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Introduction

Modularity is a central problem in automated deduction in equational theories. The
problem may be stated as follows: given two equational theories £y and Fs and
algorithms for solving a problem P in each theory, can one build automatically
an algorithm for solving the problem P in Ej U Fa. Almost all results known up
to now are restricted to the case where the signatures of £ and E5 are disjoint,
in which case, we speak of disjoint theories. Many authors studied the problem
of combining unification algorithms for disjoint theories [6, 14, 13] and the best
result is due to F. Baader and K. Schulz [1] who described a general technique for
combining decision procedures for unifiability and, by the way, solved the problem of
combining unification algorithms for non-finitary theories. This result was extended
in two different ways: F. Baader and K. Schulz themselves [2] extended it to take into
account some restricted forms of disunification problems, and Ch. Ringeissen [10]
described an extension where theories may share constants. This last result was,
up to now, the only modularity result for non-disjoint equational theories. Some
authors also considered the problem of combining matching algorithms for disjoint
equational theories [8, 12] which is again more complicated than just putting together
two matching algorithms.

We consider here the combination of non-disjoint theories, and give sufficient con-
ditions under which algorithms for solving the word problem, the matching problem
and the unification problem in the union may be built automatically from algorithms
for each theory. The problem is obviously unsolvable in general, and we restrict our
attention to theories sharing constructors which have to be defined in a suitable way.
This restriction is however still not sufficient in general. Indeed, some properties like
simplicity, which turns out to be very useful for unification, are lost when combining
theories sharing constructors. A theory is simple if a term is never equivalent to one
of its strict subterms. If we consider the theories presented respectively by fgxr = hx
and khx = gz, which share the constructors h and ¢ according to our definition, we
have kfgr = gx modulo their union which is thus not simple. Each of these theories
1s however obviously simple.

Due to lack of space, almost all proofs are omitted and may be found in the
extended version.

* This work has been partially supported by the Esprit Basic Research Working Group-
6028 CCL and the GDR Programmation of CNRS.



1 Preliminaries

We first recall some basic definitions and notations about terms, substitutions and
equational theories.

T(F, X) denotes the set of terms built over the countable set of function symbols
F and the infinite countable set of variables X. A term is ground if it contains no
variable. T(F') denotes the set of ground terms built over F'. Given a term ¢ and a
position pint, ¢(p) denotes the symbol at position p in ¢. The root position is denoted
by € so that t(e) is the top-symbol (or the root) of t. We write ¢[s1,...,Sn]p1. pn
to indicate that s;’s (i = 1,...,n) are the subterms of ¢ at positions p;’s and if
the positions are irrelevant or clear from the context, we simply write ¢[s1, ..., s,]
to indicate that s;’s are subterms of ¢. [s1,...,sp]p, . p, also denotes the term ¢
whose subterm at positions py,...,p, have been replaced with s;’s. V(t) is the set
of variables occurring in ¢.

A substitution is a mapping from X to T'(F, X) which is the identity almost
everywhere. Tt extends to a unique morphism form T(F, X) to T(F, X). If ¢ is a
substitution, the set of variables for which o(x) # z is called the domain of ¢ and is
denoted by Dom(e). The range of ¢ is defined as Ran(o) = {o(x) | € Dom(z)}. If
the domain of ¢ is {z1,..., 2y}, 0 is also written as {1 — o(1),..., 25 — o(2y)}.
The application of ¢ to a term ¢ is written in postfix notation as to. If { = so, t is
an instance of s. Similarly, the composition of substitutions is written from left to
right. If g = po for some substitution o, g is an instance of p and ¢ i1s idempotent
ifco=o0.

An axiom is an unordered pair of terms written [ = r. An equational presentation
is a pair (F, A) where F' is a finite countable set of function symbols and A is a finite
set of axioms ! = v with [, € T(F, X). For any equational presentation F = (F, A),
=g denotes the equational theory generated by A on T(F, X), that is the smallest
congruence containing all instances of axiomsin A. F'is called the signature of £. By
abuse of terminology, we do not distinguish between a theory and its presentation
so that we speak of the theory F. Two terms ¢t and s such that ¢t =g s are said
FE-equal or equal modulo E. A theory F is consistent if there exists at least one
model of £ with more than one element. £ is collapsing if there exists a non-
variable term ¢ and a variable x with { =g z. E is regular if for any terms ¢ and s,
t =g s = V(t) = V(s). The union of two equational theories (F}, A1) and (Fa, As)
is the theory (Fy U Fa, A1 U Ay).

