Technical Report SNU-CE-AN-96-004, Department of Computer Engineering, Seoul National University, July 1996.

LRFU (Least Recently/Frequently Used) Replacement
Policy: A Spectrum of Block Replacement Policies'?

Donghee Lee* Jongmoo Choi* Jong-Hun Kim*
Sam H. Noh** Sang Lyul Min* Yookun Cho* Chong Sang Kim*

March 1 1996
SNU-CE-AN-96-004

*Dept. of Computer Engineering, Seoul Nat’l Univ., San 56-1
Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea.

“*Dept. of Computer Engineering, Hong-lIk Univ., 72-1
Sangsoo-dong, Mapo-gu, Seoul 121-791, Korea.

Abstract

The LRU (Least Recently Used) and LFU (Least Frequently Used) replacement policies are
two extreme replacement policies. The LRU policy gives weight to only one reference for each
block, that is, the most recent reference to the block while giving no weight to older ones
representing one extreme, and the LFU gives equal weight to all references representing the
other extreme. These extremes imply the existence of a spectrum between them. In this paper
we propose such a spectrum which we call the LRFU (Least Recently /Frequently Used) policy.
The LRFU subsumes both the LRU and LFU, and provides a spectrum of block replacement
policies between them according to how much more we weigh the recent history than the
older history. While most previous policies use limited history in making block replacement
decisions, the LRFU policy bases its decision on all of the reference history of each block
recorded during cache residency. Nevertheless, the LRFU requires only a few words for each
block to maintain such history. This paper also describes an implementation of the LRFU that
again subsumes the native LRU and LFU implementations. This implementation of the LRFU
has a time complexity that ranges between O(1) to O(logn) where n is the number of blocks in
the cache. Results from trace-driven simulations show that there exist points on the spectrum
at which the LRFU performs better than the previously known policies for the workloads we

considered.

Keyword : Buffer Cache, LFU, LRU, Replacement Policy, Trace-driven Simulation.

tThis work has been submitted to the IEEE for possible publication. Copyright may be trans-
ferred without notice, after which this version will be superseded.

{This paper was supported (in part) by NON DIRECTED RESEARCH FUND, Korea Research
Foundation.

1 Introduction

The gap between processor and disk speed is becoming wider as VLSI technologies keep
advancing at an enormous rate. Though the density growth of disks has somewhat kept
pace, the access time improvement has been comparatively very slow. To overcome the
resultant speed gap, caching techniques have been used in various forms so that disk blocks
that are likely to be accessed in the near future are kept in DRAM memory which is referred
to as the buffer cache [1]. However, as the buffer cache size is necessarily limited a prudent
use of this space is critical in alleviating the aforementioned speed gap. To this end, the block
replacement policy that decides which block should be replaced on a miss must judiciously
select the block (or blocks) to be evicted.

The development of efficient block replacement policies has been the topic of much research
in both the systems [3, 7, 9] and database areas [4, 6, 8, 10]. For a block replacement policy
to be effective, it must have the following two traits. First, it should make good use of
observations made from past behaviors of blocks to distinguish between the blocks that are
likely to be referenced in the near future and those that are not. In general, the workload
continuously changes over time and an effective replacement policy should be able to adapt
itself according to the workload evolution. A good policy should be able to distinguish not
only between the hot and cold blocks but also between the blocks that are hot but are getting
colder and those that are cold but are getting hotter.

Second, the policy should allow for an efficient implementation in terms of both space and
time complexities. For this to be realized, the space needed to maintain information about
the past behavior of a block should be bounded. Furthermore, the time complexity of the
buffer cache management algorithm must be kept to the minimum. Preferably, the algorithm
should have an O(1) or O(logn) time complexity where n is the number of blocks in the

buffer cache.

Previous works on block replacement policies have been derived from two rather independent
avenues. One group of policies are those that base their decision on the frequency of refer-
ences, and the other are policies based on the recency of references. The Least Frequently
Used (LFU) policy is an example of the former while the Least Recently Used (LRU) is an

example of the latter. Both of the policies have their merits as well as disadvantages.

The LFU policy keeps track of the number of references to each block, and the block selected
for replacement is the block that has the least number of references. This policy is based
on the presumption that the block that has been more frequently referenced in the past is
more likely to be referenced in the near future. In view of the two traits for an effective

replacement policy, first, although the LFU policy considers all the references in the past it

cannot distinguish between references that occurred far back in the past and the more recent
ones. Thus, it does not adapt well to changing workloads. For example, the LFU policy may
evict currently hot blocks instead of currently cold blocks that had been hot in the past. In
terms of implementation, this policy generally uses a priority queue [11] to order the blocks
according to their reference counts. The time complexity of this implementation is O(logn)

where n is the number of blocks in the buffer cache.

The LRU policy replaces a block that has not been referenced for the longest time [5]. This
policy makes its decision on very little information, that is, only the time of the most recent
reference to each block. As a result, it cannot discriminate well between frequently and
infrequently referenced blocks. One advantage of this policy, however, is that it is very
adaptive to changes in reference patterns compared to other policies [8]. Another advantage
is that it allows for a very efficient implementation. A single linked list that orders the blocks
according to the times of their most recent references suffices to implement this policy, and

this implementation has a constant time complexity.

