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Abstract

We discuss new ways of characterizing, as mazimal fized points of
monotone operators, observational congruences on A-terms and, more
in general, equivalences on applicative structures. These characteriza-
tions naturally induce new forms of coinduction principles, for reasoning
on program equivalences, which are not based on Abramsky’s applicative
bistmulation. We discuss in particular, what we call, the cartesian coin-
duction principle, which arises when we exploit the elementary observation
that functional behaviours can be expressed as cartesian graphs. Using
the paradigm of final semantics, the soundness of this principle over an
applicative structure can be expressed easily by saying that the applica-
tive structure can be construed as a strongly extensional coalgebra for the
functor (P( _x _))® (P( _x _)). In this paper, we present two general
methods for showing the soundenss of this principle. The first applies to
approximable applicative structures. Many c.p.o. A-models in the litera-
ture, and the corresponding quotient models of indexed terms turn out
to be approximable applicative structures. The second method is based
on Howe’s congruence candidates, and it applies to many observational
equivalences.

Structures satisfying cartesian coinduction are precisely those applica-
tive structures which can be modeled using the standard set-theoretic ap-
plication in non-wellfounded theories of sets, where the Foundation Axiom
is replaced by the Axiom X; of Forti and Honsell.
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1 Introduction

Brute force induction on the number of computation steps is a rather complex
and opaque way of reasoning on the operational behaviour of programs. As
it is well known, proof principles which allow to factor out, or modularize,
such inductive arguments are therefore extremely valuable. Recently, much
attention has been devoted to the possibility of characterizing observational
equivalences of programs as maximal fixed points of suitable operators, thus
obtaining coinduction proof principles for reasoning on program equivalence,
see e.g. [A093, EHR92, Fio96, Gor95, HL95, How96, Len96, MST?, Pit96a,
RV97, Len97, Len97a, Len98]. As far as functional languages, or A-calculi, are
concerned, however, almost all coinduction principles considered so far in the
literature, have always had the same applicative pattern, based on Abramsky’s
notion of applicative bisimulation. All principles, apart from [HL95, Section 3],
arise from monotone operators of the same shape, in the line of [AO93, EHR92],
and exploit the fact that the observational behaviour of functional programs
needs to be tested essentially only in applicative contexts (see [Len98]).

In [HL95, Section 3], the authors considered for the first time another kind of
monotone operator, thereby introducing a new form of coinduction principle for
establishing observational equivalences between terms of A-calculi. For reasons
which will become clear in a few paragraphs, in this paper, we shall call this
principle cartesian coinduction, and we shall call cartesian both those applicative
structures and those A-theories, for which it is sound. In [HL95], cartesian
coinduction was proved sound only for the call-by-value A-calculus and many
open problems concerning it were raised. In [Len98], it was proved sound also
for the lazy A-calculus.

A first objective of this paper is to show that the “unorthodox” move of
[HL95] can be widely generalized. We present, in fact, plenty of new meaningful
monotone operators, besides the traditional “applicative” one, to be used for
manifacturing coinduction principles for applicative structures.

The main purpose of this paper, however, is to investigate the general status
and theory of the operator introduced in [HL95], which has remained largely
unexplored since then. In particular, we will show that there are rich classes of
cartesian applicative structures, and plenty of cartesian A-theories.

Using concepts from final semantics [Acz88, RT93, Rut96, Tur96, Len98],
one can easily express the difference between the traditional applicative coin-
duction and cartesian coinduction. Both kinds of coinduction correspond to the
categorical coinduction principles which arise when the set of closed A-terms,
AP, (or more in general an applicative structure), is endowed with a coalgebra
structure for a suitable functor. Applicative coinduction principles for A-theories
are obtained when the functor F(_) = (A° = ) & (A° — ) is used.! This

1 A@® B denotes the disjoint union of A and B, i.e. the set {aU{u} | a € A}u{buU{v} | b € B},
for suitable elements u,v ¢ U AU U B.



approach is investigated in full generality in [HL95]. Cartesian coinduction, on
the contrary, arises when the functor G(_) = P(_-x )@ P(_-x _)isused. In
both cases the direct sum of two copies of the same structure is taken so as to
distinguish between observable values and non-values. Notice how the functor F'
enforces the view by which elements are functions defined over the set of closed
A-terms. Also the functor G purports the view of objects as functions, but this
time functions are represented as their cartesian graphs, whence the name. The
nature of the functor G is more general, it does not depend explicitly on any
applicative structure specified in advance as F' does, namely A°. This allows for
a more uniform treatment.

We shall discuss two techniques for showing cartesianity of structures. The
first is semantical and it applies to ordered A\-models, such as CPO’s or quotients
of interiors of CPO-models. The second technique is syntactical and uses the
generalizations of Howe’s technique [How89] of “congruence candidates” as car-
ried out in [Len98]. This latter technique applies to term models of A-theories
determined by observing termination under various reduction strategies.

The existence of cartesian applicative structures is closely related to the exis-
tence of set-theoretical applicative structures in non-wellfounded theories of sets,
where the Foundation Axiom is replaced by the Antifoundation Axiom X; of
Forti and Honsell [FH83|. Set-theoretical applicative structures are applicative
structures whose points contain the set-theoretic description of their functional
behaviour, so that application can be rendered by the usual set-theoretic ap-
plication, i.e. for any given points d,d’,e in the model, d ¢ d' = e if and only
if (d',e) € d. The results in this paper allow to show that there are plenty of
“well-behaved” set-theoretical applicative structures.