A strict ordering > is well founded (or noetherian) if there exists no infinite
decreasing sequence 1 > x2 > ---. An ordering > on T(F, X) is monotonic if for
any function symbol f and any terms ¢ and s, ¢ > s = f(...,t,..)> f(...;s,...).

Definition1 (F-normal forms and constructors). Let £ = (F, 4) be a consis-
tent theory, X be a infinite countable set of variables and > be a monotonic well
founded ordering on T'(F U X) (where variables are treated as constants) such that
any congruence class of £ in T(F U X) contains a unique minimal element with
respect to >. The minimal element of the class of ¢ modulo £ will be denoted by
tlr and will be called the E-normal form of t. A symbol h € F' is a constructor of
E if and only if

Vi1, ...ty € T(FUX) : h(tl,...,tn)\LE = h(tleEwuatn\LE)



A constructor h of F occurs at the top in E if there exist terms t,s1,...,s, €
T(F, X) with t(¢) # h such that t =g h(s1, ..., sn).

Two equational theories By = (F1, A1) and Fy = (F3, A2) share constructors if
all symbols in Fy N Fy are constructors of (F} U Fy, A1) and (Fy U Fa, Ag).

A constructor h is shared at the top if it occurs at the top in (F1, Ay) or (F2, A2).

Note: The E-normal forms and the constructors depend highly on the ordering >.
For instance, if we consider the theory fx = g then depending on the ordering,
either f or g is a constructor. To be completely formal, we should speak of (F, >)-
normal form and >-constructors. Since we always consider the same ordering >,
we omit to mention it.

Frample 1. Let us consider the theories F; = ({+i, h}, AC(+;) U {h(x) +; h(y) =
h(z +; y)}) where AC(+;) denotes the axioms of associativity and commutativity
for +;. We consider the rpo ordering induced by the precedence +5 > +1 > h >
<o« > xg > xp with left to right status for 4;. & is then a constructor of £y, Ey and
FE1 U FEs. Since h occurs at the top in 'y and F, it is shared at the top.

One may note that if F is presented by a convergent rewriting system, our
definition of constructors meets the standard one.
The fundamental property of constructors which interests us is the following:

Proposition2. Let h be a constructor of a theory E then for any terms t;’s and
5;s,
h(tl, .. .,tn) =5 h(sl, . ~~,5n) <— Vi:t; =g s;
Now let g be another constructor of B (with respect to the same ordering) distinct
from h, then for any terms t;’s and s; s,

h(ty,....tn) e 9(s1,...,8n)

In all the rest of the paper, we only consider consistent theories sharing con-
structors. The set of shared constructors is denoted by SF'. The following theorem
justifies our interest in theories sharing constructors.

Theorem 3. If theories Fy and FE5 share constructors then E1UFEs is a conservative
extension of F'1 and Es and any constructor of 1 and Fs is a constructor of F{UE>.

Definition4 (Pure terms and aliens). A term ¢ € T(F;, X) is said é-pure (¢ is
lor2). Atermt e T(SF,X) is called a shared term. A strict subterm s of a term
tis an alien if s(e) € F;\F; (i # j) and all symbols on the path form the root of ¢
to s belong to Fj.

Note that from this definition, a term which is pure may however have aliens if its
top-symbol 1s shared. This seems odd, but turns out to be useful.

