
Recording and Checking HOL ProofsWai Wong�Department of Computing StudiesHong Kong Baptist UniversityKowloon Tong, Hong KongAbstractFormal proofs generated by mechanised theorem proving systems mayconsist of a large number of inferences. As these theorem proving systemsare usually very complex, it is extremely di�cult if not impossible toformally verify them. This calls for an independent means of ensuringthe consistency of mechanically generated proofs. This paper describes amethod of recording HOL proofs in terms of a sequence of applicationsof inference rules. The recorded proofs can then be checked by an inde-pendent proof checker. Also described in this paper is an e�cient proofchecker which is able to check a practical proof consisting of thousands ofinference steps.1 IntroductionFormal methods have been used in the development of many safety-critical sys-tems in the form of formal speci�cation and formal proof of correctness. Formalproofs are usually carried out using theorem provers or proof assistants. Thesesystems are based on well-founded formal logic, and provide a programmingenvironment for the user to discover, construct and perform proofs. The resultof this process is usually a set of theorems which can be stored in a disk �le andused in subsequent proofs. HOL is one of the most popular theorem provingenvironments. The users interact with the system by writing and evaluatingML programs. They instruct the system how to perform proofs. A proof is asequence of inferences. In the HOL system, it is transient in the sense that thereis no object that exists as a proof once a theorem has been derived.In some safety-critical applications, computer systems are used to implementsome of the highest risk category functions. The design of such a system is oftenformally veri�ed. The veri�cation usually produces a large proof consisting oftens of thousands, even up to several millions, of inferences. [Won93a] describesa proof of correctness of an ALU consisting of a quarter of a million inferencesteps. In such situations, it is desirable to check the consistency of the sequence�The work described in this paper was carried out by the author while he was in the Univer-sity of Cambridge Computer Laboratory supported by a grant from SERC (No. GR/G223654)

of inferences with an independent checker. The reasons for requiring independentchecking are:� the mechanically generated formal proofs are usually very long;� the theorem proving systems are usually very complex so that it is ex-tremely di�cult (if it is not impossible) to verify their correctness;� the programs that a user develops while doing the proof are very oftentoo complicated and do not have a simple mapping to the sequence ofinferences performed by the system.An independent proof checker can be much simpler than the theorem prover sothat it is possible to be veri�ed formally. The U. K. Defence standard 00 { 55calls for such an independent proof checker when the `highest degree of assurancein the design' is required [oD91].The necessary condition for a HOL proof to be checked by an independentchecker is to have the proof expressed as a sequence of inferences. To achievethis, a method of recording HOL proofs has been developed and implemented.This comprises a proof �le format, a small modi�cation to the HOL core systemand a library of user functions for managing the proof recorder. The approach ofadding the proof recording feature to the HOL system is discussed in Section 3.This is followed by a section describing briey the proof �le format and a sectionon the proof recording library. Section 6 discusses some issues of implementinga proof checker. An e�cient proof checker has been implemented and will bedescribed in Section 7 and 8.2 Proofs in HOLA detailed description of the HOL logic and its proof theory, together withseveral tutorial examples of using the HOL system can be found in [GM93]. Forthe bene�t of the readers who are not familiar with HOL, an overview of theHOL deductive system and the theorem-proving infrastructure is given in thissection.A proof is a �nite sequence of inferences � in a deductive system. Eachinference in � is a pair (L; (�; t)) where L is a (possibly empty) list of sequents(�1; t1) : : : (�n; tn) and (�; t) is known as a sequent . The �rst part � of a sequentis a (possibly empty) set of terms known as the assumptions. The second partt is a single term known as the conclusion. A particular deductive system isusually speci�ed by a set of schematic rules of inference (also known as primitiveinference rules) written in the following form�1 ` t1 : : : �n ` tn� ` t (1)The sequents above the line are called the hypotheses of the rule and the sequentbelow the line is called its conclusion. Each inference step in the sequence of