While both the frequency based and recency based approaches have their own merits, an
attempt to combine the benefits of the two had not yet been made. We make this effort
in this paper and propose a spectrum of replacement policies, which we call the Least Re-
cently /Frequently Used (LRFU) replacement policy, that inherently subsumes the LRU and
LFU policies. The LRFU policy is effective as its decision on which block to evict is based
on both the recency and frequency of all of the references to each block in the past. Nev-
ertheless, the policy requires only bounded memory for each block to maintain information
regarding its past behavior. Furthermore, the time complexity of the policy ranges from O(1)
to O(logn), where n is the number of blocks in the buffer cache. The complexity depends
on how much more we weigh the recent history to the older history which is a controllable

parameter in the LRFU policy.

In implementing this policy, we also take into consideration the correlated references men-
tioned in [8, 10] which may have considerable influence on performance. This factor is
incorporated into the generic policy as another parameter that may be tuned to enhance the

replacement decision.

Simulation experiments using real traces show that our policy performs better than other
previously known policies. Through the experiments, we show the effects of the parameters of
our policy, and also show that there is a range of values for the parameters where performance

is best.

The rest of the paper is organized as follows. Section 2 surveys the related works. This
section focuses on two recent papers, one by Robinson and Devarakonda [10] and the other
by O'Neil et al. [8], that have been pivotal in this area. In Section 3, we describe the LRFU

policy in detail. Its implementation is discussed in Section 4. The correlated references are
incorporated into the policy in Section 5. We compare the performance of the LRFU policy

with those of previous policies in Section 6. Finally, we conclude this paper in Section 7.

2 Related works

This section surveys the studies that aim at exploiting both recency and frequency to over-
come the deficits of the LRU and LFU policies. Before we introduce such studies we need
to explain the concept of correlated references. In general, references to disk blocks have
less locality compared to references to CPU caches or virtual memory pages [10]. However,
references to a disk block still show strong short-term locality of reference once the disk block
is referenced. Such clustered references are called correlated references and their examples

in database systems are presented in [8, 10].

The concept of correlated references was first introduced in [10] by Robinson and De-
varakonda. In this paper, a frequency based policy called the FBR (Frequency-based Re-
placement) policy is presented. The difference between the FBR and the conventional LFU
is that the former replaces a block based on the frequency of non-correlated references that
are obtained by making use of a special buffer called a new section. The major contribu-
tion of the FBR policy is in introducing the concept of correlated references and confirming
the possibility of using the modified frequency as a criterion for block replacement. The
simulation results given in [10] show that the FBR outperforms the LRU for the workloads

considered.

In [8], O'Neil et al. present the LRU-K replacement policy that bases its replacement deci-
sion on the time of the K’th-to-last non-correlated reference to each block. As the LRU-K
considers the last K references, it can discriminate well between frequently and infrequently
referenced blocks. It can also remove cold blocks quickly since such blocks would have a

wider span between the current time and the K’th-to-last reference time.

However, the LRU-K does not combine recency and frequency in a unified manner. It ignores
the recency of the K-1 references, and considers only the distance of the K’th reference from
the current time. This violates the rule of thumb that the more recent behavior predicts
the future better. For example, assume that {1, 24, 25} and {1, 2, 25} are the reference
histories of blocks a and b, respectively. Then, LRU-3 would treat both blocks equally,
although intuitively, block a is more likely to be referenced in the near future since its
second-to-last reference is more recent. For this reason, the LRU-K does not adapt well to
evolving workloads when K is large. Also, it incurs overhead to keep the history of the last

K references though a large K value may not be necessary in practice.

The LRU-K requires that all of the last K reference times of each block be maintained in
order to decide a victim block. A block that does not have all of the last K reference times
must be regarded as a special case. If the history of a block is not saved when the block
is replaced from the buffer cache, a considerable length of time may be needed to reacquire
its history, and in some cases, it may not even be able to acquire all the K reference times
before it is evicted again. To cope with this problem, the LRU-K maintains the history of

each block for an extended period of time after the block is removed from the buffer cache.

As previously mentioned, one advantage of the LRU-K is that it quickly removes cold blocks
from the buffer cache when K is small. Johnson and Shasha propose a block replacement
policy called 2Q) [6] that starts from a similar motivation. In this approach, there is a special
buffer called the Al queue into which a missed block is initially placed. A block in the Al
queue is promoted to the main buffer cache only when it is re-referenced while in the Al
queue. Otherwise, it will be evicted when it becomes the LRU block in the A1 queue. This
allows cold blocks to be removed quickly from the buffer cache as in the LRU-K. This is in
line with the SLRU policy proposed by Karedla et al. [7]. The 2Q policy has an advantage
over the LRU-K in that its time complexity is O(1) compared to O(logn) for LRU-K.

Buffer management schemes, in general, have also been extensively studied in the database
arena [4] (also see the references therein). However, many of its algorithms make use of
information that is deduced from query optimizer plans. Since such information is usually
not available for general file caching, the applicability of these schemes is limited to database

systems.

Another approach of interest is the application-controlled file caching scheme [3] where the
user has control over the block replacement decisions. This certainly is a promising approach

but beyond the scope of this paper.

3 The Least Recently /Frequently Used (LRFU) policy

This section describes the proposed LRFU policy. Unlike the LFU and LRU policies that
consider either frequency or recency only, the LRFU policy takes into account both the
frequency and recency of references in its replacement decision. Furthermore, unlike the
LRU-K policy that considers only the last K references to a block this policy considers all
of the past references to a block to appraise the likelihood that the block may be referenced
in the near future. Nevertheless, the policy still requires only bounded memory and its
implementation overhead is comparable to those of the LFU and LRU policies as we will see

in the next section.