Definition 5. A variable-abstraction 7 is a mapping from T'(F, X) to X such that
7(t) = w(s) <= t =g s. The i-abstraction of a term ¢, denoted by ¢™, is defined
inductively by:

—Ift=f(ty,...,t,) and f € F; then ™ = f({7*,...,t7%)
— else t™ = w(t)



2 Word problem

The first problem we are faced with when considering the union of theories sharing
constructors, is to decide equality in the union. The problem of deciding whether
two terms are equal modulo a theory is also called the word problem. It would be
nice to have a modularity result stating that the word problem is decidable in the
union if it is decidable in each theory. We were not able to establish such a result
in general, but we have nevertheless a modularity result for a slightly more general
problem which, in some cases, reduces to a word problem. Since two terms are equal
modulo £ if and only if their E-normal forms are identical, the idea for deciding
whether two terms ¢ and s are equal is to compute for each of them some reduced
form which looks like its E-normal form.

Definition6 (Layers reduced forms). A term ¢t € T(F; U Fa, X) is in layers
reduced form if and only if all its aliens are in layers reduced form, ¢ is not equal
modulo Fy U Fy to one of its aliens, and either t(¢) € SF U X, or t is not equal
modulo E7 U E to a variable or a term whose top-symbol i1s a shared constructor.

Layers reduced forms enjoy the following properties:

Proposition7. Ift is a term in layers reduced form, then t™ =g, (tLg)™
Ift and s are in layers reduced form then s =p,up, 1 <= s™ =g, 1™

As a corollary, we get

Proposition8. Fy U Eq-equality of terms in layers reduced form is decidable if I;-
equality is decidable fori=1,2.

However, the decidability of equality in each theory might not be sufficient to com-
pute a layers reduced form for any term. Therefore we introduce a new kind of
problems.

Definition9 (Symbol matching). Let £ = (F, A) be a consistent theory and h
be a symbol in F'. The symbol matching problem on A modulo £ consists in deciding
for any term ¢ € T(F, X) whether there exist terms ¢;’s such that ¢t =g h(t1,...,t,).

Remarks:

1. Since matching modulo an arbitrary theory E is semi-decidable, ¢;’s may be
effectively computed as soon as we know that they exist. Some general unification
procedure [5, 4] may be used for this purpose.

2. the symbol matching problem reduces to a word problem if A is a constant.

3. If the symbol h does not occur at the top in E, then the symbol matching
problem on A is trivially unsatisfiable.

Definition10. Let ¢ be a i-pure term. The term ¢l g, is recursively defined by:

— if t =g, « for some variable x then t|g, = =
— else if for some shared constructor h, and i-pure terms ty,.. ., ¢y, t =g, h(t1,.. ., tn)

then tUE, = h(tIUE,,~ . ~atnUE,)~
— else tg, = 1.



Proposition11. For any term t € T(F;, X), tlg, is in layers reduced form. More-
over, if E;-equality 1s decidable and for any shared constructor h, the symbol match-
ing problem on h 1s decidable modulo E;, then tUg, may be computed in finite time.

We may now give an operational definition of layers reduced forms.
Definition 12. For any term ¢, the term ¢} is defined recursively by:

— if t i1s ¢-pure then |} = t{g,

—else t = C[t1,...,1,] where {’s are aliens of . Let ¢’ = Clt1l),...,t,] =
C'[s1,...,5m) where s;’s are aliens of ¢ and variables of ¢’ that do not occur in
an alien. Now let ¢ be the i-pure term (i may be 1 or 2) obtained by replacing
each sp by a variable, where £ U Fs-equal s;,’s are replaced by the same variable,
and let p be a substitution assigning to each of these variables one of the s;’s 1t
replaces. Now ¢} = (t{ g, )p.

Proposition13. For any term t, i} is a term in layers reduced form equal to t
modulo E1 U Es. Moreover, if E1-equality and Es-equality is decidable and for any
shared symbol h, the symbol matching problem on h is decidable modulo Fy and Fs,
then tll may be computed in finite time.

We get then the modularity theorem:

Theorem 14. Let Fy and Fs be two theories sharing constructors. Assume that
the word problem s decidable modulo Ey and E9 and for any shared constructor h,
the symbol matching problem on h s decidable modulo Fy and E5. Then the word
problem s decidable modulo E1 U FEs and for any shared constructor h, the symbol
matching problem on h s decidable modulo E1 U E5

Corollary 15. If all constructors shared at the top are constants, and equality is
dectdable modulo 1 and Es then equality modulo F1 U Ey is decidable.