inferences forming a proof must satisfy one of the inference rules of the deductivesystem. There are eight primitive inference rules in HOL. They are described indetail in Section 16.3.1 of [GM93]. In HOL, rules of inference are implementedby ML functions.More complex inference can be created by combining the primitive inferencerules. For example, the rule of symmetry of equality([SYM]) can be speci�ed as� ` t1 = t2� ` t2 = t1 : (2)This can be derived using the primitive rules as follows:1. � ` t1 = t2 [Hypothesis]2. ` t1 = t1 [Reexivity]3. � ` t2 = t1 [Substitution of 1 into 2]This style of presenting a proof is known as Hilbert style. Each line is a singlestep in the sequence of inferences. The �rst column is the line number. Themiddle column is the theorem(s) derived in this step. The right-hand column isknown as the justi�cation which tells which rule of inference is applied in eachstep.Derived rules are also represented by ML functions. They are implementedin terms of the primitive rules. A theorem prover in which all proofs are fullyexpanded into primitive inferences is known as fully-expansive[Bou92]. Theadvantage of this type of theorem prover is that the soundness of the proof isguaranteed since every primitive inference step is actually performed. However,this is very expensive in terms of both time and space for any sizable proof. Toimprove the e�ciency of HOL, some of the simple and frequently used derivedrules, such as SYM, are not fully expanded, but are implemented directly in ML.These rules, including the primitive rules and derived rules that are imple-mented directly in ML, will be referred to as basic inference rules or simplybasic rules below. When recording a proof, all inference steps in which a basicinference rule is applied should be included so that any error resulting from bugsin the implementation of the inference rules can be caught.Simple proofs can be carried out in HOL by calling the inference rules insequence. However, these inference steps are far too small for any sizable proof.Another more powerful way of carrying out proof, known as goal-directed ortactical proof, is often used. In this proof style, a term in the same form asthe required theorem is set up as a goal, tactics are used to reduce the goalto simpler subgoals recursively until all the subgoals are resolved. In such aproof, the user does not call the inference rules directly. However, a correctsequence of inferences is calculated and performed by the system behind thescenes automatically to derive the theorem.A proof in HOL as described above is carried out within an environmentwhich consists of a type structure
 and a signature under the type structure�
. The type structure
 is a set of type constants, each of which is a pair (�; n)where � is the name and n is known as the arity. Type constants include boththe atomic types and the type operators. For example, the name of the atomic

type : bool is the string bool and its arity is 0, and the name of the type operatorlist is list and its arity is 1. The signature �
 is a set of constants, each ofwhich is a pair (c; �) where c is the name and � is its type and all the typeconstants that occur in the �s must be in
. This provides a context againstwhich the well-typedness of terms can be checked.A formal theory of the HOL proof system has been developed by J. vonWright [vW94]. The notion of types, terms, inferences and proofs are capturedin his theory. This provides a formal base for developing a proof checker.3 Recording HOL ProofsIn the HOL systems, there exists no object as a HOL proof once a theorem isderived whatever the proof style used in the derivation. In order to check theconsistency of a HOL proof by an independent system, one needs to preservethe proof.Since the HOL system is a fully-expansive theorem prover, it is possibleto record the sequence of inference rules together with the hypotheses and theconclusion in the derivation of a theorem. The recording can be done at thetime the system performs each inference. Thus, the proof can be preserved asa sequence of inferences and saved into a disk �le. A proof �le format has beende�ned for this purposes. While the complete de�nition of the proof �le formatcan be found in [Won93b], it is described briey in Section 4 below.The approach suggested above requires that the HOL system be modi�ed soas to enable each inference rule to be recorded at the time it is performed. Theprinciple of implementing the recording feature is to make as little change tothe core system as possible. Furthermore, the modi�cation to the HOL systemshould have as little penalty on the system performance as possible especiallywhen the recording feature is not enabled.The actual modi�cations to the core system were� to de�ne a new ML data type to represent the recorded inference rules;� to modify all basic inference rules to save their names and arguments toan internal list;� to add a small number of functions to enable/disable the recording and toaccess the list of saved inferences.These modi�cations have been implemented in HOL88 version 2.02 as a small setof low level functions in the core system. The details are described in [Won93b].In order to use the proof recording feature for practical proofs, a exibleand convenient user interface should also be provided. Such an interface wasimplemented as a HOL library in HOL88. It is described briey in Section 5while the details can be found in [Won94].A benchmark of the proof recorder was carried out on the correctness proofof a simple multiplier described in [Gor83] which is often used as a benchmarkfor the HOL system. The results can be found in Section 9.

