sort then takes any actions which have becomepossible because of the presence of the new node. An event record is placed into the output stream (line 16)as soon as possible|as soon as all of its predecessors in the causal order have been placed into the output(checked at line 14), and an event record is deleted from the graph (line 13) as soon as possible|as soonas all of its successors in the causal order notice that it has been output (checked at line 11 | note that ifa successor is present, it has noticed, either when the successor entered the graph and counted its reportedpredecessors at line 4, or when this node was output, via line 19).2.2 AssumptionsAssumptions concerning the input streams of event data are: that event delivery from any processor to thecentral location is FIFO (although this is not necessary if each processor sequence-numbers the events whichit generates); and that, even for collective communication among dynamically formed groups of processors,it is always possible to know from the contents of an event record, and all which preceded it, the number ofpredecessors and successors that it has in the causal order, and their identities. This seems quite reasonablein view of the typical contents of current system traces, and recent trends towards deterministic constructsin loosely synchronous and data-parallel programming.Note that only the number of predecessors and successors expected for a node is stored; identi�ers arenot. The identi�ers are only required when a node is �rst inserted into the graph, in order to connect thenode to its predecessors and successors that are already present in the graph. Subsequently, a node alreadyin the graph requires no record of the identi�ers. As its other predecessors and successors arrive in the graph,

event data;number of successors expected;number of predecessors expected;graph structure {list of predecessors;list of successors;number of successors;}number of predecessors reported;boolean: this node has been reported;Figure 1: Data maintained for a graph node.main1 LOOP reading events2 build node from event;3 insert node into graph;4 count and save the5 number of predecessors reported6 for this node;7 FOR each predecessor of this node8 check_delete(predecessor);9 check_report(this node);check_delete(node)10 IF node has been reported AND11 number of successors of node ==12 number of successors expected THEN13 delete node from graph;check_report(node)14 IF number of predecessors reported for node ==15 number of predecessors expected THEN16 do_report(node);do_report(node)17 report node;18 set boolean reported for node;19 FOR each successor of node20 increment its number of predecessors reported;21 check_report(successor);22 check_delete(node); Figure 2: Basic algorithm.

the connections to this node will occur \automatically" as part of connecting the arriving nodes to all oftheir predecessors and successors.2.3 CorrectnessCorrectness of the algorithm requires that:� an event is reported only after all of its predecessors.This requirement is satis�ed as follows:� The algorithm only reports an event when its number of predecessors reported is equal to its numberof predecessors expected (line 14). Further, the record of the number of predecessors reported is alwayscorrect:{ Upon entry of a node into the graph, the algorithm �nds and counts all of the node's predecessorsthat have already been reported (line 4).{ Subsequently, whenever another of the node's predecessors is reported, the count for this node isupdated (line 20).Thus the algorithm is correct.2.4 OptimalityOptimality of the algorithm requires that:1. a node is reported as soon as possible2. a node is deleted as soon as possibleThese requirements are satis�ed as follows:1. There are two possibilities for the point in time at which to report a node:(a) immediately upon entry to the graph| upon entry, the algorithm counts predecessors (line 4) and then checks if all predecessors havebeen reported (line 14)(b) or, if not upon entry to the graph, which can only occur because a predecessor has not beenreported yet, then upon �nally reporting the last of the predecessors of this node| each time one of a node's predecessors is reported, the algorithm checks (line 21) to see if thenode can now be reportedThus the �rst requirement is satis�ed.2. There are two possibilities for the point in time at which to delete a node:(a) as soon as it is reported (which was shown above to happen as soon as possible)| as soon as a node is reported, the algorithm checks (line 22) whether the node can be deleted(b) or, if not as soon as it is reported, which can only occur because a successor has yet to arrivein the graph and notice that this node has been reported, then upon arrival of the last of thesuccessors of this node| each time another successor of a node arrives in the graph and takes note of all of its prede-cessors, the algorithm checks (line 8) whether the predecessor node can be deletedThus the second requirement is satis�ed.Thus the algorithm is optimal.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.00 200.00 400.00 600.00 800.00

