
Technical Report SNU-CE-AN-96-004, Department of Computer Engineering, Seoul National University, July 1996.

LRFU (Least Recently/Frequently Used) ReplacementPolicy: A Spectrum of Block Replacement PoliciesyzDonghee Lee� Jongmoo Choi� Jong-Hun Kim�Sam H. Noh�� Sang Lyul Min� Yookun Cho� Chong Sang Kim�March 1 1996SNU-CE-AN-96-004�Dept. of Computer Engineering, Seoul Nat'l Univ., San 56-1Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea.��Dept. of Computer Engineering, Hong-Ik Univ., 72-1Sangsoo-dong, Mapo-gu, Seoul 121-791, Korea.AbstractThe LRU (Least Recently Used) and LFU (Least Frequently Used) replacement policies aretwo extreme replacement policies. The LRU policy gives weight to only one reference for eachblock, that is, the most recent reference to the block while giving no weight to older onesrepresenting one extreme, and the LFU gives equal weight to all references representing theother extreme. These extremes imply the existence of a spectrum between them. In this paperwe propose such a spectrum which we call the LRFU (Least Recently/Frequently Used) policy.The LRFU subsumes both the LRU and LFU, and provides a spectrum of block replacementpolicies between them according to how much more we weigh the recent history than theolder history. While most previous policies use limited history in making block replacementdecisions, the LRFU policy bases its decision on all of the reference history of each blockrecorded during cache residency. Nevertheless, the LRFU requires only a few words for eachblock to maintain such history. This paper also describes an implementation of the LRFU thatagain subsumes the native LRU and LFU implementations. This implementation of the LRFUhas a time complexity that ranges between O(1) to O(logn) where n is the number of blocks inthe cache. Results from trace-driven simulations show that there exist points on the spectrumat which the LRFU performs better than the previously known policies for the workloads weconsidered.Keyword : Bu�er Cache, LFU, LRU, Replacement Policy, Trace-driven Simulation.yThis work has been submitted to the IEEE for possible publication. Copyright may be trans-ferred without notice, after which this version will be superseded.zThis paper was supported (in part) by NON DIRECTED RESEARCH FUND, Korea ResearchFoundation. 1

1 IntroductionThe gap between processor and disk speed is becoming wider as VLSI technologies keepadvancing at an enormous rate. Though the density growth of disks has somewhat keptpace, the access time improvement has been comparatively very slow. To overcome theresultant speed gap, caching techniques have been used in various forms so that disk blocksthat are likely to be accessed in the near future are kept in DRAM memory which is referredto as the bu�er cache [1]. However, as the bu�er cache size is necessarily limited a prudentuse of this space is critical in alleviating the aforementioned speed gap. To this end, the blockreplacement policy that decides which block should be replaced on a miss must judiciouslyselect the block (or blocks) to be evicted.The development of e�cient block replacement policies has been the topic of much researchin both the systems [3, 7, 9] and database areas [4, 6, 8, 10]. For a block replacement policyto be e�ective, it must have the following two traits. First, it should make good use ofobservations made from past behaviors of blocks to distinguish between the blocks that arelikely to be referenced in the near future and those that are not. In general, the workloadcontinuously changes over time and an e�ective replacement policy should be able to adaptitself according to the workload evolution. A good policy should be able to distinguish notonly between the hot and cold blocks but also between the blocks that are hot but are gettingcolder and those that are cold but are getting hotter.Second, the policy should allow for an e�cient implementation in terms of both space andtime complexities. For this to be realized, the space needed to maintain information aboutthe past behavior of a block should be bounded. Furthermore, the time complexity of thebu�er cache management algorithm must be kept to the minimum. Preferably, the algorithmshould have an O(1) or O(log n) time complexity where n is the number of blocks in thebu�er cache.Previous works on block replacement policies have been derived from two rather independentavenues. One group of policies are those that base their decision on the frequency of refer-ences, and the other are policies based on the recency of references. The Least FrequentlyUsed (LFU) policy is an example of the former while the Least Recently Used (LRU) is anexample of the latter. Both of the policies have their merits as well as disadvantages.The LFU policy keeps track of the number of references to each block, and the block selectedfor replacement is the block that has the least number of references. This policy is basedon the presumption that the block that has been more frequently referenced in the past ismore likely to be referenced in the near future. In view of the two traits for an e�ectivereplacement policy, �rst, although the LFU policy considers all the references in the past it
2

cannot distinguish between references that occurred far back in the past and the more recentones. Thus, it does not adapt well to changing workloads. For example, the LFU policy mayevict currently hot blocks instead of currently cold blocks that had been hot in the past. Interms of implementation, this policy generally uses a priority queue [11] to order the blocksaccording to their reference counts. The time complexity of this implementation is O(log n)where n is the number of blocks in the bu�er cache.The LRU policy replaces a block that has not been referenced for the longest time [5]. Thispolicy makes its decision on very little information, that is, only the time of the most recentreference to each block. As a result, it cannot discriminate well between frequently andinfrequently referenced blocks. One advantage of this policy, however, is that it is veryadaptive to changes in reference patterns compared to other policies [8]. Another advantageis that it allows for a very e�cient implementation. A single linked list that orders the blocksaccording to the times of their most recent references su�ces to implement this policy, andthis implementation has a constant time complexity.While both the frequency based and recency based approaches have their own merits, anattempt to combine the bene�ts of the two had not yet been made. We make this e�ortin this paper and propose a spectrum of replacement policies, which we call the Least Re-cently/Frequently Used (LRFU) replacement policy, that inherently subsumes the LRU andLFU policies. The LRFU policy is e�ective as its decision on which block to evict is basedon both the recency and frequency of all of the references to each block in the past. Nev-ertheless, the policy requires only bounded memory for each block to maintain informationregarding its past behavior. Furthermore, the time complexity of the policy ranges from O(1)to O(log n), where n is the number of blocks in the bu�er cache. The complexity dependson how much more we weigh the recent history to the older history which is a controllableparameter in the LRFU policy.In implementing this policy, we also take into consideration the correlated references men-tioned in [8, 10] which may have considerable inuence on performance. This factor isincorporated into the generic policy as another parameter that may be tuned to enhance thereplacement decision.Simulation experiments using real traces show that our policy performs better than otherpreviously known policies. Through the experiments, we show the e�ects of the parameters ofour policy, and also show that there is a range of values for the parameters where performanceis best.The rest of the paper is organized as follows. Section 2 surveys the related works. Thissection focuses on two recent papers, one by Robinson and Devarakonda [10] and the otherby O'Neil et al. [8], that have been pivotal in this area. In Section 3, we describe the LRFU
3