The LRFU policy associates a value with each block. This value is called the CRF (Combined
Recency and Frequency) value and quantifies the likelihood that the block may be referenced
in the near future. Each reference to a block in the past contributes to this value and a
reference’s contribution is determined by a weighing function F(x) where x is the time span
from the reference in the past to the current time. For example, assuming that block b is
referenced at times 1, 2, 5 and 8 and, that the current time (¢.) is 10, then the CRF value
of block b at t., denoted by C;, (b), is computed as

Ci.(b) = F(10 — 1) + F(10 — 2) + F(10 — 5) + F(10 — 8) = F(9) + F(8) + F(5) + F(2).

In general, F(x) would be a decreasing function to give more weight to more recent references
and, therefore, a reference’s contribution to the CRF value is proportional to the recency of

the reference. We define the CRF value of a block more formally as follows.

Definition 1 Assume that the system time can be represented by an integer value by using a
system clock and that at most one block may be referenced at any one time. The CRF value
of a block b at time tyqs., denoted by Cy, . (D), is defined as

k
Ctbase (b) = Z F(tbase - tbi)

i=1

where F(x) is the weighing function and {ty, ,ty,,---,tp, } are the reference times of block b
and ty, <tp, <--- < ty, < thase-

The proposed LRFU policy replaces a block whose CRF value is minimum. This policy is
different from the LFU policy where every reference contributes the same value regardless of
its recency. The policy also differs from the LRU policy in that not only is the most recent
reference to a block considered in the replacement decision but also all the other references

to the block in the past are considered as well.

Intuitively, if F(x) = 1 for all z, then the CRF value degenerates to the reference count.
Thus, the LRFU policy with F(z) =1 is simply the LFU policy.

Property 1 If F(x) = ¢ for all x where ¢ is a constant, then the LRFU policy replaces the
same block as the LFU policy.

To show that the LRFU policy also subsumes the LRU policy, we give an example of F(x)
that makes the LRFU policy replace the same block as the LRU policy. Assume that block a

was most recently referenced at time ¢ and another block b was referenced at every time step

F(x)

F(x) = 1 (LFU Extreme)

‘O Spectrum
\ (Recency/Frequency).

AN
.

F(x)M

X
(current time - reference time)

Figure 1: Spectrum of LRFU according to the function F(z) = (3)* where z is
(current_time — reference_time).

starting from time 0, but the most recent reference to it was made at time ¢ — 1. Then the
CRF values of @ and b at current time t. are Cy, (a) = F(t, —t) and Cy, (b) = XL F(t. —t').
Although block b has been referenced many more times than block a, the LRU policy will
replace block b in favor of block a. For the LRFU policy to mimic this behavior, C;, (a) must
be larger than C;_(b), thus F(t. —t) > 3L} F(t. —t'). By generalizing the above condition,

we have the following.

Property 2 If F(x) satisfies the following condition, then the LRFU policy replaces the
same block as the LRU policy.

Vi F(i) > i F(j).
G=i+1

A class of functions that includes a function with property 1 and also a function with prop-
erty 2 is F(x) = ()™ where X ranges from 0 to 1. This class of functions is shown in
Figure 1. It has a control parameter A that allows a trade-off between recency and fre-
quency. For example, as A approaches 0, the LRFU policy leans towards a frequency-based
policy. Eventually when X is equal to 0 (i.e., F(x) = 1), the LRFU policy is simply the LFU
policy. On the other hand, as A approaches 1, the LRFU policy leans towards a recency-based
policy, and when A is equal to 1 (i.e., F(2) = (3)"), the LRFU policy degenerates to the LRU
policy. (Note that F(x) = () satisfies property 2.) The spectrum (Recency/Frequency)
shown in Figure 1 is where the LRFU policy differs from both LFU and LRU.

4 Implementation of the LIRF U policy

In general, computing the CRF value of a block requires the reference times of all the
previous references to that block. This obviously requires unbounded memory and, thus
the policy may not be implementable. Furthermore, since a reference’s contribution to the
CRF value changes over time, the CRF value changes as well. This necessitates recomputing
the CRF value of every block at each time step, again making the policy unimplementable.
We show in the following that if the weighing function F(x) has a certain property, the
storage and computational overheads can be reduced drastically such that this policy not
only becomes implementable but also efficient. We identify two such properties which are:
Flr+y) = F(x)F(y) and F(x +y) = F(x) + F(y). For the remainder of this paper, we

concentrate on the first case as the second case can be handled analogously to the first one.

Property 3 If F(x +y) = F(x)F(y) for all x and y, then C,, (b), which is the CRF value

of block b at time ty,, is derived from Cy, (b) as follows;

k k—1 k—1
Cry, () = > Flty, —t;) = Flty, —tn,) + Y Flty, —t,) = F(0) + Y Flty, — tn,)-
=1 =1 =1

Let 6 be tbk — tbk,] .

k—1 k—1
Ci, (b) = F(0)+ Z Flty, —t,) =FO0)+ > F(o+ty, , — 1)

i=1

k—1 k—1
= f(()) + Z f((s)}-(tbkq - tbi) = '7:(0) + -7:(6) Z ',F(tbkq - tbi)
= F(0) + F6)C,, (b). -

Property 3 shows that if F(x + y) = F(x)F(y) then the CRF value at the time of the K'th
reference can be computed using the time of the (KK-1)th reference and the CRF value at
that time. Likewise, C; (b), which is the CRF value of block b at current time t., can be
computed by multiplying F(8) to Cu,, (b) where 6 = t. — t;,. This implies that, at any time,
the CRF value can be computed using only two variables for each block, and these are all

the history each block needs to maintain.