4 Proof File FormatA recorded proof is saved in a disk �le in a format known as prf format. Proof�les in this format are intended primarily for automatic checkers. They followthe Hilbert style of proofs as described in Section 2. It is a linear model whichsimpli�es both the generation and the checking of proofs.The proof �le format prf has two levels: the core level allows only primitiveinference rules in a proof, and the extended level allows all basic inference rules.The syntax of the proof �le format prf is similar to LISP S-expressions.Objects, such as proof lines, theorems, terms and so on, are enclosed in a pairof matching parentheses. The �rst atom in an object is a tag indicating whatkind of object it is. A �le in this format begins with a format expression whichidenti�es the name, version and level of the format it conforms to. This isfollowed by an environment expression. The environment consists of all thetypes and constants known in the current theory. The remainder of the �leconsists of one or more proofs. Each proof expression begins with the PROOF tagidentifying the expression as a proof. This is followed by the name of the proofand a list of theorems. These theorems are the goals of the proof. A checkerchecking the proof may stop processing the remaining proof lines after it hasfound all the theorems matching the goals in the theorem �elds. The last partof a proof expression is a sequence of proof lines.Although proof �les in the prf format are text �les, they are primarily foruse by programs such as proof checkers. They are not for showing proofs to ahuman reader.5 The record proof LibraryThe record proof Library serves as an interface to the proof recording featurein the core system. It is organised into two levels: the upper level is the userinterface intended for users to record proofs and manage proof �les; the lowerlevel is for developers who may develop other utilities using the proof recordingfeature.5.1 The User InterfaceTo a user, recording proof is a feature which can be enabled or disabled. What-ever the state the system is in, it performs proofs in the same way except thatthe extra step of recording the proofs in a �le is carried out only if the featureis enabled. The typical use of this feature is1. the user carries out a proof in the usual manner;2. when he/she is satis�ed with the proof, the proof recording feature isenabled by loading the library record proof. Then, the proof is re-doneonce more in batch mode, and a proof �le is generated.

While one is developing the proof, one will not require the system to recordand save the proof in a disk �le. To disable the proof recording feature, thelibrary part disable can be loaded instead of the whole library. This is done bythe command:load_library`record_proof:disable`;;Usually, the proof script is saved in a script �le. It can then be loaded into thesystem to perform the proof in a batch processing fashion. By loading di�erentparts of the library as required, the same script �le can be used to performnormal proofs and to generate proof �les without any modi�cation.5.2 The Developer's InterfaceIn addition to the user interface, the record proof library also provides a lowerlevel interface to the proof recorder. This interface consists of a small numberof ML functions to allow �ner control of the proof recorder. They are useful fordeveloping alternative user interfaces or applications other than proof checking.The process of recording proofs and generating proof �les can be divided intothree stages:1. recording inference steps;2. generating a proof;3. outputting to a text �le.In Stage 1, once the proof recorder was enabled by calling an ML function,every application of a basic inference rule is recorded in an internal bu�er.Each inference is represented by an ML object of type step. The recordingcan be temporarily suspended and resumed later. The current state of therecorder and the internal bu�er can be accessed by calling ML functions. TheML functions available to the developer for managing the proof recorder aredocumented in [Won94].6 Checking HOL ProofsHaving modi�ed the HOL system to incorporate the proof recorder and devel-oped the record proof library, HOL proofs can now be saved in proof �les.The next phase is to develop an e�cient proof checker to check the proofs.The dominant requirement of this checker is to be able to check large proofsgenerated from real applications which consist of thousands or tens of thousandsof inference steps. This means that the implementation should be fast ande�cient, and should be able to perform reasonably well with limited resources,i.e., limited amount of physical memory and disk space. With the eventual formalveri�cation in mind, the checker follows fairly closely von Wright's formal theory,especially the critical part, i.e., the checking of the inferences.A checker accepting the core level proof �le will be relatively simple, so itmay possibly be veri�ed formally. A checker for the extended level proofs could