Finally, we would like to point out that this paper can be viewed also as, yet
another, chapter in the general programme of investigating the denotational se-
mantics of A-calculi, some of whose earlier chapters are [Bar84, CDZ87, EHR92,
HR92, AO93, HL93, HL95, HL98|.

The paper is organized as follows. In Section 2 we discuss in general the prob-
lem of characterizing coinductively congruences over applicative structures. In
particular, we present a number of monotone operators which can be utilized
in coinduction principles. We end the section by introducing special classes of
“enriched” applicative structures. In Section 3 we introduce the basic ideas of
final semantics and give the categorical accounts of the coinduction principles
introduced in the previous section. In Section 4 we discuss A-congruences and
A-models. In particular, we present the six A-theories which have been most
extensively studied in the literature, and which we shall deal with explicitly.
The main theorems of this paper concerning the existence of cartesian applica-
tive structures appear in Section 5. In Section 6 we describe a syntactical
technique based on the notion of congruence candidate for establishing carte-
sianity A-theories. In Section 7 we discuss set-theoretical applicative structures
in non-wellfounded Set Theories, and their connection with cartesian structures.
Concluding remarks and open problems are presented in Section 8. In Appendix



A we give basic informations concerning non-wellfounded sets. In Appendix B
we recall basic facts about final coalgebras.

We assume the reader familiar with basic concepts and results in A-calculus,
final semantics, and non-wellfounded Set Theory. The reader may consult
[Bar84], [RT93, Len98], and [FH83] respectively, for more details.

The authors would like to thank A.Quattrocchi for her help.

2 The “coinductive characterization” problem

The basic notions we shall be concerned with in this paper are those of applica-
tive structure, and of congruence over an applicative structure:

Definition 2.1 (applicative structure) An applicative structure D is a pair
(D,ep), where op : D — [D — D]; ep denotes application, and it is often
written infiz.

Definition 2.2 Let D be an applicative structure. An equivalence relation ~C
D x D is a congruence if

le,d2,€1,62 € D. (d1 ~dy N egxe = diepei ~dyep 62).

Notation

Let D be an applicative structure. For d,e € D, we shall often write de, instead
of depe. We shall denote a, possibly empty, sequence of elements d; ...d, € D™,
for n > 0, by d. Moreover, we shall abbreviate (... (dep dy)...) ep dy, by dd.

The most obvious, and finest, congruence over an applicative structure D
is equality, =p. Many interesting applicative structures arising in Computer
Science, however, are (observational) quotients of syntactical objects. Clearly,
it is more natural to view equality over these as the appropriate congruence over
term expressions.

Given a congruence &~p over an applicative structure D, it is natural to ask
for logical characterizations of it. Such characterizations will be the more useful
when they induce proof principles for proving term congruence. By far, one of
the most important examples of such characterizations are those which describe
~p as a maximal fized point of a monotone operator on relations. As it is well
known, these induce immediately a coinduction principle for establishing that
two points are ~p-congruent.

Proposition 2.1 (E-coinduction principle) Let ~p be a congruence on an
applicative structure D, and let E : P(D x D) — P(D x D) be a monotone
operator. Then the mazimal fized point ~F of the operator = satisfies the =-
coinduction principle, i.e.

(de) e R R CE(R)

dr"e




The “coinductive characterization problem” for a congruence ~p, over an
applicative structure D, is the problem of finding appropriate operators whose
maximal fixed point is &~p. The solution to this problem is not immediate. For
instance, the natural operator for which congruences are fixed points is Op :
P(D x D) — P(D x D), where Op(R) = {(d,e) | Vf, 9. fRg = dfReg}. Since
Op is not monotone, in order to reason coinductively on applicative structures,
alternative operators to it have to be looked for. Following the seminal work of
Abramsky [Abr89, A093], all investigations on applicative structures (but for
[HL95, Len98]) have focused mainly on characterising congruences as maximal
fixed points of the following class of monotone operators:

Definition 2.3 Let D be an applicative structure and let Eqp C D x D be an
equivalence relation. The operator ®gq, : P(D x D) — P(D x D) is defined
as follows:

®eq, (R) ={(d,e) | dEqpe AN Vfe D.df Ref}.

It is easy to show that the maximal fixed point of the operator ®g_, namely
~%ep | is the applicative relation z’éé”; defined as follows

Definition 2.4 (applicative relation) Let D be an applicative structure and
let Eqp C D x D be an equivalence relation. The applicative relation z;gig
D x D is defined by:

A~ e <= Vd. ddEqp ed.

Many examples of coinductive characterizations of congruences, in terms of
the operators ®gq, above, over both syntactical and semantical structures have
been extensively discussed in [EHR92, AO93, How96, Len97, Len97a, Pit96a].

But, besides the ®g4_’s, one can consider many other operators, which, in
our opinion, yield interesting characterizations and are worthy of being investi-
gated. The most intriguing example is that of Wgq_, the operator introduced in
[HL95]. This operator arises when we capitalize on the fact that the functional
behaviour of elements in applicative structures can be described by a cartesian
graph, i.e. a subcollection of the cartesian product D x D.

Definition 2.5 Let D be an applicative structure and let Eqp C D x D be an
equivalence relation. The operator Wgq, : P(D x D) — P(D x D) is defined
as follows:

VfeD3dgeD. fRg AN df Reg
Veq, (R) = {(d,e) |d Eqap e A A 1.
VieD3dgeD. fRg N ef Rdg

We denote by ~Y%o the greatest Vg, -bisimulation.