The function F(x) = (%)AT explained in the previous section has the above property. In
addition to the F(x + y) = F(x)F(y) property, this function has the property that it gives
more weight to more recent references, which is consistent with the principle of temporal
locality. For this weighing function an intuitive meaning of A is that a block’s CRF value is

halved after every % time steps. For example, if A is equal to 0.0001, a block’s CRF value is

halved every 10000 time steps. In the remainder of this paper, we concentrate only on the

weighing function F(z) = (%)Ar

Recall that the LRFU policy replaces a block whose CRF value is minimum. Therefore, it
is necessary that the blocks be ordered according to their CRF values. However, with the
exception of F(z) = 1 (= (3)°), the CRF value of a block changes with time. This, in
general, requires that the CRF value of every block be updated at each time step and that
blocks be reordered according to the new CRF values again at each time step. However,
such updates and reordering are not needed if F(z) is such that F(x +y) = F(z)F(y). In
particular, updates and reordering of blocks are needed only upon a block reference. We

prove this in the following.

Property 4 If Ci(a) > Ci(b) and neither a nor b has been referenced after t, then Cy(a) >
Cy(b) for all t' > t.

Proof. Let 6 =t'—t. Since F(x+y) = F(x)F(y), Co(a) = F(6)Ct(a) and Cyp (b) = F(6)Ct(D).
Also, since F(x) > 0 for all z and Ci(a) > Ci(b) we have Cp(a) = F(6)Ci(a) > F(6)Ci(b) =
Ct/(b). O

Since the relative ordering between two blocks does not change until either of them is ref-
erenced, the reordering of blocks need only be done upon a block reference. Figure 2 gives
an algorithm that is invoked when a block is referenced. The algorithm uses a heap' data

structure to maintain the ordering of blocks according to their CRF values.

In the algorithm, H is the heap data structure, ¢. is the current time and LAST(b) and
CRF4st(b) are the time of the last reference to block b and its CRF value at that time,
respectively. The algorithm first checks whether the requested block b is in the buffer cache.
If it is, the algorithm updates its CRF value and the time of the last reference. The updated
CRF value may be larger than those of 0’s descendants, thus violating the heap property
of the sub-heap rooted by b. The algorithm uses the Restore() routine to restore the heap
property of this sub-heap. Note that only the sub-heap rooted by b need be restored. This
results from the fact that b’s ancestors in the heap, which previously had CRF values smaller
than the CRF value of b, cannot have CRF values larger than that of b after b is referenced.

In the other case where the block is not in the buffer cache, the missed block is fetched

from disk and its CRF value and the time of the last reference are initialized. Using the

! A heap is a completely balanced binary tree that has the following property called the heap property [11].
1. it is empty, or

2. the key in the root is smaller than that in either child and both subtrees have the heap property.

© 0N oA WD

—
—— O

W W W W W W W W W WM NNDNDNDDDNDNDNN = == = = = =
CHASTERIR S SO RXTD TR DN =D 00D O W

if b is already in the buffer cache
then
CRF.s:(b) = F(0) + CRF(b)
LAST(b) =t.
Restore(H, b)
else
fetch the missed block from the disk
CRFlast(b) = F(O)
LAST(b) = t.
victim = ReplaceRoot(H, b)
if victim is dirty
then
write-back the victim to the disk
fi
fi

Restore(H, b)
if b is not a leaf node
then
let smaller be the child that has a smaller CRF value at the current time
if CRF(b)> CRF(smaller)
then
swap(H, b, smaller)
Restore(H, smaller)
fi
fi

end Restore

ReplaceRoot(H, b)
victim = H.root
H.root = b
Restore(H, b)
return victim

end ReplaceRoot

CRF(b)
return F(t. — LAST (b)) x CRF},5(b)
end CRF

Figure 2: Buffer cache management algorithm.

10

ReplaceRoot() routine the algorithm replaces the block that has the minimum CRF value
(i.e., the one at the root of the heap) with the newly fetched block and, then, restores the
heap property. If the replaced block is dirty, it is written-back to the disk. Since both the
Restore() and ReplaceRoot() routines require traversing at most the height of the heap, the

algorithm terminates in time O(logn).

To see how the algorithm works, consider the example given in Figure 3. In the figure, let
us assume that there are 7 buffers in the buffer cache and F(x) = (%)%:” We further assume
that the current time t. = 9. In the figure, the heap at time ¢ = 8 is given on the top. In
the heap, each node is denoted by a triple (block number, LAST(b), C RF,s(b)). Such a
heap, for example, can be constructed by the following reference string: {(t = 0, block 2),
(t = 1,block 12), (t = 2,block 11), (t = 3,block 1), (t = 4,block 6), (t = 5,block 23),
(t = 6,block 1), (t = 7,block 8), (t = 8,block 8)}. Consider a reference to block 11 that is
made at the current time (i.e., t = 9). Since the referenced block is already in the buffer
cache, first, its CRF value and the time of the last reference are updated. The new CRF value
is 1+ (%)% that is equal to F(0)+ F(t. — LAST(b))* CRF,5(b) where t. =9, LAST(b) = 2,
and CRF},s(b) = 1. Then the heap property of the sub-heap rooted by this block is restored.
When this restore operation is performed, the node corresponding to the currently referenced
block is swapped with the node for block 23 which has a smaller CRF value among the two

children of the current node.