be implemented in two di�erent ways. The �rst approach is to write a programto expand the inference steps involving derived rules into a sequence of primitivesteps before being sent to the core checker. This approach has the advantageof utilising the core checker which may be formally veri�ed, therefore, achiev-ing higher con�dence in the consistency of the proof. However, this approachcan increase the number of inference steps considerably so the amount of timerequired to check the proof will be much longer.1 The second approach checksall basic inference rules directly. This approach can result in a more e�cientchecker since the basic derived rules are relatively simple to check.No matter which approach is used to implement a checker, its memoryrequirement is very large for large proofs because all theorems derived in thesequence have to be kept in memory. This is because a theorem derived in anearlier step may be referred to by the very last step. Logically, many modernsystems are able to address many gigabytes, even up to terabytes of virtualmemory, but physical memory is still limited. When large numbers of theoremsare kept in memory, thrashing occurs, thus slowing down the process. Thisproblem has been solved in the e�cient checker by processing the proof �le intwo passes (see Section 8).In fact, two versions of a checker have been implemented in Standard ML ofNew Jersey. One of them, the more formal version, accepts the core level proofsonly. Its critical part was implemented by translating von Wright's HOL prooftheory directly into SML functions. The other version, the more e�cient version,can check proofs in the extended level using the direct approach mentioned in aprevious paragraph. It is also based on the formal theory but with optimised useof memory. The major di�erences between these two versions are in the internalrepresentation of types and terms, and the handling of theorem reference. Thecritical part | the checking of each inference | in both versions follows veryclosely to the formal theory. The non-critical parts of the two versions, forinstance the proof �le parser, the I/O handling and so on are identical, and usethe same SML source �les.7 Using the Proof CheckerTo a user, the checker is a program which reads a proof �le, checks the proofs init and reports back with either a success which means the proofs are correct or afailure which means the opposite. It creates a log �le containing information ofwhat hypotheses and stored theorems have been used and the resulting theoremsof the proofs. The log �le is in a format similar to the proof �le.7.1 Loading the CheckerCurrently, the checker program modules have to be loaded into SML by evalu-ating the expression1By examining the derivations of the derived rules, one can see that each derived rule maybe expanded into �ve to twenty primitive rules.

use "join1.sml";This will compile and link the modules to form the checker. After loading themodules, a top-level function check_proof is de�ned as the entry point to thechecker.When the program becomes stable, it will be possible to save an executableimage. Then, the checker will be invoked as a shell command.7.2 Invoking the CheckerThe checker is invoked in SML by evaluating the function check_proof whichtakes a string as its sole argument. The string is the proof �le name which,by convention, has the su�x .prf but the checker accepts any name. If the�lename has a su�x .gz, the checker will assume it is a compressed �le. Itwill run a decompresser automatically, and the log �le will also be stored in acompressed form. The default compression/decompression utilities are the GNUgzip/gunzip programs. Below is a sample session of using the checker to checka compressed proof �le named MUL_FUN_CURRY in the directory proofs parallelto the current directory. 1- check_proof "../proofs/MULT_FUN_CURRY.prf.gz";Current environment: MULT_FUN_CURRYProof: MULT_FUN_CURRYProof MULT_FUN_CURRY has been checkedProof: MULT_FUN_CURRY_THMProof MULT_FUN_CURRY_THM has been checkedUsing the following hypotheses:<-8> |- T :bool{... theorems deleted}Proof: MULT_FUNProof MULT_FUN has been checkedProof: MULT_FUN_DEFProof MULT_FUN_DEF has been checkedUsing the following hypotheses:{... theorems deleted}val it = () : unit-