policy in detail. Its implementation is discussed in Section 4. The correlated references areincorporated into the policy in Section 5. We compare the performance of the LRFU policywith those of previous policies in Section 6. Finally, we conclude this paper in Section 7.2 Related worksThis section surveys the studies that aim at exploiting both recency and frequency to over-come the de�cits of the LRU and LFU policies. Before we introduce such studies we needto explain the concept of correlated references. In general, references to disk blocks haveless locality compared to references to CPU caches or virtual memory pages [10]. However,references to a disk block still show strong short-term locality of reference once the disk blockis referenced. Such clustered references are called correlated references and their examplesin database systems are presented in [8, 10].The concept of correlated references was �rst introduced in [10] by Robinson and De-varakonda. In this paper, a frequency based policy called the FBR (Frequency-based Re-placement) policy is presented. The di�erence between the FBR and the conventional LFUis that the former replaces a block based on the frequency of non-correlated references thatare obtained by making use of a special bu�er called a new section. The major contribu-tion of the FBR policy is in introducing the concept of correlated references and con�rmingthe possibility of using the modi�ed frequency as a criterion for block replacement. Thesimulation results given in [10] show that the FBR outperforms the LRU for the workloadsconsidered.In [8], O'Neil et al. present the LRU-K replacement policy that bases its replacement deci-sion on the time of the K'th-to-last non-correlated reference to each block. As the LRU-Kconsiders the last K references, it can discriminate well between frequently and infrequentlyreferenced blocks. It can also remove cold blocks quickly since such blocks would have awider span between the current time and the K'th-to-last reference time.However, the LRU-K does not combine recency and frequency in a uni�ed manner. It ignoresthe recency of the K-1 references, and considers only the distance of the K'th reference fromthe current time. This violates the rule of thumb that the more recent behavior predictsthe future better. For example, assume that f1, 24, 25g and f1, 2, 25g are the referencehistories of blocks a and b, respectively. Then, LRU-3 would treat both blocks equally,although intuitively, block a is more likely to be referenced in the near future since itssecond-to-last reference is more recent. For this reason, the LRU-K does not adapt well toevolving workloads when K is large. Also, it incurs overhead to keep the history of the lastK references though a large K value may not be necessary in practice.
4

The LRU-K requires that all of the last K reference times of each block be maintained inorder to decide a victim block. A block that does not have all of the last K reference timesmust be regarded as a special case. If the history of a block is not saved when the blockis replaced from the bu�er cache, a considerable length of time may be needed to reacquireits history, and in some cases, it may not even be able to acquire all the K reference timesbefore it is evicted again. To cope with this problem, the LRU-K maintains the history ofeach block for an extended period of time after the block is removed from the bu�er cache.As previously mentioned, one advantage of the LRU-K is that it quickly removes cold blocksfrom the bu�er cache when K is small. Johnson and Shasha propose a block replacementpolicy called 2Q [6] that starts from a similar motivation. In this approach, there is a specialbu�er called the A1 queue into which a missed block is initially placed. A block in the A1queue is promoted to the main bu�er cache only when it is re-referenced while in the A1queue. Otherwise, it will be evicted when it becomes the LRU block in the A1 queue. Thisallows cold blocks to be removed quickly from the bu�er cache as in the LRU-K. This is inline with the sLRU policy proposed by Karedla et al. [7]. The 2Q policy has an advantageover the LRU-K in that its time complexity is O(1) compared to O(log n) for LRU-K.Bu�er management schemes, in general, have also been extensively studied in the databasearena [4] (also see the references therein). However, many of its algorithms make use ofinformation that is deduced from query optimizer plans. Since such information is usuallynot available for general �le caching, the applicability of these schemes is limited to databasesystems.Another approach of interest is the application-controlled �le caching scheme [3] where theuser has control over the block replacement decisions. This certainly is a promising approachbut beyond the scope of this paper.3 The Least Recently/Frequently Used (LRFU) policyThis section describes the proposed LRFU policy. Unlike the LFU and LRU policies thatconsider either frequency or recency only, the LRFU policy takes into account both thefrequency and recency of references in its replacement decision. Furthermore, unlike theLRU-K policy that considers only the last K references to a block this policy considers allof the past references to a block to appraise the likelihood that the block may be referencedin the near future. Nevertheless, the policy still requires only bounded memory and itsimplementation overhead is comparable to those of the LFU and LRU policies as we will seein the next section.
5

