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in its �rst argument:[�!�] : op � !(we assume throughout that is cartesian closed). Severalsolutions to this problem have been suggested involving di-natural transformations [5], structors [9], section-retractionpairs on domains etc. In this paper we pursue Reynolds'idea of viewing a type as a relation [14]. We give this acategorical formulation introducing the concepts of relatorsand transformations and arrive at characterising polymor-phic functions as transformations between relators insteadof natural transformations between functors.In this setting, we can de�ne the notion of semanticpolymorphic invariance: a property P (f) of polymorphicprograms is a semantic polymorphic invariant if, for eachf : F :! G,� either P (fA) for all A or P (fA) for no A.In [1] it was shown that strictness analysis is a polymor-phic invariant, i.e., the analysis would �nd that an instanceis strict if and only if it would �nd this for all instances.This result, which was then obtained at some labour usingan operational semantics, can now be proved easily fromnaturality. Furthermore, we conjecture that relators andtransformations form a general basis for extending abstractinterpretations of monomorphic programs to cover polymor-phic programs.The paper is organised as follows. In section 2 we in-troduce the notion of relator and transformations betweenrelators. Sections 3 and 4 introduce a higher-order, polymor-phic functional language and show how polymorphic typescan be modelled as relators and polymorphic programs astransformations between relators. In section 5 we de�nepolymorphic invariance and demonstrate how our model ofpolymorphism enables us to prove a polymorphic invarianceresult for strictness analysis. The practical use of this factand its relation to the results in [10] is discussed in section 6.We assume some familiarity with basic notions of categorytheory, see [12] or [6].2 Relators and transformationsThis section de�nes the notion of a relator and transforma-tions between relators. Relators and transformations can beseen as a categorical framework for formulating Reynolds'types-as-relations paradigm. Let Rel be the category withsets as objects and relations as morphisms and let C be a



category that can be embedded into Rel via a faithful func-tor U . We haveDefinition 1 A relator R : Cn!C maps objects inCn to objects in C and morphisms in Cn to morphismsin C, such that fA!B is mapped to R(f)R(A)!R(B). Fur-thermore R must preserve identity i.e., R(idA) = idR(A)Def1Note, that relators di�er from functors in that they are notrequired to preserve composition.Next, we de�ne what we mean by a transformation be-tween relators. Assume that we have two categories, C1 andC2, with the same collection of objects. Assume furthermorewe have embeddings U1 : C1,!Rel and U2 : C2,!Rel suchthat U1 and U2 agree on objects of C1 and C2.Definition 2 A C2-transformation � between two C1-relators R; S : Cn1!C1 is a family of C2-morphisms, �A :R(A)!!S(A), indexed by the objects of C1 such that for allmorphisms r from A to B in Cn1 the following property holdsin Rel: U2(�B) � U1(R(r)) � U1(S(r)) � U2(�A)Def2We write � : F G to say that � is a transformation fromrelator F to relator G.When working in concrete categories, the embeddingsusually just mean that the same entity is seen from twodi�erent categorical viewpoints. We omit them when theycan be derived from context. This convention will allow usto express the above requirement by the following diagram:A R(A) �A � S(A)r__ R(r)__ � __S(r)B R(B) �B � S(B)We shall study the case where (�A) is a family of functions.In this case the above condition reduces to:x R(r) y ) �A(x) S(r) �B(y)Loosely speaking this says that a family of functions, (�A),is a transformation from R to S if it maps R(r)-related ele-ments to S(r)-related elements.We can de�ne the composition of two transformationscomponentwise, i.e., if � : F G and � : G H aretransformations then � � � : F H is de�ned by (� � �)A =�A � �A. With this de�nition it is easy to verifyProposition 3 Relators and transformations form a cat-egory with relators as objects and transformations as mor-phisms. Prop3