3 Matching

The second problem we are interested in is the combination of matching algorithms
for theories sharing constructors. The idea for solving this problem is to perform
an abstraction of terms, i.e. replace aliens with fresh variables, and then solve pure
match-equations in each theory. Unfortunately, purification of match-equations may
introduce new variables 2 in right hand sides and the related solved equations x ="
s. The specificity of matching problems is then lost since we have to deal with
unification. However, this unification can be turned into matching if purification
is only performed in left hand sides of match-equations and solutions of match-
equations are ground (when variables of right hand sides are considered as constants)
i.e. theories are regular. In all the remaining of this section, we only consider regular
theories and we assume that a complete matching algorithm is known for £y and
Es.

The combination technique for matching algorithms relies on the computation of
a layers reduced form (see section 2) of right hand sides of match-equations. Since we



assume that matching is decidable in each theory, from proposition 13, these layers
reduced forms may be computed. By replacing then aliens with free constants (two
F1 U Fj-equal aliens are replaced with the same constant), a matching algorithm
modulo E; may be used to solve the problem s <” t if s is i-pure and ¢ is in layers
reduced form.

The transformation rules for matching problems modulo Fq U E5 are given in
figure 1. In rule MatchSolve, C'SSg, (s <” t|}) denotes a complete set of solutions
modulo E; of s <7 ¢l].

LeftPurif ,
I'Asfu] <t
TAsz] <" tAz="u

if w is an alien of s and z is a fresh variable

Merge
I'ne<"tanzs="s
I'nz <"tns<'t
MatchSolve )
I'As<'t
F/\/\keK“ <Ptk
Delete ) )
PAns < tns <t
I'ne <'t

if s e T(Fi, X)\X, {zr = tu}rex € CSSE, (s <* tl))

ift=pt

Fail ) )
PAns < tns <t
1

ift#£gt

Fig. 1. Set of rules RM for matching in the union of regular theories

3.1 Soundness

The following lemma states how to solve a match-equation with an ¢-pure left hand
side, thanks to the E;-matching algorithm.

Lemma 16. If s is i-pure, o is a substitution in E-normal form and t a term in
layers reduced form, then sc =gt <= so™ =g, {™.

Therefore, we can conclude that a complete set of solutions modulo 1 U Ey of
s <" t|} is obtained from C'SSg, (s <” (t})™). Since equational theories are assumed
regular, solutions are ground and so they may be written out as match-equations.
Note that MatchSolve must be applied in a non-deterministic way in order to preserve
all solutions.



3.2 Completeness

It is easy to check that the normal forms w.r.t RM are the conjunctions of solved
match-equations Age g og <"ty or L or T. Assume * is not a conjunction of solved
match-equations. If there exists an equation « =" s, then either z <’ ¢ is a match-
equation in x and Merge applies or s[z] <* ¢ with s ¢ X and either LeftPurif or
Matchsolve applies. Otherwise, if there exists a match-equation s <’ ¢ with s ¢
X, then either LeftPurif or MatchSolve applies. Otherwise, there exists two solved
match-equations ¢ <” t and # <” ¢’ in % and either Delete or Fail applies. Thus, a
transformation rule in RM can always be applied to * .

3.3 Termination

Proposition17. RM terminates for any control.

Sketch of proof. For any problem x , we consider the following complexity measures:

— TSt 18 the multiset of theory sizes of non-variable left hand sides of match-
equations and non-variable right hand sides of equations in % . The theory size
of t = Clty,...,t,] where t;’s are all aliens of ¢ is defined by T'S(t) = 1 +
Y, TS(t).

— NFEQ is the number of equations in * .

— NMEQ is the number of match-equations in * .

These measures are combined lexicographically. The situation is summarized in the
table below:

rules TSmul| NEQINMEQ
LeftPurif +

Merge = i}
MatchSolve| |

Delete | = = 1

We get then the modularity theorem:

Theorem 18. If E1 and F5 are regular theories sharing constructors and a complete
and finite algorithm is known for matching modulo Ey and o then a complete and
finite algorithm may be built for matching modulo F1 U Fs.

