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Abstract

Formal proofs generated by mechanised theorem proving systems may
consist of a large number of inferences. As these theorem proving systems
are usually very complex, it is extremely difficult if not impossible to
formally verify them. This calls for an independent means of ensuring
the consistency of mechanically generated proofs. This paper describes a
method of recording HOL proofs in terms of a sequence of applications
of inference rules. The recorded proofs can then be checked by an inde-
pendent, proof checker. Also described in this paper is an efficient proof
checker which is able to check a practical proof consisting of thousands of
inference steps.

1 Introduction

Formal methods have been used in the development of many safety-critical sys-
tems in the form of formal specification and formal proof of correctness. Formal
proofs are usually carried out using theorem provers or proof assistants. These
systems are based on well-founded formal logic, and provide a programming
environment for the user to discover, construct and perform proofs. The result
of this process is usually a set of theorems which can be stored in a disk file and
used in subsequent proofs. HOL is one of the most popular theorem proving
environments. The users interact with the system by writing and evaluating
ML programs. They instruct the system how to perform proofs. A proof is a
sequence of inferences. In the HOL system, it is transient in the sense that there
1s no object that exists as a proof once a theorem has been derived.

In some safety-critical applications, computer systems are used to implement
some of the highest risk category functions. The design of such a system is often
formally verified. The verification usually produces a large proof consisting of
tens of thousands, even up to several millions, of inferences. [Won93a] describes
a proof of correctness of an ALU consisting of a quarter of a million inference
steps. In such situations, it is desirable to check the consistency of the sequence
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of inferences with an independent checker. The reasons for requiring independent
checking are:

e the mechanically generated formal proofs are usually very long;

e the theorem proving systems are usually very complex so that it is ex-
tremely difficult (if it is not impossible) to verify their correctness;

e the programs that a user develops while doing the proof are very often
too complicated and do not have a simple mapping to the sequence of
inferences performed by the system.

An independent proof checker can be much simpler than the theorem prover so
that it is possible to be verified formally. The U. K. Defence standard 00 — 55
calls for such an independent proof checker when the ‘highest degree of assurance
in the design’ is required [oD91].

The necessary condition for a HOL proof to be checked by an independent
checker is to have the proof expressed as a sequence of inferences. To achieve
this, a method of recording HOL proofs has been developed and implemented.
This comprises a proof file format, a small modification to the HOL core system
and a library of user functions for managing the proof recorder. The approach of
adding the proof recording feature to the HOL system is discussed in Section 3.
This is followed by a section describing briefly the proof file format and a section
on the proof recording library. Section 6 discusses some issues of implementing
a proof checker. An efficient proof checker has been implemented and will be
described in Section 7 and 8.

2 Proofs in HOL

A detailed description of the HOL logic and its proof theory, together with
several tutorial examples of using the HOL system can be found in [GM93]. For
the benefit of the readers who are not familiar with HOL, an overview of the
HOL deductive system and the theorem-proving infrastructure is given in this
section.

A proof is a finite sequence of inferences A in a deductive system. Each
inference in A is a pair (L, (T',t)) where L is a (possibly empty) list of sequents
(T1,t1) ... (Tp,t,) and (T',t) is known as a sequent. The first part T' of a sequent
is a (possibly empty) set of terms known as the assumptions. The second part
t is a single term known as the conclusion. A particular deductive system is
usually specified by a set of schematic rules of inference (also known as primitive
inference rules) written in the following form

L
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The sequents above the line are called the hypotheses of the rule and the sequent
below the line 1s called its conclusion. Each inference step in the sequence of



inferences forming a proof must satisfy one of the inference rules of the deductive
system. There are eight primitive inference rules in HOL. They are described in
detail in Section 16.3.1 of [GM93]. In HOL, rules of inference are implemented
by ML functions.