8 Implementation of the CheckerThis section describes briey the implementation of the checker. The full detailsincluding the complete source code can be found in [Won95].The checker is structured into a number of modules as shown in Fig. 1. Themodules can be divided into two groups: the core group and the auxiliary group.Modules in the core group are shown in the �gure with thick border, whereasother modules are shown with thin border.8.1 The Core ModulesThe core modules implement the internal representation of HOL types, terms,theorems and proofs, and the checking of the inferences. In the formal version,these modules are translated directly from von Wright's formal theory of HOLproofs. In the e�cient version, the internal representation is slightly di�erent.De Bruijin's name-free representation is used for terms.The Check module contains all functions for checking the consistency ofinference rules. In the formal version, this module contains only eight checkingfunctions for the eight primitive rules. These functions are translated directlyfrom the formal theory. As an example, the function for checking the primitiverule ASSUME and its formal de�nition in the HOL proof theory is shown in Fig. 2.The SML function and the HOL de�nition are very close.In the e�cient version, the Check module contains functions for checking allbasic inference rules. The functions for the primitive rules are the same as theformal version except very minor changes to take care of the slightly di�erentrepresentation of HOL types and terms. The functions for checking other basicrules are derived from speci�cation of these rules found in [GM93]. Fig. 3 showsthe basic inference rule SYM and its checking function.One major di�erence between the two versions of the checker is that theformal version processes the proof �le in one pass while the e�cient version intwo passes. Since a theorem derived in an inference step may be referred to byany subsequent steps, the checker has to cumulate all theorems in main memorywhile processing a proof. A practical proof may consist of thousands of inferencesteps. The storage for theorems will be huge. To overcome this problem, thee�cient version processes the proof twice.In the �rst pass, it builds a theorem reference table. This table consists of twodynamic arrays whose elements are integers as shown in Fig. 4a. Each elementrepresent a proof line. The indices to the elements are the proof line numbers.Since the proof lines are numbered with both positive and negative numbers, butonly non-negative numbers are allowed in indexing the array, two arrays are used.The TabHyp array is for the hypothesis lines whose line numbers are negative, andthe TabLine array is for proof lines whose numbers are positive. These arrays arecreated using the DynamicArraymodule in the SML/NJ library. Using dynamicarrays instead of static ones releases the upper limit of the number of lines inthe proof.

Htype: Htype_sig

HtypeCmp

:ORD_KEY

HtermCmp

:ORD_KEY

Hterm:Hterm_sig

Henv:Henv_sig Hthm:Hthm_sig

Proof:Proof_sig

Check:Check_sig

Debug:Debug_sig

Exception:

