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1 PreliminariesWe �rst recall some basic de�nitions and notations about terms, substitutions andequational theories.T (F;X) denotes the set of terms built over the countable set of function symbolsF and the in�nite countable set of variables X. A term is ground if it contains novariable. T (F ) denotes the set of ground terms built over F . Given a term t and aposition p in t, t(p) denotes the symbol at position p in t. The root position is denotedby � so that t(�) is the top-symbol (or the root) of t. We write t[s1; : : : ; sn]p1;:::;pnto indicate that si's (i = 1; : : : ; n) are the subterms of t at positions pi's and ifthe positions are irrelevant or clear from the context, we simply write t[s1; : : : ; sn]to indicate that si's are subterms of t. t[s1; : : : ; sn]p1;:::;pn also denotes the term twhose subterm at positions p1; : : : ; pn have been replaced with si's. V(t) is the setof variables occurring in t.A substitution is a mapping from X to T (F;X) which is the identity almosteverywhere. It extends to a unique morphism form T (F;X) to T (F;X). If � is asubstitution, the set of variables for which �(x) 6= x is called the domain of � and isdenoted by Dom(�). The range of � is de�ned as Ran(�) = f�(x) j x 2 Dom(x)g. Ifthe domain of � is fx1; : : : ; xng, � is also written as fx1 7! �(x1); : : : ; xn 7! �(xn)g.The application of � to a term t is written in post�x notation as t�. If t = s�, t isan instance of s. Similarly, the composition of substitutions is written from left toright. If � = �� for some substitution �, � is an instance of � and � is idempotentif �� = �.An axiom is an unordered pair of terms written l = r. An equational presentationis a pair (F;A) where F is a �nite countable set of function symbols and A is a �niteset of axioms l = r with l; r 2 T (F;X). For any equational presentation E = (F;A),=E denotes the equational theory generated by A on T (F;X), that is the smallestcongruence containing all instances of axioms in A. F is called the signature of E. Byabuse of terminology, we do not distinguish between a theory and its presentationso that we speak of the theory E. Two terms t and s such that t =E s are saidE-equal or equal modulo E. A theory E is consistent if there exists at least onemodel of E with more than one element. E is collapsing if there exists a non-variable term t and a variable x with t =E x. E is regular if for any terms t and s,t =E s ) V(t) = V(s). The union of two equational theories (F1; A1) and (F2; A2)is the theory (F1 [ F2; A1 [A2).A strict ordering > is well founded (or noetherian) if there exists no in�nitedecreasing sequence x1 > x2 > � � �. An ordering > on T (F;X) is monotonic if forany function symbol f and any terms t and s, t > s) f(: : : ; t; : : :) > f(: : : ; s; : : :).De�nition1 (E-normal forms and constructors). Let E = (F;A) be a consis-tent theory, X be a in�nite countable set of variables and > be a monotonic wellfounded ordering on T (F [X) (where variables are treated as constants) such thatany congruence class of E in T (F [ X) contains a unique minimal element withrespect to >. The minimal element of the class of t modulo E will be denoted byt#E and will be called the E-normal form of t. A symbol h 2 F is a constructor ofE if and only if8t1; : : : ; tn 2 T (F [X) : h(t1; : : : ; tn)#E = h(t1#E ; : : : ; tn#E)



A constructor h of E occurs at the top in E if there exist terms t; s1; : : : ; sn 2T (F;X) with t(�) 6= h such that t =E h(s1; : : : ; sn).Two equational theories E1 = (F1; A1) and E2 = (F2; A2) share constructors ifall symbols in F1 \ F2 are constructors of (F1 [ F2; A1) and (F1 [ F2; A2).A constructor h is shared at the top if it occurs at the top in (F1; A1) or (F2; A2).Note: The E-normal forms and the constructors depend highly on the ordering >.For instance, if we consider the theory fx = gx then depending on the ordering,either f or g is a constructor. To be completely formal, we should speak of (E;>)-normal form and >-constructors. Since we always consider the same ordering >,we omit to mention it.Example 1. Let us consider the theories Ei = (f+i; hg; AC(+i) [ fh(x) +i h(y) =h(x +i y)g) where AC(+i) denotes the axioms of associativity and commutativityfor +i. We consider