Programming, Transforming, and Proving
with Function Abstractions and Memories

Tan Mason Carolyn Talcott
Stanford University Stanford University
TAM@SATL.STANFORD.EDU CILTQSATL.STANFORD.EDU

1. Overview

Notions of program equivalence are fundamental to the process of program speci-
fication and transformation. Recent work of Talcott, Mason, and Felleisen establishes
a basis for studying notions of program equivalence for programming languages with
function and control abstractions operating on objects with memory. This work extends
work of Landin, Reynolds, Morris and Plotkin. [Landin 1964] and [Reynolds 1972] de-
scribe high level abstract machines for defining language semantics. [Morris 1968] defines
an extensional equivalence relation for the classical lambda caleulus. [Plotkin 1975]
extends these ideas to the call-by-value lambda calculus and defines the operational
equivalence relation. Operational equivalence is the equivalence naturally associated
with the operational approximation pre-ordering. One expression operationally approx-
imates another if for all closing program contexts either the first expression is undefined
or both expressions are defined and their values are indistinguishable (with respect to
some primitive means of testing equality). [Talcott 1985], [Mason 1986], and [Talcott
1987] study operational approximation and equivalence for subsets of a language with
function and control abstractions and objects with memory. [Felleisen 1987] defines
reduction calculi extending the call-by-value lambda calculus to languages with control
and assignment abstractions. Talcott, Mason, and Felleisen all apply their theories to
expressing and proving properties of program constructs and of particular programs.

Reduction calculi and operational approximation both provide a sound basis for
purely equational reasoning about programs. Calculi have the advantage that the re-
duction relations are inductively generated from primitive reductions (such as beta-
conversion) by closure operations (such as transitive closure or congruence closure).
Equations proved in a calculus continue to hold when the language is extended to treat
additional language constructs. Operational approximation is, by definition, sensitive to
the set of language constructs and basic data available. Using operational approximation
we can express and prove properties such as non-termination, computation induction
and existence of least fixed points which cannot even be expressed in reduction calculi.
Studying the laws of operational approximation and discovering natural extensions to
reduction calculi provide useful insight into the nature of program equivalence.

This paper presents a study of operational approximation and equivalence in the
presence of function abstractions and objects with memory. In the remainder of this
section we give an informal summary of our results illustrating properties of operational

TCATLP 89

approximation and equivalence and the effect of introducing objects with memory. In the
second section we define the syntax and semantics of our language. In the third section
three equivalent definitions of operational approximation and equivalence are given and
basic laws are presented. In the fourth section we define a notion of recursion operator
and give two examples. In the final section we discuss additional related work. In the
full paper [Mason and Talcott 1989d] we develop methods of proving approximation
and equivalence and use these methods to prove the results presented here.

Congruence: Operational approximation and equivalence are congruence relations
on expressions and hence closed under substitution and abstraction.

Weak extensionality: One expression approximates another just if for every closed
instantiation of every use, if the first expression is defined then so is the second. Here use
means use of the value of an expression as an argument to a function which will also have
access to the memory supplied by the instantiating context. This result corresponds to
a weak form of extensionality and is the basis of several general techniques for proving
operational approximation.

Evaluation: Operational equivalence is compatible with evaluation. If one expres-
sion evaluates to another then the two expressions are operationally equivalent. Equiv-
alent expressions are either hoth undefined or evaluate to equivalent objects.

Strong isomorphism: The notion of strong isomorphism defined for the first-order
fragment in [Mason 1986] lifts naturally to the higher-order case. Strong isomorpism
implies operational equivalence and agrees with it on a natural subset of the higher-order
language.

Non-extensionality: In the call-by-value lambda calculus two expressions are oper-
ationally approximate just if all closed instantiations of the expressions are operationally
approximate. When objects with memory are added this form of extensionality fails.

Restricted eta: In the call-by-value lambda calculus we have Azx.e(x) = e if z
does not occur free in e and if e denotes a function. This is a restricted form of the
eta-conversion rule. It is preserved when objects with memory are added, with the
appropriate definition of “denotes a function”.

Recursion operators: Recursion operators compute the least fixed point (with
respect to operational approximation) of functionals and thus provide a mechanism
for recursive definition. In a purely functional language recursion operators use self-
application to implement recursion. When memory is introduced recursion operators
may also use memory loops to implement recursion. All recursion operators are opera-
tionally equivalent on functionals.