:Exception_sig HOLProofKey

:Keyword_sig

Report:Report_sig

Io:IO_sig

:Parsing_sig

Parsing

Pass1:Pass_sig Pass2:Pass_sigFig. 1. Checker module structure

|- !Typl Conl as t tm. PASSUME Typl Conl (Pseq as t) tm =Pwell_typed Typl Conl tm /\Pboolean tm /\ (t = tm) /\ (as = {tm})a) Formal de�nition in HOLfun PASSUME Typl Conl pseq tm =Pwell_typed Typl Conl tm andalsoPboolean tm andalso(Pseq_concl pseq = tm) andalso(Pseq_assum pseq = (SetOf [tm])); (* END FUN_DEC *)b) Checking function in the formal versionFig. 2. Checking function and formal de�nition of the primitive rule ASSUMEIn the �rst pass, the checker looks at the justi�cation part of the proof lines.When it encounters a reference to a theorem in a previous proof line, it entersthe current line number into the element corresponding to the referred line inthe table. For example, when the checker is at Line 3, it �nds that this linerefers to the theorem in hypothesis Line 1. It enters 3 into the �rst element ofTabHyp. To speed up Pass 1 process, the checker can skip over other parts of theproof line quickly. This is done by scanning the input and looking for matchingparentheses only. At the end of this pass, each element of the theorem referencetable will contain the highest line number which is the latest line referring tothe theorem. In the table shown in Fig. 4a, Line 5 is the last line referring tothe theorem derived in Line 2 and Line 4.In the second pass, the checker stores theorems referred to by other prooflines in a theorem table. This table is implemented by a dictionary in the Dictmodule of the SML/NJ library. The key of each entry is the line number. Sincethe dictionary is represented by balanced splay tree, searching for a theorem isfast. After checking a proof line, the checker examines the theorem referencetable, if the value of the current element is greater than the current line number,i.e., it will be referred to later, the theorem is saved in the theorem table. Fig. 4billustrates the situation in which the checker has just stored the theorem derivedin Line 2. when the checker retrieves theorem, it also examines the theoremreference table. If the current line is the last one to refer to the theorem, i.e.,� ` t1 = t2� ` t2 = t1 fun chk_Sym(line, n, thm) =let val thm1 = get_thm(line, n)val (left,right) = dest_eq (concl thm1)in ((right,left) = dest_eq (concl thm)) andalso(HtermSet.equal((hyp thm), (hyp thm1)))endFig. 3. Basic rule SYM and its checking function

1

2

5

4

3

5

0

0

5

0

0

0

0

0

TabLineTabHyp

-1

2

...

...

3

key theorem

a) theorem reference table b) theorem TableFig. 4. Data structures for theorem referencesthe current line number is equal to the value in the table, the theorem is removedfrom the dictionary. Continuing the scenario in Fig. 4b, the next line is Line 3,it refers to hypotheses Line 1. Since this is the last line referring to the theorem,the checker removes it from the table. This arrangement minimises the numberof theorems stored in the table, thus reduces the memory requirement.8.2 Auxiliary ModulesThe HOLProofKeymodule de�nes the concrete syntax, i.e., the tags, of the proof�les. The Parsing module consists of several higher order parsing functions.The parser proper is in the modules Pass1 and Pass2. It is a recursive descendparser.The Exception and Debug modules are responsible for handling errors. TheDebug module maintains a debug ag for each module. The values of these agsare non-negative integers. Higher the value, more the information will be displaywhile checking a proof. The Report module is for formatting the output to thelog �le.The Io module handles all �le input and output. When the checker is in-voked, it creates a decompression process running as a �lter in the background.The communication between this process and the checker is via a UNIX domainsocket. In the case the �le is uncompressed, no decompression is needed, but adummy cat process is created, and the communication is still via a socket. Thisarrangement simpli�es the checker as its input routine always reads from theinput socket. Similarly, an output socket is created with a compression processto compress the output to the log �le on the y. This arrangement is illustratedin Fig. 5.