More complex inference can be created by combining the primitive inference
rules. For example, the rule of symmetry of equality([SYM]) can be specified as
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This can be derived using the primitive rules as follows:
1. Tkt =t [Hypothesis]
2. Fti=1 [Reflexivity]
3. I'Fta=1 [Substitution of 1 into 2]

This style of presenting a proof is known as Hilbert style. Each line is a single
step in the sequence of inferences. The first column is the line number. The
middle column is the theorem(s) derived in this step. The right-hand column is
known as the justification which tells which rule of inference is applied in each
step.

Derived rules are also represented by ML functions. They are implemented
in terms of the primitive rules. A theorem prover in which all proofs are fully
expanded into primitive inferences is known as fully-exzpansive[Bou92]. The
advantage of this type of theorem prover is that the soundness of the proof is
guaranteed since every primitive inference step is actually performed. However,
this 1s very expensive in terms of both time and space for any sizable proof. To
improve the efficiency of HOL, some of the simple and frequently used derived
rules, such as SYM, are not fully expanded, but are implemented directly in ML.

These rules, including the primitive rules and derived rules that are imple-
mented directly in ML, will be referred to as basic inference rules or simply
basic rules below. When recording a proof, all inference steps in which a basic
inference rule is applied should be included so that any error resulting from bugs
in the implementation of the inference rules can be caught.

Simple proofs can be carried out in HOL by calling the inference rules in
sequence. However, these inference steps are far too small for any sizable proof.
Another more powerful way of carrying out proof, known as goal-directed or
tactical proof, is often used. In this proof style, a term in the same form as
the required theorem is set up as a goal, tactics are used to reduce the goal
to simpler subgoals recursively until all the subgoals are resolved. In such a
proof, the user does not call the inference rules directly. However, a correct
sequence of inferences is calculated and performed by the system behind the
scenes automatically to derive the theorem.

A proof in HOL as described above is carried out within an environment
which consists of a type structure 2 and a signature under the type structure
Y. The type structure Q is a set of type constants, each of which is a pair (v, n)
where v is the name and n is known as the arity. Type constants include both
the atomic types and the type operators. For example, the name of the atomic



type : bool is the string bool and its arity is 0, and the name of the type operator
list i3 list and its arity is 1. The signature X is a set of constants, each of
which is a pair (¢, o) where € is the name and ¢ is its type and all the type
constants that occur in the s must be in Q. This provides a context against
which the well-typedness of terms can be checked.

A formal theory of the HOL proof system has been developed by J. von
Wright [vW94]. The notion of types, terms, inferences and proofs are captured
in his theory. This provides a formal base for developing a proof checker.

3 Recording HOL Proofs

In the HOL systems, there exists no object as a HOL proof once a theorem is
derived whatever the proof style used in the derivation. In order to check the
consistency of a HOL proof by an independent system, one needs to preserve
the proof.

Since the HOL system 1s a fully-expansive theorem prover, it is possible
to record the sequence of inference rules together with the hypotheses and the
conclusion in the derivation of a theorem. The recording can be done at the
time the system performs each inference. Thus, the proof can be preserved as
a sequence of inferences and saved into a disk file. A proof file format has been
defined for this purposes. While the complete definition of the proof file format
can be found in [Won93b], it is described briefly in Section 4 below.

The approach suggested above requires that the HOL system be modified so
as to enable each inference rule to be recorded at the time 1t is performed. The
principle of implementing the recording feature is to make as little change to
the core system as possible. Furthermore, the modification to the HOL system
should have as little penalty on the system performance as possible especially
when the recording feature is not enabled.

The actual modifications to the core system were

e to define a new ML data type to represent the recorded inference rules;

e to modify all basic inference rules to save their names and arguments to
an internal list;

¢ to add a small number of functions to enable/disable the recording and to
access the list of saved inferences.

These modifications have been implemented in HOLSS version 2.02 as a small set
of low level functions in the core system. The details are described in [Won93b].

In order to use the proof recording feature for practical proofs, a flexible
and convenient user interface should also be provided. Such an interface was
implemented as a HOL library in HOLS88. It is described briefly in Section 5
while the details can be found in [Won94].