4 Unification

The last problem we are interested in i1s the unification problem. As we shall see,
this problem is more difficult in the case of theories sharing constructors than in
the case of disjoint theories. In order to be able to establish a modularity theorem,
we had to restrict our attention to finitary theories in which no non-constant con-
structor is shared at the top. One should notice that from definition 1, this forbids
collapsing theories but not non-regular ones. For the sake of simplicity, we present
the algorithm only for regular theories because the non-regular case requires many
additional definitions. However, the algorithm remains almost the same since most



of the treatment is encoded in the unification algorithm of each theory. We just have
to assume the existence of a more powerful unification algorithm in each theory:
namely an algorithm for unification with free function symbols. The formalism we
take for designing our combination algorithm is mostly borrowed from A. Boudet [3]
and F. Baader & K. Schulz [1] with some modifications due to the special nature of
the problem we address.

4.1 Preprocessing and data structure

The algorithm we describe is devoted to the transformation of a conjunction x of
equations into a finite set of solved forms. As in the case of disjoint equational
theories; the first step of the algorithm consists in purifying the problem. We first
abstract all aliens of terms in x by fresh variables and add the corresponding equa-
tions to the problem. Repeated application of this operation obviously terminates
and yields equations between pure terms which are either shared terms or terms
with an unshared symbol at the top. Remind that from definition 4, a pure term
may have aliens. We could however have equations ¢ = s where ¢ is a l-pure term
and s is 2-pure term and none of them is a shared term. Such equations are said
impure. In our case, since the theories are not collapsing, if such an equation has a
solution o, there must exist a term u with a shared constructor at the top such that
to =g u and so =g u. This means that u is a constant which occurs at the top in
FEy and E5. The set of such constants will be denoted by SFy. The equation may
thus be split into ¢t =* ¢ As = ¢ where ¢ is chosen non-deterministically in SFy.
In order to remain complete, we have to collect all problems generated this way. A
very similar situation is the case where the problem contains two equations z =" ¢
and « =" s where ¢ is a l-pure term, s is a 2-pure term and none of them is a shared
term. Again, a constant c¢ is chosen non-deterministically in SFy. In order to make
the process terminate, we have to replace x with ¢ everywhere in the problem and
add the equation =" ¢. Once the purification process terminates, in each generated
problem x’, we may distinguish three kinds of equations: equations between shared
terms, and equations s =" ¢ between i-pure terms (i = 1 or 2) where s and ¢ are
either shared terms or terms with an unshared symbol at the top, and s or ¢ is not
a shared term. Since shared terms are built only from constructors, the subproblem
consisting of the conjunction of all equations between shared terms may be solved in
the empty theory, yielding either failure or the minimal idempotent solution o¢. In
the former case, x’ has no solution. In the latter one, we apply o to the remaining
equations and keep 1t apart from the problem.

4.2 The combination algorithm
Once a problem has been preprocessed it may be written as (og;*1 A *2) where

— og is an idempotent substitution from X to T(SF, X)

— 1 (resp. x2) contains the equations s =7 ¢ between 1-pure (resp. 2-pure) terms
where s or f is not a shared term.

— No variable in the domain of oy occurs in an equation in %1 A .



— For each equation =" ¢ € % (resp. %32), x2 (resp. *1) does not contain an
equation z =" s.

Each x; will be solved using a unification algorithm for £;. The following propo-
sition states that doing so we do not loose any solution.

Proposition19. Let s =7t be a i-pure equation and ¢ a substitution in E-normal
form. Then so =g to <= so™ =g, to™".

At this point, the main difference between the disjoint and the non-disjoint case
is that a variable may get instantiated in both theories without generating a conflict.
We avoid this situation by keeping in x; only equations of the same form as the ones
generated by preprocessing. Solving in one theory could instantiate a variable z by
a term of the form Cty, ... t,] where C[] contains only constructors and variables
and t;’s have unshared symbols at the top. In this case, we abstract ¢;’s by fresh
variables ;’s, replace & everywhere by C[zy, ..., x,] and add the equations z; =" ¢;
to the problem.

