
1Programming, Transforming, and Provingwith Function Abstractions and MemoriesIan MasonStanford UniversityIAM@SAIL.STANFORD.EDU Carolyn TalcottStanford UniversityCLT@SAIL.STANFORD.EDU1. OverviewNotions of program equivalence are fundamental to the process of program speci-�cation and transformation. Recent work of Talcott, Mason, and Felleisen establishesa basis for studying notions of program equivalence for programming languages withfunction and control abstractions operating on objects with memory. This work extendswork of Landin, Reynolds, Morris and Plotkin. [Landin 1964] and [Reynolds 1972] de-scribe high level abstract machines for de�ning language semantics. [Morris 1968] de�nesan extensional equivalence relation for the classical lambda calculus. [Plotkin 1975]extends these ideas to the call-by-value lambda calculus and de�nes the operationalequivalence relation. Operational equivalence is the equivalence naturally associatedwith the operational approximation pre-ordering. One expression operationally approx-imates another if for all closing program contexts either the �rst expression is unde�nedor both expressions are de�ned and their values are indistinguishable (with respect tosome primitive means of testing equality). [Talcott 1985], [Mason 1986], and [Talcott1987] study operational approximation and equivalence for subsets of a language withfunction and control abstractions and objects with memory. [Felleisen 1987] de�nesreduction calculi extending the call-by-value lambda calculus to languages with controland assignment abstractions. Talcott, Mason, and Felleisen all apply their theories toexpressing and proving properties of program constructs and of particular programs.Reduction calculi and operational approximation both provide a sound basis forpurely equational reasoning about programs. Calculi have the advantage that the re-duction relations are inductively generated from primitive reductions (such as beta-conversion) by closure operations (such as transitive closure or congruence closure).Equations proved in a calculus continue to hold when the language is extended to treatadditional language constructs. Operational approximation is, by de�nition, sensitive tothe set of language constructs and basic data available. Using operational approximationwe can express and prove properties such as non-termination, computation inductionand existence of least �xed points which cannot even be expressed in reduction calculi.Studying the laws of operational approximation and discovering natural extensions toreduction calculi provide useful insight into the nature of program equivalence.This paper presents a study of operational approximation and equivalence in thepresence of function abstractions and objects with memory. In the remainder of thissection we give an informal summary of our results illustrating properties of operationalICALP 89



2approximation and equivalence and the e�ect of introducing objects with memory. In thesecond section we de�ne the syntax and semantics of our language. In the third sectionthree equivalent de�nitions of operational approximation and equivalence are given andbasic laws are presented. In the fourth section we de�ne a notion of recursion operatorand give two examples. In the �nal section we discuss additional related work. In thefull paper [Mason and Talcott 1989d] we develop methods of proving approximationand equivalence and use these methods to prove the results presented here.Congruence: Operational approximation and equivalence are congruence relationson expressions and hence closed under substitution and abstraction.Weak extensionality: One expression approximates another just if for every closedinstantiation of every use, if the �rst expression is de�ned then so is the second. Here usemeans use of the value of an expression as an argument to a function which will also haveaccess to the memory supplied by the instantiating context. This result corresponds toa weak form of extensionality and is the basis of several general techniques for provingoperational approximation.Evaluation: Operational equivalence is compatible with evaluation. If one expres-sion evaluates to another then the two expressions are operationally equivalent. Equiv-alent expressions are either both unde�ned or evaluate to equivalent objects.Strong isomorphism: The notion of strong isomorphism de�ned