A benchmark of the proof recorder was carried out on the correctness proof
of a simple multiplier described in [Gor83] which is often used as a benchmark
for the HOL system. The results can be found in Section 9.



4 Proof File Format

A recorded proof is saved in a disk file in a format known as prf format. Proof
files in this format are intended primarily for automatic checkers. They follow
the Hilbert style of proofs as described in Section 2. It i1s a linear model which
simplifies both the generation and the checking of proofs.

The proof file format prf has two levels: the core level allows only primitive
inference rules in a proof, and the extended level allows all basic inference rules.

The syntax of the proof file format prf is similar to LISP S-expressions.
Objects, such as proof lines, theorems, terms and so on, are enclosed in a pair
of matching parentheses. The first atom in an object is a tag indicating what
kind of object it is. A file in this format begins with a format expression which
identifies the name, version and level of the format it conforms to. This is
followed by an environment expression. The environment consists of all the
types and constants known in the current theory. The remainder of the file
consists of one or more proofs. Each proof expression begins with the PROOF tag
identifying the expression as a proof. This is followed by the name of the proof
and a list of theorems. These theorems are the goals of the proof. A checker
checking the proof may stop processing the remaining proof lines after it has
found all the theorems matching the goals in the theorem fields. The last part
of a proof expression is a sequence of proof lines.

Although proof files in the prf format are text files, they are primarily for
use by programs such as proof checkers. They are not for showing proofs to a
human reader.

5 The record proof Library

The record_proof Library serves as an interface to the proof recording feature
in the core system. It 1s organised into two levels: the upper level i1s the user
interface intended for users to record proofs and manage proof files; the lower
level is for developers who may develop other utilities using the proof recording
feature.

5.1 The User Interface

To a user, recording proof is a feature which can be enabled or disabled. What-
ever the state the system is in, it performs proofs in the same way except that
the extra step of recording the proofs in a file is carried out only if the feature
is enabled. The typical use of this feature 1s

1. the user carries out a proof in the usual manner;

2. when he/she is satisfied with the proof, the proof recording feature is
enabled by loading the library record_proof. Then, the proof is re-done
once more in batch mode, and a proof file is generated.



While one 1s developing the proof, one will not require the system to record
and save the proof in a disk file. To disable the proof recording feature, the
library part disable can be loaded instead of the whole library. This is done by
the command:

load_library‘record_proof:disable‘;;

Usually, the proof script is saved in a script file. It can then be loaded into the
system to perform the proof in a batch processing fashion. By loading different
parts of the library as required, the same script file can be used to perform
normal proofs and to generate proof files without any modification.

5.2 The Developer’s Interface

In addition to the user interface, the record_proof library also provides a lower
level interface to the proof recorder. This interface consists of a small number
of ML functions to allow finer control of the proof recorder. They are useful for
developing alternative user interfaces or applications other than proof checking.

The process of recording proofs and generating proof files can be divided into
three stages:

1. recording inference steps;
2. generating a proof;
3. outputting to a text file.

In Stage 1, once the proof recorder was enabled by calling an ML function,
every application of a basic inference rule is recorded in an internal buffer.
Each inference is represented by an ML object of type step. The recording
can be temporarily suspended and resumed later. The current state of the
recorder and the internal buffer can be accessed by calling ML functions. The
ML functions available to the developer for managing the proof recorder are
documented in [Won94].

6 Checking HOL Proofs

Having modified the HOL system to incorporate the proof recorder and devel-
oped the record_proof library, HOL proofs can now be saved in proof files.
The next phase is to develop an efficient proof checker to check the proofs.

The dominant requirement of this checker is to be able to check large proofs
generated from real applications which consist of thousands or tens of thousands
of inference steps. This means that the implementation should be fast and
efficient, and should be able to perform reasonably well with limited resources,
i.e., limited amount of physical memory and disk space. With the eventual formal
verification in mind, the checker follows fairly closely von Wright’s formal theory,
especially the critical part, i.e., the checking of the inferences.