Variants of the above operators can be obtained when we consider that, in
view of currying, points of applicative structures exhibit also the behaviour of
n-ary functions:

Definition 2.6 Let D be an applicative structure and let Eqp, C D x D be an
equivalence relation.
i) Let @g, :P(D x D) — P(D x D) be the operator defined as follows:

®p, (R)={(d,e) | dEqpe A Vfe D" df R ef} .
ii) Let Ve :P(D x D) — P(D x D) be the operator defined as follows:

Vfe D" 3Ge D" Vi.fi R g; A df R ej
Vg, (R) ={(d,e) |dEaqpeA [ A B }e
VfeDr3Ge D" Vi.fi Rg; A ef R dg

More operators arise if we take the existential quantificaton over n in the
above definitions.
We can combine also ®’s and ¥’s, as follows

Definition 2.7 Let D be an applicative structure and let Eqp C D x D be an
equivalence relation.
Let Zgq, : P(D x D) — P(D x D) be the operator defined as follows:

VfEDEgED.ng/\d%Zg’;eg
Zkq,, (R) = {(d,e) | d Eqp e A A 1.
VfeD3geD. fRg A efzzﬁidg

We shall not present other operators, but we simply point out that using the
above templates one can easily device yet further combined operators.

Notice that all the operators introduced above are monotone, and hence each
of them induces a coinduction principle.

For simplicity, we shall refer to ®gq_-coinduction as Eqp-applicative coin-
duction. For the reasons we mentioned earlier, and which will become clearer
in Section 3, we shall refer to Wgq_-coinduction as Eqp-cartesian coinduction.

The above coinduction principles can be used for reasoning on the following
kinds of congruences on applicative structures

Definition 2.8 (Zgq,-coinductive congruence) Let~p be a congruence on
an applicative structure D, and let Eqp C D x D be an equivalence relation.
Then ~p is a Egq,,-coinductive congruence, or equivalently, ~p satisfies EEq,-
coinduction, if &p coincides with ~=Fp .



Similarly to the terminology introduced above for ¥-coinduction principles,
we shall refer to Egq, -coinductive congruences as Eqp-cartesian congruences.
Rather than saying that =p is Zgq, -coinductive, we shall simply say that the
applicative structure D is Zgq, -coinductive.

An elementary result concerning the Zgq_-coinduction principles for & =
S, U, 0" V" 7 is:

Proposition 2.2 Let (D, ep) be an applicative structure, Eqp C D x D, and
let RC D x D be a reflexive relation:

o if R is a ®gq, -bisimulation then it is also a Zgq, -bisimulation;

o if R is a ®gq, -bisimulation then it is also a Vgq, -bisimulation;

e if R is a Zgq, -bisimulation then (RU ~"%p) is also a Vg4 -bisimulation;

o if n divides m and R is a ®f, -bisimulation then it is also a P, -
bisimulation;

o if n divides m and R 1s a Vg, -bisimulation then it is also a Vg, -
bisimulation.

It is surprisingly difficult to extend results for one of the above operators
to the others. This paper is devoted essentially to showing that large classes
of applicative structures satisfying the Eqp-applicative coinduction principle,
satisfy also the Eqp-cartesian coinduction principle.

2.1 Enriched applicative structures

In this paper we shall be mainly concerned with applicative structures which
have some “extra” structure. In particular, we shall consider “order enriched”
and “approximable” applicative structures. First we introduce

Definition 2.9 (ordered applicative structure) Anordered applicative struc-
ture, D = (D,Cp,ep), is a triple such that

1. (D,Cp) is a non-trivial partial order;
2. ep: D — [D — D] is continuous (usually written infiz).

In dealing with ordered applicative structures, it is natural to ask for coin-
ductive characterizations of the order relation itself, rather than just =p. Here
is an important definition:

Definition 2.10 (®pgq, -coinductive applicative structure) Let D = (D,
Cp,ep) be an ordered applicative structure, and let pEqp, C D x D be a pree-
quivalence relation. The structure D is pEqp-coinductive if the order relation
Cp satisfies the following pEqp-applicative coinduction principle:

dCpe <= FJRCDxD.(RC®pq,(R) N dRe),



where
®peq, 1 P(D x D) = P(D x D)
Ppeq, (R) = {(d,e) | dpEape A Vf e D. df Ref} .

Coinductive characterizations of inequality appear to be useful especially in

. ~.app app app \—1
the case of the operator ®gq,, since we have that NEq, =CpEqy ﬂ(EquD) ,

where Eq,, = pEq, N (pEqp) ! and E“pg is the maximal fixed point of ®peq, .
For many other operators, and notably for WEq,, such a neat correspondence
between preorder and equality does not arise. In fact, it is not the case in
general, that ~Yep =C¥reap N(C¥efan )1, where E\prqu denotes the maximal
fixpoint of the operator W,gq, : P(D x D) = P(D x D) defined by

Voeq, (R) = {(dye) | dpEqpe A Vf€D3ge D. (fRg A dfReg)} .

We conclude this subsection by introducing another important class of en-
riched applicative structures: the approzimable applicative structures (aas).
These are order applicative structures (D,Cp,ep), together with a countable
system of elements of D, {p,, }new, representing projection functions, which ap-
proximate the elements of D. Clearly all “inverse limit” A-models are aas:

Definition 2.11 (approximable applicative structure) An approximable
applicative structure (aas) is a structure D = (D,Cp, ep, {pn}new) such that

1. (D,CEp,ep) is an ordered applicative structure;

2. {pn}new is a countable set of elements of D whose applicative behaviour
is that of a complete system of projection functions {m, : D — D},c,,
i.e. Y¥n>0.Vd € D. p,d =p m,(d), such that

e Vn>0.p,dCpd
o Vn,m > 0. py, (pnd) =D pmin{m,n}d;
e Vn>0.Vd,e € D. (pnd)e =p pn_1(d(pn_1€));

Vde D.d=p |, pnd;

e d=pe <= Vn.p,d=p pne.