for the �rst-orderfragment in [Mason 1986] lifts naturally to the higher-order case. Strong isomorpismimplies operational equivalence and agrees with it on a natural subset of the higher-orderlanguage.Non-extensionality: In the call-by-value lambda calculus two expressions are oper-ationally approximate just if all closed instantiations of the expressions are operationallyapproximate. When objects with memory are added this form of extensionality fails.Restricted eta: In the call-by-value lambda calculus we have �x:e(x) �= e if xdoes not occur free in e and if e denotes a function. This is a restricted form of theeta-conversion rule. It is preserved when objects with memory are added, with theappropriate de�nition of \denotes a function".Recursion operators: Recursion operators compute the least �xed point (withrespect to operational approximation) of functionals and thus provide a mechanismfor recursive de�nition. In a purely functional language recursion operators use self-application to implement recursion. When memory is introduced recursion operatorsmay also use memory loops to implement recursion. All recursion operators are opera-tionally equivalent on functionals.2. Computation over Memory Structures.In existing applicative languages there are two approaches to introducing objectswith memory. We shall call these the Lisp approach and the ML approach. In theLisp approach the semantics of lambda abstraction is modi�ed so that upon applicationlambda variables are bound to newly allocated memory cells. Reference to a variable



3returns the contents of the cell and there is an assignment operation (setq or set!)for updating the contents of the cell bound to a variable. In the ML approach cells areadded as a data type and operations are provided for creating cells and for accessing andmodifying their contents. Reference to the contents of a cell must be made explicit. Inthe Lisp approach one can no longer use beta-conversion to reason about program equiv-alence. Beta-conversion is not even meaningful in general, as variables that are assignedcan not simply be replaced by values. For example the program (�x:seq(setq(x; 1); x)2evaluates to 1. Replacing x by 2 in the body changes the meaning of the program. Alsoa variable x represents a value only if it is not assigned. Thus whether or not (�x:e)xis equivalent to e depends on the context it occurs in. To have a reasonable calculusone needs two sorts of variables: assignable and non-assignable. In the ML approachthe semantics of lambda application is preserved and beta-value conversion remains avalid law for reasoning about programs. The Lisp approach provides a natural syntaxsince normally one wants to refer to the contents of a cell and not the cell itself. How-ever the loss of the beta rule poses a serious problem for reasoning about programs.This approach also violates the principle of separating the mechanism for binding fromthat of memory allocation [Mosses 1984]. Following the Scheme tradition, [Felleisen1987] takes the Lisp approach to introducing objects with memory. In order to obtaina reasonable calculus of programs, the programming language is extended to providetwo sorts of lambda binding and an explicit dereferencing construct. There have beenrecent improvements in this calculus, but the problem of mixing binding and allocationis inherent in the approach.We take the ML approach to introducing objects with memory, adding primitiveoperations that create, access, and modify memory cells to the call-by-value lambdacalculus. We will work with S-expressions memories (memories with binary cells) asthis is the natural extension of our work on the �rst-order case.2.1. SyntaxWe �x a countably in�nite set of variables, X, a countable set of atoms, A , and afamily of operation symbols F = fFn n 2 Ng (Fn is a set of n-ary operation symbols)with X, A , Fn for n 2 N all pairwise disjoint. We assume A contains two distinctelements playing the role of booleans, T for true and Nil for false. From the given setswe de�ne expressions, value expressions, contexts, and value substitutions.De�nition (U E): The set of value expressions, U, and the set of expressions, E, arethe least sets satisfying the following equations:U :=X+ A + �X:EE := U+ if(E ; E ; E ) + app(E ; E ) + [n2N Fn(En)We let a; a0; : : : range over A , x; x0; y; z; : : : range over X, u; u0; : : : range over U, ande; e0; : : : range over E. � is a binding operator and free and bound variables of expressionsare de�ned as usual. FV(e) is the set of free variables of e. Two expressions areconsidered equal if they are the same up to renaming of bound variables. efx := e0g is