Applying repeatedly resolution modulo F; and F» will eventually produce prob-
lems 1 and %o which are both solved. It could however happen that x; A %o is
not solved if a compound cycle occurs. A compound cycle is a subproblem of the
form &1 =" t1[xa] A - A Zan_1 =" ton_1[Ton] A Ton =7 top[ri] where xo;_q ="
toi_1[rai] € x1, To; =" toi[ra41] € %2 and no t;[x;41] is reduced to z;4; (by con-
vention, #a,41 = #1). Since we are actually only interested in #;’s, we write such a
cycle as Clzq, . .., xan]-

In the disjoint case, if theories are regular, such cycles have no solution. In our
case, a compound cycle could be broken by instantiating some #; with a constant in
SFy. This leads to the rule Cycle in figure 2.

We assume that we know for each theory E;, a complete and finite unification
algorithm which takes as input a problem of the form (P, V') where P is a conjunction
of equations and V is a finite set of variables. Solutions of (P, V') are solutions of
P which instantiate all variables in V' either by a variable or by a constant in
SFy. Such an algorithm may be built if a complete and finite algorithm is known
for unification with free constants (For the case of non-regular theories, we would
require a unification algorithm with free function symbols). C'SSg, (P, V) denotes
the complete set of solutions returned by the algorithm.

At any time during the unification algorithm, we may distinguish three classes
of variables in the problem:

1. Initeal variables which are the variables occurring in the problem before prepro-
cessing.

2. Abstraction variables which are variables coming from an abstraction, either
during preprocessing or during the algorithm itself.

3. Introduced variables which are variables introduced by the unification algorithms
for each theory.

We make the very natural assumption that the unification algorithm for each
theory may recognize initial, abstraction and introduced variables and never assigns
an introduced variable to a non-introduced one or an abstraction variable to an
initial one. With this assumption, our combination algorithm will always make an



introduced variable appear in at most one x;. We may thus also suppose that the
domain of each solution does not contain an introduced variable. This does not
compromise the soundness of our algorithm.

The combination algorithm is described by the two rules given in figure 2. In
the rule UnifSolve;, p., is obtained by abstracting aliens in the range of p by fresh
varlables. p, 1is the substitution such that zp = xp,,.p,, for all € Dom(p). Pr,

denotes the conjunction NzeDom(p, )T =7 Tpp, -

UnifSolve;
<00§ Iy A FJ>

(00psrs ﬁF; ANLypsp)
if

— [ is unsolved
— Vj (7 # 1) is the set of variables instantiated in 7.
— p€CSSE (I, V;)
Cycle
(o0; I ANC[x1, ..., T20])
{o0; I’ ANC[z1, ..., z2n]H{zi — ¢}

if
— [7 and I5 are solved
— C[z1,...,%2n] is a compound cycle
— c € SFy

Note: Both these rules are non-deterministic. In UnifSolve; we must consider each
solution in CSSg, (I3, V;). In Cycle, we must consider all possible choices of the
index 7 and the constant c.

Fig. 2. Set of rules RU for unification

4.3 Completeness

We have to check that the normal forms w.r.t. RU are solved forms.
If either ;1 or x5 is not solved then UnifSolve; applies. Otherwise, if %1 A x5 is
not solved then it contains a compound cycle C[z1, ..., z2,] and Cycle applies.
Consequently, a transformation rule in RYU can always be applied to a problem
* 1f % 1s not solved.

4.4 Termination

Proposition 20. RU terminates for any control.

Sketch of proof. For each problem (oq;*1Ax3), we consider the following complexity
measures which are combined lexicographically.



— NIV 18 the number of initial variables occurring in x1 A %2

— UIV is the number of initial variables which occur not instantiated in %1 A %o
— NAV is the number of abstraction variables occurring in x1 A %2

— USP is the number of unsolved subproblems x;

Three cases must be distinguished for the rule UnifSolve;:

1. If some initial variable is identified with another initial variable or instantiated
by a constant in SFy or some variable is instantiated by a term whose top-symbol
belongs to SF\SFy then NIV decreases. Indeed, in the last case, this variable
1s necessarily an initial variable which was not previously instantiated. It is then
replaced everywhere by an abstraction of its value. Note also that it is the first
case in which N AV may increase.