The LRFU policy associates a value with each block. This value is called the CRF (CombinedRecency and Frequency) value and quanti�es the likelihood that the block may be referencedin the near future. Each reference to a block in the past contributes to this value and areference's contribution is determined by a weighing function F(x) where x is the time spanfrom the reference in the past to the current time. For example, assuming that block b isreferenced at times 1, 2, 5 and 8 and, that the current time (tc) is 10, then the CRF valueof block b at tc, denoted by Ctc(b), is computed asCtc(b) = F(10 � 1) + F(10� 2) + F(10 � 5) + F(10 � 8) = F(9) + F(8) + F(5) + F(2):In general, F(x) would be a decreasing function to give more weight to more recent referencesand, therefore, a reference's contribution to the CRF value is proportional to the recency ofthe reference. We de�ne the CRF value of a block more formally as follows.De�nition 1 Assume that the system time can be represented by an integer value by using asystem clock and that at most one block may be referenced at any one time. The CRF valueof a block b at time tbase, denoted by Ctbase(b), is de�ned asCtbase(b) = kXi=1F(tbase � tbi)where F(x) is the weighing function and ftb1 ; tb2 ; � � � ; tbkg are the reference times of block band tb1 < tb2 < � � � < tbk � tbase.The proposed LRFU policy replaces a block whose CRF value is minimum. This policy isdi�erent from the LFU policy where every reference contributes the same value regardless ofits recency. The policy also di�ers from the LRU policy in that not only is the most recentreference to a block considered in the replacement decision but also all the other referencesto the block in the past are considered as well.Intuitively, if F(x) = 1 for all x, then the CRF value degenerates to the reference count.Thus, the LRFU policy with F(x) = 1 is simply the LFU policy.Property 1 If F(x) = c for all x where c is a constant, then the LRFU policy replaces thesame block as the LFU policy.To show that the LRFU policy also subsumes the LRU policy, we give an example of F(x)that makes the LRFU policy replace the same block as the LRU policy. Assume that block awas most recently referenced at time t and another block b was referenced at every time step6

x

F(x)

0

1

x

F(x) = 1 (LFU Extreme)

F(x) = (1/2) (LRU Extreme)

Spectrum
(Recency/Frequency)

(current time - reference time)Figure 1: Spectrum of LRFU according to the function F(x) = (12)�x where x is(current time� reference time).starting from time 0, but the most recent reference to it was made at time t� 1. Then theCRF values of a and b at current time tc are Ctc(a) = F(tc� t) and Ctc(b) =Pt�1t0=0F(tc� t0).Although block b has been referenced many more times than block a, the LRU policy willreplace block b in favor of block a. For the LRFU policy to mimic this behavior, Ctc(a) mustbe larger than Ctc(b), thus F(tc� t) >Pt�1t0=0 F(tc� t0). By generalizing the above condition,we have the following.Property 2 If F(x) satis�es the following condition, then the LRFU policy replaces thesame block as the LRU policy.8i F(i) > 1Xj=i+1F(j):A class of functions that includes a function with property 1 and also a function with prop-erty 2 is F(x) = (12)�x where � ranges from 0 to 1. This class of functions is shown inFigure 1. It has a control parameter � that allows a trade-o� between recency and fre-quency. For example, as � approaches 0, the LRFU policy leans towards a frequency-basedpolicy. Eventually when � is equal to 0 (i.e., F(x) = 1), the LRFU policy is simply the LFUpolicy. On the other hand, as � approaches 1, the LRFU policy leans towards a recency-basedpolicy, and when � is equal to 1 (i.e., F(x) = (12)x), the LRFU policy degenerates to the LRUpolicy. (Note that F(x) = (12)x satis�es property 2.) The spectrum (Recency/Frequency)shown in Figure 1 is where the LRFU policy di�ers from both LFU and LRU.
7

4 Implementation of the LRFU policyIn general, computing the CRF value of a block requires the reference times of all theprevious references to that block. This obviously requires unbounded memory and, thusthe policy may not be implementable. Furthermore, since a reference's contribution to theCRF value changes over time, the CRF value changes as well. This necessitates recomputingthe CRF value of every block at each time step, again making the policy unimplementable.We show in the following that if the weighing function F(x) has a certain property, thestorage and computational overheads can be reduced drastically such that this policy notonly becomes implementable but also e�cient. We identify two such properties which are:F(x + y) = F(x)F(y) and F(x + y) = F(x) + F(y). For the remainder of this paper, weconcentrate on the �rst case as the second case can be handled analogously to the �rst one.Property 3 If F(x+ y) = F(x)F(y) for all x and y, then Ctbk (b), which is the CRF valueof block b at time tbk , is derived from Ctbk�1 (b) as follows;Ctbk (b) = kXi=1F(tbk � tbi) = F(tbk � tbk) + k�1Xi=1 F(tbk � tbi) = F(0) + k�1Xi=1 F(tbk � tbi):Let � be tbk � tbk�1 .Ctbk (b) = F(0) + k�1Xi=1 F(tbk � tbi) = F(0) + k�1Xi=1 F(� + tbk�1 � tbi)= F(0) + k�1Xi=1 F(�)F(tbk�1 � tbi) = F(0) + F(�) k�1Xi=1 F(tbk�1 � tbi)= F(0) + F(�)Ctbk�1 (b):Property 3 shows that if F(x+ y) = F(x)F(y) then the CRF value at the time of the K'threference can be computed using the time of the (K-1)'th reference and the CRF value atthat time. Likewise, Ctc(b), which is the CRF value of block b at current time tc, can becomputed by multiplying F(�) to Ctbk (b) where � = tc � tbk . This implies that, at any time,the CRF value can be computed using only two variables for each block, and these are allthe history each block needs to maintain.The function F(x) = (12)�x explained in the previous section has the above property. Inaddition to the F(x + y) = F(x)F(y) property, this function has the property that it givesmore weight to more recent references, which is consistent with the principle of temporallocality. For this weighing function an intuitive meaning of � is that a block's CRF value ishalved after every 1� time steps. For example, if � is equal to 0.0001, a block's CRF value is8