4the result of substituting e0 for x in e taking care not to trap free variables of e0. EX isthe set of expressions whose free variables are among X. For example E; is the set ofclosed expressions.De�nition (�): A value substitution is a �nite map � from variables to value ex-pressions. �, �0, : : : ranges over value substitutions. We write fxi := ui i < ng for thesubstitution � with domain fxi i < ng such that �(xi) = ui for i < n. e� is the resultof simultaneous substitution of free occurrences of x 2 Dom(�) in e by �(x).De�nition ("E ): Contexts are expressions with holes. We use " to denote a hole.The set of contexts, "E , is de�ned by"E = f"g+X+ A + �X:"E + if("E ; "E ; "E ) + app("E ; "E ) + [n2N Fn("En)We let E, E0 range over "E . E[[e]] denotes the result of replacing any holes in E bye. Free variables of e may become bound in this process. We often adopt the usualconvention that [[ ]] denotes a hole.In order to make programs easier to read we introduce some further abbreviations.Multi-ary application and abstraction is obtained by currying as usual and applicationis usually represented by juxtaposition rather than explicitly writing out app. letis lambda-application as usual. seq(e0; : : : ; en) evaluates the expressions ei in order,returning the value of the last expression. This can be represented using let or if.2.2. SemanticsTo de�ne the operational semantics we �x a countable set of (names of) cells, C ,disjoint from A , X, and F. The remaining semantic domains are pfns, values, envi-ronments, memories, memory objects and descriptions. Informally these domains aredescribed as follows.P, the set of pfns (partial function descriptions), is the set obtained by closing alambda expression in an environment whose domain contains the free variables of thelambda expression. V, the set of values, consists of atoms, cells, and pfns. B , the setof environments, is the set of �nite functions from variables to values. M , the set ofmemories, is the set of �nite maps from cells to pairs of values. Cells which appearin the range of a memory are assumed to lie in its domain. O(n), the set of n-arymemory objects, is the set of pairs with �rst component an n-tuple of values and secondcomponent a memory, such that the cells in the n-tuple of values lie in the domainof memory. Elements of O(1) are called objects, and we omit the superscript. D , theset of memory object descriptions (or just descriptions), is the set of triples with �rstcomponent an expression, second component an environment whose domain containsthe free variables of the expression, and third component a memory such that any celloccurring in the range of the environment is in the domain of the memory.We let c, c0, : : : range over C , v, v0, : : : range over V, �, �0, : : : range over B , �, �0,: : : range over M , u;�, u0;�0, : : : range over O, and e;�;�, e0;�0;�0, : : : range over D .We use \;" as a tupling operation in some notations, for example in objects and descrip-



5tions, since some components of the these tuples are also collections (sets or tuples) andwe wish to emphasize the outer level tuple structure. We extend environments to act onvalue expressions whose free variables are in the domain of the environment by de�ning�(a) = a for a 2 A and �(�x:e) = �x:e;�, If �0 and �1 agree on the intersection of theirdomains then �0 [ �1 is the environment with smallest domain extending both �0 and�1. The basic semantic relations and their domains are:Relation Sign DomainPrimitive evaluation + Sn2N On � OSingle-step 7! D � DReduction �7! D � DEvaluation ,! D � OOperations are partitioned into algebraic operations and memory operations. By alge-braic operation we mean a function mapping A n to A for some n 2 N. The action ofmemory operations is described by the primitive evaluation relation. Computation is aprocess of applying reductions to descriptions. 