3 Types as relatorsIt is our intention to give semantics to a polymorphic, func-tional language using relators and transformations. As weintend to include a �xpoint operator in our language, weshall take as our base category the cartesian closed categoryof complete partial orders and continuous functions, denotedby CPOc. From this category we can construct a new cat-egory, CPOsi, with cpo's as objects and strict, inductive1relations as morphisms. We will now show how polymorphictype expressions can be interpreted as relators over CPOsi.Definition 4 Let R and S: CPOsin!CPOsi be tworelators. The relator R � S : CPOsin!CPOsi is de�nedby:1. (R � S)(A) is the product of the objects R(A) andS(A).2. Given a relation r : A!!B the relation (R � S)(r) isde�ned by?R(A)�S)(A) (R� S)(r) ?R(B)�S)(B)(a; a0) (R�S)(r) (b; b0) i� a R(r) b and a0 S(r) b0Def4We have to verify that this de�nes a relator on CPOsi.Firstly, it is straightforward to check that (R � S)(idA) =id(R�S)(A). Secondly, we have to ensure that the relationso de�ned is strict and inductive. Strictness is by de�-nition and inductiveness follows from structural inductionon the types and the fact that if the n'th elements of twochains (an; a0n) and (bn; b0n) are related then t(an; a0n) =(t(an);t(a0n)) (R� S)(r) (t(bn);t(b0n)) = t(bn; b0n).We can model the function type constructor by using theconcept of logical relation [13]Definition 5 Given two relators R and S we can de�nea new relator1. (R) S)(A) is the function space object R(A)) S(A)in CPOc.2. For r : A!!B a strict,inductive relation, R ) S(r) isthe relation from (R ) S)(A) to (R ) S)(B) de�nedby f (R) S)(r) g i�8x; x0 : x R(r) x0 implies f(x) S(r) g(x0)Def5Again, we can easily check that (R) S)(idA) = id(R)S)(A).Strictness is checked as follows:?R(A))S(A) (R) S)(r) ?R(A))S(A), 8x; x0 : x R(r) x0 ) ?S(A) S(r) ?S(A)1A relation r is termed strict if ? r ?. It is termed inductive iffor all chains (an) and (bn) we have 8 n : an r bn implies tan r t an



For proving inductiveness let r : A!!B be an arbitrarystrict, inductive relation, let (fn); (gn) be chains in (R )S)(A) and (R) S)(B) resp., and assume that8n : fn (R) S)(r) gni.e., 8n : x R(r) x0 ) fn(x)S(r)gn(x0)But since, for �xed x and x0, (fn(x)) and (gn(x0)) are chainsin S(A) and S(B) resp., we have thatx R(r) x0 ) 8n : fn(x) S(r) gn(x0)) (t(fn))(x) S(r) (t(gn))(x0)4 Terms as transformationsWe now give a semantics for the expressions in our polymor-phic higher order language. We shall interpret a polymor-phic expression of (polymorphic) type A!B as a CPOc-transformation between the CPOsi-relators correspondingto A and B.Polymorphic functional programs are built up from theconstants id, Ap, fst, snd, �x and variables by the construc-tors �;�, h�;�i and �(�). The type assignments for theseexpressions can safely be left to the reader. Semantically,we de�ne for domains A, B, C:fstA;B(x; y) = xsndA;B(x; y) = yhf; giA;B;C(x) = (f(x); g(x))f ; g(x) = g(f(x))ApA;B(f; x) = f(x)�(f)(x)(y) = f(x; y)�x(f) = Fn2! fn(?)etc.Lemma 6 Let F;G;H be relators. Then(i) fstF ( )�G( ) is a transformation from F �G to F .(ii) Similarly, snd : F�G G and Ap : (F ) G)�F Gare transformations.(iii) �x : (F ) F ) F is a transformation.(iv) Let f : F G, g : F H be transformations; thenhf; gi : F G�H is a transformation.(v) Let f : F � G H be a transformation; then �(f) :F (G) H) is a transformation.(vi) Let f : F G and g : G H. Then f ; g : F H isa transformation.Proof We prove (i); (iii) and (v).

(i) To show that fst is a transformation we must show thatfor any strict, inductive relation r : A!!B we have:(F �G)(A) fstF (A)�G(A) � F (A)(F �G)(r)__ � __F (r)(F �G)(B) fstF (B)�G(B) � F (B)But if (x; y) fst � (F � G)(r) z then there exists y0 2F (A) such that (x; y) (F �G)(r) (z; y0) i.e., x F (r) zand so (x; y) F (r) � fst z.(iii) Showing that �x is a transformation from F ) F to Famounts to showing that for r : A!!B strict, inductivethe following diagram \semi-commutes":A (F ) F )(A) �xA � F (A)r__ (F ) F )(r)__ � __F (r)B (F ) F )(B) �xB � F (B)which asserts that if two continuous functions f; g arerelated by (F ) F )(r) then their �xpoints are relatedby F (r). But since F (r) is inductive, �xA(f) is relatedto �xB(g) if fn(?) F (r) gn(?) for all n which followsfrom ? F (r)? and f (F ) F )(r) g.(v) We have to show that �(f) : F (G) H) is a trans-formation provided f : F �G H is. In diagramsA F (A) �(f)A � (G) H)(A)r__ F (r)__ � __(G) H)(r)B F (B) �(f)B � (G) H)(B)This states that under the assumption that xF (r)x0we can prove�(f)A(x) (G) H)(r) �(f)B(x0)which is equivalent to8y; y0 : yG(r)y0 implies fA(x; y)H(r)fB(x0; y0)The last property follows from xF (r)x0 and the factthat f is a transformation from F �G to H.