halved every 10000 time steps. In the remainder of this paper, we concentrate only on theweighing function F(x) = (12)�x.Recall that the LRFU policy replaces a block whose CRF value is minimum. Therefore, itis necessary that the blocks be ordered according to their CRF values. However, with theexception of F(x) = 1 (= (12)0x), the CRF value of a block changes with time. This, ingeneral, requires that the CRF value of every block be updated at each time step and thatblocks be reordered according to the new CRF values again at each time step. However,such updates and reordering are not needed if F(x) is such that F(x + y) = F(x)F(y). Inparticular, updates and reordering of blocks are needed only upon a block reference. Weprove this in the following.Property 4 If Ct(a) > Ct(b) and neither a nor b has been referenced after t, then Ct0(a) >Ct0(b) for all t0 � t.Proof . Let � = t0�t. Since F(x+y) = F(x)F(y), Ct0(a) = F(�)Ct(a) and Ct0(b) = F(�)Ct(b).Also, since F(x) > 0 for all x and Ct(a) > Ct(b) we have Ct0(a) = F(�)Ct(a) > F(�)Ct(b) =Ct0(b).Since the relative ordering between two blocks does not change until either of them is ref-erenced, the reordering of blocks need only be done upon a block reference. Figure 2 givesan algorithm that is invoked when a block is referenced. The algorithm uses a heap1 datastructure to maintain the ordering of blocks according to their CRF values.In the algorithm, H is the heap data structure, tc is the current time and LAST (b) andCRFlast(b) are the time of the last reference to block b and its CRF value at that time,respectively. The algorithm �rst checks whether the requested block b is in the bu�er cache.If it is, the algorithm updates its CRF value and the time of the last reference. The updatedCRF value may be larger than those of b's descendants, thus violating the heap propertyof the sub-heap rooted by b. The algorithm uses the Restore() routine to restore the heapproperty of this sub-heap. Note that only the sub-heap rooted by b need be restored. Thisresults from the fact that b's ancestors in the heap, which previously had CRF values smallerthan the CRF value of b, cannot have CRF values larger than that of b after b is referenced.In the other case where the block is not in the bu�er cache, the missed block is fetchedfrom disk and its CRF value and the time of the last reference are initialized. Using the1A heap is a completely balanced binary tree that has the following property called the heap property [11].1. it is empty, or2. the key in the root is smaller than that in either child and both subtrees have the heap property.
9

1. if b is already in the bu�er cache2. then3. CRFlast(b) = F(0) + CRF(b)4. LAST (b) = tc5. Restore(H, b)6. else7. fetch the missed block from the disk8. CRFlast(b) = F(0)9. LAST (b) = tc10. victim = ReplaceRoot(H, b)11. if victim is dirty12 then13. write-back the victim to the disk14. �15. �16. |||||||||||||||||||||||{17. Restore(H, b)18 if b is not a leaf node19. then20. let smaller be the child that has a smaller CRF value at the current time21. if CRF(b)> CRF(smaller)22. then23. swap(H, b, smaller)24. Restore(H, smaller)25. �26. �27. end Restore28. |||||||||||||||||||||||{29. ReplaceRoot(H, b)30. victim = H:root31. H:root = b32. Restore(H, b)33. return victim34. end ReplaceRoot35. |||||||||||||||||||||||{36. CRF(b)37. return F(tc � LAST (b)) � CRFlast(b)38. end CRF39. |||||||||||||||||||||||{Figure 2: Bu�er cache management algorithm.
10

ReplaceRoot() routine the algorithm replaces the block that has the minimum CRF value(i.e., the one at the root of the heap) with the newly fetched block and, then, restores theheap property. If the replaced block is dirty, it is written-back to the disk. Since both theRestore() and ReplaceRoot() routines require traversing at most the height of the heap, thealgorithm terminates in time O(log n).To see how the algorithm works, consider the example given in Figure 3. In the �gure, letus assume that there are 7 bu�ers in the bu�er cache and F(x) = (12) 18x. We further assumethat the current time tc = 9. In the �gure, the heap at time t = 8 is given on the top. Inthe heap, each node is denoted by a triple (block number; LAST (b); CRFlast(b)). Such aheap, for example, can be constructed by the following reference string: f(t = 0; block 2),(t = 1; block 12), (t = 2; block 11), (t = 3; block 1), (t = 4; block 6), (t = 5; block 23),(t = 6; block 1), (t = 7; block 8), (t = 8; block 8)g. Consider a reference to block 11 that ismade at the current time (i.e., t = 9). Since the referenced block is already in the bu�ercache, �rst, its CRF value and the time of the last reference are updated. The new CRF valueis 1+(12) 78 that is equal to F(0)+F(tc�LAST (b))�CRFlast(b) where tc = 9, LAST (b) = 2,and CRFlast(b) = 1. Then the heap property of the sub-heap rooted by this block is restored.When this restore operation is performed, the node corresponding to the currently referencedblock is swapped with the node for block 23 which has a smaller CRF value among the twochildren of the current node.Consider another reference that is made to block 18 at t = 10. Since this block is not in thebu�er cache, �rst, the block with the minimum CRF value should be replaced to make roomfor the missed block. The block at the root of the heap, block 2 in this case, is such a block.Then the missed block (after it is fetched from disk) becomes the new root of the heap andthe restore operation is performed on the entire heap. The �gure at the bottom of Figure 3shows the heap after this restore operation.The O(log n) time complexity of the LRFU policy is comparable to that of the LFU policy.However, this time complexity is considerably higher than the O(1) time complexity of theLRU policy, which is simply the LRFU policy with � = 1. In the following, we show thatthe LRFU policy with weighing function F(x) = (12)�x also lends itself to a spectrum ofimplementations whose time complexity depends on the value of �. Consider the followingproperty.Property 5 In the LRFU policy with F(x) = (12)�x, there exists a threshold distancedthreshold such that8 d � dthreshold; F(0) > 1Xi=dF(i):
11