Notation For all d € D, we will use d,, to denote p,, ep d, and D,, to denote
the set {p, epd|d € D}.

Correspondingly, we introduce also the notion of :

Definition 2.12 (®,gq;coinductive approximable applicative structure)
A ®,gq, -coinductive approximable applicative structure (pEqp-caas) is an aas
D = (D,Cp,ep,{pn}tncw) such that the ordered applicative structure (D,Cp
,8p) is a ®pgq, -coinductive applicative structure.



3 The final perspective

Following the Final Semantics Paradigm, introduced by Aczel [Acz88], and fur-
ther developed in [AM89, RT93, Rut96, Tur96, Rut96, Len98], coinduction prin-
ciples can receive a very neat categorical explanation. It is interesting to point
out that many of the monotone operators described in Section 2 were actually
suggested by this categorical analysis.

We work in Set*, the category whose objects are sets of a universe of the
non-wellfounded set theory ZF°X;, and whose morphisms are the set theoretic
functions. Set-theoretic and categorical concepts are defined in Appendices A
and B. The general pattern of the Final Semantics justification of a coinduction
principle over an applicative structure D, induced by the monotone operator =,
is the following. We endow D with the structure of a Hz-coalgebra, (D, az), for a
suitable endofunctor Hz which preserves weak pullbacks and has final coalgebra.
Then the unigue mapping into the final coalgebra induces an equivalence on D
which is union of all categorical Hz-bisimulations. Full definitions appear in
Appendix B. If the functor Hz and the Hz-coalgebra structure have been given
appropriately, we have the following crucial theorem:

Theorem 3.1 R is a categorical Hz-bisimulation on the coalgebra (D,az) if
and only if R is a Z-bisimulation.

In [HLO5], the authors succeeded in providing a final justification of the
applicative coinduction principle (®gq, -coinduction principle, see Proposition
2.1) for various A-theories over the applicative structure consisting of the set of
closed A-terms.

Generalizing [HL95], we can establish the following correspondence between
monotone operators and functors in Set*.

Theorem 3.2 Let D = (D, ep) be an applicative structure and let Eq, C Dx D
be an equivalence relation on D such that |D/Eqp| < k, i.e. the cardinality of
the set of equivalence classes of Eqp is less than or equal to k.

Let 2 be one of the operators {‘I’Eqpa\I’EqDaq)TElq Ve, y ZEq,, }. E-bisimulations
are categorical Hg-bisimulations on the Hg-coalgebra (D, az) for the endofunc-
tor HE in Set* given by the following table

E = Qgq, HE(X):@N(D%X)
HZ(f) = @, (idp = f)
5( )—{i[d}U)\6€D de,
where i) is the tag of the Eqp-equivalence class of d.
E=Ur, ¢ HE(X) =@, P, (X x X)
H(f) =D, (f x )T
az(d) = {’L[d]}U)\e € D. de,

where i(q) 1s the tag of the Eqp-equivalence class of d.



E=og, H;(X):EB,{(D"%X),

HZ(f) = @, (idp — f)

az(d) ={igtUler...en € D. (... (de1)...en),

where i|q) is the tag of the Eqp-equivalence class of d.
EE‘PEqD : HE(X):®KIP<N1(XTZXX)

HZ(f) =@, (f" < f)*

as(d) = {ijg}UXe1...ep € D. (... (de1)...en),

where i[q) 1s the tag of the Eqp-equivalence class of d.
E= e, ¢ HE(X)=@,Pon, (X x (D) ~27))

HZ(f) =@,.(f x id(D/zngp))+

aa(d) = {'L[d]} Ule € D. [de]ké’:;,

where i|q) 1s the tag of the Eqp-equivalence class of d and

[de]zgfg is the equivalence class of de modulo m‘ég”;.
For A, B sets, the notation @‘A‘ B stands for the disjoint sum of |A| copies of
B,ie. {{a}Ub|a € |A] A b€ B}, assuming |[A| N TC(B) = (). The proof of
the above theorem is standard see [Acz88, RT93, Len98|.

It is interesting to notice that, in each case, the structure of the functor
corresponding to the monotone operator reflects the way in which we construe
objects of an applicative structure: as a function on a constant set, as the graph
of a self-function, as an n-ary function, as the graph of an n-ary self-function,
or as the graph of a function which takes values over a suitable constant set. In
each case, however, we need |D/Eqp| copies of the same domain, one for each
equivalence class of the equivalence £I1p we use as start-up.

The categorical account allows to give also a clear characterization of ap-
plicative structures which satisfy =-coinduction principles. Here we give only
the special case of cartesian applicative structures.

Corollary 3.1 Let D be an applicative structure, such that |D/Eqp| < k. Then
the HE-coalgebra (D,az) is strongly extensional if and only if D is a ZEqp -
coinductive applicative structure.

4 Theories and models of the )\-calculus

In this section we discuss A-theories, the very important class of congruence
relations over the paradigm applicative structure consisting of closed A-terms.

We start by giving basic definitions and general results on A-theories and -
models. In Subsection 4.1 we present the specific A-theories we shall be mainly
concerned with.

10



Let A® denote the class of A\-terms built over the set of basic constants C,
ie.
(AS)M 2=z | ¢c| MM | Xz.M ,

where z € Var, ce C.
Let (A“)? denote the class of closed A-terms built over the set of basic constants

C.

Definition 4.1 e A \-preequivalence is a reflexive and transitive relation
on A x AC.

e A A-equivalence is a symmetric A-preequivalence.