2. Computation over Memory Structures.

In existing applicative languages there are two approaches to introducing objects
with memory. We shall call these the Lisp approach and the ML approach. In the
Lisp approach the semantics of lambda abstraction is modified so that upon application
lambda variables are bound to newly allocated memory cells. Reference to a variable

returns the contents of the cell and there is an assignment operation (setq or set!)
for updating the contents of the cell bound to a variable. In the ML approach cells are
added as a data type and operations are provided for creating cells and for accessing and
modifying their contents. Reference to the contents of a cell must be made explicit. In
the Lisp approach one can no longer use beta-conversion to reason about program equiv-
alence. Beta-conversion is not even meaningful in general, as variables that are assigned
can not simply be replaced by values. For example the program (Az.seq(setq(x, 1), 2)2
evaluates to 1. Replacing = by 2 in the body changes the meaning of the program. Also
a variable = represents a value only if it is not assigned. Thus whether or not (Az.e)z
is equivalent to e depends on the context it occurs in. To have a reasonable calculus
one needs two sorts of variables: assignable and non-assignable. In the ML approach
the semantics of lambda application is preserved and beta-value conversion remains a
valid law for reasoning about programs. The Lisp approach provides a natural syntax
since normally one wants to refer to the contents of a cell and not the cell itself. How-
ever the loss of the beta rule poses a serious problem for reasoning about programs.
This approach also violates the principle of separating the mechanism for binding from
that of memory allocation [Mosses 1984]. Following the Scheme tradition, [Felleisen
1987] takes the Lisp approach to introducing objects with memory. In order to obtain
a reasonable calculus of programs, the programming language is extended to provide
two sorts of lambda binding and an explicit dereferencing construct. There have been
recent improvements in this calculus, but the problem of mixing binding and allocation
is inherent in the approach.

We take the ML approach to introducing objects with memory, adding primitive
operations that create, access, and modify memory cells to the call-by-value lambda
caleculus. We will work with S-expressions memories (memories with binary cells) as
this is the natural extension of our work on the first-order case.

2.1. Syntax

We fix a countably infinite set of variables, X, a countable set of atoms, A, and a
family of operation symbols F = {IF,, ‘ n € N} (F, is a set of n-ary operation symbols)
with X, A, F, for n € N all pairwise disjoint. We assume A contains two distinct
elements playing the role of booleans, T for true and Nil for false. From the given sets
we define expressions, value expressions, contexts, and value substitutions.

Definition (U E): The set of value expressions, U, and the set of expressions, E, are
the least sets satisfying the following equations:

U:=X+A+\XE
E:=U+ if(E,E,E) + app(E.E) + | | F,(E")

neN
We let a,aq, ... range over A, =, xq,y,z,... range over X, u,ug,... range over U, and
e, ep, ... range over E.) is a binding operator and free and bound variables of expressions

are defined as usual. FV(e) is the set of free variables of e. Two expressions are
considered equal if they are the same up to renaming of bound variables. e{x := ¢’} is

the result of substituting ¢’ for z in e taking care not to trap free variables of ¢/. Ex is
the set of expressions whose free variables are among X. For example Ey is the set of
closed expressions.

Definition (0): A value substitution is a finite map ¢ from variables to value ex-
pressions. o, gq, ...ranges over value substitutions. We write {z; := u; | 7 < n} for the
i < n} such that o(x;) = u; for 1 < n. €7 is the result
of simultaneous substitution of free occurrences of 2 € Dom(o) in e by o(x).

substitution ¢ with domain {z;

Definition (°E): Contexts are expressions with holes. We use ¢ to denote a hole.
The set of contexts, °E, is defined by

E = {c} + X+ A+ AX°E + i£(°E,°E, °E) + app(°E, °E) + |] F., (°E")
neN

We let E, E’ range over “E. FE[e] denotes the result of replacing any holes in E by
e. Free variables of ¢ may become bound in this process. We often adopt the usual
convention that []| denotes a hole.

In order to make programs easier to read we introduce some further abbreviations.
Multi-ary application and abstraction is obtained by currying as usual and application
is usually represented by juxtaposition rather than explicitly writing out app. let
is lambda-application as usual. seq(eq,...,¢,) evaluates the expressions e; in order,
returning the value of the last expression. This can be represented using let or if.