Proof file Log file

Output

socket

Input

socket

CheckerInput filter Output filterFig. 5. Checker input/output arrangement9 BenchmarkingA proof of correctness of a simple multiplier described in [Gor83] is often used asa HOL benchmark. This is a small to medium size proof which generates 14500intermediate theorems. This proof has been used to test the proof recorder andthe checker.The multiplier proof consists of four ML �les. A proof �le is generatedfor each ML �le. It contains all the sub-proofs in the corresponding ML �le.Table 1 lists the time taken to record this proof and the proof �le size. Twotests was carried out: the �rst with the proof recorder disabled; and the secondwith it enabled. The run time and the garbage collection time (GC) reportedby the HOL system are listed under the columns headed DISABLED andENABLED, respectively. The tests ran on a SUN Sparc 10 Server.As the �gures in the table show, the time (2412:9 seconds ' 40 minutes)required to record the proof and generate the proof �les is considerable longerthan to perform the proof only, but it is not excessive. Most of the extra time isspent in converting the internal presentation to the textual format and actuallywriting the disk �les. This extra time is acceptable since the proof �les will onlybe generated after the proof is completed satisfactorily (probably once) and beran in batch mode.The sizes of the proof �les are also listed in Table 1. They are very large (43Table 1. Benchmark of recording the multiplier proof (Time in seconds andsize in bytes)FILE No. of DISABLED ENABLED SIZETHMS RUN GC RUN GC Raw Compr'dmk_NEXT 2972 { { 116.0 12.8 2693853 62202MULT_FUN_CURRY 670 { { 83.3 7.1 1553642 29103MULT_FUN 6943 { { 488.1 120.0 8101358 188201HOL_MULT 3946 { { 1675.5 250.1 31200001 447036TOTAL 14531 65.3 11.8 2412.9 390.0 43627841 726542

Table 2. Benchmark for checking the multiplier proof (Time in seconds)Proof TimeFile Run System GC Realmk_NEXT 139.3 15.3 3.7 170.0MULT_FUN_CURRY 77.3 9.6 2.6 100.4MULT_FUN 406.3 44.6 15.4 488.8HOL_MULT 1472.1 152.0 98.5 1783.3Total 2095.0 138.8 120.2 2542.5Mbytes in total) because every intermediate theorem has to be saved. The sizeper theorem is comparable to the theory �les in HOL88. However, the proof �lesare intended for automatic tools not for human readers, and they can be storedin compressed form. The size of the compressed �les is much smaller. It amountsto less than 2% of the raw size. As the compression is done automatically, thisdoes not pose too much burden to the user.The multiplier proof �les were successfully checked by the checker. No errorwas found from the proof �les. Table 2 lists the time taken to check the proof�les. This test ran on a SUN SparcStation 20.2 The time is in the same order ofmagnitude as the recording. One important observation is that the process sizeis relatively small when performing the checking. The process size of the checkerwhen it is just loaded is 14 Mbytes. The maximum size when performing thechecking is only 16 Mbtyes. This shows that the implementation does keep thememory usage very small.10 ConclusionsThe research described in this paper shows a method of independent checkingto ensure the consistency of mechanically generated proofs in LCF-like systems.A benchmark has shown that the proof checker is able to check a practical proofconsisting of several thousands of inference steps. The application of this methodis mainly in the formal veri�cation of safety-critical and high-integrity systems.After a formal proof has been generated by a contractor, there is a need for anindependent means of assessing the consistency of the proof.There has been little work in the area of veri�ed proof checking. The no-table exception is the work of Boyer and Dowek on proof checking for Nqthmproofs [BD93]. Other theorem prover, such as nurpl[ea96], which makes use ofproof objects in runtime to implement transformation tactics, may utilise similarapproach to do proof checking.If the proof checker itself can be formally veri�ed, it will greatly boost thecon�dence in the consistency of checked proofs. Since the checker has beenimplemented using von Wright's formal theory of the HOL proof system as its2The recording tests was carried out much earlier than the checking test. In fact, it wasdone before the checker was developed. The author was not able to access the same type ofmachine to do the checking test.