A A-precongruence, <, is a A-preequivalence which is a congruence w.r.t.
application and \-abstraction, i.e., for all M, N,M' ,N' € A®,

M<N A M <N = MM <NN', and
M<N = lx.M < Xz.N .

e A A-congruence is a A-equivalence which is a congruence.

e A )-theory is the restriction of a A-congruence to (A€)°.

We focus on \-(pre)congruences which arise from relations Eq C (A“)? x
(A€)? in the following sense:

Definition 4.2 Let Eq C (A9)? x (A®)°. The contextual relation ~F9C A x
A€ is defined as follows:

M xF* N < VC[]. (C[M],C[N] € (A°)° = C[M]EqCIN)) .

Notice that, if Eq is a (pre)equivalence, then the relation ~&9 is a (pre)con-
gruence.

All A-congruences are induced by an equivalence relation with just two equiv-
alence classes, i.e.:

Proposition 4.1 ([HR92]) Any A-congruence ~C A® x A® is induced by a
suitable set V C (A€)° in the following sense:

M~ N & YC[]. (C[M],C[N] € (A®)® = (C[M] € V <= C[N] € V)) .

Proof Just take V = {Az.zPQ | P~ Q}.

Question 4.1 Is there an analogue of Proposition 4.1 for \-precongruences?

The relation between A-theories and (-reduction is formalized and clarified
by the following proposition, whose proof is straightforward.

11



Proposition 4.2 Let ~F9 be the congruence induced by the equivalence relation
Eq C (A9)% x (A)°. Then the notion of B-reduction —g,% is correct w.r.t.
~F9 e, =g CxF9, if and only if Eq is closed under (3,-conversion, i.e. (=g,

N((A9)° x (A9)%)) C Eq.
Finally we recall some useful semantical definitions:

Definition 4.3 (ordered A-model) An ordered A\-model is a quadruple D =
(D,Ep,ep,[17), where

1. (D,Cp,ep) is an ordered applicative structure;

2. [1° : A x Env — D, for Env = [Var = Dyay),

_ | D\{-} ifVYdeD.dep—=—,
Dvar - { D b

otherwise,
1s the interpretation function;
3. [z]) = p(x);
4. [[c]]pD =d,, for some d, € D;

5. [MN]? = [M]? o [N]?;

6. ¥d € Dyar. [No.M]] opd =M}, ,1;
7.¥d € Dyar. IM131y0 = [N gy = [DaM]) = [Az.N]);
8. VYp,p' :Var = Dyor (Vz € FV(M). p(z) = p'(z) = [[M]]f = [[M]];?)

It is immediate to see that, given a A-model D = (D,Cp,ep,][ ]]D), the
theory 7P induced by it, i.e. the set of pairs of terms which have the same
interpretation in a A-model, is a A-congruence. Correspondingly, the set of
pairs of terms whose first component has an interpretation which is less than
that of the second component, is a \-precongruence. A \-model (D,Cp, e [ ])
is computationally adequate with respect to a A-precongruence < if

VM,N e A°. [M]° Cp [N]° = M <N.

A A-model is fully abstract if the above implication is an equivalence.

In this paper we shall be concerned with two kinds of A-models: finitary
A-models and term models.

As far as finitary A\-models we shall focus on:

2 A notion of B-reduction, —3,., is the A-precongruence generated by a set of pairs (redex,
B-reduct). The A-congruence generated by the symmetric closure of a §-reduction — g, is the
=g,. -conversion.

12



Definition 4.4 (\-aas, A-caas) e An aas (D,Cp,®p,{pn}necw) is a A-aas
if it is a A-model.

o A structure (D,Cp,ep,{Pn}ncw) 15 a Ppeq,A-caas if it is a Pyeq, -caas
which is a A\-model.

Many c.p.o. A-models in the literature turn out to be A-aas. Other interest-
ing examples of A-aas are models obtained by quotienting sets of indexed terms
(see Section 5.1 for examples).

Term models are induced by A-precongruences and they are defined as fol-
lows:

Definition 4.5 (term model) Let < be a A-precongruence and let T be the
quotient A°/(< N(L) 1), i.e. the set of (< N(L) 1) -equivalence classes of closed
terms. Moreover, assume that the quotient partial order (A°/(< N(L)71),<)
has a least element, called —. The term model T< is the applicative structure
(T,e), where, for all M,N € (A®)°, [M] e [N] = [MN]. The interpretation
function [ ] : A x Env — D, for Env = [Var — Tya,] and

T _{ T\ — if VM. [M]e —=—

ver — | T otherwise,

1s defined as follows:
[M], = [p(M)],
where FV (M) C {z1,...,zn} and p(M) = M[p(z1)/21,-..,p(zn)/Tn].

The equivalence determined by the interpretation function into 7< is, of
course, < N(<)~!. Notice that, since we consider only closed terms, it is not
always the case that a term model is an ordered A-model, since clause 7 of
Definition 4.3 may fail. In any case, this will hold for all the term models we
shall deal with explicitly in this paper. Our notion of term model is clearly more
restrictive than the traditional one for A\3-theories because of the assumption
that — exists. This is done so as to be able to give a definition of term model
also for “restricted calculi” such a Plotkin’s call-by-value \,-calculus. In these
cases — is intended to denote non-values. All the precongruences which we shall
explicitly mention in this paper satisfy this condition.