Consider another reference that is made to block 18 at ¢ = 10. Since this block is not in the
buffer cache, first, the block with the minimum CRF value should be replaced to make room
for the missed block. The block at the root of the heap, block 2 in this case, is such a block.
Then the missed block (after it is fetched from disk) becomes the new root of the heap and
the restore operation is performed on the entire heap. The figure at the bottom of Figure 3

shows the heap after this restore operation.

The O(logn) time complexity of the LRFU policy is comparable to that of the LFU policy.

However, this time complexity is considerably higher than the O(1) time complexity of the

LRU policy, which is simply the LRFU policy with A = 1. In the following, we show that
1

the LRFU policy with weighing function F(z) = (3)** also lends itself to a spectrum of

implementations whose time complexity depends on the value of A. Consider the following

property.

Property 5 In the LRFU policy with F(x) = (

dthresh,old such that

%))‘w, there exists a threshold distance

V d > dipresholds -7:(0) > Z]:(Z)
i=d

11

(block 2, 0, 1)

(block 12, 1, 1) (block 11, 2, 1)
@) @) O O
3 1
(block 1, 6, 1+ (3)%) (block 6, 4, 1) (block 23, 5, 1) (block 8, 8, 1+ (5)%)

block 11 referenced
att=9

(block 2, 0, 1)
(block 12, 1, 1) (block 23, 5, 1)

O . @) ©) . O :
(block 1, 6, 1 4+ ($)%) (block 6, 4, 1) (block 11, 9, 1+ (3)%) (block 8, 8, 1 + (3)7)

block 18 referenced
att =10

(block 12, 1, 1)

(block 6, 4, 1) (block 23, 5, 1)

N

@) ‘ O
(block 1, 6, 1+ (1)%) (block 18, 10, 1)(block 11, 9, 1+ (1)%) (block &, 8, 1 4 (1))

Figure 3: Buffer cache management algorithm example.

12

log1 (1=(3)7)
In particular, the minimum of such dipreshoia values is given by [%]

Proof. Let d' be such a dipreshora- Then, d' should satisfy

FO)=1 > im)

i=d'

1\ 1 ' 1]
_ (%))\d + (§)i\(d +1) _1_ (§)A(d +2) 4.
- YOG G
— (I

Multiplying both sides by 1 — (%))‘ yields

-G > M

Taking log1 on both sides yields
2

1
logi(1— (2)Y) < Ad'
2 2
Simplifying this equation then gives

 lega(1— (4
d>]—"——) 1 O
This property states that a block whose most recent reference was made earlier than d;p,eshola
time units ago cannot have a CRF value that is larger than F(0), which is the CRF value of
the currently requested block. Conversely, for a block to have a CRF value larger than F(0),
its most recent reference must have been made within dyj,esholg time units. This implies that
the number of blocks that have CRF values larger than F(0) is bounded above by dipreshold

since we assume that at most one request can be made in each time step.

In the optimized implementation of the LRFU policy which is explained in the following, we
maintain dipreshoig Plocks in the heap as in the LFU and the remaining blocks in a linked list
as in the LRU. The blocks that are maintained in each data structure are determined such
that the CRF value of any block maintained in the heap is larger than that of any block in
the linked list. With these settings, the CRF value of the blocks in the linked list cannot
be larger than F(0) since the number of blocks that have CRF values larger than F(0) is
bounded above by dipreshotd and the number of blocks maintained in the heap is dipreshold-

The optimized LRFU implementation operates as follows. First, for the case where a re-
quested block is not in the buffer cache, the block at the tail of the linked list is replaced

13

linked list linked list linked list

TA|L~~~~~~>§% 1. replaced TAIL >l) TA|L~~~~~~~>i

o o

. .
i i 2.
HEAD - HEAD -~ HEAD -~y

j 2. demoted

heap

~<— referenced

)i block

j 1. demoted

heap

3. new bloc

heap

referenced
block
1. subheap
restored

@ (b) (c)

4. restored 3. restored

Figure 4: Optimized implementation of the LRFU policy.

and the block at the root of the heap whose CRF value now becomes smaller than F(0)
by the passage of time is demoted to the head of the linked list (cf. Figure 4(a)). Then,
the currently requested block, which has F(0) as its CRF value, becomes the new root of
the heap and the restore operation is performed on the entire heap. These operations take
only O(log dipreshora) time since the number of blocks in the heap is dipreshoa. Further, the
assertions that the CRF value of the blocks in the heap is larger than that of the blocks in
the linked list and that the CRF value of the blocks in the linked list is smaller than F(0)

are maintained.

The other case where the requested block is in the buffer cache can further be divided into
two cases where the currently referenced block is in the heap or in the linked list. First,
consider the case where the currently requested block is in the heap. Here, the restore
operation needs to be performed only for the sub-heap rooted by the currently requested
block (cf. Figure 4(b)). This again takes O(log dipreshord) time and the aforementioned two
assertions are maintained. In the other case where the currently requested block is in the
linked list, the block corresponding to the root of the heap is demoted to the head of the
linked list and the currently requested block becomes the new root (cf. Figure 4(c¢)). Then,
the restore operation is performed on the entire heap. These operations take O(log dipreshold)
time as before and the aforementioned assertions are maintained. In summary, in all the cases

considered, the time complexity of the optimized LRFU implementation is O(log dipreshold)-

On the LRU extreme of this optimized LRFU implementation (i.e., when A = 1), dipreshoid
equals to 1. Thus only one block need be maintained in the heap. This implies that all
the blocks in the buffer cache can be maintained by a single linked list. This corresponds
to the native LRU implementation and its time complexity is O(1). On the other hand, as

we move towards the LFU extreme (i.e., when A = 0), the number of blocks that should be

14

linked list linked list
i linked list (null)

{
i co o i co o .
:

heap (single element)
-_— —_—

LRU extreme LFU extreme

Figure 5: Spectrum of the LRFU implementations.

maintained in the heap increases. Eventually, on the LFU extreme dij,eshoia 1S equal to oo
and, thus, all the blocks in the buffer cache should be maintained in the heap. As a result,
the time complexity becomes O(logn) where n is the number of blocks in the buffer cache.
This again coincides with the time complexity and the data structure of the native LFU

implementation. Figure 5 shows the spectrum of the LRFU implementations.

