A Relational Approach to Strictness Analysis for Higher-Order Polymorphic
Functions*

Samson Abramsky

Thomas P. Jensen'

Imperial College?

Abstract

This paper defines the categorical notions of relators and
transformations and shows that these concepts enable us to
give a semantics for polymorphic, higher order functional
programs. We demonstrate the pertinence of this semantics
to the analysis of polymorphic programs by proving that
strictness analysis is a polymorphic invariant.

1 Introduction

Recently, there has been some effort to construe the seman-
tics of polymorphic functional programming languages using
the categorical notion of a natural transformation. The idea
can be sketched as follows: we have a “universe of compu-
tational discourse” given by some category (in practice,
a suitable category of domains). Types are objects of
Type constructions (e.g. product, function space) are func-
tors (of appropriate arity) over . Monomorphic functional
programs are morphisms of ; polymorphic programs are
natural transformations. E.g.

append : Vt. t* x t* — t*

append : ()" x ()" = ()"
where (1)*: — s the list construction functor.

These ideas are used in [10] to develop a general frame-
work for abstract interpretation of first-order, polymorphic
functions. We extend the basic approach of [10] to cover
higher-order functions and show that with this extension,
the short-cut techniques for computing function abstractions
given in [10] can no longer work; thus our main emphasis is
on re-establishing the polymorphic invariance results of [1]
in this framework.

The obvious problem in extending this framework to
higher-order functions is that function-space is contravariant

*This paper was presented at the 14th ACM Symposium on Prin-
ciples of Programming Languages,1991

fThis work was supported by ESPRIT grant BRA 3124
SEMANTIQUE

fAuthors’ address: Dept. of Computing, Imperial College, 180
Queen’s Gate, London SW7 2BZ, U.K. Email: {sa,tpj}@doc.ic.ac.uk

in its first argument:
[—]: Py

(we assume throughout that is cartesian closed). Several
solutions to this problem have been suggested involving di-
natural transformations [5], structors [9], section-retraction
pairs on domains etc. In this paper we pursue Reynolds’
idea of viewing a type as a relation [14]. We give this a
categorical formulation introducing the concepts of relators
and transformations and arrive at characterising polymor-
phic functions as transformations between relators instead
of natural transformations between functors.

In this setting, we can define the notion of semantic
polymorphic invariance: a property P(f) of polymorphic
programs is a semantic polymorphic invariant if, for each

f:F -G,
e cither P(fa) for all A or P(fa) for no A.

In [1] it was shown that strictness analysis is a polymor-
phic invariant, i.e., the analysis would find that an instance
is strict if and only if it would find this for all instances.
This result, which was then obtained at some labour using
an operational semantics, can now be proved easily from
naturality. Furthermore, we conjecture that relators and
transformations form a general basis for extending abstract
interpretations of monomorphic programs to cover polymor-
phic programs.

The paper is organised as follows. In section 2 we in-
troduce the notion of relator and transformations between
relators. Sections 3 and 4 introduce a higher-order, polymor-
phic functional language and show how polymorphic types
can be modelled as relators and polymorphic programs as
transformations between relators. In section 5 we define
polymorphic invariance and demonstrate how our model of
polymorphism enables us to prove a polymorphic invariance
result for strictness analysis. The practical use of this fact
and its relation to the results in [10] is discussed in section 6.
We assume some familiarity with basic notions of category
theory, see [12] or [6].

2 Relators and transformations

This section defines the notion of a relator and transforma-
tions between relators. Relators and transformations can be
seen as a categorical framework for formulating Reynolds’
types-as-relations paradigm. Let Rel be the category with
sets as objects and relations as morphisms and let C be a

category that can be embedded into Rel via a faithful func-
tor U. We have

DEFINITION 1 A relator R : C"—=C maps objects in
C" to objects in C and morphisms in C" to morphisms
in C, such that fa_,p is mapped to R(f)R(A)%R(B)' Fur-

thermore R must preserve identity i.e., R(ida) = idp
DEF1

Note, that relators differ from functors in that they are not
required to preserve composition.

Next, we define what we mean by a transformation be-
tween relators. Assume that we have two categories, C; and
Cs,, with the same collection of objects. Assume furthermore
we have embeddings U; : Ci—Rel and U : Ca—Rel such
that U, and U> agree on objects of C; and Co.