Lemma6We can summarise the results obtained so far as:Theorem 7 Let e be a polymorphic expression that mapsarguments of (polymorphic) type F to a result of (poly-morphic) type G. Then e can be interpreted as a CPOc-transformation between the CPOsi-relators correspondingto types F and G. Theorem7The general import of the results so far is that we can de-rive from a cartesian closed category (i.e., a model of ourmonomorphically typed, higher order language) a new carte-sian closed category of relators and transformations in whichwe can interpret ML-style parametric polymorphism. Forfurther details, see [4].5 Semantic Polymorphic Invariance and StrictnessThe aim of this section is to provide some initial evidencethat the relator-semantics for polymorphism can be a use-ful tool when trying to extend methods for analysing mo-nomorphic programs to cover polymorphic programs. Theframework for analysis which we have in mind is abstractinterpretation [3]. In the following, we demonstrate how aparticular analysis, strictness analysis of higher-order, mo-nomorphic functions, can give information about polymor-phic functions.5.1 Strictness analysisA function is strict if its result is unde�ned whenever itsargument is unde�ned. The use of strictness informationto implement functional languages e�ciently is widely stud-ied [7] ,[11]. In [8] it was shown how to perform strict-ness analysis of higher-order, monomorphically typed pro-grams by abstract interpretation. The method works byinterpreting the program text over non-standard domainsbuilt up from the two-point domain 2 using the usual do-main constructors � and ). The abstract interpretation ofa function f : Int ! Int, say, would then be the functionf# : 2 ! 2 obtained from f by replacing the operationsassociated with type Int , like +, by their abstract interpre-tation on the domain 2. The main result in [8] is that f#gives safe information about the strictness properties of f ,i.e., f#(?) = ? ) f(?) = ?. As domains built over 2 areall �nite lattices, f# can be computed by a �xpoint iterationthat is guaranteed to terminate.This gives a computable method for doing strictness anal-ysis of monomorphic, higher-order functions. Strictness prop-erties of a polymorphic function can be obtained by applyingthe method to the monomorphic instances of the function.There are, however, two problems connected with this ap-proach:� The number of monomorphic instances of a polymor-phic function becomes in�nite as soon as we allowstructured or higher-order types.� The size of the abstract domain for structured andhigher-order types grows so fast that �xpoint compu-tations become infeasibleThe solution to these problems is to prove that the strict-ness analysis described here is polymorphically invariant.

We prove that all abstract functions corresponding to mono-morphic instances have the same strictness properties. Thisimplies that we only have to compute the abstraction of thesimplest instance of the function to obtain all informationabout strictness that the analysis can provide.5.2 Polymorphic invariancePolymorphic invariance of a property P of a polymorphicprogram means that P holds for all monomorphic instancesor none. The notion of polymorphic invariance can be trans-ferred to the semantic level as follows:Definition 8 Let P be a property of morphisms. P isa semantic polymorphic invariant (with respect to a classof objects T and a class of transformations F) if, for everyA;B 2 T and f 2 F : P (fA) () P (fB). Def8The particular property we shall be interested in is that ofstrictness of a function: strict(f) def= f? = ?. The proofof polymorphic invariance of strictness is based on two rela-tions, rrefl and rpres de�ned as follows:Definition 9 Let 2 denote the two-point lattice and letA be a domain with a greatest element > di�erent from ?.De�ne the relations rpres; rrefl : 2!!A by?2 rpres ?A ?2 rrefl a 8a 2 A>2 rpres a 8a 2 A >2 rrefl >ADef9In the following, let F denote an arbitrary relator built using� and ).Lemma 10 F (rpres) and F (rrefl) is strict, inductive andrelates > to >.Proof Straightforward Lemma10Lemma 11 F (rrefl) is ?-reecting and F (rpres) is ?-preserving, i.e., d rrefl ?F (A) ) d = ?F (2)?F (2) rpres d) d = ?F (A)Proof That rrefl is ?-reecting is essentially Proposition4.2 in [2]. The proof that rpres is ?-preserving proceeds byinduction on the structure of F . We shall only give thecase when F is a function type. So suppose F has the formG ) H and that �x:? (G ) H)(rpres) f for some f 2(G ) H)(A). From lemma 10 we have that > G(rpres) >,hence, as (G ) H)(rpres) is a logical relation we get that? H(rpres)f(>) and by induction hypothesis that f(>) =?. The monotonicity of f now implies that f = �x:? asrequired. Lemma11With these lemmas at hand we can now proveProposition 12 Strictness is a semantic polymorphicinvariant with respect to the class of all non-trivial domains