5 LRFU with correlated references

In this section, we describe the LRFU policy considering the correlated references. In this
variation, all the references within a correlated period are treated as a single non-correlated
reference. This is motivated by the observation that the recency and frequency of higher
level operations such as transactions in database systems can predict the future better than
the recency and frequency of lower level disk accesses [8, 10]. To incorporate the concept of

correlated references more formally, we introduce a masking function G.(x).

gc(m)_{(] : x<c
1 : z>c¢

where ¢ is the correlated period that determines how far two references should be separated

to be considered as not being correlated.

Incorporating the masking function G.(x), the calculation of the CRF value of a block b at

current time t., denoted by C; (b), is revised as follows:

k—1
C;C(b) =]:(tc - tbk) + Z]:(tc - tbi) * gC(tbiJr] - tbi)'

i=1

15

However, this revision affects neither the way Ctbk (b) is calculated nor the basic structure of
the buffer cache management algorithm for the weighing function of interest. We prove this

in the following.

Property 6 If F(x +y) = F(x)F(y) for all x and y, then Cébk (b), which is the CRF wvalue

of block b at time t,, when correlated references are considered,y s derived from C;bk](b) as

follows;
k—1
=1
k—1 ‘
= ‘7:(0) + Z f(tbk - tbi) * gC(tbi+1 - tbi)
=1
Let 6 be tbk - tbk,] .
k—1

Cr,, (0) = F(0)+ STF(6 +ty, , — th) * Gelty,, — th)

i=1

k—1
= F(0)+ Z F(8) % F(to, , — to;) * Geltp,r — tv,)
=1

k—1
= f(()) + F<6) * Zf(tbk—] - tbi) * gc(tbi+] - tbi)
i=1

k—2

= f(()) + F<6) * [:F(tbkq - tbkq) * gc(tbk - tbkq) + Z f(tbk—] - tbi) * gc(tbi+]

i=1
k—2

= f(()) + f<6) * [:F(U) * gc(tbk - tbkq) + Z ',F(tbkq - tbi) * gc(tbpr] - tbi)]

= F(0)+ F(6) = [F(0) = gc(tbk — tbk—l) + éjzzlk,1 (b) — F(tbk71 — tbk—l)]

= F(0) + F(8) * [F(0) x Ge(8) + €, (b) — F(0)

6 Experimental results

In this section we discuss the results obtained from a trace-driven simulation. We chose two
different types of real workload traces. Specifically, one is the Sprite network file system
trace [2] representing file system activities, and the other is database traces that consists of
the DB2 trace used in [6] and the OLTP trace used in both [6] and [8].

The Sprite trace contains two days worth of requests to a file server from application programs
running on client workstations. Of the workstation clients, we selected three clients with the
most requests (client workstations 54, 53 and 48) and simulated the buffer caches of these

client workstations. Client 54 made 203,808 references to 4,822 unique blocks, client 53 made

16

141,223 references to 19,990 unique blocks, and client 48 made 133,996 references to 7,075

unique blocks.

To reiterate the descriptions of the database traces given in [6], the DB2 trace comes from
a commercial installation of DB2 and contains 500,000 references to 75,514 unique blocks.
The OLTP trace is a one hour block reference trace to a CODASYL database. This trace
consists of 914,145 references to 186,880 unique blocks. We note that the traces are those

used in the previous papers [6, 8], and were obtained from the authors of these papers.

Comparisons are made with the LRU-2 and 2Q policies which were implemented according
to the descriptions in [6, 8]. Our results also allow comparison with the FBR policy as this
policy is equivalent to the LRFU policy considering the correlated references at the LFU

extreme.

6.1 Comparison of the LRFU policy with other policies

Figures 6 and 7 show the hit rates of the LRFU policy as a function of the cache size for the
Sprite and database traces, respectively. The hit rates are compared with those of previously
proposed policies, namely, the LRU, the LRU-2, and the 2Q policies. (Note that the scales

are different for each of the figures.)

In the simulation, we used the weighing function F(z) = (3) explained in Section 4.
We also treated correlated references as a single non-correlated reference using the masking
function G.(x), where ¢ is the correlated period. The results of the LRU-2 and 2Q policies
were obtained when their correlation periods are either 20% or 30% of the cache size as
suggested in [6], and the better results were selected for each policy. Similarly we used the
values of A\ and ¢ that give the best performance for the LRFU policy. The effect of these

parameters on the performance of the LRFU policy will be discussed later in this section.