the rpo ordering induced by the precedence +2 > +1 > h >� � � > x2 > x1 with left to right status for +i. h is then a constructor of E1, E2 andE1 [E2. Since h occurs at the top in E1 and E2, it is shared at the top.One may note that if E is presented by a convergent rewriting system, ourde�nition of constructors meets the standard one.The fundamental property of constructors which interests us is the following:Proposition2. Let h be a constructor of a theory E then for any terms ti's andsj 's, h(t1; : : : ; tn) =E h(s1; : : : ; sn) () 8i : ti =E siNow let g be another constructor of E (with respect to the same ordering) distinctfrom h, then for any terms ti's and sj 's,h(t1; : : : ; tn) 6=E g(s1; : : : ; sn)In all the rest of the paper, we only consider consistent theories sharing con-structors. The set of shared constructors is denoted by SF . The following theoremjusti�es our interest in theories sharing constructors.Theorem3. If theories E1 and E2 share constructors then E1[E2 is a conservativeextension of E1 and E2 and any constructor of E1 and E2 is a constructor of E1[E2.De�nition4 (Pure terms and aliens). A term t 2 T (Fi; X) is said i-pure (i is1 or 2). A term t 2 T (SF;X) is called a shared term. A strict subterm s of a termt is an alien if s(�) 2 FinFj (i 6= j) and all symbols on the path form the root of tto s belong to Fj.Note that from this de�nition, a term which is pure may however have aliens if itstop-symbol is shared. This seems odd, but turns out to be useful.De�nition5. A variable-abstraction � is a mapping from T (F;X) to X such that�(t) = �(s) () t =E s. The i-abstraction of a term t, denoted by t�i , is de�nedinductively by:{ If t = f(t1; : : : ; tn) and f 2 Fi then t�i = f(t�i1 ; : : : ; t�in ){ else t�i = �(t)



2 Word problemThe �rst problem we are faced with when considering the union of theories sharingconstructors, is to decide equality in the union. The problem of deciding whethertwo terms are equal modulo a theory is also called the word problem. It would benice to have a modularity result stating that the word problem is decidable in theunion if it is decidable in each theory. We were not able to establish such a resultin general, but we have nevertheless a modularity result for a slightly more generalproblem which, in some cases, reduces to a word problem. Since two terms are equalmodulo E if and only if their E-normal forms are identical, the idea for decidingwhether two terms t and s are equal is to compute for each of them some reducedform which looks like its E-normal form.De�nition6 (Layers reduced forms). A term t 2 T (F1 [ F2; X) is in layersreduced form if and only if all its aliens are in layers reduced form, t is not equalmodulo E1 [ E2 to one of its aliens, and either t(�) 2 SF [ X, or t is not equalmodulo E1 [E2 to a variable or a term whose top-symbol is a shared constructor.Layers reduced forms enjoy the following properties:Proposition7. If t is a term in layers reduced form, then t�i =Ei (t#E)�iIf t and s are in layers reduced form then s =E1[E2 t () s�i =Ei t�iAs a corollary, we getProposition8. E1 [E2-equality of terms in layers reduced form is decidable if Ei-equality is decidable for i = 1; 2.However, the decidability of equality in each theory might not be su�cient to com-pute a layers reduced form for any term. Therefore we introduce a new kind ofproblems.De�nition9 (Symbol matching). Let E = (F;A) be a consistent theory and hbe a symbol in F . The symbol matching problem on h moduloE consists in decidingfor any term t 2 T (F;X) whether there exist terms ti's such that t =E h(t1; : : : ; tn).Remarks:1. Since matching modulo an arbitrary theory E is semi-decidable, ti's may bee�ectively computed as soon as we know that they exist. Some general uni�cationprocedure [5, 4] may be used for this purpose.2. the symbol matching problem reduces to a word problem if h is a constant.3. If the symbol h does not occur at the top in E, then the symbol matchingproblem on h is trivially unsatis�able.De�nition10. Let t be a i-pure term. The term t+Ei is recursively de�ned by:{ if t =Ei x for some variable x then t+Ei = x{ else if for some shared constructor h, and i-pure terms t1;: : :; tn, t =Ei h(t1;: : :; tn)then t+Ei = h(t1+Ei ;: : :; tn+Ei ).{ else t+Ei = t.