DEFINITION 2 A Cs-transformation T between two Cj-
relators R, S : CT—C; is a family of Cy-morphisms, 74 :
R(A)—»S(A), indexed by the objects of C; such that for all
morphisms r from A to B in C7 the following property holds
in Rel:

Us(tp) o Ur(R(r)) C U(S(r)) o Ua(Ta)
DEF2

We write 7 : F' G to say that 7 is a transformation from
relator F' to relator G.

When working in concrete categories, the embeddings
usually just mean that the same entity is seen from two
different categorical viewpoints. We omit them when they
can be derived from context. This convention will allow us
to express the above requirement by the following diagram:

A R(A) —2 5 5(4)
T R(r) C S(r)
B R(B)—2 > §(B)

We shall study the case where (74) is a family of functions.
In this case the above condition reduces to:

z R(r)y = ta(z) S(r) 78(y)

Loosely speaking this says that a family of functions, (74),
is a transformation from R to S if it maps R(r)-related ele-
ments to S(r)-related elements.

We can define the composition of two transformations
componentwise, s.e., if 7 : I G and o : G H are
transformations then oo : F H is defined by (6o7)a =
o4 07a. With this definition it is easy to verify

PROPOSITION 3 Relators and transformations form a cat-
egory with relators as objects and transformations as mor-
phisms. Pror3

3 Types as relators

It is our intention to give semantics to a polymorphic, func-
tional language using relators and transformations. As we
intend to include a fixpoint operator in our language, we
shall take as our base category the cartesian closed category
of complete partial orders and continuous functions, denoted
by CPO.. From this category we can construct a new cat-
egory, CPQ.;, with cpo’s as objects and strict, inductive'
relations as morphisms. We will now show how polymorphic
type expressions can be interpreted as relators over CPOyg;.

DEFINITION 4 Let R and S: CPO,;"—CPOs; be two
relators. The relator R x S : CPO,;"—CPOy; is defined
by:

1. (R x S)(A) is the product of the objects R(A) and
S(A).

2. Given a relation r : A—»B the relation (R x S)(r) is
defined by

LRy §ycay (BX (1) LR« Sy
(a,a’) (RxS)(r) (b,b") iff a R(r) b and a' S(r) b
Drr4

We have to verify that this defines a relator on CPOs;.
Firstly, it is straightforward to check that (R x S)(ida) =
id(RxS)(A)' Secondly, we have to ensure that the relation
so defined is strict and inductive. Strictness is by defi-
nition and inductiveness follows from structural induction
on the types and the fact that if the n’th elements of two
chains (an,a,) and (b,,b),) are related then U(a,,a,) =
(U(an), L(al)) (& x $)(r) (L(ba), U(BL)) = L(ba, BL).

We can model the function type constructor by using the
concept of logical relation [13]

DEFINITION 5 Given two relators R and S we can define

a new relator

1. (R = S)(A) is the function space object R(A) = S(A)
in CPO..

2. For r : A= B a strict,inductive relation, R = S(r) is
the relation from (R = S)(A) to (R = S)(B) defined
by

f (R = 8)(r) g iff
Va,z' 1 2 R(r) 2’ implies f(x) S(r) g(z")

DEFH

Again, we can easily check that (R = S)(ida) = id p_ 6 4)-
Strictness is checked as follows:

LRay= Sy (B=8)(1) LRy~ sa
& Vz,x’ iz R(r) 2’ = L5eay S(r) Lga)

LA relation r is termed strict if L » L. It is termed inductive if
for all chains (a,) and (b,) we have Vn : a, r b, implies Ua, r Uan

For proving inductiveness let r : A—»B be an arbitrary
strict, inductive relation, let (f»),(gn) be chains in (R =
S)(A) and (R = S)(B) resp., and assume that

n:fn(R=9)(r)g

Vn:z R(r) 2’ = fo(z)S(r)gn(z")

But since, for fixed = and z', (f,.(z)) and (g (z')) are chains
in S(A) and S(B) resp., we have that

= Vn: fu(z) S(r) gn(z')
= (U(f2)) (=) S(r) (U(gn))()

z R(r) o'

4 Terms as transformations

We now give a semantics for the expressions in our polymor-
phic higher order language. We shall interpret a polymor-
phic expression of (polymorphic) type A—B as a CPO.-
transformation between the CPQg;-relators corresponding
to A and B.