Some general observations can be made. For most cases, the LRU policy performs the worst.
This is the same observation made in previous works [6, 8]. However, we can see that the
LRU policy performs reasonably well when the cache size is large. Also, for most cases,
the LRFU policy has the highest hit rates, while the LRU-2 and 2Q policies show similar
performance, giving and taking at particular cache sizes. The 2Q policy performs rather
strongly when the cache size is small, occasionally performing better than the LRFU policy.
(The reason behind this is explained below.) However, its hit rate starts to converge earlier,

that is, at a smaller cache size, than other policies.

Though the LRFU policy performs best for most cases, when we take a closer look at
Figures 6(b) (client 53 in the Sprite trace) and 7(a) (DB2 trace) we notice that when the

17

Hit Rate

95%

85%

75%

65%

55%

1 1 1 1
2000 2500 3000

Cache Size

(a) Client 54 in the Sprite trace

Hit Rate
85%

75%| -

65%

55%

45% |- -

35%
1000 5000 10000

Cache Size

(b) Client 53 in the Sprite trace

Hit Rate

80%

60%

40%

i * LRU
20% !

500 1000

Cache Size

(c) Client 48 in the Sprite trace

Figure 6: Comparison of LRFU with other policies using the Sprite trace.

18

Hit Rate

80%

75%

70%

65%‘ L L
1000 10000 15000 20000
Cache Size
(a) DB2
Hit Rate
70%
60%
50%
40%%"-
A * |RU
30%
10002000 5000 10000 20000 30000
Cache Size
(b) OLTP

Figure 7: Comparison of LRFU with other policies using the database trace.

19

Table 1: Comparison of hit rates when history is kept for LRFU when the associated block
is evicted like the LRU-2 and 2Q policies.

(a) Client 53 in the Sprite trace
| Cache Size | LRU [LRU2 | 2Q [LRFU

1000 0.3782 | 0.3872 | 0.3892 | 0.3908
2000 0.4091 | 0.4516 | 0.4461 | 0.4511
3000 0.4740 | 0.5512 | 0.4840 | 0.5753
4000 0.5672 | 0.6282 | 0.6277 | 0.6328
5000 0.6349 | 0.6674 | 0.6525 | 0.6935
6000 0.7303 | 0.7395 | 0.7387 | 0.7561
7000 0.7730 | 0.7681 | 0.7765 | 0.7872
8000 0.7836 | 0.8056 | 0.7938 | 0.8190
9000 0.8120 | 0.8347 | 0.7977 | 0.8380
10000 0.8232 | 0.8436 | 0.8002 | 0.8443

(b) DB2
Cache Size | LRU | LRU-2 | 2Q [LRFU
1000 0.6544 | 0.6744 [0.6856 | 0.6923
2000 0.7038 | 0.7235 | 0.7301 | 0.7333
3000 0.7295 | 0.7472 | 0.7524 | 0.7574
4000 0.7483 [0.7645 | 0.7667 | 0.7720
5000 0.7625 | 0.7758 | 0.7780 | 0.7844
6000 0.7725 | 0.7854 | 0.7852 | 0.7916
7000 0.7809 | 0.7936 | 0.7909 | 0.7993
8000 0.7885 | 0.8001 | 0.7948 | 0.8046
9000 0.7949 | 0.8043 [0.7981 | 0.8089
10000 | 0.8006 | 0.8082 | 0.8008 | 0.8122

cache size is small the LRFU policy is only comparable to the LRU-2 and 2Q policies,
performing even worse than these policies in some cases. The reason behind this is that in
the LRU-2 and 2Q policies blocks keep their history of references even after they are evicted
from the buffer cache [6]. Thus, when the block is brought back into the buffer cache it starts
with a good knowledge of its past behavior. However, in our simulations, we chose not to

allow this for the LRFU policy as this is a better representation of the real world.

However, after making this initial observation we modified our simulation program in such a
way that the blocks keep their past history (i.e., LAST(b) and CRF,5(b)) even after they
are evicted like the LRU-2 and 2Q policies. For this case, the LRFU policy surpasses the
LRU-2 and 2Q policies even for small cache sizes for client 53 in the Sprite trace and the
DB2 trace as can be seen in TABLE 1.

20

09 emmems -
08 | g e - cache size =.2000.

o7

Hit Rate

06 F

osf

0.4

03 L L L L L L
O(LFU) 1e-06 1e-05 0.0001 0.001 0.01 01 A(LRU)
lambda

(a) Client 54 in the Sprite trace

Hit Rate

1 1 .
0.001 0.01 01 1(LRU)
a

045 L L L L L L 01 L L L
O(LFU) 1e-06 1e-05 0.0001 0.001 0.01 01 1(LRU) O(LFU) 1e-06 1e-05 0.0001
lambda la

mbd

(b) DB2 (¢) OLTP

Figure 8: Effects of A on the LRFU policy using Sprite and database traces.

6.2 Effects of A\ on the performance of the LRFU policy

Figure 8 shows the influence of A on the hit rate for various cache sizes assuming a fixed
correlated period. All the figures in Figure 8 have similar shapes. The hit rate initially
increases as the A value increases, that is, the policy moves from the LFU extreme to the
LRU extreme. After reaching a peak point, the hit rate drops slightly and then remains fairly
stable decreasing very slowly until A reaches 1. We also observe from the figures that as the
cache size increases the peak hit rate is reached at a smaller A value. This implies that as
the cache size increases more weight must be given to older references, and that deciding the
block to be evicted must not be made in a near-sighted manner. Based on this, appropriate

A values may be deduced as system configurations evolve.