Proposition11. For any term t 2 T (Fi; X), t+Ei is in layers reduced form. More-over, if Ei-equality is decidable and for any shared constructor h, the symbol match-ing problem on h is decidable modulo Ei, then t+Ei may be computed in �nite time.We may now give an operational de�nition of layers reduced forms.De�nition12. For any term t, the term t+ is de�ned recursively by:{ if t is i-pure then t+ = t+Ei{ else t = C[t1; : : : ; tn] where tk's are aliens of t. Let t0 = C[t1+; : : : ; tn+] =C0[s1; : : : ; sm] where sk's are aliens of t0 and variables of t0 that do not occur inan alien. Now let t be the i-pure term (i may be 1 or 2) obtained by replacingeach sk by a variable, where E1[E2-equal sk's are replaced by the same variable,and let � be a substitution assigning to each of these variables one of the sk's itreplaces. Now t+ = (t+Ei )�.Proposition13. For any term t, t+ is a term in layers reduced form equal to tmodulo E1 [E2. Moreover, if E1-equality and E2-equality is decidable and for anyshared symbol h, the symbol matching problem on h is decidable modulo E1 and E2,then t+ may be computed in �nite time.We get then the modularity theorem:Theorem14. Let E1 and E2 be two theories sharing constructors. Assume thatthe word problem is decidable modulo E1 and E2 and for any shared constructor h,the symbol matching problem on h is decidable modulo E1 and E2. Then the wordproblem is decidable modulo E1 [ E2 and for any shared constructor h, the symbolmatching problem on h is decidable modulo E1 [E2Corollary15. If all constructors shared at the top are constants, and equality isdecidable modulo E1 and E2 then equality modulo E1 [E2 is decidable.3 MatchingThe second problem we are interested in is the combination of matching algorithmsfor theories sharing constructors. The idea for solving this problem is to performan abstraction of terms, i.e. replace aliens with fresh variables, and then solve purematch-equations in each theory. Unfortunately, puri�cation of match-equations mayintroduce new variables x in right hand sides and the related solved equations x =?s. The speci�city of matching problems is then lost since we have to deal withuni�cation. However, this uni�cation can be turned into matching if puri�cationis only performed in left hand sides of match-equations and solutions of match-equations are ground (when variables of right hand sides are considered as constants)i.e. theories are regular. In all the remaining of this section, we only consider regulartheories and we assume that a complete matching algorithm is known for E1 andE2.The combination technique for matching algorithms relies on the computation ofa layers reduced form (see section 2) of right hand sides of match-equations. Since we



assume that matching is decidable in each theory, from proposition 13, these layersreduced forms may be computed. By replacing then aliens with free constants (twoE1 [ E2-equal aliens are replaced with the same constant), a matching algorithmmodulo Ei may be used to solve the problem s �? t if s is i-pure and t is in layersreduced form.The transformation rules for matching problems modulo E1 [ E2 are given in�gure 1. In rule MatchSolve, CSSEi (s �? t+) denotes a complete set of solutionsmodulo Ei of s �? t+.LeftPurif� ^ s[u] �? t� ^ s[x] �? t ^ x =? u if u is an alien of s and x is a fresh variableMerge� ^ x �? t ^ x =? s� ^ x �? t ^ s �? tMatchSolve� ^ s �? t� ^Vk2K xk �? tk if s 2 T (Fi;X)nX; fxk 7! tkgk2K 2 CSSEi (s �? t+)Delete� ^ x �? t ^ x �? t0� ^ x �? t if t =E t0Fail� ^ x �? t ^ x �? t0? if t 6=E t0Fig. 1. Set of rules RM for matching in the union of regular theories3.1 SoundnessThe following lemma states how to solve a match-equation with an i-pure left handside, thanks to the Ei-matching algorithm.Lemma16. If s is i-pure, � is a substitution in E-normal form and t a term inlayers reduced form, then s� =E t () s��i =Ei t�i :Therefore, we can conclude that a complete set of solutions modulo E1 [E2 ofs �? t+ is obtained from CSSEi (s �? (t+)�i ). Since equational theories are assumedregular, solutions are ground and so they may be written out as match-equations.Note thatMatchSolve must be applied in a non-deterministic way in order to preserveall solutions.