2.2. Semantics

To define the operational semantics we fix a countable set of (names of) cells, C,
disjoint from A, X, and F. The remaining semantic domains are pfns, values, envi-
ronments, memories, memory objects and descriptions. Informally these domains are
described as follows.

P, the set of pfns (partial function descriptions), is the set obtained by closing a
lambda expression in an environment whose domain contains the free variables of the
lambda expression. V, the set of values, consists of atoms, cells, and pfns. B, the set
of environments, is the set of finite functions from variables to values. M, the set of
memories, is the set of finite maps from cells to pairs of values. Cells which appear
in the range of a memory are assumed to lie in its domain. O™ the set of n-ary
memory objects, is the set of pairs with first component an n-tuple of values and second
component a memory, such that the cells in the n-tuple of values lie in the domain
of memory. Elements of Q") are called objects, and we omit the superscript. I, the
set of memory object descriptions (or just descriptions), is the set of triples with first
component an expression, second component an environment whose domain contains
the free variables of the expression, and third component a memory such that any cell
occurring in the range of the environment is in the domain of the memory.

We let ¢, ¢q, ...range over C, v, vg, ...range over V, 3, (g, ...range over B, u, uo,
...range over M, u;u, ug; o, -..range over Q, and ¢; 3; 1, eq; Bo; tho, - - - range over D.
We use “;7 as a tupling operation in some notations, for example in objects and descrip-

tions, since some components of the these tuples are also collections (sets or tuples) and
we wish to emphasize the outer level tuple structure. We extend environments to act on
value expressions whose free variables are in the domain of the environment by defining
Bla) = afor a € A and f(Ax.e) = Aa.e; 3, If By and By agree on the intersection of their

domains then [y U 3 is the environment with smallest domain extending both (3, and
B

The basic semantic relations and their domains are:

Relation Sign Domain
Primitive evaluation — UneN 0" x O
Single-step > DxD
Reduction y DxD
Evaluation — D x QO

Operations are partitioned into algebraic operations and memory operations. By alge-
braic operation we mean a function mapping A” to A for some n € N. The action of
memory operations is described by the primitive evaluation relation. Computation is a
process of applying reductions to descriptions. — is the single-step reduction relation
on descriptions. The reduction relation —» is the reflexive transitive closure of —. The
evaluation relation, —, between descriptions and memory objects is reduction composed
with the operation converting a value description u; 3; u into the corresponding memory

object B(u); p.

The unary memory operations are {atom, cell, car,cdr} and binary memory op-
erations are {eq, cons, setcar, setcdr}. The remaining operations are assumed to be
algebraic. The memory operations are interpreted relative to a given memory as fol-
lows. atom is the characteristic function using the booleans T and Nil of the atoms,
cell is the characteristic function of the cells, and eq tests whether two values are iden-
tical. We call the pair of values assigned to a cell in a memory its components. cons
takes two arguments, creates a new cell (extending the memory domain) with the pair
of arguments as its components, and returns the newly created cell. car and cdr return
the first and second components of a cell. setcar and setedr destructively alter an al-
ready existing cell. Given two arguments (¢, v) the first of which must be a cell, setcar
updates the given memory so that in the resulting memory the first component of ¢ is
v. setedr similarly alters the second component. Thus memories can be constructed in
which one or both components of a cell can refer to the cell itself.

Definition (—): The primitive evaluation relation §([vo, ..., vp—1];) — v'; p’ is the
least relation satisfying the following conditions.

T; it ifveA
Nil;u otherwise

atom(v;) — {

Nil;u otherwise

Cell(v;u) _ {TQM ifveC

car(c; () — vo;

cdr(c;p) — v p

T;
ca([voror]: 1) — { p

Nil;u otherwise

if vg = vy

cons([vo, v1]; 1) — ¢; pfe = [vo, v1]} for any ¢ such that ¢ & Dom (u)

setear([e,v];) — ¢; pfe:=[v,v1]}

setedr([e,v];) — ¢; pfe := [vo, 0]}
where in the cases for car, cdr,setcar and setedr we assume that ¢ € Dom(u) and
p(e) = [vg, v1].