4.1 Examples of A-theories

In this paper we are mainly concerned with A-precongruences which arise from
reduction strategies. Namely, we take a term to approximate another if we
cannot observe that, for a given closing context, the strategy halts successfully
when one is used to fill the hole, but does not halt when the other one is
used. A reduction strategy is a procedure for determining, for each A-term, a
specific B-redex in it, to contract. A (possibly non-deterministic) strategy can

13



be formalized as a relation —,C A x A (A° x A%) such that, if (M, N) €—,
(also written infix as M —, N), then N is a possible result of applying —,
to M. We denote by — the reflexive and transitive closure of —,. The set
of terms which do not belong to the domain of —, are partitioned into two
disjoint sets: the set of o-values, denoted by Val,, and the set of o-deadlocks.
Given —,, we can define the evaluation relation |,C A x A (A° x A%), such
that M |}, N holds if and only if there exists a (possible empty) reduction path
from M to a o-value N. If there exists NV such that M |}, N, then —, halts
successfully on M and M converges (M |},), otherwise —, does not terminate
on M, or reaches a deadlock from M, and M diverges (M lf,). Each reduction
strategy induces an operational semantics, in that we can imagine a machine
which evaluates terms by implementing the given strategy. The observational
preequivalence arises when we consider programs as black bozes and only observe
their “halting properties”.

Definition 4.6 Let —, be a reduction strategy and let M, N € A.

e The observational precongruence <, is defined by
M <, N < VYC[].(CIM],C[N] € A° = (C[M] |},= C[N] |,)).

e The observational \-theory =, is the congruence defined by
M ~, N < VYC[].(CIM],C[N] € A° = (C[M] |},= C[N] |,)).

It is immediate to check that the o-observational precongruence, <,, is
the A-precongruence induced by the preequivalence relation pEq, = {(M,N) |
M y,= N |,}. And, similarly, the o-observational congruence, =, is the A-
theory induced by the equivalence relation Eq, = {(M,N) € A°x A° | M ||, &
N |, }. Notice also that ~,=<, N(<,) .

There is no loss of generality in considering o-observational congruences,
rather than A-theories. In fact, by Proposition 4.1, any A-theory can be viewed
as an observational congruence induced by a trivially empty strategy, whose
values are the terms in the set V arising in the proof of Proposition 4.1.

As we remarked earlier, A-theories can be viewed as congruences on the
applicative structure consisting of closed A-terms. Hence we shall say that a A-
theory =, is Zgq_-coinductive if =, coincides with ~Ft.  j.e. the maximal fixed-
point of the operator Zgq_. Hence we shall call Eq, -applicative, or Eq,-cartesian
respectively, those theories which are ®g,_-coinductive, or Ugq_-coinductive.

Now we present six examples of o-observational precongruences, and corre-
sponding computationally adequate finitary denotational A-models, which have
been extensively studied in the literature [Plo77, Bar84, CDZ87, HR92, EHR92,
AQ93, HL9g|.

4.1.1 <

The precongruence <, is induced by the lazy call-by-name strategy —;C A°x A°,
which reduces the leftmost S-redex not appearing in a A-abstraction. Val, =
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{M.M | M € A} N A°. The evaluation |}; is the least binary relation over
A° x Val; satisfying the rules:

Ae.M | Ae.M MN {; Q

Classical S-reduction is correct w.r.t. ~; (see [AO93]).
This is the reduction strategy of lazy functional languages.

A computationally adequate ordered A-model for <; is the model D, studied
in [AO93]. The model D is the quadruple (D!, C ok [ 1), where D! is the
inverse limit initial solution of the equation D ~ [D — D]_ in the category
CPO_, and e}, and [ ]]l are defined using the canonical isomorphisms given by
the inverse limit construction. Computational adequacy follows from

Theorem 4.1 (computational adequacy of D')
My < Vp. [M], 2y Ade D' — .

4.1.2 <,

The precongruence <, is determined by Plotkin’s lazy call-by-value strategy
—,C A" x AY, which reduces the leftmost 3-redex, not appearing within a \-
abstraction, whose argument is a A\-abstraction. Val, = {A\z.M | M € A} N A°.
The evaluation |, is the least binary relation over A° x Val, satisfying the
following rules:

My, 2P NU,Q P[Q/z]l,U
Xe.M T, \z.M MN [, U

A notion of f-reduction which is correct w.r.t. =, is Plotkin’s —5,C A x A,
ie.: (Az.M)N —g, M[N/z], if N is a variable or an abstraction.

Notice that the 3,-reduction is far from being the largest notion of 8-reduction
correct w.r.t. ~,. E.g., we can extend this notion by allowing the reduction
whenever N (3,-reduces to a variable or an abstraction. The characterization of
call-by-value-redexes, i.e. =, N =g, is given by :

{{(Ax.M)N,M[N/z]) | V¥p € [Var — Val,]. N* {t,— (M[N/z])” 1}

The reduction strategy —, is the one implemented by the SECD machine of
Landin and used in M L.

A computationally adequate ordered A-model for <, is the model D?, studied
in [EHR92]. The model D" is the quadruple (D?,C%, % [ ]"), where D is the
inverse limit initial solution of the equation D ~ [D —_ D]_ in the category
CPO_, and e% and [ ]’ are defined using the canonical isomorphisms, given
by the inverse limit construction. We recall that [D —_ D] denotes the cpo of
strict continuous functions. Computational adequacy follows from
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Theorem 4.2 (computational adequacy of D?)
M |, <= Vp. [M], 3, Ad€ D*. — .

4.1.3 <,

The precongruence <j, is determined by the head call-by-name strategy —,C
A x A, which reduces the leftmost B-redex, if the term is not in head normal
form. Valy is the set of A-terms in head normal form. The evaluation |}, is the
least binary relation over A x Val;, satisfying the following rules, for n > 0:

oM, . M, I oM, ... M,  Xe.M{, \e. N (\ae.M)NM;... M, |, P

B-reduction is correct w.r.t. /2, (see e.g. [Bar84]).