3.2 CompletenessIt is easy to check that the normal forms w.r.t RM are the conjunctions of solvedmatch-equations ^k2Kxk �? tk or ? or >. Assume � is not a conjunction of solvedmatch-equations. If there exists an equation x =? s, then either x �? t is a match-equation in � and Merge applies or s[x] �? t with s =2 X and either LeftPurif orMatchsolve applies. Otherwise, if there exists a match-equation s �? t with s =2X, then either LeftPurif or MatchSolve applies. Otherwise, there exists two solvedmatch-equations x �? t and x �? t0 in � and either Delete or Fail applies. Thus, atransformation rule in RM can always be applied to � .3.3 TerminationProposition17. RM terminates for any control.Sketch of proof. For any problem � , we consider the following complexity measures:{ TSmul is the multiset of theory sizes of non-variable left hand sides of match-equations and non-variable right hand sides of equations in � . The theory sizeof t = C[t1; : : : ; tn] where ti's are all aliens of t is de�ned by TS(t) = 1 +Pni=1 TS(ti).{ NEQ is the number of equations in � .{ NMEQ is the number of match-equations in � .These measures are combined lexicographically. The situation is summarized in thetable below: rules TSmul NEQ NMEQLeftPurif #Merge = #MatchSolve #Delete = = # utWe get then the modularity theorem:Theorem18. If E1 and E2 are regular theories sharing constructors and a completeand �nite algorithm is known for matching modulo E1 and E2 then a complete and�nite algorithm may be built for matching modulo E1 [E2.4 Uni�cationThe last problem we are interested in is the uni�cation problem. As we shall see,this problem is more di�cult in the case of theories sharing constructors than inthe case of disjoint theories. In order to be able to establish a modularity theorem,we had to restrict our attention to �nitary theories in which no non-constant con-structor is shared at the top. One should notice that from de�nition 1, this forbidscollapsing theories but not non-regular ones. For the sake of simplicity, we presentthe algorithm only for regular theories because the non-regular case requires manyadditional de�nitions. However, the algorithm remains almost the same since most



of the treatment is encoded in the uni�cation algorithm of each theory. We just haveto assume the existence of a more powerful uni�cation algorithm in each theory:namely an algorithm for uni�cation with free function symbols. The formalism wetake for designing our combination algorithm is mostly borrowed from A. Boudet [3]and F. Baader & K. Schulz [1] with some modi�cations due to the special nature ofthe problem we address.4.1 Preprocessing and data structureThe algorithm we describe is devoted to the transformation of a conjunction � ofequations into a �nite set of solved forms. As in the case of disjoint equationaltheories, the �rst step of the algorithm consists in purifying the problem. We �rstabstract all aliens of terms in � by fresh variables and add the corresponding equa-tions to the problem. Repeated application of this operation obviously terminatesand yields equations between pure terms which are either shared terms or termswith an unshared symbol at the top. Remind that from de�nition 4, a pure termmay have aliens. We could however have equations t =? s where t is a 1-pure termand s is 2-pure term and none of them is a shared term. Such equations are saidimpure. In our case, since the theories are not collapsing, if such an equation has asolution �, there must exist a term u with a shared constructor at the top such thatt� =E u and s� =E u. This means that u is a constant which occurs at the top inE1 