Although formally cons is multi-valued, the values differ only by renaming of cells
and we only distinguish them when necessary for bookkeeping purposes. Defining cons
as a relation rather than a function which makes an arbitrary choice is the semantic
analog of alpha conversion and greatly simplifies many definitions and proofs.

The single-step relation is defined via a decomposition of a non-value expression
into a reduction context and a primitive expression. A primitive expression is either the
application of a pfn to a value (beta reduction), branching according to whether a test
value is Nil or not, or the application of a primitive operation.

Definition (E,.im): The set of primitive expressions, E,yim , is defined as

Eprim = if(U, B E) + app(U,U) + | | F, (U")
nEN

Definition (R): The set of reduction contexts, R, is the subset of E defined by
R = {c} + app(R,F) + app(U.R) + if(R,EE) + || Fpjnis (U R,E")
n,meN

We let R, R’ range over R.

Lemma (Decomposition): If ¢ € E then either ¢ € U or e can be written uniquely
as R[e'] where R is a reduction context and e’ € E i, .

Definition (—): The single-step reduction relation — on D is defined by
(beta) R[app(uo,u1)]; 8; 1+ Rleol; BU Bofz := B(ur)};

: - A Rlei]; B if B(u) # Nil

(if) Rif(u,er,e2)]; B p — {R[[ﬁ’z]];ﬁ;/l if B(u) = Wil

(delta) R[6(u1,...,un)]; B3 R[x]; B{x :=v"}; i

where in the (beta) clause we assume that [((ug) = Az.eg; o, and [y agree on

the intersection of their domains, and 2 ¢ Dom(8 U). In the (delta) clause we
assume = € Dom((), v; = [(u;) for 1 < ¢ < n, and either § is an n-ary algebraic

operation, v’ = 6(vy,...,v,), and vy,..., v, € A7, or § is an n-ary memory operation
. I
and 6([vr, ..., va];) — 0.

Definition (— | 1): A description ¢; 3; 1 € D evaluates to the object v;u’ € O,
(written e; 85— v;p’) if it reduces to a value description denoting that object. A
description is defined (written | e; 3; p) if it evaluates to some object and is undefined
A description is undefined (written 1e; 3; p) if it is not defined.

;B = vip & (Fus) e B w8’ A B (u) = o)
es Bip) & (Foip')e; B — o)
e Bip) & = Le:Bip)

As for primitive evaluation, single-step reduction and evaluation are single-valued rela-
tions modulo renaming of cells.

2.3. Syntactic Interpretation of the Operational Semantics

We now show how to represent the semantic domains and computation purely in
terms of syntactic objects. This is important for establishing a purely syntactic means of
reasoning about program equivalence and as a tool for reasoning about memory objects
and descriptions.

2.3.1. Representation of semantic domains

Value expressions are the syntactic analog of values. Value substitutions are the
syntactic analog of environments. A special form of contexts called memory contexts
are the syntactic analog of memories. The analog of a description is a memory context
together with an expression and the analog of a memory object is a memory context
together with a value expression.

Definition (I'): A memory context T' is a context of the form

let{zy := cons(Nil,Nil)}...let{z, := cons(Nil,Nil)}

seq(setcar(zy,ul), setedr(z,ul), ..., setcar(z,,u®), setedr(z,,ul),)

where z; # z; when i # j. We abbreviate T by {z; := [u?,u{] ‘ 1<i<n}

In analogy to semantic memories, for I' as above we define the domain of T' to be
Dom(T) = {z1,...,2,} and T'(z;) = [uf,u?] for 1 <i < n. Two memory contexts are
considered the same if they have the same domain and range. T'{z := [u,,ug4]} is defined
to be the memory context I'V such that Dom(I") = Dom(T") U {z} and

(") = { [Ua,ua] it 2" =z

(2" otherwise.

If Ty and Ty agree on the intersection of their domains the T'gUT' is the memory context

I with domain Dom(Tg) U Dom(T'y) such that

/ To(z) if 2 € Dom(To)
I(z) = {[‘1(2) if z € Dom(T'y)

Definition (T;e): A syntactic description is a pair with first component a memory
context and second component an arbitrary expression. We do not require that the free
variables of the expression be contained in the domain of the memory context. If the
expression is a value expression then the description is also a syntactic memory object.
I'ye, To;eg, -..range over syntactic descriptions.