In the next definition we introduce an alternative axiomatization of the no-
tion of —,-convergence on closed terms, ||, which will be useful in Section 6.
Notice the somewhat “lazy” flavour of the abstraction rule in this proof system.

Definition 4.7 Let |}§ be the least binary relation over A x A° satisfying the
following rules, for n > 0:

MeVal, MM ¢Valy, M[P/z] i N M[N/z)M, ... M, |\ P
My M Az. M 7 Ae. M (\e.M)NDM ... M, |3 P

The following theorem clarifies the meaning of the |}}:

Theorem 4.3 For all M € A°,
i)IN €A MUY N = M ly;

i) YN € A% MO N = M —% N;
iii) M Jn= M 1S

Proof i) and ii) are proved by induction on the length of the derivation of
M |5 N.

The proof of iii) follows from the fact that, for all M € A such that FV (M) C
{z1,...,zn}, M Y, = INP,...,P, € A°. M[P,/z1,...,P,/z,] I3 N. This
latter fact is proved by induction on the length of the derivation of M |};,. 0O

A fully abstract ordered A-model for < is given the well-known Scott D,
model, which, by uniformity, we will call D*. The model D" is given by the
quadruple (D", C" e pn, [ ]]h'), where D" is the inverse limit solution of the equa-
tion D ~ [D — D] in the category C PO, starting from the initial domain
Dl = {—,T} and using the initial projection j%f : DI — Dl defined by:
j%f(d) =—,ifd # Ad € DL.T, jv,_(Ad € DE. T) = T. The definition of
application and intepretation are given using the canonical isomorphisms given
by the inverse limit construction. Computational adequacy follows from
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Theorem 4.4 (computational adequacy of D")
My = Jp. [M]) #— .

4.1.4 <,

The precongruence <, is determined by the non-deterministic strategy —,C
(AT2H)0 5 (AT2H0 (JHR92]). This strategy rewrites A-terms which contain oc-
currences of the constant Q by reducing any B-redex. Val, = A°. Normal forms
which are not in Val, are the —,-deadlock terms. The evaluation relation |},
is the least binary relation over (A1?})% x Val, satisfying the following rules:

M € Val, Cl{(Az.M)N] ¢ Val, C[M[N/z]] |, P
™M, M Cl{(Az.M)N] |, P

B-reduction is trivially correct w.r.t. ~,.

A computationally adequate ordered A-model for <, is the model D?, in-
troduced [HR92]. The model D? is the quadruple (D°,C° ep., [ ]°), where D°
is Park’s inverse limit solution of the equation D ~ [D — D] in the category
CPO, obtained starting from the domain D§ = {—, v} and the initial projection
Jto : D1 — Dg defined by: j{,(=) =—, j{o(d) = v, for d #p-.—. Application
and abstraction in D? are defined using the canonical isomorphism given by the
inverse limit construction. Computational adequacy of D° follows from

Theorem 4.5 (computational adequacy of D°)

M U, <= 3p. [M]° #— .

42 <,

The precongruence <,, is determined by the normalizing strategy —,C A X A,
which reduces the leftmost g-redex. Val, is the set of A-terms in normal form.
The evaluation |},, is the least binary relation over A x Val, satisfying the
following rules, for n > 0:

My, My ... M, §,, M), M, N M[N/z]M, ... M, |, P
oMy ... My |}, zM] ... M!  JzMU, s N  (Az.M)NM;...M, |, P

B-reduction is correct w.r.t. =,.

A computationally adequate ordered A\-model for <,, is the model D™, stud-
ied in [CDZ87]. The model D" is the quadruple (D™, C", epx, [ ]"), where D"
is the inverse limit solution of the equation D ~ [D — D] in the category C PO,
obtained starting with the initial domain D§ = {—,0,1}, with 0 C,, 1, and
the initial projection ji'q : D — D defined by: ji'o(=) =—, ji'o(d) = 0, if
d#—,Md € DJ.1, j10(Ad € D§.1) = 1. Application and interpretation in D™
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are defined using the canonical isomorphism given by the invers limit construc-
tion. Computational adequacy of D™ follows from

Theorem 4.6 (computational adequacy of D")

M |, <= 3p.[M]; 2" 0.

4.3 <,

The precongruence <, is determined by any perpetual strategy, such as Baren-
dregt’s perpetual strategy —,C A x A which reduces the leftmost 3-redex not
in the operator of a redex, which is either an I3-redex, or a K(-redex whose
argument is a normal form. Val, is the set of A-terms in normal form. One
can easily show that the evaluation |}, is the least binary relation over A x Val,
satisfying the following rules, for n > 0:

M |, M ... M, |, M), M, N
My .. .M, |, zM; ... M, Az.M |, Az.N

N, M[N/z]My...M, |,V
(\e.M)NM, ... M, T, V

The following notion of B-reduction, =g, , defined by

(Az.M)N —g,.n M[N/z], if (Az.M)N is either an I(-redex or a K[(-redex
with N € A and N |,

is correct w.r.t. <,. The characterization of perpetualredexes, i.e. ~, N =g, is
given by:
{{(Axe.M)N,M[N/z]) |Vp € [Var = Valp]. N° tp= (M[N/z])” 05}
See [HL98] for more informations.

Notice that =, is not very well behaved, we do not have, for instance, that
if M —, N then M ~, N. Consider for example (Az.(Azy.z)zz) and Az.z.

A we did in the case of —,, we introduce an alternative “lazy” axiomatization
of {},, to be used in Section 6.