and E2. The set of such constants will be denoted by SF0. The equation maythus be split into t =? c ^ s =? c where c is chosen non-deterministically in SF0.In order to remain complete, we have to collect all problems generated this way. Avery similar situation is the case where the problem contains two equations x =? tand x =? s where t is a 1-pure term, s is a 2-pure term and none of them is a sharedterm. Again, a constant c is chosen non-deterministically in SF0. In order to makethe process terminate, we have to replace x with c everywhere in the problem andadd the equation x =? c. Once the puri�cation process terminates, in each generatedproblem � 0, we may distinguish three kinds of equations: equations between sharedterms, and equations s =? t between i-pure terms (i = 1 or 2) where s and t areeither shared terms or terms with an unshared symbol at the top, and s or t is nota shared term. Since shared terms are built only from constructors, the subproblemconsisting of the conjunction of all equations between shared terms may be solved inthe empty theory, yielding either failure or the minimal idempotent solution �0. Inthe former case, � 0 has no solution. In the latter one, we apply �0 to the remainingequations and keep it apart from the problem.4.2 The combination algorithmOnce a problem has been preprocessed it may be written as h�0;�1 ^ �2i where{ �0 is an idempotent substitution from X to T (SF;X){ �1 (resp. �2) contains the equations s =? t between 1-pure (resp. 2-pure) termswhere s or t is not a shared term.{ No variable in the domain of �0 occurs in an equation in �1 ^ �2.



{ For each equation x =? t 2 �1 (resp. �2), �2 (resp. �1) does not contain anequation x =? s.Each �i will be solved using a uni�cation algorithm for Ei. The following propo-sition states that doing so we do not loose any solution.Proposition19. Let s =? t be a i-pure equation and � a substitution in E-normalform. Then s� =E t� () s��i =Ei t��i :At this point, the main di�erence between the disjoint and the non-disjoint caseis that a variable may get instantiated in both theories without generating a con
ict.We avoid this situation by keeping in �i only equations of the same form as the onesgenerated by preprocessing. Solving in one theory could instantiate a variable x bya term of the form C[t1; : : : ; tn] where C[ ] contains only constructors and variablesand ti's have unshared symbols at the top. In this case, we abstract ti's by freshvariables xi's, replace x everywhere by C[x1; : : : ; xn] and add the equations xi =? tito the problem.Applying repeatedly resolution modulo E1 and E2 will eventually produce prob-lems �1 and �2 which are both solved. It could however happen that �1 ^ �2 isnot solved if a compound cycle occurs. A compound cycle is a subproblem of theform x1 =? t1[x2] ^ � � � ^ x2n�1 =? t2n�1[x2n] ^ x2n =? t2n[x1] where x2i�1 =?t2i�1[x2i] 2 �1, x2i =? t2i[x2i+1] 2 �2 and no ti[xi+1] is reduced to xi+1 (by con-vention, x2n+1 = x1). Since we are actually only interested in xi's, we write such acycle as C[x1; : : : ; x2n].In the disjoint case, if theories are regular, such cycles have no solution. In ourcase, a compound cycle could be broken by instantiating some xi with a constant inSF0. This leads to the rule Cycle in �gure 2.We assume that we know for each theory Ei, a complete and �nite uni�cationalgorithmwhich takes as input a problem of the form (P; V ) where P is a conjunctionof equations and V is a �nite set of variables. Solutions of (P; V ) are solutions ofP which instantiate all variables in V either by a variable or by a constant inSF0. Such an algorithm may be built