2.3.2. Representing Computation

We define single-step reduction on syntactic descriptions as follows.
Definition (—):
(beta) T Rlapp(Az.e,u)] — T Re{r := u}]

s Rfey] ifwe(A—{Nil})UL U Dom(T)
T Rfes] if w=DNil

(delta) T R[S(ur,...,un)] = T R[]

(if) T R[if(u,er,e0)] — {

where in (delta) we assume that either § is an n-ary algebraic operation, wy, ..., u, €

A" S(ury..osup) =u',and T =T or T R[§(uq, ... ,upn)] — T; R[u'] where

‘ I R[[T]] ifueA
T Ratom(u)] — {F; R[Ni1] if u € LU Dom(T)

‘ T'; R[T] if u € Dom(T")
I R[[cell(?t)]] — {F; R[Nil] ifueLUA

T; R[T] if ug = wy and wug,uy € AU Dom(T)
[y RINAL] if ug # vy and \/, o u; € Dom(T")
I; R[Nil] if wg # uq and /\1‘,<2 u; € A

[y RWiL] if \/, ,u; € L

s Rl cons (ug, uy)] — Tz := [ug, wi]}; R]
T: R[car(2)] — T; Rua]

T: R[edr(2)] — T; R[ud]

D Rlsetear(z,u)] — T{z = [u,ug]}; R[]
D Rlsetedr(z,u)] — T{z = [ug,u]}; R[]

T Rleq(ug,ur)] —

where in the cons rule z € (Dom(T") U FV(R[u;]), + < 2, and in the car, cdr, setcar,
and setedr rules we assume z € Dom(T") and T'(z) = [u,, ug].

For any injection ¢ from cells to variables such that X — Rng(¢) is countably infinite

there is a natural extension to the remaining semantic domains:

&(a) =

£(e;3) = F,E(ﬁ)

§(8) = {x == &(B(x)) | » € Dom(B)}

E(for, .- on]) = [5(7)1)7---75(7)11)]
(
(
(e

Iy

§(p) = {&(e) == &(p(e)) | ¢ € Dom(p)}
(v) = €(p); 5(7))
≤ B) = E(p); &(es B)

We assume a fixed cell naming map ¢ and write T', for £(u) and € for £(e; 3).

Syntactic computation corresponds stepwise to semantic computation. Thus se-
mantic entities that have the same syntactic representation are computationally indis-
tinguishable. This is made precise in the following theorem.

Theorem (simulation):

(1) If P(),ﬁ(),lu() |—>P1,61,M17fh9n FNO’ '_>Fll1’ 61

(ii) If Fuo,ego — T'g; e9, then we can find eq; 8y; uy such that Fm;ef1 = T'y;e9 and
€o; Bo; o = €15 B3 -

3. Operational Approximation and Equivalence

In this section we define the operational approximation and equivalence relations
and study their general properties.

Definition (C =): Two expressions are operationally approximate, written eq C e,
if for any closing context E. if Efeg] is defined then Efeq] is defined. Two expressions
are operationally equivalent, written ey = ey, if they approximate one another.

eco C e & (VE€°E | Eleo], E[er] € By)(1 Eeo] = | Efer])

€o=€e1 & gL er ANer Eeg
By definition operational approximation (and hence operational equivalence) is a con-
gruence relation on expressions. However it is not necessarily the case that instantiations
of equivalent expressions are equivalent even if the instantiation is defined. Note that

T and Nil are not operationally equivalent. These observations are summarized in the
following lemma.

Lemma (Congruence):
1. €0 I; €] <= (\V/E - 8E)(E[[€0]] I; E[[€1]])
2. leand eg = ey does not imply eg{x := e} = e{x 1= e}.

10

3. —(T=Nil)
Proof (congruence):

Case 1: Trivial.

~

Case 2: As a counter-example we have eq(z,2) = T but eq(cons(T,T), cons(T,T))
Nil.

Case 3: The context if(e, car(T),T) will distinguish T and Nil. Deongruence

An alternate definition of operational approximation and equivalence in the pres-
ence of basic data is the following. Define two closed expressions to be trivially approx-
imate if whenever the first is defined then both return the same atom or both return
cells, or both return pfns. Then define two expressions to be operationally approximate
just if they are trivially approximate in all closing contexts. This is definition given by
Plotkin. Both definitions are equivalent in this setting since equality on basic data is
computable.