7! is the single-step reduction relationon descriptions. The reduction relation �7! is the reexive transitive closure of 7!. Theevaluation relation, ,!, between descriptions and memory objects is reduction composedwith the operation converting a value description u;�;� into the corresponding memoryobject �(u);�.The unary memory operations are fatom; cell ; car ; cdrg and binary memory op-erations are feq; cons ; setcar ; setcdrg. The remaining operations are assumed to bealgebraic. The memory operations are interpreted relative to a given memory as fol-lows. atom is the characteristic function { using the booleans T and Nil { of the atoms,cell is the characteristic function of the cells, and eq tests whether two values are iden-tical. We call the pair of values assigned to a cell in a memory its components. constakes two arguments, creates a new cell (extending the memory domain) with the pairof arguments as its components, and returns the newly created cell. car and cdr returnthe �rst and second components of a cell. setcar and setcdr destructively alter an al-ready existing cell. Given two arguments (c; v) the �rst of which must be a cell, setcarupdates the given memory so that in the resulting memory the �rst component of c isv. setcdr similarly alters the second component. Thus memories can be constructed inwhich one or both components of a cell can refer to the cell itself.De�nition (+): The primitive evaluation relation �([v0; : : : ; vn�1];�)+ v0;�0 is theleast relation satisfying the following conditions.atom(v;�) + � T;� if v 2 ANil;� otherwisecell(v;�) + � T;� if v 2 CNil;� otherwise



6car (c;�)+ v0;�cdr (c;�)+ v1;�eq([v0; v1];�)+ � T;� if v0 = v1Nil;� otherwisecons([v0; v1];�) + c;�fc := [v0; v1]g for any c such that c 62 Dom(�)setcar ([c; v];�)+ c;�fc := [v; v1]gsetcdr ([c; v];�)+ c;�fc := [v0; v]gwhere in the cases for car ; cdr ; setcar and setcdr we assume that c 2 Dom(�) and�(c) = [v0; v1].Although formally cons is multi-valued, the values di�er only by renaming of cellsand we only distinguish them when necessary for bookkeeping purposes. De�ning consas a relation rather than a function which makes an arbitrary choice is the semanticanalog of alpha conversion and greatly simpli�es many de�nitions and proofs.The single-step relation is de�ned via a decomposition of a non-value expressioninto a reduction context and a primitive expression. A primitive expression is either theapplication of a pfn to a value (beta reduction), branching according to whether a testvalue is Nil or not, or the application of a primitive operation.De�nition (Eprim): The set of primitive expressions, Eprim , is de�ned asEprim = if(U; E; E ) + app(U;U)+ [n2N Fn(Un)De�nition (R): The set of reduction contexts, R, is the subset of "E de�ned byR= f"g+ app(R; E) + app(U;R) + if(R; E; E ) + [n;m2N Fm+n+1(Um;R; En)We let R, R0 range over R.Lemma (Decomposition): If e 2 E then either e 2 U or e can be written uniquelyas R[[e0]] where R is a reduction context and e0 2 Eprim .De�nition (7!): The single-step reduction relation 7! on D is de�ned by(beta) R[[app(u0; u1)]];�;� 7! R[[e0]];� [ �0fx := �(u1)g;�(if) R[[if(u; e1; e2)]];�;� 7! �R[[e1]];�;� if �(u) 6= NilR[[e2]];�;� if �(u) = Nil(delta) R[[�(u1; : : : ; un)]];�;� 7! R[[x]];�fx := v0g;�0where in the (beta) clause we assume that �(u0) = �x:e0;�0, � and �0 agree onthe intersection of their domains, and x 62 Dom(� [ �0). In the (delta) clause weassume x 62 Dom(�), vi = �(ui) for 1 � i � n, and either � is an n-ary algebraic



7operation, v0 = �(v1; : : : ; vn), and v1; : : : ; vn 2 A n , or � is an n-ary memory operationand �([v1; : : : ; vn];�)+ v0;�0.De�nition (,! # "): A description e;�;� 2 D evaluates to the object v;�0 2 O,(written e;�;� ,! v;�0) if it reduces to a value description denoting that object. Adescription is de�ned (written # e;�;�) if it evaluates to some object and is unde�nedA description is unde�ned (written " e;�;�) if it is not de�ned.e;�;� ,! v;�0 , (9u;�0;�0)(e;�;� �7! u;�0;�0 ^ �0(u) = v)#(e;�;�) , (9v;�0)(e;�;� ,! v;�0)"(e;�;�) , :#(e;�;�)As for primitive evaluation, single-step reduction and evaluation are single-valued rela-tions modulo renaming of cells.2.3. Syntactic Interpretation of the Operational SemanticsWe now show how to represent the semantic domains and computation purely interms of syntactic objects. This is important for establishing a purely syntactic means ofreasoning about program equivalence and as a tool for reasoning about memory objectsand descriptions.2.3.1. Representation of semantic domainsValue expressions are the syntactic analog of values. Value substitutions