Polymorphic functional programs are built up from the
constants id, Ap, fst, snd, fix and variables by the construc-
tors L; L, (1, 1) and A(-). The type assignments for these
expressions can safely be left to the reader. Semantically,
we define for domains A, B, C:

fsta.g(z,y) = =
snda,g(z,y) = vy
(£,9) 4.8,c(@) (f(z),9(x))
fi9(z) 9(f(z))

Ap,p(fiz) = f(z)
A(f)(z)(y) f(z,y)
fix(f) = |_|n€w ()

etc.

LEMMA 6 Let F, G, H be relators. Then

(i) fstr(x (o is a transformation from F x G to F.

(#4) Similarly,snd: FxG GandAp:(F=G)xF G

are transformations.
(#14) fix: (F = F) F is a transformation.

(iv) Let f: F G, g: F H be transformations; then
(f,9): F G x H is a transformation.

(v) Let f : F x G H be a transformation; then A(f) :
F (G = H) is a transformation.

(vi) Let f: F Gandg: G H. Then f;g: F His

a transformation.

Proor We prove (i), (7i7) and (v).

(i) To show that fst is a transformation we must show that
for any strict, inductive relation r : A—»B we have:

(F x G)(A) fstecaxat F(A)
(F x G)(r) c F(r)
(F x G)(B) fstrecm xaem F(B)

But if (x,y) fst o (F x G)(r) z then there exists y’ €
F(A) such that (z,y) (F x G)(r) (2,9') i.e., z F(r) z
and so (z,y) F(r)ofst z.

(#4) Showing that fix is a transformation from F = F to F
amounts to showing that for r : A—»B strict, inductive
the following diagram “semi-commutes”:

fix a

A (F = F)(4) — 24 s p(a)
| (F= P)0) c F(r)
B (F = F)(B)— ™2, p(B)

which asserts that if two continuous functions f, g are
related by (F' = F)(r) then their fixpoints are related
by F(r). But since F(r) is inductive, fixa(f) is related
to fixg(g) if f*(L) F(r) g"(L) for all n which follows
from L F(r) L and f(F = F)(r)g

(v) We have to show that A(f) : F (G = H) is a trans-
formation provided f: FF x G H is. In diagrams

A Py — 2 G o oy

r F(r) c (G = H)(r)
A(f)s

B FB)—" s (= my(B)

This states that under the assumption that zF(r)z’
we can prove

A(f)az) (G = H)(r) A(f)s(z")
which is equivalent to
Vy,y' : yG(r)y' implies fa(z,y)H(r)fs(z',y")

The last property follows from zF(r)z’ and the fact
that f is a transformation from F x G to H.

LEMMAG

We can summarise the results obtained so far as:

THEOREM 7 Let e be a polymorphic expression that maps
arguments of (polymorphic) type F to a result of (poly-
morphic) type G. Then e can be interpreted as a CPO.-
transformation between the CPQg;-relators corresponding
to types F and G. THEOREM7

The general import of the results so far is that we can de-
rive from a cartesian closed category (i.e., a model of our
monomorphically typed, higher order language) a new carte-
sian closed category of relators and transformations in which
we can interpret ML-style parametric polymorphism. For
further details, see [4].

5 Semantic Polymorphic Invariance and Strictness

The aim of this section is to provide some initial evidence
that the relator-semantics for polymorphism can be a use-
ful tool when trying to extend methods for analysing mo-
nomorphic programs to cover polymorphic programs. The
framework for analysis which we have in mind is abstract
interpretation [3]. In the following, we demonstrate how a
particular analysis, strictness analysis of higher-order, mo-
nomorphic functions, can give information about polymor-
phic functions.

5.1 Strictness analysis

A function is strict if its result is undefined whenever its
argument is undefined. The use of strictness information
to implement functional languages efficiently is widely stud-
ied [7] ,[11]. In [8] it was shown how to perform strict-
ness analysis of higher-order, monomorphically typed pro-
grams by abstract interpretation. The method works by
interpreting the program text over non-standard domains
built up from the two-point domain 2 using the usual do-
main constructors x and =. The abstract interpretation of
a function f : Int — Int, say, would then be the function
f#* . 2 — 2 obtained from f by replacing the operations
associated with type Int, like +, by their abstract interpre-
tation on the domain 2. The main result in [8] is that f#
gives safe information about the strictness properties of f,
i, f#(L)= 1 = f(L)= L. As domains built over 2 are
all finite lattices, f# can be computed by a fixpoint iteration
that is guaranteed to terminate.