3.1. Weak extensionality

Another characterization of operational approximation and equivalence is obtained
by extending the semantic characterizion of the maximum approximation relation given
in [Talcott 1985]. Two expressions are approximate just if all closed instantiations are
trivially approximate in all reduction contexts. Suitably generalized, this characteriza-
tion remains valid in the presence of memory. We define the relation C " all closed
instantiations of all uses are approximate and show this to be the same as operational
approximation. The C®" characterization of operational approximation is the key for
proving many laws of approximation and equivalence.

Definition (ciu):

co ™ er & (Vo R | (V) < 2)(T[R[]]] € o)) (UTIRIeGIN) = HTIRITI))

Theorem (ciu): egC e; & ¢ o e

A direct corollary of the ciu characterization of operational approximation is the
following weak form of extensionality.

Corollary (wk.ext):

e Cer & (V0,0 R | (Vj < 2)(CIR[S1] € Eg))(TIRIeT] C TIRFT)

A simple consequence of (ciu) is the fact that in the case of closed expressions we
need only check definedness in all closed reduction contexts in order to verify operational
approximation.

Theorem (op.closed): If ey, ey € Ey then

o Cer & (VR € Ro)(L(R]eol) = L(R[ea]))

11

In the absence of memory operations, two expressions are operationally approx-
imate just if all closed instantiations of variables to values are approximate [Talcott
1985]. This property fails when objects with memory are introduced. The notion of all
closed instantiations being approximate, as well as the result just mentioned, is made
explicit in the following.

Definition (C):

o C% ey & (VT', o ‘ (V) < 2)(F[[e;’]] € Eg))(TTed] ET[eT])

Lemma (non.ext): e5 C ¢; does not imply eg C ey,

Proof (non.ext): A counter example is ¢g = seq(setcar(c, \x.x), \z.z) and ey =
seq(setear (¢, \v.x), Ax.car (¢)(x)). Onon.ext

3.2. Strong isomorphism

In [Mason 1986], the notion of strong isomorphism was defined for the first-order
subset of our language and a powerful collection of tools was developed for reasoning
about this relation. Two expressions e and ey are strongly isomorphic if for every closed
instantiation either both are undefined are both are defined and evaluate to objects that
are equal modulo the production of garbage.

Definition (~): Two expressions are strongly isomorphic, written e ~ ey, if for
each T', ¢ such that F[[e;’]] € Ey for 7 < 2 one of the following holds:

(1) H(sef) and $(Tse7), or

(2) there exists u, IV, Ty, T'y such that Dom(T") C Dom(I"), T'[u] € Eg, Dom(I”) N
Dom(T;) =0 and T;ef = (T; UT");u for j < 2.

A consequence of (ciu) is that strong isomorphism implies operational equivalence.
Theorem (striso): If eg ~ e; then e = €.

A corollary of (striso) is that operational equivalence is preserved by evaluation.
Corollary (eval): Ti;e—T":¢' = Te] = T'[].

The following is a collection of laws of strong isomorphism, and by (striso) they
are also laws of operational equivalence. They correspond to the context independent
subset of a complete set of rules for reasoning about memory operations in a first-order

setting [Mason and Talcott 1989h,c].
Corollary (laws):

(1) e{r :=u} ~ let{r :=u}e

(ii) e~ let{r:=¢clx

(iii) R[let{x :=eo}ter] = let{r := eg}R[eq] for = not free in R
(

iv) R[if(eq,er,e2)] ~ if(en, R]er], Rlea])

12

(v) if(coier,er) ~let{r = eoler w& FV(er)

(vi) let{zo = cons(ug,u1) let{r, := eo}e ~ let{r, := eo}let{rg := cons(ug,us)}e
if 20 not free in eg and 21 not free in ug, uy

vii) seq(setear(z,yo), setcar(x,y1) ~ setear(z,)

Vi) seq(setear(z,y),z) ~ setear(x,y)

ix) seq(setedr(zo,x1), setcar(my, v3), ¢) ~ seq(setear(xy. w3, setedr(xo, 1), €)

x) setear(cons(z,y), 1) =~ cons(x,y) ~ setedr(cons(x,2),y)

Corollary (gc): If T is memory context such that Dom(T')NFV(e) = () then T'[e] = e.