are thesyntactic analog of environments. A special form of contexts called memory contextsare the syntactic analog of memories. The analog of a description is a memory contexttogether with an expression and the analog of a memory object is a memory contexttogether with a value expression.De�nition (�): A memory context � is a context of the formletfz1 := cons(Nil; Nil)g : : : letfzn := cons(Nil; Nil)gseq(setcar (z1; ua1); setcdr (z1; ud1); : : : ; setcar (zn; uan); setcdr (zn; udn); ")where zi 6= zj when i 6= j. We abbreviate � by fzi := [uai ; udi ] 1 � i � ng.In analogy to semantic memories, for � as above we de�ne the domain of � to beDom(�) = fz1; : : : ; zng and �(zi) = [uai ; udi ] for 1 � i � n. Two memory contexts areconsidered the same if they have the same domain and range. �fz := [ua; ud]g is de�nedto be the memory context �0 such that Dom(�0) = Dom(�) [ fzg and�0(z0) = � [ua; ud] if z0 = z�(z0) otherwise.If �0 and �1 agree on the intersection of their domains the �0[�1 is the memory context



8�0 with domain Dom(�0) [Dom(�1) such that�0(z) = ��0(z) if z 2 Dom(�0)�1(z) if z 2 Dom(�1)De�nition (�; e): A syntactic description is a pair with �rst component a memorycontext and second component an arbitrary expression. We do not require that the freevariables of the expression be contained in the domain of the memory context. If theexpression is a value expression then the description is also a syntactic memory object.�; e, �0; e0, : : : range over syntactic descriptions.2.3.2. Representing ComputationWe de�ne single-step reduction on syntactic descriptions as follows.De�nition (7!):(beta) �;R[[app(�x:e; u)]] 7! �;R[[efx := ug]](if) �;R[[if(u; e1; e2)]] 7! ��;R[[e1]] if u 2 (A � fNilg) [ L [Dom(�)�;R[[e2]] if u = Nil(delta) �;R[[�(u1; : : : ; un)]] 7! �0;R[[u0]]where in (delta) we assume that either � is an n-ary algebraic operation, u1; : : : ; un 2A n , �(u1; : : : ; un) = u0, and � = �0 or �;R[[�(u1; : : : ; un)]]+ �0;R[[u0]] where�;R[[atom(u)]]+ ��;R[[T]] if u 2 A�;R[[Nil]] if u 2 L [ Dom(�)�;R[[cell(u)]]+ ��;R[[T]] if u 2 Dom(�)�;R[[Nil]] if u 2 L [ A�;R[[eq(u0; u1)]]+ 8>><>>:�;R[[T]] if u0 = u1 and u0; u1 2 A [Dom(�)�;R[[Nil]] if u0 6= u1 and Wi<2 ui 2 Dom(�)�;R[[Nil]] if u0 6= u1 and Vi<2 ui 2 A�;R[[Nil]] if Wi<2 ui 2 L�;R[[cons(u0; u1)]]+ �fz := [u0; u1]g;R[[z]]�;R[[car (z)]]+ �;R[[ua]]�;R[[cdr (z)]]+ �;R[[ud]]�;R[[setcar (z; u)]]+ �fz := [u; ud]g;R[[z]]�;R[[setcdr (z; u)]]+ �fz := [ua; u]g;R[[z]]where in the cons rule z 62 (Dom(�) [ FV(R[[ui]]), i � 2, and in the car , cdr , setcar ,and setcdr rules we assume z 2 Dom(�) and �(z) = [ua; ud].For any injection � from cells to variables such that X�Rng(�) is countably in�nite



9there is a natural extension to the remaining semantic domains:�(a) = a�(e;�) = e�(�)�(�) = fx := �(�(x)) x 2 Dom(�)g�([v1; : : : ; vn]) = [�(v1); : : : ; �(vn)]�(�) = f�(c) := �(�(c)) c 2 Dom(�)g�(v;�) = �(�); �(v)�(e;�;�) = �(�); �(e;�)We assume a �xed cell naming map � and write �� for �(�) and e� for �(e;�).Syntactic computation corresponds stepwise to semantic computation. Thus se-mantic entities that have the same syntactic representation are computationally indis-tinguishable. This is made precise in the following theorem.Theorem (simulation):(i) If e0;�0;�0 7! e1;�1;�1, then ��0 ; e�00 7! ��1 ; e�11 .(ii) If ��0 ; e�00 7! �2; e2, then we can �nd e1;�1;�1 such that ��1 ; e�11 = �2; e2 ande0;�0;�0 7! e1;�1;�1.3. Operational Approximation and EquivalenceIn this section we de�ne the operational approximation and equivalence relationsand study their general properties.De�nition (v �=): Two expressions are operationally approximate, written e0 v e1,if for any closing context E, if E[[e0]] is de�ned then E[[e1]] is de�ned. Two expressionsare operationally equivalent, written e0 �= e1, if they approximate one another.e0 v e1 , (8E 2 "E E[[e0]]; E[[e1]] 2 E; )(#E[[e0]] ) #E[[e1]])e0 �= e1 , e0 v e1 ^ e1 v e0By de�nition operational approximation (and hence operational equivalence) is a con-gruence relation on expressions. However it is not necessarily the case that instantiationsof equivalent expressions are equivalent even if the instantiation is de�ned. Note thatT and Nil are not operationally equivalent. These observations are summarized in thefollowing lemma.Lemma (Congruence):1. e0 v e1 , (8E 2 "E )(E[[e0]] v E[[e1]])2. # e and e0 �= e1 does not imply e0fx := eg �= e1fx := eg.