A checker accepting the core level proof file will be relatively simple, so it
may possibly be verified formally. A checker for the extended level proofs could



be implemented in two different ways. The first approach is to write a program
to expand the inference steps involving derived rules into a sequence of primitive
steps before being sent to the core checker. This approach has the advantage
of utilising the core checker which may be formally verified, therefore, achiev-
ing higher confidence in the consistency of the proof. However, this approach
can increase the number of inference steps considerably so the amount of time
required to check the proof will be much longer.® The second approach checks
all basic inference rules directly. This approach can result in a more efficient
checker since the basic derived rules are relatively simple to check.

No matter which approach is used to implement a checker, its memory
requirement is very large for large proofs because all theorems derived in the
sequence have to be kept in memory. This is because a theorem derived in an
earlier step may be referred to by the very last step. Logically, many modern
systems are able to address many gigabytes, even up to terabytes of virtual
memory, but physical memory is still limited. When large numbers of theorems
are kept in memory, thrashing occurs, thus slowing down the process. This
problem has been solved in the efficient checker by processing the proof file in
two passes (see Section 8).

In fact, two versions of a checker have been implemented in Standard ML of
New Jersey. One of them, the more formal version, accepts the core level proofs
only. Its critical part was implemented by translating von Wright’s HOL proof
theory directly into SML functions. The other version, the more efficient version,
can check proofs in the extended level using the direct approach mentioned in a
previous paragraph. It is also based on the formal theory but with optimised use
of memory. The major differences between these two versions are in the internal
representation of types and terms, and the handling of theorem reference. The
critical part — the checking of each inference — in both versions follows very
closely to the formal theory. The non-critical parts of the two versions, for
instance the proof file parser, the I/O handling and so on are identical, and use
the same SML source files.

7 Using the Proof Checker

To a user, the checker is a program which reads a proof file, checks the proofs in
it and reports back with either a success which means the proofs are correct or a
failure which means the opposite. It creates a log file containing information of
what hypotheses and stored theorems have been used and the resulting theorems
of the proofs. The log file is in a format similar to the proof file.

7.1 Loading the Checker

Currently, the checker program modules have to be loaded into SML by evalu-
ating the expression

1By examining the derivations of the derived rules, one can see that each derived rule may
be expanded into five to twenty primitive rules.



use "joinl.sml";
This will compile and link the modules to form the checker. After loading the
modules, a top-level function check_proof is defined as the entry point to the
checker.

When the program becomes stable, it will be possible to save an executable
image. Then, the checker will be invoked as a shell command.

7.2 Invoking the Checker

The checker is invoked in SML by evaluating the function check_proof which
takes a string as its sole argument. The string is the proof file name which,
by convention, has the suffix .prf but the checker accepts any name. If the
filename has a suffix .gz, the checker will assume it is a compressed file. It
will run a decompresser automatically, and the log file will also be stored in a
compressed form. The default compression/decompression utilities are the GNU
gzip/gunzip programs. Below is a sample session of using the checker to check
a compressed proof file named MUL_FUN_CURRY in the directory proofs parallel
to the current directory.

- check_proof "../proofs/MULT_FUN_CURRY.prf.gz"; 1

Current environment: MULT_FUN_CURRY

Proof: MULT_FUN_CURRY
Proof MULT_FUN_CURRY has been checked

Proof: MULT_FUN_CURRY_THM
Proof MULT_FUN_CURRY_THM has been checked

Using the following hypotheses:
<-8> |- T :bool

{... theorems deleted}

Proof: MULT_FUN
Proof MULT_FUN has been checked

Proof: MULT_FUN_DEF
Proof MULT_FUN_DEF has been checked

Using the following hypotheses:
{... theorems deleted}

val it = () : unit




8 Implementation of the Checker

This section describes briefly the implementation of the checker. The full details
including the complete source code can be found in [Won95].