The following theorem, a generalization of [Mason 1986], states that operational
equivalence and strong isomorphism coincide on a natural fragment.

Definition (Eg,): The set of first order expressions Fy, is inductively defined as

A+ X + app(Ero, Bro) + 1£(Ero, Bro, Bro) + 1et {X := Wy, 1By, + |] Fo (E)

n€N

Theorem (foc): If eg, ey € Fy, and eg = ey, then eq ~ €.

The eta rule for the pure lambda calculus has the form e = Az.e(x) if 2 is not free
in e. In an appied calculus where there are objects that are not functions we need the
additional restriction that e must denote a function. In the presence of memory objects,
if we interpret “e denotes a function” as e = I'[p] for some memory context I' and some
lambda abstraction p = Ay.e’ then the eta rule is not valid. If we interpret “e denotes
a function” as e = p, then the eta rule is valid.

Lemma (non.eta): In general Aa.(T'[Az.e])z is not operationally equivalent to

T[Ax.€].

Proof (non.eta): As a counter-example we have

{z := [T, Nil]}; Ae.let{y := car(z)}seq(setcar(z,2),y).

Dnon.eta

Lemma (eta): If ¢ = Ax.e¢’ then Av.e(2) & e.

4. Recursion Pfns

In [Talcott 1985] the notion of recursion operator was introduced. Recursion op-
erators compute the least fixed point (with respect to operational approximation) of
functionals and thus provide a mechanism for definition by recursion. The definition
of recursion operator identifies the essential properties needed to prove the least-fixed-
point property. In order to extend the recursion theorem to the world of memories
and to permit recursion operators that make use of memory, we need to define the

13

analog of functional. There are two possibilities: (i) as for the non-memory case func-
tionals are expressions of the form Af, z.e or (ii) a functional is memory object of the
form T'[Af,z.e]. In case (ii) letting ¢ = Af,z.¢ we have rec(I'[¢]) = T'[rec(p)] and
Tlel(rec(Te])) = T UT [(rec(¢’))] where T'[¢'] = T[] and Dom(T”) N Dom(T") = (.
So, in general rec(I'[¢]) and T'[e](rec(T'[¢])) will not be equivalent. Thus the mean-

ingful object to take a fixed point of is the simple functional with no local memory.

Definition (recnop): A closed lambda expression rec is a recursion operator if there
exists I', p € I, p € X —Dom(T), such that T'[p] € Ey,y and the following two conditions
hold:

(i) ree(p) = Tip
(i1) I ¢ = Af,2.e with FV(¢) N Dom(T') = @) then T'y; p, () Ay Ty e{f := p,} where
Loipe =T{p:=o}ip{p:=¢}.
We call T; p the associated fixed-point template for rec (with parameter p). Con-
dition (i) says that rec(y) evaluates to I',; p, uniformly in the functional parameter.
Condition (ii) says that applying p, to any value in a memory context whose restriction

to Dom(T") is T'y, reduces, without modifying memory, to a computation of the body of
the functional e with f replaced by p..

Although the functionals we compute fixed points of have no local memory, the
fixed points themselves will in general be pfn objects that have local memory. Thus the
least-fixed-point property is formulated in terms of pfn objects.

Theorem (recn): If rec and rec’ are recursion operators then rec computes the least
fixed-point of functionals and is operationally equivalent to rec’ on functionals. For any
functional ¢ and any pfn object

(fix) rec(p) = @(rec(p))
(min) () Eb = rec(p) E¢
(eq) rec(p) = rec ()

Two examples of recursion operators are rec, and rec,,. rec, is a conventional
call-by-value fixed-point combinator which uses self-application to create the recursive
self-reference. rec,, is a recursion operator which uses the ability to create and update

cells to create the necessary self-reference. The method is essentially identical to the

one suggested in [Landin, 1964].
Definition (rec, rec,,): rec, and rec,, are defined by
rec, = Ap.let{r := Ah.Ax.p(h(h),x)}r(r)
rec,; = Ap.let{z := cons(T,T)}seq(setcar(z, \x.p(Ax.car(z)(x), x), \x.car (z)(x))

Lemma (rec): rec, and rec,, are recursion operators.