103. :(T �= Nil)Proof (congruence):Case 1: Trivial.Case 2: As a counter-example we have eq(x; x) �= T but eq(cons (T; T); cons (T; T)) �=Nil.Case 3: The context if("; car (T); T) will distinguish T and Nil. congruenceAn alternate de�nition of operational approximation and equivalence in the pres-ence of basic data is the following. De�ne two closed expressions to be trivially approx-imate if whenever the �rst is de�ned then both return the same atom or both returncells, or both return pfns. Then de�ne two expressions to be operationally approximatejust if they are trivially approximate in all closing contexts. This is de�nition given byPlotkin. Both de�nitions are equivalent in this setting since equality on basic data iscomputable.3.1. Weak extensionalityAnother characterization of operational approximation and equivalence is obtainedby extending the semantic characterizion of the maximum approximation relation givenin [Talcott 1985]. Two expressions are approximate just if all closed instantiations aretrivially approximate in all reduction contexts. Suitably generalized, this characteriza-tion remains valid in the presence of memory. We de�ne the relation vciu | all closedinstantiations of all uses are approximate | and show this to be the same as operationalapproximation. The vciu characterization of operational approximation is the key forproving many laws of approximation and equivalence.De�nition (ciu):e0 vciu e1 , (8�; �;R (8j < 2)(�[[R[[e�j ]]]] 2 E; ))(#(�[[R[[e�0 ]]]]) ) #(�[[R[[e�1 ]]]]))Theorem (ciu): e0 v e1 , e0 vciu e1A direct corollary of the ciu characterization of operational approximation is thefollowing weak form of extensionality.Corollary (wk.ext):e0 v e1 , (8�; �;R (8j < 2)(�[[R[[e�j ]]]] 2 E; ))(�[[R[[e�0 ]]]] v �[[R[[e�1 ]]]])A simple consequence of (ciu) is the fact that in the case of closed expressions weneed only check de�nedness in all closed reduction contexts in order to verify operationalapproximation.Theorem (op.closed): If e0; e1 2 E; thene0 v e1 , (8R 2 R;)(#(R[[e0]]) ) #(R[[e1]]))



11In the absence of memory operations, two expressions are operationally approx-imate just if all closed instantiations of variables to values are approximate [Talcott1985]. This property fails when objects with memory are introduced. The notion of allclosed instantiations being approximate, as well as the result just mentioned, is madeexplicit in the following.De�nition (vci):e0 vci e1 , (8�; � (8j < 2)(�[[e�j ]] 2 E; ))(�[[e�0 ]] v �[[e�1 ]])Lemma (non.ext): e0 vci e1 does not imply e0 v e1,Proof (non.ext): A counter example is e0 = seq(setcar (c; �x:x); �x:x) and e1 =seq(setcar (c; �x:x); �x:car (c)(x)). non:ext3.2. Strong isomorphismIn [Mason 1986], the notion of strong isomorphism was de�ned for the �rst-ordersubset of our language and a powerful collection of tools was developed for reasoningabout this relation. Two expressions e0 and e1 are strongly isomorphic if for every closedinstantiation either both are unde�ned are both are de�ned and evaluate to objects thatare equal modulo the production of garbage.De�nition ('): Two expressions are strongly isomorphic, written e0 ' e1, if foreach �, � such that �[[e�j ]] 2 E; for j < 2 one of the following holds:(1) "(�; e�0 ) and "(�; e�1 ), or(2) there exists u, �0, �0, �1 such that Dom(�) � Dom(�0), �0[[u]] 2 E; , Dom(�0) \Dom(�j ) = ; and �; e�j �7! (�j [ �0);u for j < 2.A consequence of (ciu) is that strong isomorphism implies operational equivalence.Theorem (striso): If e0 ' e1 then e0 �= e1.A corollary of (striso) is that operational equivalence is preserved by evaluation.Corollary (eval): �; e 7! �0; e0 ) �[[e]] �= �0[[e0]].The following is a collection of laws of strong isomorphism, and by (striso) theyare also laws of operational equivalence. They correspond to the context independentsubset of a complete set of rules for reasoning about memory operations in a �rst-ordersetting [Mason and Talcott 1989b,c].Corollary (laws):(i) efx := ug ' letfx := uge(ii) e ' letfx := egx(iii) R[[letfx := e0ge1]] ' letfx := e0gR[[e1]] for x not free in R(iv) R[[if(e0; e1; e2)]] ' if(e0; R[[e1]]; R[[e2]])