The checker is structured into a number of modules as shown in Fig. 1. The
modules can be divided into two groups: the core group and the auxiliary group.
Modules in the core group are shown in the figure with thick border, whereas
other modules are shown with thin border.

8.1 The Core Modules

The core modules implement the internal representation of HOL types, terms,
theorems and proofs, and the checking of the inferences. In the formal version,
these modules are translated directly from von Wright’s formal theory of HOL
proofs. In the efficient version, the internal representation is slightly different.
De Bruijin’s name-free representation is used for terms.

The Check module contains all functions for checking the consistency of
inference rules. In the formal version, this module contains only eight checking
functions for the eight primitive rules. These functions are translated directly
from the formal theory. As an example, the function for checking the primitive
rule ASSUME and its formal definition in the HOL proof theory is shown in Fig. 2.
The SML function and the HOL definition are very close.

In the efficient version, the Check module contains functions for checking all
basic inference rules. The functions for the primitive rules are the same as the
formal version except very minor changes to take care of the slightly different
representation of HOL types and terms. The functions for checking other basic
rules are derived from specification of these rules found in [GM93]. Fig. 3 shows
the basic inference rule SYM and its checking function.

One major difference between the two versions of the checker is that the
formal version processes the proof file in one pass while the efficient version in
two passes. Since a theorem derived in an inference step may be referred to by
any subsequent steps, the checker has to cumulate all theorems in main memory
while processing a proof. A practical proof may consist of thousands of inference
steps. The storage for theorems will be huge. To overcome this problem, the
efficient version processes the proof twice.

In the first pass, it builds a theorem reference table. This table consists of two
dynamic arrays whose elements are integers as shown in Fig. 4a. Each element
represent a proof line. The indices to the elements are the proof line numbers.
Since the proof lines are numbered with both positive and negative numbers, but
only non-negative numbers are allowed in indexing the array, two arrays are used.
The TabHyp array is for the hypothesis lines whose line numbers are negative, and
the TabLine array is for proof lines whose numbers are positive. These arrays are
created using the DynamicArray module in the SML/NJ library. Using dynamic
arrays instead of static ones releases the upper limit of the number of lines in
the proof.



Exception:
. ; ; HOLProofKey

Debug:Debug_sig

Report:Report_sig

[ Htype: Htype sig j

HtypeCmp

:ORD_KEY

[ Hterm:Hterm_sig ]
:ORD_KEY -
= Parsing
:Parsing_sig

[

[ Henv:Henv_sig ] [ Hthm:Hthm_sig ]
l
[ Proof:Proof_sig j

HtermCmp

[ Check:Check_sig j

Fig. 1. Checker module structure



[- !Typl Conl as t tm. PASSUME Typl Conl (Pseq as t) tm =
Pwell_typed Typl Conl tm /\
Pboolean tm /\ (t = tm) /\ (as = {tm})
a) Formal definition in HOL

fun PASSUME Typl Conl pseq tm =
Pwell_typed Typl Conl tm andalso
Pboolean tm andalso
(Pseq_concl pseq = tm) andalso
(Pseq_assum pseq = (Set0f [tm]))
; (* END FUN_DEC *)

b) Checking function in the formal version

Fig. 2. Checking function and formal definition of the primitive rule ASSUME

In the first pass, the checker looks at the justification part of the proof lines.
When it encounters a reference to a theorem in a previous proof line, it enters
the current line number into the element corresponding to the referred line in
the table. For example, when the checker is at Line 3, it finds that this line
refers to the theorem in hypothesis Line 1. It enters 3 into the first element of
TabHyp. To speed up Pass 1 process, the checker can skip over other parts of the
proof line quickly. This is done by scanning the input and looking for matching
parentheses only. At the end of this pass, each element of the theorem reference
table will contain the highest line number which is the latest line referring to
the theorem. In the table shown in Fig. 4a, Line 5 is the last line referring to
the theorem derived in Line 2 and Line 4.