(block 2, 0, 1)(block 12, 1, 1) (block 23, 5, 1)
(block 1, 6, 1 + (12) 38) (block 6, 4, 1) (block 11, 9, 1 + (12) 78) (block 8, 8, 1 + (12) 18)

(block 12, 1, 1)(block 6, 4, 1) (block 23, 5, 1)
(block 1, 6, 1 + (12) 38) (block 18, 10, 1)(block 11, 9, 1 + (12) 78) (block 8, 8, 1 + (12) 18)

(block 2, 0, 1)(block 12, 1, 1) (block 11, 2, 1)
(block 1, 6, 1 + (12) 38) (block 6, 4, 1) (block 23, 5, 1) (block 8, 8, 1 + (12) 18)

block 11 referenced
at t = 9

block 18 referenced
at t = 10

Figure 3: Bu�er cache management algorithm example.
12

In particular, the minimum of such dthreshold values is given by d log 12 (1�(12)�)� e.Proof . Let d0 be such a dthreshold. Then, d0 should satisfyF(0) = 1 > 1Xi=d0F(i)= (12)�d0 + (12)�(d0+1) + (12)�(d0+2) + � � �= (12)�d0(1 + (12)� + (12)2� + � � �)= (12)�d0(11� (12)�)Multiplying both sides by 1� (12)� yields1� (12)� > (12)�d0Taking log 12 on both sides yieldslog 12 (1 � (12)�) < �d0Simplifying this equation then givesd0 � d log 12 (1� (12)�)� eThis property states that a block whose most recent reference was made earlier than dthresholdtime units ago cannot have a CRF value that is larger than F(0), which is the CRF value ofthe currently requested block. Conversely, for a block to have a CRF value larger than F(0),its most recent reference must have been made within dthreshold time units. This implies thatthe number of blocks that have CRF values larger than F(0) is bounded above by dthresholdsince we assume that at most one request can be made in each time step.In the optimized implementation of the LRFU policy which is explained in the following, wemaintain dthreshold blocks in the heap as in the LFU and the remaining blocks in a linked listas in the LRU. The blocks that are maintained in each data structure are determined suchthat the CRF value of any block maintained in the heap is larger than that of any block inthe linked list. With these settings, the CRF value of the blocks in the linked list cannotbe larger than F(0) since the number of blocks that have CRF values larger than F(0) isbounded above by dthreshold and the number of blocks maintained in the heap is dthreshold.The optimized LRFU implementation operates as follows. First, for the case where a re-quested block is not in the bu�er cache, the block at the tail of the linked list is replaced
13

heap

linked list

heap
referenced

block

linked list

heap

referenced

block

(a) (b) (c)

HEAD

TAILTAIL

HEADHEAD

TAIL

linked list
1. replaced

2. demoted

3. new block

4. restored

1. subheap

restored

1. demoted

2.

3. restored

Figure 4: Optimized implementation of the LRFU policy.and the block at the root of the heap whose CRF value now becomes smaller than F(0)by the passage of time is demoted to the head of the linked list (cf. Figure 4(a)). Then,the currently requested block, which has F(0) as its CRF value, becomes the new root ofthe heap and the restore operation is performed on the entire heap. These operations takeonly O(log dthreshold) time since the number of blocks in the heap is dthreshold. Further, theassertions that the CRF value of the blocks in the heap is larger than that of the blocks inthe linked list and that the CRF value of the blocks in the linked list is smaller than F(0)are maintained.The other case where the requested block is in the bu�er cache can further be divided intotwo cases where the currently referenced block is in the heap or in the linked list. First,consider the case where the currently requested block is in the heap. Here, the restoreoperation needs to be performed only for the sub-heap rooted by the currently requestedblock (cf. Figure 4(b)). This again takes O(log dthreshold) time and the aforementioned twoassertions are maintained. In the other case where the currently requested block is in thelinked list, the block corresponding to the root of the heap is demoted to the head of thelinked list and the currently requested block becomes the new root (cf. Figure 4(c)). Then,the restore operation is performed on the entire heap. These operations take O(log dthreshold)time as before and the aforementioned assertions are maintained. In summary, in all the casesconsidered, the time complexity of the optimized LRFU implementation is O(log dthreshold).On the LRU extreme of this optimized LRFU implementation (i.e., when � = 1), dthresholdequals to 1. Thus only one block need be maintained in the heap. This implies that allthe blocks in the bu�er cache can be maintained by a single linked list. This correspondsto the native LRU implementation and its time complexity is O(1). On the other hand, aswe move towards the LFU extreme (i.e., when � = 0), the number of blocks that should be
14