12(v) if(e0; e1; e1) ' letfx := e0ge1 x 62 FV(e1)(vi) letfx0 := cons(u0; u1)gletfx1 := e0ge ' letfx1 := e0gletfx0 := cons (u0; u1)geif x0 not free in e0 and x1 not free in u0; u1(vii) seq(setcar (x; y0); setcar (x; y1)) ' setcar (x; y1)(viii) seq(setcar (x; y); x) ' setcar (x; y)(ix) seq(setcdr (x0; x1); setcar (x2; x3); e) ' seq(setcar (x2; x3); setcdr (x0; x1); e)(x) setcar (cons (z; y); x) ' cons(x; y) ' setcdr (cons (x; z); y)Corollary (gc): If � is memory context such that Dom(�)\FV(e) = ; then �[[e]] �= e.The following theorem, a generalization of [Mason 1986], states that operationalequivalence and strong isomorphism coincide on a natural fragment.De�nition (E fo): The set of �rst order expressions E fo is inductively de�ned asA +X+ app(E fo ; E fo) + if(E fo ; E fo ; E fo) + letfX := E fogE fo + [n2N Fn(Enfo)Theorem (foc): If e0; e1 2 E fo and e0 �= e1, then e0 ' e1.The eta rule for the pure lambda calculus has the form e �= �x:e(x) if x is not freein e. In an appied calculus where there are objects that are not functions we need theadditional restriction that e must denote a function. In the presence of memory objects,if we interpret \e denotes a function" as e �= �[[�]] for some memory context � and somelambda abstraction � = �y:e0 then the eta rule is not valid. If we interpret \e denotesa function" as e �= �, then the eta rule is valid.Lemma (non.eta): In general �x:(�[[�x:e]])x is not operationally equivalent to�[[�x:e]].Proof (non.eta): As a counter-example we havefz := [T; Nil]g;�x:letfy := car (z)gseq(setcar (z; x); y):non:etaLemma (eta): If e �= �x:e0 then �x:e(x) �= e.4. Recursion PfnsIn [Talcott 1985] the notion of recursion operator was introduced. Recursion op-erators compute the least �xed point (with respect to operational approximation) offunctionals and thus provide a mechanism for de�nition by recursion. The de�nitionof recursion operator identi�es the essential properties needed to prove the least-�xed-point property. In order to extend the recursion theorem to the world of memoriesand to permit recursion operators that make use of memory, we need to de�ne the



13analog of functional. There are two possibilities: (i) as for the non-memory case func-tionals are expressions of the form �f; x:e or (ii) a functional is memory object of theform �[[�f; x:e]]. In case (ii) letting ' = �f; x:e we have rec(�[[']]) �= �[[rec(')]] and�[[']](rec(�[[']])) �= � [�0[['(rec('0))]] where �0[['0]] = �[[']] and Dom(�0) \Dom(�) = ;.So, in general rec(�[[']]) and �[[']](rec(�[[']])) will not be equivalent. Thus the mean-ingful object to take a �xed point of is the simple functional with no local memory.De�nition (recnop): A closed lambda expression rec is a recursion operator if thereexists �, � 2 L, p 2 X�Dom(�), such that �[[�]] 2 Efpg and the following two conditionshold:(i) rec(p) �7! �; �(ii) If ' = �f; x:e with FV(') \ Dom(�) = ; then �'; �'(x) �7! �'; eff := �'g where�'; �' = �fp := 'g; �fp := 'g.We call �; � the associated �xed-point template for rec (with parameter p). Con-dition (i) says that rec(') evaluates to �'; �' uniformly in the functional parameter.Condition (ii) says that applying �' to any value in a memory context whose restrictionto Dom(�) is �' reduces, without modifying memory, to a computation of the body ofthe functional e with f replaced by �'.Although the functionals we compute �xed points of have no local memory, the�xed points