In the second pass, the checker stores theorems referred to by other proof
lines in a theorem table. This table is implemented by a dictionary in the Dict
module of the SML/NJ library. The key of each entry is the line number. Since
the dictionary is represented by balanced splay tree, searching for a theorem is
fast. After checking a proof line, the checker examines the theorem reference
table, if the value of the current element is greater than the current line number,
1.e., 1t will be referred to later, the theorem is saved in the theorem table. Fig. 4b
illustrates the situation in which the checker has just stored the theorem derived
in Line 2. when the checker retrieves theorem, it also examines the theorem
reference table. If the current line i1s the last one to refer to the theorem, i.e.,

fun chk_Sym(line, n, thm) =
let val thml = get_thm(line, n)
val (left,right) = dest_eq (concl thml)
F l_ tl = tz in
'kt =1 ((right,left) = dest_eq (concl thm)) andalso
(HtermSet.equal((hyp thm), (hyp thmi)))
end

Fig. 3. Basic rule SYM and its checking function



TabHyp TabLi ne key t heorem

1 3 0 -1
2 0 5 2
3 0 0
4 0 5
5 0 0
a) theorem reference table b) theorem Table

Fig. 4. Data structures for theorem references

the current line number is equal to the value in the table, the theorem is removed
from the dictionary. Continuing the scenario in Fig. 4b, the next line is Line 3,
it refers to hypotheses Line 1. Since this is the last line referring to the theorem,
the checker removes it from the table. This arrangement minimises the number
of theorems stored in the table, thus reduces the memory requirement.

8.2 Auxiliary Modules

The HOLProofKey module defines the concrete syntax, i.e., the tags, of the proof
files. The Parsing module consists of several higher order parsing functions.
The parser proper is in the modules Pass1 and Pass2. It is a recursive descend
parser.

The Exception and Debug modules are responsible for handling errors. The
Debug module maintains a debug flag for each module. The values of these flags
are non-negative integers. Higher the value, more the information will be display
while checking a proof. The Report module is for formatting the output to the
log file.

The Io module handles all file input and output. When the checker is in-
voked, 1t creates a decompression process running as a filter in the background.
The communication between this process and the checker is via a UNIX domain
socket. In the case the file is uncompressed, no decompression is needed, but a
dummy cat process is created, and the communication is still via a socket. This
arrangement simplifies the checker as its input routine always reads from the
input socket. Similarly, an output socket is created with a compression process
to compress the output to the log file on the fly. This arrangement is illustrated
in Fig. 5.
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Fig. 5. Checker input/output arrangement
9 Benchmarking

A proof of correctness of a simple multiplier described in [Gor83] is often used as
a HOL benchmark. This is a small to medium size proof which generates 14500
intermediate theorems. This proof has been used to test the proof recorder and
the checker.

The multiplier proof consists of four ML files. A proof file is generated
for each ML file. It contains all the sub-proofs in the corresponding ML file.
Table 1 lists the time taken to record this proof and the proof file size. Two
tests was carried out: the first with the proof recorder disabled; and the second
with it enabled. The run time and the garbage collection time (GC) reported
by the HOL system are listed under the columns headed DISABLED and
ENABLED, respectively. The tests ran on a SUN Sparc 10 Server.

As the figures in the table show, the time (2412.9 seconds ~ 40 minutes)
required to record the proof and generate the proof files is considerable longer
than to perform the proof only, but it is not excessive. Most of the extra time is
spent in converting the internal presentation to the textual format and actually
writing the disk files. This extra time is acceptable since the proof files will only
be generated after the proof is completed satisfactorily (probably once) and be
ran in batch mode.