2. else, if some initial variable is newly instantiated then U7V decreases.

3. else, if an abstraction variable is identified with an initial or abstraction variable
or instantiated by a constant in SFj then N AV decreases.

4. else, the substitution returned by the unification algorithm for E; is of the form
{e1 = 11,..., 2, — 1, } where 2;’s are either initial or abstraction variables and
each ¢; has an unshared symbol at the top. In this case, the substitution p,, is
the identity. Thus if x; (j # ¢) was previously solved, it remains solved so that
USP decreases. Furthermore no new abstraction variable is introduced.

For Cycle, since the variable which gets instantiated by a shared constant was pre-
viously instantiated, 1t 1s either an initial variable in which case NIV decreases, or
an abstraction variable; in which case N AV decreases.

The situation is summarized in the table below.

rules NIV UIV|NAV|USP
UnifSolve; (1)
UnifSolve;(2)
UnifSolve;(3)
UnifSolve;(4)
Cycle(1)

Cycle(2)

[«

l
[
%

]« 1l

a

Theorem 21. If Fy and 9 are regular theories sharing constructors, all construc-
tors shared at the top are constants and a finite and complete algorithm is known
for unification with free function symbols modulo Fi and FE-, then a complete and
finite algorithm may be built for unification modulo 1 U Es.

5 Undecidability results

We exhibit now two families of theories for which no uniform algorithm exists for de-
ciding unifiability. Each theory in these families is the union of two theories sharing
constructors in which unification with free function symbols is decidable. However,
in each case, one of the conditions of theorem 21 1s not satisfied. This shows that
weakening these conditions is a difficult problem. The first family shows that there



exists no uniform combination technique for combining unification for simple linear
finitary theories sharing non-constant constructors at the top. The second one shows
that there exists no general technique for combining unification algorithms for simple
linear infinitary theories sharing no constructor at the top. We recall that a theory is
simple if no term is equivalent to one of its strict subterms. For each case, undecid-
ability is proved by showing that unification allows to solve a Post correspondence
problem:

Definition22 (Post correspondence problem). Let .4 and € be finite disjoint
alphabets, and ¢ and ¢’ be two morphisms from .A* to C*. The Post correspondence
problem for ¢ and ¢’ consists in finding a non-empty sequence o € AT such that

pla) = ¢'(a).

Theorem 23 (Post 1947 [9]). There exists no uniform algorithm for solving the
Post correspondence problem. The problem remains undecidable when ¢ and ¢’ are
mjective.

In the following, we shall consider families of theories built from A, C, ¢ and ¢’.

5.1 Undecidability of unification in the union of finitary theories
sharing non-constant constructors at the top

We consider the theory F, . presented by the convergent rewriting system

{flaje,y) 2 wif(z,ay) i =1,...,n}U{f(L,y) = h(y)}
U{f(az,y) s wif(z,ay) |[i=1,... nf U{f (L y) = h(y)}
where ¢ and ¢’ are injective and w; and w} denote respectively ¢(a;) and ¢'(a;).
Due to injectivity, ¢(a;) and ¢’(a;) are non-empty words.
The following proposition in conjunction with theorem 23 shows that there exists
no uniform decision algorithm for unifiability modulo £, ..

Proposition 24. If unifiability is decidable modulo E, o0 then the Post correspon-
dence problem for ¢ and ¢’ is decidable.

Sketch of proof. Any solution of the unification problem

P= \/f(aix, 1) =" f(ax, L)

is of the form x — aL where & € A* and for some a;, ¢(a;a) = ¢'(a;«0). Thus P

has a solution if and only if the Post correspondence problem for ¢ and ¢’ has a

solution. a
E, o is the union of E and E’ presented by the convergent rewriting systems

{flaiz,y) w wif(e,aiy) [i=1,...,n} U{f(L, y) = h(y)}

and
{(aiz,y) = wif(z,aiy) [t =1,...,n}U{f(L,y) = h(y)}

Moreover, all shared symbols are clearly constructors of both £ and E’.