if a complete and �nite algorithm is knownfor uni�cation with free constants (For the case of non-regular theories, we wouldrequire a uni�cation algorithm with free function symbols). CSSEi (P; V ) denotesthe complete set of solutions returned by the algorithm.At any time during the uni�cation algorithm, we may distinguish three classesof variables in the problem:1. Initial variables which are the variables occurring in the problem before prepro-cessing.2. Abstraction variables which are variables coming from an abstraction, eitherduring preprocessing or during the algorithm itself.3. Introduced variables which are variables introduced by the uni�cation algorithmsfor each theory.We make the very natural assumption that the uni�cation algorithm for eachtheory may recognize initial, abstraction and introduced variables and never assignsan introduced variable to a non-introduced one or an abstraction variable to aninitial one. With this assumption, our combination algorithm will always make an



introduced variable appear in at most one �i. We may thus also suppose that thedomain of each solution does not contain an introduced variable. This does notcompromise the soundness of our algorithm.The combination algorithm is described by the two rules given in �gure 2. Inthe rule UnifSolvei, �SF is obtained by abstracting aliens in the range of � by freshvariables. �Fi is the substitution such that x� = x�SF �Fi for all x 2 Dom(�). �̂Fidenotes the conjunction ^x2Dom(�Fi )x =? x�Fi .UnifSolveih�0;�i ^ �jih�0�SF ; �̂Fi ^ �j�SF iif{ �i is unsolved{ Vj (j 6= i) is the set of variables instantiated in �j .{ � 2 CSSEi (�i; Vj)Cycleh�0;� ^ C[x1; : : : ; x2n]ih�0;� ^ C[x1; : : : ; x2n]ifxi 7! cgif{ �1 and �2 are solved{ C[x1; : : : ; x2n] is a compound cycle{ c 2 SF0Note: Both these rules are non-deterministic. In UnifSolvei we must consider eachsolution in CSSEi (�i; Vj). In Cycle, we must consider all possible choices of theindex i and the constant c.Fig. 2. Set of rules RU for uni�cation4.3 CompletenessWe have to check that the normal forms w.r.t. RU are solved forms.If either �1 or �2 is not solved then UnifSolvei applies. Otherwise, if �1 ^ �2 isnot solved then it contains a compound cycle C[x1; : : : ; x2n] and Cycle applies.Consequently, a transformation rule in RU can always be applied to a problem� if � is not solved.4.4 TerminationProposition20. RU terminates for any control.Sketch of proof. For each problem h�0;�1^�2i, we consider the following complexitymeasures which are combined lexicographically.



{ NIV is the number of initial variables occurring in �1 ^ �2{ UIV is the number of initial variables which occur not instantiated in �1 ^ �2{ NAV is the number of abstraction variables occurring in �1 ^ �2{ USP is the number of unsolved subproblems �iThree cases must be distinguished for the rule UnifSolvei:1. If some initial variable is identi�ed with another initial variable or instantiatedby a constant in SF0 or some variable is instantiated by a term whose top-symbolbelongs to SFnSF0 then NIV decreases. Indeed, in the last case, this variableis necessarily an initial variable which was not previously instantiated. It is thenreplaced everywhere by an abstraction of its value. Note also that it is the �rstcase in which NAV may increase.2. else, if some initial variable is newly instantiated then UIV decreases.3. else, if an abstraction variable is identi�ed with an initial or abstraction variableor instantiated by a constant in SF0 then NAV decreases.4. else, the substitution returned by the uni�cation algorithm for Ei is of the formfx1 7! t1; : : : ; xn 7! tng where xi's are either