with top-elements in CPOc (i.e. those with more than oneelement), and all transformations.Proof Let f be a transformation from relator F to relatorG i.e., fA is a continuous function from F (A) to G(A) forany domain A. We now prove fA is strict i� f2 is strict. Therelations rrefl and rpres are strict and inductive, so from thefact that f is a transformation we get the following diagram,where r stands for either rrefl or rpres:2 F (2) f2 � G(2)r__ F (r)__ � __G(r)A F (A) fA � G(A)So suppose f2 is strict and that fA(?) = d. We show thatd = ?. Take r to be rpres. As F (rpres) is strict we havethat ? fA � F (rpres) d and hence ? G(rpres) � f2 d i.e.,f2(?) G(rpres) d. As f2 is strict we get ? G(rpres) d andlemma 11 gives that d = ? i.e., fA is strict.For the converse, assume fA is strict and let r be rreflin the diagram. The lower part of the diagram is thus astrict relation hence the upper part of the diagram is a strictrelation, so ? G(rrefl) � f2 ?. Lemma 11 tells us thatG(rrefl) is ?-reecting, so f2(?) = ? hence f2 is strict.Prop126 Related ApproachesIn [10], an ingenious method is given to compute any in-stance, fA, of an abstract function from its simplest instancef2. The method works for any abstract interpretation, butis limited to �rst-order functions. The basic result from [10]which underlies the method given there is:Proposition 13 If A is a type built from product, liftingand 1, and f : F :! G is a polymorphic program, where F ,G are �rst-order types (i.e. not using function space), thenfor some function �A, depending on A but not on f ,fA = �A(f2):Prop13Even if a property can be shown to polymorphic invariant,information about the abstract functions at non-basic typesmight be needed. This occurs when a function g calls an-other function f with an argument of non-basic type. Inthis case the abstract function of g will be de�ned in termsof a non-basic instance of the abstract function of f . An ob-vious question is thus whether the result in proposition 13carries over in the presence of function spaces. The nextresult shows that it does not.Proposition 14 The previous proposition fails when Fand G are allowed to be higher-order.Proof Consider the polymorphic integers:�n def= �f:�x:f (n)(x) : 8t:(t! t)! (t! t) (n 2 ):

For n 6= m we can �nd a �nite lattice type A such that�nA 6= �mA (let k = max(m;n), and take A = 2k). But thereare only �nitely many functions in [[2 ) 2] ) [2 ) 2]].Prop14Note that this result holds for any �nite domain in placeof 2, and even when A is built from product and lifting(so it is independent of what our abstract interpretation offunction space happens to be). The conclusion of all thisis that analysis of higher-order, polymorphic functions isbest done by proving a polymorphic invariance result forthe analysis at hand and then computing those non-basicinstances of the abstract functions necessary to compute allbasic instances of the abstract functions.7 ConclusionThe major achievements of this paper can be summarisedas: � We have given a semantics for a �rst order polymor-phic, higher order functional language. The semanticsis a combination of Reynolds' types-as-relations ideaand the idea of naturality from category theory. Thisapproach to polymorphism is treated in depth in [4].� using the naturality property we can give a simpleproof of the polymorphic invariance of strictness anal-ysis.We take this as initial evidence of the fact that relators andtransformations can be of use in analysis of polymorphicprograms. They seem especially useful for establishing poly-morphic invariance results, which is the best one can hopefor when dealing with higher-order functions. Future workshould investigate if polymorphic invariance can be provedfor abstract interpretation in general using the relator se-mantics of polymorphism.8 AcknowledgementsThe authors would like to thank the members of the Ab-stract Interpretation Group at Imperial College (Geo� Burn,Chris Hankin, Sebastian Hunt and David Sands) for numer-ous discussions related to this topic. Thanks are also due toPaul Taylor for letting us use his TEX-macros for drawingdiagrams.References[1] S. Abramsky. Strictness analysis and polymorphic in-variance. In H. Ganzinger and N. D. Jones, editors,Programs as Data Objects, pages 1{23, Berlin, 1986.Springer Verlag. Lecture Notes in Computer ScienceVol. 217.[2] S. Abramsky. Abstract interpretation, logical relationsand Kan extensions. Journal of Logic and Computation,1, 1990.[3] S. Abramsky and C. Hankin. Abstract Interpretation ofDeclarative Languages. Ellis Horwood, 1987.[4] S. Abramsky, J. Mitchell, A. Scedrov, and P. Wadler.Relators. Draft paper, 1990.
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