LRU extreme LFU extreme

heap (single element)

heap

heap

linked list linked list
linked list (null)

Figure 5: Spectrum of the LRFU implementations.maintained in the heap increases. Eventually, on the LFU extreme dthreshold is equal to 1and, thus, all the blocks in the bu�er cache should be maintained in the heap. As a result,the time complexity becomes O(log n) where n is the number of blocks in the bu�er cache.This again coincides with the time complexity and the data structure of the native LFUimplementation. Figure 5 shows the spectrum of the LRFU implementations.5 LRFU with correlated referencesIn this section, we describe the LRFU policy considering the correlated references. In thisvariation, all the references within a correlated period are treated as a single non-correlatedreference. This is motivated by the observation that the recency and frequency of higherlevel operations such as transactions in database systems can predict the future better thanthe recency and frequency of lower level disk accesses [8, 10]. To incorporate the concept ofcorrelated references more formally, we introduce a masking function Gc(x).Gc(x) = (0 : x � c1 : x > cwhere c is the correlated period that determines how far two references should be separatedto be considered as not being correlated.Incorporating the masking function Gc(x), the calculation of the CRF value of a block b atcurrent time tc, denoted by C0tc(b), is revised as follows:C0tc(b) = F(tc � tbk) + k�1Xi=1 F(tc � tbi) � Gc(tbi+1 � tbi):
15

However, this revision a�ects neither the way Ctbk (b) is calculated nor the basic structure ofthe bu�er cache management algorithm for the weighing function of interest. We prove thisin the following.Property 6 If F(x+ y) = F(x)F(y) for all x and y, then C0tbk (b), which is the CRF valueof block b at time tbk when correlated references are considered, is derived from C0tbk�1 (b) asfollows;C0tbk (b) = F(tbk � tbk) + k�1Xi=1 F(tbk � tbi) � Gc(tbi+1 � tbi)= F(0) + k�1Xi=1 F(tbk � tbi) � Gc(tbi+1 � tbi)Let � be tbk � tbk�1 .C0tbk (b) = F(0) + k�1Xi=1 F(� + tbk�1 � tbi) � Gc(tbi+1 � tbi)= F(0) + k�1Xi=1 F(�) � F(tbk�1 � tbi) � Gc(tbi+1 � tbi)= F(0) + F(�) � k�1Xi=1 F(tbk�1 � tbi) � Gc(tbi+1 � tbi)= F(0) + F(�) � [F(tbk�1 � tbk�1) � Gc(tbk � tbk�1) + k�2Xi=1 F(tbk�1 � tbi) � Gc(tbi+1 � tbi)]= F(0) + F(�) � [F(0) � Gc(tbk � tbk�1) + k�2Xi=1 F(tbk�1 � tbi) � Gc(tbi+1 � tbi)]= F(0) + F(�) � [F(0) � Gc(tbk � tbk�1) + C0tbk�1 (b)�F(tbk�1 � tbk�1)]= F(0) + F(�) � [F(0) � Gc(�) + C0tbk�1 (b)�F(0)]6 Experimental resultsIn this section we discuss the results obtained from a trace-driven simulation. We chose twodi�erent types of real workload traces. Speci�cally, one is the Sprite network �le systemtrace [2] representing �le system activities, and the other is database traces that consists ofthe DB2 trace used in [6] and the OLTP trace used in both [6] and [8].The Sprite trace contains two days worth of requests to a �le server from application programsrunning on client workstations. Of the workstation clients, we selected three clients with themost requests (client workstations 54, 53 and 48) and simulated the bu�er caches of theseclient workstations. Client 54 made 203,808 references to 4,822 unique blocks, client 53 made
16

141,223 references to 19,990 unique blocks, and client 48 made 133,996 references to 7,075unique blocks.To reiterate the descriptions of the database traces given in [6], the DB2 trace comes froma commercial installation of DB2 and contains 500,000 references to 75,514 unique blocks.The OLTP trace is a one hour block reference trace to a CODASYL database. This traceconsists of 914,145 references to 186,880 unique blocks. We note that the traces are thoseused in the previous papers [6, 8], and were obtained from the authors of these papers.Comparisons are made with the LRU-2 and 2Q policies which were implemented accordingto the descriptions in [6, 8]. Our results also allow comparison with the FBR policy as thispolicy is equivalent to the LRFU policy considering the correlated references at the LFUextreme.6.1 Comparison of the LRFU policy with other policiesFigures 6 and 7 show the hit rates of the LRFU policy as a function of the cache size for theSprite and database traces, respectively. The hit rates are compared with those of previouslyproposed policies, namely, the LRU, the LRU-2, and the 2Q policies. (Note that the scalesare di�erent for each of the �gures.)In the simulation, we used the weighing function F(x) = (12)�x explained in Section 4.We also treated correlated references as a single non-correlated reference using the maskingfunction Gc(x), where c is the correlated period. The results of the LRU-2 and 2Q policieswere obtained when their correlation periods are either 20% or 30% of the cache size assuggested in [6], and the better results were selected for each policy. Similarly we used thevalues of � and c that give the best performance for the LRFU policy. The e�ect of theseparameters on the performance of the LRFU policy will be discussed later in this section.Some general observations can be made. For most cases, the LRU policy performs the worst.This is the same observation made in previous works [6, 8]. However, we can see that theLRU policy performs reasonably well when the cache size is large. Also, for most cases,the LRFU policy has the highest hit rates, while the LRU-2 and 2Q policies show similarperformance, giving and taking at particular cache sizes. The 2Q policy performs ratherstrongly when the cache size is small, occasionally performing better than the LRFU policy.(The reason behind this is explained below.) However, its hit rate starts to converge earlier,that is, at a smaller cache size, than other policies.Though the LRFU policy performs best for most cases, when we take a closer look atFigures 6(b) (client 53 in the Sprite trace) and 7(a) (DB2 trace) we notice that when the
17