The sizes of the proof files are also listed in Table 1. They are very large (43

Table 1. Benchmark of recording the multiplier proof (Time in seconds and
size in bytes)

FILE No. of | DISABLED ENABLED SIZE

THMS | RUN | GC RUN | GC Raw | Compr’d

mk_NEXT 2972 - - 116.0 12.8 2693853 62202

MULT_FUN

_CURRY 670 - - 83.3 7.1 1553642 29103

MULT_FUN 6943 - - 488.1 | 120.0 8101358 183201

HOL_MULT 3946 - - | 1675.5 | 250.1 | 31200001 447036

TOTAL 14531 65.3 11.8 | 2412.9 | 390.0 | 43627841 726542




Table 2. Benchmark for checking the multiplier proof (Time in seconds)

Proof Time

File Run | System GC Real
mk_NEXT 139.3 15.3 3.7 170.0
MULT_FUN_CURRY 77.3 9.6 2.6 100.4
MULT_FUN 406.3 446 | 154 | 488.8
HOL_MULT 1472.1 152.0 | 98.5 | 1783.3
Total 2095.0 138.8 | 120.2 | 2542.5

Mbytes in total) because every intermediate theorem has to be saved. The size
per theorem is comparable to the theory files in HOL88. However, the proof files
are intended for automatic tools not for human readers, and they can be stored
in compressed form. The size of the compressed files is much smaller. It amounts
to less than 2% of the raw size. As the compression is done automatically, this
does not pose too much burden to the user.

The multiplier proof files were successfully checked by the checker. No error
was found from the proof files. Table 2 lists the time taken to check the proof
files. This test ran on a SUN SparcStation 20.2 The time is in the same order of
magnitude as the recording. One important observation is that the process size
is relatively small when performing the checking. The process size of the checker
when 1t is just loaded is 14 Mbytes. The maximum size when performing the
checking is only 16 Mbtyes. This shows that the implementation does keep the
memory usage very small.

10 Conclusions

The research described in this paper shows a method of independent checking
to ensure the consistency of mechanically generated proofs in LCF-like systems.
A benchmark has shown that the proof checker is able to check a practical proof
consisting of several thousands of inference steps. The application of this method
is mainly in the formal verification of safety-critical and high-integrity systems.
After a formal proof has been generated by a contractor, there is a need for an
independent means of assessing the consistency of the proof.

There has been little work in the area of verified proof checking. The no-
table exception i1s the work of Boyer and Dowek on proof checking for Ngthm
proofs [BD93]. Other theorem prover, such as nurpl[ea96], which makes use of
proof objects in runtime to implement transformation tactics, may utilise similar
approach to do proof checking.

If the proof checker itself can be formally verified, it will greatly boost the
confidence in the consistency of checked proofs. Since the checker has been
implemented using von Wright’s formal theory of the HOL proof system as its

2The recording tests was carried out much earlier than the checking test. In fact, it was
done before the checker was developed. The author was not able to access the same type of
machine to do the checking test.



specification, it is possible to formally verify the checker provided that a formal
semantics of Standard ML 1s developed. Attempts have been made to establish
a formal semantics of Standard ML in HOL [Sym93] [VG93]. One approach
to formally verify the proof checker 1s to reason based on the formal semantics
directly, but there still more work needs to be done before one can attempt a
formal verification of a practical program such as the checker. Another approach
of using refinement has been suggested by von Wright [vW95].

In addition to being a format to communicate proofs between the HOL
system and the proof checker, the proof file format may be used to communicate
between different theorem prover systems with similar logic, such as between
HOLS88 and HOL90. It can also make the proofs themselves become deliverables.
Having a proof saved as a sequence of inference steps allows new tools to be
developed to analyse the proof, for instance, a tool generating a dependency
graph to show the use of theorems in deriving a new theorem.

Although the recorder and checker is able to handle medium size proofs, there
are several improvements could be made. Firstly, the proof file format could be
changed to eliminate some redundancy and to reduce the file size. Secondly, the
proof recorder could be improved so that the proof could be written into a file
while it is being generated. This improvement will likely be done in HOL90. The
proof checker now checks individual proofs in a flat environment. It is important
to develop a system to manage the proofs and theorems in a more structured
and hierarchical way if the checker is to be used in real applications which may
contain many subproofs and their dependency is very complex.
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