initial or abstraction variables andeach ti has an unshared symbol at the top. In this case, the substitution �SF isthe identity. Thus if �j (j 6= i) was previously solved, it remains solved so thatUSP decreases. Furthermore no new abstraction variable is introduced.For Cycle, since the variable which gets instantiated by a shared constant was pre-viously instantiated, it is either an initial variable in which case NIV decreases, oran abstraction variable, in which case NAV decreases.The situation is summarized in the table below.rules NIV UIV NAV USPUnifSolvei(1) #UnifSolvei(2) = #UnifSolvei(3) = = #UnifSolvei(4) = = = #Cycle(1) #Cycle(2) = = # utTheorem21. If E1 and E2 are regular theories sharing constructors, all construc-tors shared at the top are constants and a �nite and complete algorithm is knownfor uni�cation with free function symbols modulo E1 and E2, then a complete and�nite algorithm may be built for uni�cation modulo E1 [E2.5 Undecidability resultsWe exhibit now two families of theories for which no uniform algorithm exists for de-ciding uni�ability. Each theory in these families is the union of two theories sharingconstructors in which uni�cation with free function symbols is decidable. However,in each case, one of the conditions of theorem 21 is not satis�ed. This shows thatweakening these conditions is a di�cult problem. The �rst family shows that there



exists no uniform combination technique for combining uni�cation for simple linear�nitary theories sharing non-constant constructors at the top. The second one showsthat there exists no general technique for combining uni�cation algorithms for simplelinear in�nitary theories sharing no constructor at the top. We recall that a theory issimple if no term is equivalent to one of its strict subterms. For each case, undecid-ability is proved by showing that uni�cation allows to solve a Post correspondenceproblem:De�nition22 (Post correspondence problem). Let A and C be �nite disjointalphabets, and ' and '0 be two morphisms from A� to C�. The Post correspondenceproblem for ' and '0 consists in �nding a non-empty sequence � 2 A+ such that'(�) = '0(�).Theorem23 (Post 1947 [9]). There exists no uniform algorithm for solving thePost correspondence problem. The problem remains undecidable when ' and '0 areinjective.In the following, we shall consider families of theories built from A, C, ' and '0.5.1 Undecidability of uni�cation in the union of �nitary theoriessharing non-constant constructors at the topWe consider the theory E';'0 presented by the convergent rewriting systemff(aix; y)! !if(x; aiy) j i = 1; : : : ; ng [ ff(?; y)! h(y)g[ ff 0(aix; y)! !0if 0(x; aiy) j i = 1; : : : ; ng [ ff 0(?; y)! h(y)gwhere ' and '0 are injective and !i and !0i denote respectively '(ai) and '0(ai).Due to injectivity, '(ai) and '0(ai) are non-empty words.The following proposition in conjunction with theorem 23 shows that there existsno uniform decision algorithm for uni�ability modulo E';'0 .Proposition24. If uni�ability is decidable modulo E';'0 then the Post correspon-dence problem for ' and '0 is decidable.Sketch of proof. Any solution of the uni�cation problemP �_i f(aix;?) =? f 0(aix;?)is of the form x 7! �? where � 2 A� and for some ai, '(ai�) = '0(ai�). Thus Phas a solution if and only if the Post correspondence problem for ' and '0 has asolution. utE';'0 is the union of E and E0 presented by the convergent rewriting systemsff(aix; y)! !if(x; aiy) j i = 1; : : : ; ng [ ff(?; y)! h(y)gand ff 0(aix; y)! !0if 0(x; aiy) j i = 1; : : : ; ng [ ff 0(?; y)! h(y)gMoreover, all shared symbols are clearly constructors of both E and E0.