6.3 Combined effects of A and correlated period on the LRFU policy

Figures 9(a), (b), and (¢) show the hit rate, as a function of A and ¢, for client workstation
54 with a cache size of 2000, for the DB2 trace with a cache size of 1000, for the OLTP trace

21

09 -

100@orrelated period

1e-06 1e-05 gggo1 0.001

1
lambda 01

(a) Client 54 in the Sprite trace (cache size = 2000)

=77

7

’II'
’I. 7

07 -

2000

1000 015
1500

1e-06 500 100 rrelated period
1e=05 ;5001 correlated period 1-06 1o o5
0.001 00001 a9y
lambda 0% 001 0
01 0 lambda 0.1 1

500

(b) DB2 (cache size = 1000) (¢) OLTP (cache size = 2000)

Figure 9: Combined effects of A and ¢ on the LRFU policy.

with a cache size of 2000, respectively. Overall, for all correlated period values, we observe a
performance effect of A that is similar to the one shown in Figure 8, i.e., the hit rate initially

increases, reaches a peak, and drops slightly after the peak.

Another observation is that the A value giving the peak hit rate decreases for longer correlated
periods. This is because as the correlated period increases, the access trend of higher level
operations becomes more evident. Thus, giving more weight to the frequency of these higher

level operations turns out to be beneficial to achieving higher hit rates.

Finally, we observe that the effect of the correlated period is significant when the LRFU
policy leans towards the LFU policy. This is especially notable for the database traces.
However, the correlated period has very little effect as the spectrum of policies moves to
the LRU extreme. This observation agrees with, and indirectly explains the reason behind
the improvement brought in by the FBR policy [10]. An interesting observation of the FBR

policy was that there is a need for a new section to factor out locality. This notion is basically

22

the notion of a correlated period. We notice from our results that when) is close to 0, that
is, when the policy resides on the LFU extreme, the hit rate is greatly influenced by the
correlated period. Hence, the FBR policy benefited from the addition of the new section.

7 Conclusion

In this paper, we have introduced the LRFU (Least Recently/Frequently Used) block re-
placement policy. While subsuming the well known LRU and LFU policies, the LRFU
policy presents a spectrum of policies using a weighing function F(x) = (%)AT where A is
a controllable parameter. The A value determines the weight given to recent and old his-
tory thereby providing a ground for an optimal combination of the effects of recency and

frequency.

Unlike previous policies which consider only a limited reference history in their replacement
decision, the LRFU policy makes use of all of the reference history of each block. We
showed that this can be achieved with bounded memory when the weighing function F(x)
meets a certain property such as F(x 4+ y) = F(x)F(y). We also showed that the proposed
replacement policy lends itself to an efficient implementation whose time complexity ranges
anywhere from O(1) to O(log n) depending on the value of A, where n is the number of blocks
in the buffer cache. This corresponds to the complexities of the native implementations of
the LRU and LFU policies. We also considered the issue of correlated references within the
proposed LRFU framework. This issue was incorporated into our policy by introducing a
masking function G.(x), where ¢ is the correlated period, that is, the period within which
references are considered to be correlated. We showed that including this issue does not alter

our general framework.

Results from trace-driven simulation showed that the LRFU policy performs better than
the LRU, the LRU-2, and the 2Q policies for the workloads considered. The effects of the
controllable parameters A and ¢ for various cache sizes were discussed as well. General trends

between the hit rate and A and ¢ values were observed for the workloads considered.

In this paper, we concentrated on the development of the framework behind the LRFU
policy, focusing on the combination of two orthogonal aspects of memory references, that is,
recency and frequency of references. As our results have shown, even our simple approach to
combining the two has brought increased performance. We believe that incorporating other
issues such as sequentiality will bring about further improvement. Other issues of interest
are in finding weighing functions other than F(x) = (3)** that will bring about further
improvement in performance. Applying our concept of combining recency and frequency in

page and data placement and migration in distributed systems where there is a hierarchy of

23

buffer caches is also a direction for further research.

References

[1]

2]

[11]

M. J. Bach. The Design of the UNIX Operating System. Prentice-Hall, Englewood
Cliffs, NJ, 1986.

M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout.
Measurements of a Distributed File System. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles, pages 198 212, 1991.

P. Cao, E. W. Felten, and K. Li. Application-Controlled File Caching Policies. In
Proceedings of the Summer 1994 USENIX Conference, pages 171-182, 1994.

C. Faloutsos, R. Ng, and T. Sellis. Flexible and Adaptable Buffer Management
Techniques for Database Management Systems. [EEE Transactions on Computers,
44(4):546 560, 1995.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer Management
Replacement Algorithm. In Proceedings of the 20th International Conference on Very
Large Data Bases, pages 439-450, 1994.

R. Karedla, J. S. Love, and B. G. Wherry. Caching Strategies to Improve Disk System
Performance. IEEE Computer, 27(3):38 46, March 1994.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page Replacement Algorithm
For Database Disk Buffering. In Proceedings of the 1993 ACM SIGMOD Conference,
pages 297-306, 1993.

V. Phalke and B. Gopinath. An Inter-Reference Gap Model for Temporal Locality in
Program Behavior. In Proceedings of the 1995 ACM SIGMETRICS/PERFORMANCE
Conference, pages 291 300, 1995.

J. T. Robinson and N. V. Devarakonda. Data Cache Management Using Frequency-
Based Replacement. In Proceedings of the 1990 ACM SIGMETRICS Conference, pages
134-142, 1990.

J. D. Smith. Design and Analysis of Algorithms. PWS-KENT Publishing Company,
Boston, MA, 1989.

24