speci�cation, it is possible to formally verify the checker provided that a formalsemantics of Standard ML is developed. Attempts have been made to establisha formal semantics of Standard ML in HOL [Sym93] [VG93]. One approachto formally verify the proof checker is to reason based on the formal semanticsdirectly, but there still more work needs to be done before one can attempt aformal veri�cation of a practical program such as the checker. Another approachof using re�nement has been suggested by von Wright [vW95].In addition to being a format to communicate proofs between the HOLsystem and the proof checker, the proof �le format may be used to communicatebetween di�erent theorem prover systems with similar logic, such as betweenHOL88 and HOL90. It can also make the proofs themselves become deliverables.Having a proof saved as a sequence of inference steps allows new tools to bedeveloped to analyse the proof, for instance, a tool generating a dependencygraph to show the use of theorems in deriving a new theorem.Although the recorder and checker is able to handle medium size proofs, thereare several improvements could be made. Firstly, the proof �le format could bechanged to eliminate some redundancy and to reduce the �le size. Secondly, theproof recorder could be improved so that the proof could be written into a �lewhile it is being generated. This improvement will likely be done in HOL90. Theproof checker now checks individual proofs in a at environment. It is importantto develop a system to manage the proofs and theorems in a more structuredand hierarchical way if the checker is to be used in real applications which maycontain many subproofs and their dependency is very complex.AcknowledgementThe idea of recording inference steps and generating proof lines has been sug-gested by many people including Malcolm Newey and Keith Hanna. MikeGordon implemented a prototype of the recording functions in HOL88. Theproof recorder described in this paper improved and enhanced this prototype.The translation of the formal HOL proof theory into ML functions used in theformal version was carried out by John Herbert. It was a great pleasure to workwith Mike, Paul, Brian and others in the Hardware Veri�cation Group in theComputer Laboratory in Cambridge. The work described here would not havebeen completed without their invaluable advice, help and company.References[BD93] Robert S. Boyer and Gilles Dowek. Towards checking proof checkers.In Workshop on types for proofs and programs (Type '93). 1993.[Bou92] R. J. Boulton. On e�ciency in theorem provers which fully expandproofs into primitive inferences. Technical Report 248, University ofCambridge Computer Laboratory, 1992.

[ea96] Constable et al. Implementing Mathematics with the Nuprl proofdevelopment system. Prentice-Hall, 1996.[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL|a theorem proving environment for higher order logic. CambridgeUniversity Press, 1993.[Gor83] M. J. C. Gordon. LCF LSM, A system for specifying and verifyinghardware. Technical Report 41, University of Cambridge ComputerLaborartory, 1983.[oD91] Ministry of Defence. Requirements for the procurement of safety-critical software in defence equipment. Interim Standard 00-55, April1991.[Sym93] D. Syme. Reasoning with the formal de�nition of standard ML inHOL. In Higher Order Logic Theorem Proving and Its Applications,Lecture Notes in Computer Science No. 780, pages 43{58. Springer-Verlag, 1993.[VG93] M. VanInwegen and E. Gunter. HOL-ML. In Higher Order LogicTheorem Proving and Its Applications, Lecture Notes in ComputerScience No. 780, pages 59{72. Springer-Verlag, 1993.[vW94] J. von Wright. Representing higher order logic proofs in HOL. InThomas F. Melham and Juanito Camilleri, editors, Higher OrderLogic Theorem Proving and Its Applications: 7th International Work-shop, volume 859 of Lecture Notes in Computer Science, pages 456{470. Springer-Verlag, September 1994.[vW95] J. von Wright. Program re�nement by theorem prover. In Proceedingsof the 6th Re�nement workshop, Lecture Notes in Computer Science.Springer-Verlag, 1995.[Won93a] W. Wong. Formal veri�cation of VIPER's ALU. Technical Report300, University of Cambridge Computer Laboratory, New MuseumsSite, Pembroke Street, Cambridge CB2 3QG, ENGLAND, May 1993.[Won93b] W. Wong. Recording HOL proofs. Technical Report 306, Universityof Cambridge Computer Laboratory, New Museums Site, PembrokeStreet, Cambridge CB2 3QG, ENGLAND, July 1993.[Won94] W. Wong. The HOL record proof Library. Computer Laboratory,University of Cambridge, 1994.[Won95] W. Wong. A proof checker for HOL proofs. Technical report, Universi-ty of Cambridge Computer Laboratory, New Museums Site, PembrokeStreet, Cambridge CB2 3QG, ENGLAND, 1995. to be published astechnical report.This article was processed using LATEX2" according to the LLNCS style