Proposition25. E (resp. E') is simple and there exists a complete and finite algo-
rithm for unification modulo E (resp. E'} with free function symbols.

As a corollary, we get

Corollary 26. There exists no uniform technique for combining unification algo-
rithms for simple linear finitary theories sharing constructors at the top.

5.2 Undecidability of unification in the union of infinitary theories

sharing no symbol at the top

We consider now the theory F, , presented by the convergent rewriting system

{f(al$ay)_>f($aw_ly)|lzla’n}U{f/(al$ay)_>f/($aw_;y)|Z:1aan}

where for any word A, A denotes the word obtained by reversing A. We do not need
anymore to suppose that ¢ and ¢’ are injective.

The following proposition in conjunction with theorem 23 shows that there exists
no uniform decision algorithm for unifiability modulo F, .

Proposition27. If unifiability is decidable modulo E, o1 then the Post correspon-
dence problem for ¢ and ' is decidable.

Sketch of proof. Any solution of the unification problem
P=\/flaix, 1) =" f(Ly) A f'asz, L) =" f/(L,y)

is of the form {z — a L,y ¢(a;a) L} where o € A* and p(a;0) = ¢'(a;0). Thus,
P has a solution if and only if the Post correspondence problem for ¢ and ¢’ has a
solution. a

E, o is the union of £ and E’ presented by the convergent rewriting systems

{fla;z,y) = f(z,Gy) |i=1,...,n} and {f'(a;2,y) — f’(a:,w_gy) l[i=1,...,n}
Moreover, all shared symbols are clearly constructors of both E and E’.

Proposition28. E (resp. E') is simple, and unification modulo E (resp. E') with
free function symbols is infinitary and decidable.

As a corollary, we get

Corollary 29. There exists no uniform technique for combining unification algo-
rithms for simple linear infinitary theories sharing constructors, even tf no con-
structor is shared at the top.



Conclusion and perspectives

We have established modularity results for the word problem, the matching problem
and the unification problem in theories sharing constructors. For the case of unifica-
tion, the result seems rather weak but the undecidability results given in section 5
show that the problem is hard. However it seems possible to extend our results in
various directions. As already mentioned, we are actually able to handle non-regular
theories sharing constructors, provided that only constants are shared at the top.
Even this restriction may be somehow relaxed if finitely many contexts built from
constructors are shared at the top [11]. In this case, theory conflicts that occur in
the combination algorithm may be solved by introducing explicitely a shared term
taken from a finite set. Another extension, which in practice would be very useful, is
to combine collapsing theories sharing constructors. This seems very difficult since
we are then unable to bound the terms allowing to solve a theory conflict.

Another problem consists in combining decision algorithms for unification. This
means that we do not assume that we know for each theory a unification algorithm
but only a decision algorithm for unifiability. The combination becomes possible
with the very strong assumption that in some sense, an equality step in each theory
looks only at finitely many shared symbols [11].

Concerning modularity, one may note that our definition of constructors is ac-
tually not really modular in the sense that they are defined by the mean of an
ordering on the whole combined theory. It would be nice to be able to define for
each theory complete sets of constructors so that theories sharing constructors are
defined in a syntactic way. That’s to say: (F1, A1) and (F2, A2) share constructors if
FiNFy; C CiNCy where C; is a complete set of constructors of (F}, 4;). One possible
idea would be to define constructors of (F, A) by the mean of a simplification order-
ing on T(F') such that any congruence class of (F, A) contains a minimal element. If
for any F’ containing F', we are able to extend such an ordering to a simplification
ordering on T(F') such that any congruence class of (F’, 4) still contains a mini-
mal element, then using a result of Kurihara & Ohuchi [7] we get a simplification
ordering for the union of theories such that constructors are preserved.

At last, we could imagine to share non-free constructors that might for instance
be defined as constructors modulo another theory. For example, this would allow to
share a symbol which is commutative in both theories.
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