Nu
mb

er
of

No
de

s

Algorithm Step

Unreported

Total

Figure 3: Size of the causality graph window over time.2.5 ComplexityComplexity of the algorithm is O(n � d) time and O(n) memory, where n is the number of events observedand d is the maximal degree of a node in the causality graph. The time complexity is clear, since over thecourse of a run any such algorithmmust always process every event and, for each event, this algorithm visitsevery predecessor (lines 4 and 7) and every successor (line 19) present in the graph. The space complexityarises from the fact that, in the worst case, no nodes are deleted from the graph until the end of the run,after all nodes have arrived in the graph.A far more meaningful measure for such algorithms is typical space requirements, and average delayin reporting an event after it is observed. This is determined by the combination of asynchrony in theapplication, asynchrony in the message delivery medium, and asynchrony in the event data delivery medium.These contribute to nodes being held in the graph, prior to deletion, waiting for corresponding events to bereported. In actual practice, space requirements of this algorithm are very small | typically a few nodesper processor. This means that in most cases an event is reported and deleted very soon after it is observed.In particular, typical space requirements are not proportional to the size of the trace. Figure 3 shows thesize of the graph over time for a sample run, and the next section describes in greater detail experience withan implementation of the algorithm.It is interesting to note that the size of the graph over time is a reection of the degree of asynchronyapparent to the user. Further, for applications which do not exhibit a large degree of asynchrony, the pointsin time where the graph grows often correspond to the points where messages would appear to be receivedbefore they are sent, for schemes which do not preserve causal order.2.6 Timestamp Adjustment and Event Data CorrelationThe algorithm also adjusts timestamps in order to compensate for local clock drift, in a manner similar to[11], but external to the system being monitored.

Timestamp adjustment is based on a record of accumulated clock drift maintained for each processor.The �nal timestamp for a reported event is the sum of its incoming timestamp and the drift of its processor.For each node, a record is kept of the maximum accumulated drift required of its processor in orderto keep it later than any of its predecessors. That is, whenever a successor notices that a predecessor hasbeen reported, it subtracts its own timestamp from the �nal timestamp of its predecessor, and keeps themaximum across all of its predecessors. When a node is reported, the accumulated drift of its processor isincreased to the maximum that the node requires, if the processor drift was not at least that large already.Just prior to reporting an event, any correlation which is required may take place. For example, forpurposes of driving the display of processor timelines and messages passing between them, the timestamp ofan event corresponding to transmission of a message can be appended to the records of events correspondingto receipt of the message by other processors. Note that timestamps may only be copied from predecessors tosuccessors. The timestamp of the successor is not yet �nal, and thus may not yet be added to the predecessorrecord; but the event record for the predecessor must not be detained because it must be reported as soonas is possible with respect to the causal order.3 Experience Monitoring a Meiko Parallel SystemFor purposes of experimentation and evaluation, on-the-y topological sorting was implemented as thefront-end for live monitoring of a Meiko topology-recon�gurable parallel system [15] running with PICL andParaGraph [5] as well as Visage [20]. To achieve continual delivery of event data, the PICL bu�er size wasreduced to a minimum. For purposes of comparison, a timestamp-based merge also was implemented.The application being monitored was one in which a vector was summed repeatedly using a pipelinedalgorithm implemented with the machine con�gured as a ring.Without the topological sort, a large number of messages appeared to have traveled backwards in time|that is, they appeared to have been received before they were sent. This was due to variations in deliverylatency for event data. Further, delays were incurred due to the fact that the timestamp-based merge had towait for at least one event to be present from each processor before it could proceed. In an e�ort to improvethe situation, bu�ers were ushed periodically regardless of whether or not they were full, and heartbeatevents were generated if the bu�er was empty. With a PICL bu�er size of 100 bytes, between 10 and 20percent of messages still appeared to have traveled backwards in time.Use of the sorting algorithm corrected the problem. Messages never appeared to have traveled backwardsin time, and no time was lost waiting for timeouts to generate heartbeats on processors which were notactively communicating with others.Figure 3 shows the size of the causality graph over time for this experiment. Both the total numberof nodes in the graph and the number of nodes which have been observed but have yet to be reported areplotted at each step of the algorithm|that is, at each point in time where a node has been entered intothe graph and all actions which have become possible as a result of the entry have been taken. Thus thearea below the \Unreported" curve corresponds to nodes which are waiting for a predecessor to be reportedbefore they can be reported, and the area above the curve corresponds to nodes which have been reportedbut which are waiting for successors to notice before they can be deleted. The average number of nodes inthe graph over the course of the run was 3.61 and the average number of unreported nodes was 0.6. Thusthe additional latency introduced by this algorithm between the time an event is delivered and the time itis reported is quite small on average.4 ConclusionThe algorithm presented here is an optimal technique for on-the-y ordering and correlation of event dataexternal to the system being monitored. It handles collective communication, does not require a global clock,preserves causal order, adjusts timestamps derived from local clocks, and provides for correlation of databetween records concerning corresponding events. Further, the algorithm is robust in the presence of varying1A number of downward spikes in the \Total" curve do not appear as deep as they should due to compression of the plot to�t on a standard-sized page.