Cache Size

Hit Rate

1000 1500 2000 2500 3000
35%

45%

55%

65%

75%

85%

95%

LRFU

LRU-2

2Q

LRU(a) Client 54 in the Sprite trace

Cache Size

Hit Rate

1000 5000 10000
35%

45%

55%

65%

75%

85%

LRFU

LRU-2

2Q

LRU(b) Client 53 in the Sprite trace

Cache Size

Hit Rate

100 500 1000
20%

40%

60%

80%

LRFU

LRU-2

2Q

LRU(c) Client 48 in the Sprite traceFigure 6: Comparison of LRFU with other policies using the Sprite trace.
18

Cache Size

Hit Rate

1000 5000 10000 15000 20000
65%

70%

75%

80%

LRFU

LRU-2

2Q

LRU(a) DB2

Cache Size

Hit Rate

1000 2000 5000 10000 20000 30000
30%

40%

50%

60%

70%

LRFU

LRU-2

2Q

LRU(b) OLTPFigure 7: Comparison of LRFU with other policies using the database trace.

19

Table 1: Comparison of hit rates when history is kept for LRFU when the associated blockis evicted like the LRU-2 and 2Q policies.(a) Client 53 in the Sprite traceCache Size LRU LRU2 2Q LRFU1000 0.3782 0.3872 0.3892 0.39082000 0.4091 0.4516 0.4461 0.45113000 0.4740 0.5512 0.4840 0.57534000 0.5672 0.6282 0.6277 0.63285000 0.6349 0.6674 0.6525 0.69356000 0.7303 0.7395 0.7387 0.75617000 0.7730 0.7681 0.7765 0.78728000 0.7836 0.8056 0.7938 0.81909000 0.8120 0.8347 0.7977 0.838010000 0.8232 0.8436 0.8002 0.8443(b) DB2Cache Size LRU LRU-2 2Q LRFU1000 0.6544 0.6744 0.6856 0.69232000 0.7038 0.7235 0.7301 0.73333000 0.7295 0.7472 0.7524 0.75744000 0.7483 0.7645 0.7667 0.77205000 0.7625 0.7758 0.7780 0.78446000 0.7725 0.7854 0.7852 0.79167000 0.7809 0.7936 0.7909 0.79938000 0.7885 0.8001 0.7948 0.80469000 0.7949 0.8043 0.7981 0.808910000 0.8006 0.8082 0.8008 0.8122cache size is small the LRFU policy is only comparable to the LRU-2 and 2Q policies,performing even worse than these policies in some cases. The reason behind this is that inthe LRU-2 and 2Q policies blocks keep their history of references even after they are evictedfrom the bu�er cache [6]. Thus, when the block is brought back into the bu�er cache it startswith a good knowledge of its past behavior. However, in our simulations, we chose not toallow this for the LRFU policy as this is a better representation of the real world.However, after making this initial observation we modi�ed our simulation program in such away that the blocks keep their past history (i.e., LAST (b) and CRFlast(b)) even after theyare evicted like the LRU-2 and 2Q policies. For this case, the LRFU policy surpasses theLRU-2 and 2Q policies even for small cache sizes for client 53 in the Sprite trace and theDB2 trace as can be seen in TABLE 1. 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0(LFU) 1e−06 1e−05 0.0001 0.001 0.01 0.1 1(LRU)

H
it

R
at

e

lambda

cache size = 1200

cache size = 1500

cache size = 2000

cache size = 2500

cache size = 3000

(a) Client 54 in the Sprite trace
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0(LFU) 1e−06 1e−05 0.0001 0.001 0.01 0.1 1(LRU)

H
it

R
at

e

lambda

cache size = 1000

cache size = 2000

cache size = 5000

cache size = 10000

(b) DB2 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0(LFU) 1e−06 1e−05 0.0001 0.001 0.01 0.1 1(LRU)

H
it

R
at

e

lambda

cache size = 1000

cache size = 2000

cache size = 5000

cache size = 10000

cache size = 20000

(c) OLTPFigure 8: E�ects of � on the LRFU policy using Sprite and database traces.6.2 E�ects of � on the performance of the LRFU policyFigure 8 shows the inuence of � on the hit rate for various cache sizes assuming a �xedcorrelated period. All the �gures in Figure 8 have similar shapes. The hit rate initiallyincreases as the � value increases, that is, the policy moves from the LFU extreme to theLRU extreme. After reaching a peak point, the hit rate drops slightly and then remains fairlystable decreasing very slowly until � reaches 1. We also observe from the �gures that as thecache size increases the peak hit rate is reached at a smaller � value. This implies that asthe cache size increases more weight must be given to older references, and that deciding theblock to be evicted must not be made in a near-sighted manner. Based on this, appropriate� values may be deduced as system con�gurations evolve.6.3 Combined e�ects of � and correlated period on the LRFU policyFigures 9(a), (b), and (c) show the hit rate, as a function of � and c, for client workstation54 with a cache size of 2000, for the DB2 trace with a cache size of 1000, for the OLTP trace
21