themselves will in general be pfn objects that have local memory. Thus theleast-�xed-point property is formulated in terms of pfn objects.Theorem (recn): If rec and rec0 are recursion operators then rec computes the least�xed-point of functionals and is operationally equivalent to rec0 on functionals. For anyfunctional ' and any pfn object  (�x) rec(') �= '(rec('))(min) '( ) v  ) rec(') v  (eq) rec(') �= rec0(')Two examples of recursion operators are recv and recm. recv is a conventionalcall-by-value �xed-point combinator which uses self-application to create the recursiveself-reference. recm is a recursion operator which uses the ability to create and updatecells to create the necessary self-reference. The method is essentially identical to theone suggested in [Landin, 1964].De�nition (recv recm): recv and recm are de�ned byrecv = �p:letfr := �h:�x:p(h(h); x)gr(r)recm = �p:letfz := cons(T; T)gseq(setcar (z; �x:p(�x:car (z)(x); x); �x:car (z)(x))Lemma (rec): recv and recm are recursion operators.Proof (rec): The �xed-point templates for recv and recm are ;;�x:p(�p(�p); x) where



14�p = �h:�x:p(h(h); x), and fz := [�y:p(�x:car (z)(x); y); T]g;�x:car(z)(x). rec5. ConclusionsThe results presented in this paper provide basic tools for specifying and reasoningabout objects with memory and programs acting on such objects. Our language is closeto existing applicative languages such as Lisp, Scheme, and ML. Memory can be rep-resented as syntactic contexts. This simpli�es the expression of many properties sinceit provides natural notions of parameterized memory objects, of binding, and of sub-stitution for parameters. In addition the syntactic representation allows us to computewith open expressions and provides a natural scoping mechanism for memory simplyusing laws for bound variables. Many of the basic equivalence relations on memoriesand other semantic entities translate naturally into simple syntactic equivalences suchas alpha-equivalence.A key result is the (ciu) characterization of operational approximation and equiv-alence. This is the basis of several important methods for proving approximation andequivalence. (ciu) extends the safety theorem of [Felleisen 1987, thm 5.27, p.149]. Twoexpressions are safely equivalent if every closed instantiation of every use is provablyequivalent in the assignment calculus. Since calculi can not express non-termination wehave that safe equivalence implies operational equivalence but not conversely.[Mason and Talcott 1989a] contains sample applications of our results. The �rst ap-plication shows how to lift results from the �rst-order fragment to the higher-order case.The second application studies two notions of stream: onetime streams (ala CommonLisp streams and Scheme ports) and reusable streams (ala Landin, Scheme). In eithercase a stream is characterized by the (possibly in�nite) sequence it generates. Tech-niques for transforming de�nitions of sequences to de�nitions of streams, for memoizing,and for transforming between onetime and reusable streams preserving the underlyingsequence are presented. This illustrates many aspects of reasoning about objects withmemory, speci�cation of objects with memory, and use of objects with memory as op-timized versions of pure pfns.Acknowledgements.The �rst author would like to thank Furio Honsell for numerous helpful discussions.This research was partially supported by DARPA contract N00039-84-C-0211.6. ReferencesFelleisen, M.[1987] The calculi of lambda-v-cs conversion: A syntactic theory of control and statein imperative higher-order programming languages, Ph.D. thesis, Indiana Uni-versity.Landin, P. J.[1964] The mechanical evaluation of expressions, Computer Journal, 6, pp. 308{320.
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