degrees of bu�ering and transmission delays in the delivery of event data from the application processors totheir ultimate destination.With this technique, it is realistic for parallel systems developers to expect to be able to construct e�ectivetools for interactive debugging and live program visualization, even where no special support exists for aglobal clock.References[1] P. Bates. \Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior,"Proc. ACM Workshop on Parallel and Distributed Debugging, ACM SIGPLAN Notices 24(1):11{22,Jan. 1989.[2] T. Bemmerl and P. Braun. \Visualization of Message Passing Parallel Programs," Proc. CONPAR 92,Lecture Notes in Computer Science 634:79{90, Springer-Verlag, 1992.[3] B. Bruegge. \A Portable Platform for Distributed Event Environments," Proc. ACM/ONR Workshopon Parallel and Distributed Debugging, ACM SIGPLAN Notices 26(12):184{193, Dec. 1991.[4] Z. Aral and I. Gertner. \High-Level Debugging in Parasight," Proc. ACM Workshop on Parallel andDistributed Debugging, ACM SIGPLAN Notices 24(1):151{162, Jan. 1989.[5] M.T. Heath and J.A. Etheridge. \Visualizing the Performance of Parallel Programs," IEEE Software8(5):29{39, Sep. 1991.[6] F.D. Bryant, H. Ho, P. de Jong, R. Lawrence and M. Snir. \An external user interface for scalableparallel systems," IBM Research Center Technical Report, Jun. 1992.[7] IBM Corp. \IBM 9076 Scalable POWERparallel 1 | General Information," GH26-7219-0, Feb. 1993.[8] Intel Supercomputer Systems Division. \Paragon XP/S Product Overview," Nov. 1991.[9] M.K. Pongami, W. Hseush and G.E. Kaiser. \Debugging Multithreaded Programs with MPD," IEEESoftware 8(3):37{43, May 1991.[10] D.N. Kimelman and T.A. Ngo. \The RP3 Program Visualization Environment," The IBM Journal ofResearch and Development 35(6):635{651, Nov. 1991.[11] L. Lamport. \Time, Clocks and the Ordering of Events in a Distributed System," Communications ofthe ACM 21(7):558{565, Jul. 1978.[12] T.J. LeBlanc, J.M. Mellor-Crummey, and R.J. Fowler. \Analyzing Parallel Program Execution UsingMultiple Views," Journal of Parallel and Distributed Computing 9(2):203{217, Jun. 1990.[13] E. Leu and A. Schiper. \Execution Replay: a Mechanism for Integrating a Visualization Tool witha Symbolic Debugger," Proc. CONPAR 92, Lecture Notes in Computer Science 634:55{66, Springer-Verlag, 1992.[14] A.D. Malony, D.H. Hammerslag and D.J. Jablonowski. \Traceview: A Trace Visualization Tool," IEEESoftware 8(5):19{28, Sep. 1991.[15] Meiko. \Computing Surface; SunOS CSTools," 83-MS020.[16] B.P. Miller and J.D. Choi. \Breakpoints and Halting in Distributed Programs," Proc. 8th Conferenceon Distributed Computing Systems, pp. 316{323, 1988.[17] D.A. Reed, R.D. Olson, R.A. Aydt, T.M. Madhyastha, T. Birkett, D.W. Jensen, B.A.A. Nazief andB.K. Totty. \Scalable Performance Environments for Parallel Systems," University of Illinois TechnicalReport UIUCDCS-R-91-1673, Mar. 1991.[18] Thinking Machines Corp. \CM-5 Technical Summary," Oct. 1991.

[19] L. Rudolph, R.V. Rubin and D. Zernik. \Debugging Parallel Programs in Parallel," Proc. ACM Work-shop on Parallel and Distributed Debugging, ACM SIGPLAN Notices 24(1):100{124, Jan. 1989.[20] A. Rudich, D. Zernik and G. Zodik. \Visage - Visualization Graph Attributes - A Foundation For ParallelProgramming Environments," Proc. CNRS-NSF Collaboration Workshop on Environments and Toolsfor Parallel Scienti�c Computing, J. Dongarra and B. Tourancheau, editors, Elsevier Science Publishers,Sep. 1992.