This gives a computable method for doing strictness anal-
ysis of monomorphic, higher-order functions. Strictness prop-
erties of a polymorphic function can be obtained by applying
the method to the monomorphic instances of the function.
There are, however, two problems connected with this ap-
proach:

e The number of monomorphic instances of a polymor-
phic function becomes infinite as soon as we allow
structured or higher-order types.

e The size of the abstract domain for structured and
higher-order types grows so fast that fixpoint compu-
tations become infeasible

The solution to these problems is to prove that the strict-
ness analysis described here is polymorphically invariant.

We prove that all abstract functions corresponding to mono-
morphic instances have the same strictness properties. This
implies that we only have to compute the abstraction of the
simplest instance of the function to obtain all information
about strictness that the analysis can provide.

5.2 Polymorphic invariance

Polymorphic invariance of a property P of a polymorphic
program means that P holds for all monomorphic instances
or none. The notion of polymorphic invariance can be trans-
ferred to the semantic level as follows:

DEFINITION 8 Let P be a property of morphisms. P is
a semantic polymorphic invariant (with respect to a class
of objects T and a class of transformations F) if, for every
A, BeTandfeF: P(fa) < P(fs). Der8

The particular property we shall be interested in is that of

strictness of a function: strict(f) et fL = 1. The proof

of polymorphic invariance of strictness is based on two rela-
tions, rref; and 7,5 defined as follows:

DEFINITION 9 Let 2 denote the two-point lattice and let
A be a domain with a greatest element T different from L.
Define the relations rpres, rref1 1 2—A by

J—2 Tpres J~A l2 Trefl @ Ya e A
T2 Tpres @ Vae A Tz Trefl 1 A
DEF9

In the following, let F' denote an arbitrary relator built using
x and =.

LEMMA 10 F(rpres) and F(ryey;) is strict, inductive and
relates T to T.

Proor Straightforward TLrmmal0

LeMMA 11 F(rref1) is L-reflecting and F(rpres) is L-

preserving, i.e.,

d et Lray =>d=1p9
Lp@) Mores d=d= Li(a

ProOOF That r.p; is L-reflecting is essentially Proposition
4.2 in [2]. The proof that rpyes is L-preserving proceeds by
induction on the structure of F. We shall only give the
case when F is a function type. So suppose F' has the form
G = H and that Ax.L (G = H)(rpres) f for some f €
(G = H)(A). From lemma 10 we have that T G(rpres) T,
hence, as (G = H)(rpres) is a logical relation we get that
1 H(rpres)f(T) and by induction hypothesis that f(T) =
1. The monotonicity of f now implies that f = Az.L as

required. Tremmall

With these lemmas at hand we can now prove

ProrosiTiON 12 Strictness is a semantic polymorphic
invariant with respect to the class of all non-trivial domains

with top-elements in CPO, (i.e. those with more than one
element), and all transformations.

PrOOF Let f be a transformation from relator F to relator
G i.e., fa is a continuous function from F(A) to G(A) for
any domain A. We now prove f4 is strict iff fo is strict. The
relations 7y and rpres are strict and inductive, so from the
fact that f is a transformation we get the following diagram,
where r stands for either r.cf; or rpres:

2 F2)— 2 S G
r F(r) C G(r)
A FlA)— T s Gla

So suppose fo is strict and that fa(L) = d. We show that
d = 1. Take 7 to be Tpres. As F(rpres) is strict we have
that L fa o F(rpres) d and hence L G(rpres) o fo d ie.,
fo (L) G(rpres) d. As fa is strict we get L G(rpres) d and
lemma 11 gives that d = L i.e., fa is strict.

For the converse, assume f4 is strict and let r be rp.p;
in the diagram. The lower part of the diagram is thus a
strict relation hence the upper part of the diagram is a strict
relation, so L G(rres1) © fo L. Lemma 11 tells us that
G(rres1) is L-reflecting, so fo(L) = L hence fo is strict.