Proposition25. E (resp. E0) is simple and there exists a complete and �nite algo-rithm for uni�cation modulo E (resp. E0) with free function symbols.As a corollary, we getCorollary26. There exists no uniform technique for combining uni�cation algo-rithms for simple linear �nitary theories sharing constructors at the top.5.2 Undecidability of uni�cation in the union of in�nitary theoriessharing no symbol at the topWe consider now the theory E';'0 presented by the convergent rewriting systemff(aix; y)! f(x; !iy) j i = 1; : : : ; ng [ ff 0(aix; y)! f 0(x; !0iy) j i = 1; : : : ; ngwhere for any word �, � denotes the word obtained by reversing �. We do not needanymore to suppose that ' and '0 are injective.The following proposition in conjunction with theorem 23 shows that there existsno uniform decision algorithm for uni�ability modulo E';'0.Proposition27. If uni�ability is decidable modulo E';'0 then the Post correspon-dence problem for ' and '0 is decidable.Sketch of proof. Any solution of the uni�cation problemP �_i f(aix;?) =? f(?; y) ^ f 0(aix;?) =? f 0(?; y)is of the form fx 7! �?; y 7! '(ai�)?g where � 2 A� and '(ai�) = '0(ai�). Thus,P has a solution if and only if the Post correspondence problem for ' and '0 has asolution. utE';'0 is the union of E and E0 presented by the convergent rewriting systemsff(aix; y)! f(x; !iy) j i = 1; : : : ; ng and ff 0(aix; y)! f 0(x; !0iy) j i = 1; : : : ; ngMoreover, all shared symbols are clearly constructors of both E and E0.Proposition28. E (resp. E0) is simple, and uni�cation modulo E (resp. E0) withfree function symbols is in�nitary and decidable.As a corollary, we getCorollary29. There exists no uniform technique for combining uni�cation algo-rithms for simple linear in�nitary theories sharing constructors, even if no con-structor is shared at the top.



Conclusion and perspectivesWe have established modularity results for the word problem, the matching problemand the uni�cation problem in theories sharing constructors. For the case of uni�ca-tion, the result seems rather weak but the undecidability results given in section 5show that the problem is hard. However it seems possible to extend our results invarious directions. As already mentioned, we are actually able to handle non-regulartheories sharing constructors, provided that only constants are shared at the top.Even this restriction may be somehow relaxed if �nitely many contexts built fromconstructors are shared at the top [11]. In this case, theory con
icts that occur inthe combination algorithm may be solved by introducing explicitely a shared termtaken from a �nite set. Another extension, which in practice would be very useful, isto combine collapsing theories sharing constructors. This seems very di�cult sincewe are then unable to bound the terms allowing to solve a theory con
ict.Another problem consists in combining decision algorithms for uni�cation. Thismeans that we do not assume that we know for each theory a uni�cation algorithmbut only a decision algorithm for uni�ability. The combination becomes possiblewith the very strong assumption that in some sense, an equality step in each theorylooks only at �nitely many shared symbols [11].Concerning modularity, one may note that our de�nition of constructors is ac-tually not really modular in the sense that they are de�ned by the mean of anordering on the whole combined theory. It would be nice to be able to de�ne foreach theory complete sets of constructors so that theories sharing constructors arede�ned in a syntactic way. That's to say: (F1; A1) and (F2; A2) share constructors ifF1\F2 � C1\C2 where Ci is a complete set of constructors of (Fi; Ai). One possibleidea would be to de�ne constructors of (F;A) by the mean of a simpli�cation order-ing on T (F ) such that any congruence class of (F;A) contains a minimal element. Iffor any F 0 containing F , we are able to extend such an ordering to a simpli�cationordering on T (F 0) such that any congruence class of (F 0; A) still contains a mini-mal element, then using a result of Kurihara & Ohuchi [7] we get a simpli�cationordering for the union of theories such that constructors are preserved.At last, we could imagine to share non-free constructors that might for instancebe de�ned as constructors modulo another theory. For example, this would allow toshare a symbol which is commutative in both theories.AcknowledgementsWe would like to thank the PROTHEO group at Nancy for many fruitful discussions,especially H�el�ene Kirchner, Claude Kirchner and Micha�el Rusinowitch.References1. Franz Baader and Klaus Schulz. Uni�cation in the union of disjoint equational theo-ries: Combining decision procedures. In Proceedings 11th International Conference onAutomated Deduction, Saratoga Springs (N.Y., USA), pages 50{65, 1992.
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