Proof (rec): The fixed-point templates for rec, and rec,, are 0; \x.p(7,(7,), v) where

14

7, = A Ax.p(h(h),x), and {z := [Ay.p(Ax.car(z)(x),y), T]}; Av.car(z) (). Oree

5. Conclusions

The results presented in this paper provide basic tools for specifying and reasoning
about objects with memory and programs acting on such objects. Qur language is close
to existing applicative languages such as Lisp, Scheme, and ML. Memory can be rep-
resented as syntactic contexts. This simplifies the expression of many properties since
it provides natural notions of parameterized memory objects, of binding, and of sub-
stitution for parameters. In addition the syntactic representation allows us to compute
with open expressions and provides a natural scoping mechanism for memory simply
using laws for bound variables. Many of the basic equivalence relations on memories
and other semantic entities translate naturally into simple syntactic equivalences such
as alpha-equivalence.

A key result is the (ciu) characterization of operational approximation and equiv-
alence. This is the basis of several important methods for proving approximation and
equivalence. (ciu) extends the safety theorem of [Felleisen 1987, thm 5.27, p.149]. Two
expressions are safely equivalent if every closed instantiation of every use is provably
equivalent in the assignment calculus. Since calculi can not express non-termination we
have that safe equivalence implies operational equivalence but not conversely.

[Mason and Talcott 1989a] contains sample applications of our results. The first ap-
plication shows how to lift results from the first-order fragment to the higher-order case.
The second application studies two notions of stream: onetime streams (ala Common
Lisp streams and Scheme ports) and reusable streams (ala Landin, Scheme). In either
case a stream is characterized by the (possibly infinite) sequence it generates. Tech-
niques for transforming definitions of sequences to definitions of streams, for memoizing,
and for transforming between onetime and reusable streams preserving the underlying
sequence are presented. This illustrates many aspects of reasoning about objects with
memory, specification of objects with memory, and use of objects with memory as op-
timized versions of pure pfns.

Acknowledgements.

The first author would like to thank Furio Honsell for numerous helpful discussions.

This research was partially supported by DARPA contract N00039-84-C-0211.

6. References

Felleisen, M.

[1987] The calculi of lambda-v-cs conversion: A syntactic theory of control and state
in imperative higher-order programming languages, Ph.D. thesis, Indiana Uni-
versity.

Landin, P. J.
[1964] The mechanical evaluation of expressions, Computer Journal, 6, pp. 308 320.

15

Mason, I. A.
[1986] The semantics of destructive Lisp, Ph.D. Thesis, Stanford University.

Mason, I. A. and Talcott, C. L.

[1989a] Equivalence of programs with function abstractions and memories, Submitted

[1989h] Axiomatizing Operational Equivalence in the presence of Side Effects, in: Sym-
posium. on logic in computer science, (IEEE), (to appear).

[1989¢] A sound and complete axiomatization of operational equivalence between pro-
grams with memory, Department of Computer Science, Stanford University,

Technical report STAN-CS-89-1250.

[1989d] Programming, transforming and proving with function abstractions and mem-
ories, Department of Computer Science, Stanford University, Technical report

STAN-CS-89-TTTT.
Morris, J. H.
[1968] Lambda calculus models of programming languages, Ph.D. thesis, MIT.

Mosses, P.

[1984] A basic abstract semantic algebra, in: Semantics of data types, mternational
symposium, Sophia-Antipolis, June 1984, proceedings, edited by G. Kahn, D.
B. MacQueen, and G. Plotkin, Lecture notes in computer science, no. 173

(Springer, Berlin) pp. 87 108.

Plotkin, G.

[1975] Call-by-name, call-by-value and the lambda-v-calculus, Theoretical Computer
Science, 1, pp. 125 159.

Reynolds, J. C.

[1972] Definitional interpreters for higher-order programming languages, in: Proceed-
mngs, ACM national convention, pp. 717 740.

Talcott, C.

1985] The essence of Rum: A theory of the intensional and extensional aspects of
Yy P
Lisp-type computation, Ph.D. Thesis, Stanford University.

[1987] Programming and proving with function and control abstractions, (Course
notes)