PropP12

6 Related Approaches

In [10], an ingenious method is given to compute any in-
stance, fa, of an abstract function from its simplest instance
fo. The method works for any abstract interpretation, but
is limited to first-order functions. The basic result from [10]
which underlies the method given there is:

ProrosiTION 13 If Ais a type built from product, lifting
and 1, and f : FF = G is a polymorphic program, where F,
G are first-order types (i.e. not using function space), then
for some function ® 4, depending on A but not on f,

fa=®a(fg)-
Pror13

Even if a property can be shown to polymorphic invariant,
information about the abstract functions at non-basic types
might be needed. This occurs when a function g calls an-
other function f with an argument of non-basic type. In
this case the abstract function of g will be defined in terms
of a non-basic instance of the abstract function of f. An ob-
vious question is thus whether the result in proposition 13
carries over in the presence of function spaces. The next
result shows that it does not.

PROPOSITION 14 The previous proposition fails when F
and G are allowed to be higher-order.
ProOF Counsider the polymorphic integers:

SN (@) V(o t) > (E 1) (neE).

For n # m we can find a finite lattice type A such that

fia # ma (let k = max(m,n), and take A = 2*). But there

are only finitely many functions in [[2 = 2] = [2 = 2]].
Pror14

Note that this result holds for any finite domain in place
of 2, and even when A is built from product and lifting
(so it is independent of what our abstract interpretation of
function space happens to be). The conclusion of all this
is that analysis of higher-order, polymorphic functions is
best done by proving a polymorphic invariance result for
the analysis at hand and then computing those non-basic
instances of the abstract functions necessary to compute all
basic instances of the abstract functions.

7 Conclusion

The major achievements of this paper can be summarised
as:

e We have given a semantics for a first order polymor-
phic, higher order functional language. The semantics
is a combination of Reynolds’ types-as-relations idea
and the idea of naturality from category theory. This
approach to polymorphism is treated in depth in [4].

e using the naturality property we can give a simple
proof of the polymorphic invariance of strictness anal-
ysis.

We take this as initial evidence of the fact that relators and
transformations can be of use in analysis of polymorphic
programs. They seem especially useful for establishing poly-
morphic invariance results, which is the best one can hope
for when dealing with higher-order functions. Future work
should investigate if polymorphic invariance can be proved
for abstract interpretation in general using the relator se-
mantics of polymorphism.

8 Acknowledgements

The authors would like to thank the members of the Ab-
stract Interpretation Group at Imperial College (Geoff Burn,
Chris Hankin, Sebastian Hunt and David Sands) for numer-
ous discussions related to this topic. Thanks are also due to
Paul Taylor for letting us use his TEX-macros for drawing
diagrams.

References

[1] S. Abramsky. Strictness analysis and polymorphic in-
variance. In H. Ganzinger and N. D. Jones, editors,
Programs as Data Objects, pages 1-23, Berlin, 1986.
Springer Verlag. Lecture Notes in Computer Science
Vol. 217.

[2] S. Abramsky. Abstract interpretation, logical relations
and Kan extensions. Journal of Logic and Computation,
1, 1990.

[3] S. Abramsky and C. Hankin. Abstract Interpretation of
Declarative Languages. Ellis Horwood, 1987.

[4] S. Abramsky, J. Mitchell, A. Scedrov, and P. Wadler.
Relators. Draft paper, 1990.

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J.
Scott. Functorial polymorphism. In G. Huet, editor,
Logical Foundations of Functional Programming. Addi-
son Wesley, 1990.

M. Barr and C. Wells. Category Theory for Computing
Science. Prentice Hall, 1990.

G.L. Burn. Abstract Interpretation and the Parallel
Evaluation of Functional Languages. PhD thesis, Im-
perial College, University of London, 1987.

G.L. Burn, C.L. Hankin, and S. Abramsky. The the-
ory and practice of strictness analysis for higher order
functions. Science of Computer Programming, 7:249
278, 1986.

P. Freyd. Structural polymorphism. Unpublished, 1989.

R.J.M. Hughes. Abstract interpretation of first-order
polymorphic functions. In Glasgow Workshop on Func-
tional Programming, University of Glasgow, Depart-
ment of Computing Science, August 1988. Research
Report 89/R4.

S. L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall, 1987.

S. MacLane. Categories for the Working Mathemati-
cian. Springer Verlag, 1971.

G. D. Plotkin. A-definability and logical relations. Tech-
nical Report SAI-RM-4, School of A.I., University of
Edinburgh, 1973.

J. C. Reynolds. Types, abstraction and parametric
polymorphism. In Information Processing 83. North
Holland, 1983.