hit rate

1e−06 1e−05 0.0001 0.001 0.01 0.1 1
0

500

1000

1500

2000

0.7

0.75

0.8

0.85

0.9

lambda

correlated period(a) Client 54 in the Sprite trace (cache size = 2000)
1e−06

1e−05
0.0001

0.001
0.01

0.1
1 0

500

1000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

lambda

correlated period

hit rate

(b) DB2 (cache size = 1000) 1e−06 1e−05 0.0001 0.001 0.01 0.1 1
0

500

1000

1500

2000
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

lambda

correlated period

hit rate

(c) OLTP (cache size = 2000)Figure 9: Combined e�ects of � and c on the LRFU policy.with a cache size of 2000, respectively. Overall, for all correlated period values, we observe aperformance e�ect of � that is similar to the one shown in Figure 8, i.e., the hit rate initiallyincreases, reaches a peak, and drops slightly after the peak.Another observation is that the � value giving the peak hit rate decreases for longer correlatedperiods. This is because as the correlated period increases, the access trend of higher leveloperations becomes more evident. Thus, giving more weight to the frequency of these higherlevel operations turns out to be bene�cial to achieving higher hit rates.Finally, we observe that the e�ect of the correlated period is signi�cant when the LRFUpolicy leans towards the LFU policy. This is especially notable for the database traces.However, the correlated period has very little e�ect as the spectrum of policies moves tothe LRU extreme. This observation agrees with, and indirectly explains the reason behindthe improvement brought in by the FBR policy [10]. An interesting observation of the FBRpolicy was that there is a need for a new section to factor out locality. This notion is basically
22

the notion of a correlated period. We notice from our results that when � is close to 0, thatis, when the policy resides on the LFU extreme, the hit rate is greatly inuenced by thecorrelated period. Hence, the FBR policy bene�ted from the addition of the new section.7 ConclusionIn this paper, we have introduced the LRFU (Least Recently/Frequently Used) block re-placement policy. While subsuming the well known LRU and LFU policies, the LRFUpolicy presents a spectrum of policies using a weighing function F(x) = (12)�x where � isa controllable parameter. The � value determines the weight given to recent and old his-tory thereby providing a ground for an optimal combination of the e�ects of recency andfrequency.Unlike previous policies which consider only a limited reference history in their replacementdecision, the LRFU policy makes use of all of the reference history of each block. Weshowed that this can be achieved with bounded memory when the weighing function F(x)meets a certain property such as F(x + y) = F(x)F(y). We also showed that the proposedreplacement policy lends itself to an e�cient implementation whose time complexity rangesanywhere from O(1) to O(log n) depending on the value of �, where n is the number of blocksin the bu�er cache. This corresponds to the complexities of the native implementations ofthe LRU and LFU policies. We also considered the issue of correlated references within theproposed LRFU framework. This issue was incorporated into our policy by introducing amasking function Gc(x), where c is the correlated period, that is, the period within whichreferences are considered to be correlated. We showed that including this issue does not alterour general framework.Results from trace-driven simulation showed that the LRFU policy performs better thanthe LRU, the LRU-2, and the 2Q policies for the workloads considered. The e�ects of thecontrollable parameters � and c for various cache sizes were discussed as well. General trendsbetween the hit rate and � and c values were observed for the workloads considered.In this paper, we concentrated on the development of the framework behind the LRFUpolicy, focusing on the combination of two orthogonal aspects of memory references, that is,recency and frequency of references. As our results have shown, even our simple approach tocombining the two has brought increased performance. We believe that incorporating otherissues such as sequentiality will bring about further improvement. Other issues of interestare in �nding weighing functions other than F(x) = (12)�x that will bring about furtherimprovement in performance. Applying our concept of combining recency and frequency inpage and data placement and migration in distributed systems where there is a hierarchy of
23

bu�er caches is also a direction for further research.References[1] M. J. Bach. The Design of the UNIX Operating System. Prentice-Hall, EnglewoodCli�s, NJ, 1986.[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirri�, and J. K. Ousterhout.Measurements of a Distributed File System. In Proceedings of the 13th ACM Symposiumon Operating Systems Principles, pages 198{212, 1991.[3] P. Cao, E. W. Felten, and K. Li. Application-Controlled File Caching Policies. InProceedings of the Summer 1994 USENIX Conference, pages 171{182, 1994.[4] C. Faloutsos, R. Ng, and T. Sellis. Flexible and Adaptable Bu�er ManagementTechniques for Database Management Systems. IEEE Transactions on Computers,44(4):546{560, 1995.[5] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.Morgan Kaufmann Publishers, San Mateo, CA, 1990.[6] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Bu�er ManagementReplacement Algorithm. In Proceedings of the 20th International Conference on VeryLarge Data Bases, pages 439{450, 1994.[7] R. Karedla, J. S. Love, and B. G. Wherry. Caching Strategies to Improve Disk SystemPerformance. IEEE Computer, 27(3):38{46, March 1994.[8] E. J. O'Neil, P. E. O'Neil, and G. Weikum. The LRU-K Page Replacement AlgorithmFor Database Disk Bu�ering. In Proceedings of the 1993 ACM SIGMOD Conference,pages 297{306, 1993.[9] V. Phalke and B. Gopinath. An Inter-Reference Gap Model for Temporal Locality inProgram Behavior. In Proceedings of the 1995 ACM SIGMETRICS/PERFORMANCEConference, pages 291{300, 1995.[10] J. T. Robinson and N. V. Devarakonda. Data Cache Management Using Frequency-Based Replacement. In Proceedings of the 1990 ACM SIGMETRICS Conference, pages134{142, 1990.[11] J. D. Smith. Design and Analysis of Algorithms. PWS-KENT Publishing Company,Boston, MA, 1989.
24