Definition 4.8 Let |J) be the least binary relation over A% x A® satisfying the
following rules, for n > 0:

MeVal, Mz.M¢gVal, M[P/z]UoN N3 M[N/z]M;...M, |5V
M3 M Xo. M U3 Aa. M (\z.M)NM, ... M, 15V

The proof of the following theorem is similar to the proof of Theorem 4.3.

Theorem 4.7 For all M € A°,

i) IN €A MYSN = M,

ii) VN € A% MU N = M =% N;
iii) M = M |0,
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A computationally adequate model for <, is the model D?, studied in [HL98].
The model DP is the quadruple (DP,CP,eps,[]"), where DP is the inverse
limit solution of the equation D ~ [D —_ D] in the category C PO_, obtained
starting form the initial domain D} = {—,0,1}, with 0 C, 1, and the initial
projection ji, : DY — Dg defined by: j7 (=) =—, jio(d) = 0, if d #p»—,
d #pr Ad € DF. if d =pr— then — elsel, jio(Ad € DY.if d =pr— then —
else 1) = 1. Application and interpretation are defined using the canonical
isomorphism given by the inverse limit construction. Computational adequacy
follows from

Theorem 4.8 (computational adequacy of DP)

M, = 3p. [M]} #— . [M]" 27 0.

5 Cartesian applicative structures

As we pointed out in the Introduction and in Section 2, most of the existing
literature on coinduction principles for applicative structures has focused on
Abramsky’s notion of applicative bisimulation, and hence, in our terminology,
only on the operator ®g, . The most important results which have been ob-
tained in this direction are that all the six observational A-theories presented in
Section 4.1 can be characterized using the ®gq_-coinduction principle of Propo-
sition 2.1 (see [EHR92, AO93, How96, Pit96, Len97, Len97a, Len98]). We can
rephrase these results by saying that the term models 7<_, which are indeed
A-models [Len98, Theorem 7.6.4], are ®g, -coinductive applicative structures,

and hence they can be viewed as strongly extensional H;Eq" -coalgebras.

The only exceptions to the egemony in the literature of applicative coin-
duction principles appear in [HL95] and [Len98]. In the former, the authors
introduced the coinduction operator Wgq, and they proved, using a semantical
technique, that 7<, is an Eq,-cartesian applicative structure. In [Len98], the
second author proved, using a syntactical technique, that both 7< and 7<, are
cartesian.

However, general theorems which allow to extend the results for ®gq  to
the other coinduction operators presented in Section 2 are far from obvious.
In this section we show that large classes of applicative structures satisfying a
&g, -coinduction principle, are also Eqp-cartesian. The technique presented in
this section is semantical, in Section 6 we shall discuss and extend the purely
syntactical technique of [Len98].

The semantical technique, called Finitary Method, applies to the approz-
imable applicative structures introduced in Definition 2.11. The main result is
that all ®,gq0 -coinductive approximable applicative structures (see Defintion

2.12) are Eq°-cartesian. Where pEq}, and Eq), are defined as follows:

Definition 5.1 Let D = (D,Cp,ep,{pn}ncw) be an aas.
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1. Let pEqY, C D x D be defined by {(d,e) € D x D | dy Cp eo};
2. Let Eq}), C D x D be defined by {(d,e) € D x D | dy =p eg}.

In particular, the Finitary Method can be used to prove ®gq -cartesianity
of many \-aas.

Notice that the equality relation =p on a qu%—caas satisfies immediately
the @Eq% -applicative coinduction principle.

In the following proposition, we provide an alternative characterization of
the partial order relation on a qu%-caas.

Proposition 5.1 Let (D,Cp,ep,{pn}tncw) be a pEq) -caas, then
dCpe < VYn>0.Yfe D" (df)o C (ef)o .

Proof The implication (<) follows immediately from the fact that {(d,e) |
V?. (d?)o C (67)0} is a @ gqo -bisimulation. The converse, i.e. (=), follows

immediately from the fact that dCp e — d? ) 67. 0O

Finally, we can give one of the crucial theorems of this paper:

Theorem 5.1 Let D = (D,Cp,ep, {Pn}necw) be a pEq)-caas. Then D is a
Eq%—cartesian applicative structure, i.e.

. . Weo . . . . . . ..
Proof The inclusion =pC~ b is immediate, since a Pgqo -bisimulation is
.. . . . . W0
a \IlEq%—blslmulatlon. In order to show the reverse inclusion, i.e. &~ *p C=p,

N
we proceed as follows. Assume the contrary, i.e. Id,e. d~ “p e A d Zp e.
v
Suppose n is the least natural such that d ~ “b e but d, ¥pe. Thenn > 1,
N
by definition of ~ & Hence, by Proposition 5.1, there exist f1,...,f™ € D,
N
such that (d,f'...f™)o Zp (ef'...f™)o. But, since d ~ “b e, there exist
o . w
g',...,g™ such that ¢ ~ “b fi for all 4, and dg'...¢™ ~ b efl...fm™;
hence (dg'...g™)o =p (ef'... f™)o, and (d, f'...f™)o Ep (dg'...g™)g. As-
sume for simplicity m < n (the other case is dealt with similarly). By induction
hypothesis, for all i = 1,...,m, (f*),_; C g, hence we have (d,f'... f™)o =p
(dn(fDn 1. (f™n_m)o =p (dg*...g™)o, which contradicts (d, f*... f™)o Ep
(dg'...9™)o- O
Using the categorical framework of Final Semantics, the above theorem
states that qu%—caas’s can be construed as strongly extensional coalgebras

\IJEqO
for the functor H, °.
| Dol
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5.1 Examples of cartesian approximable applicative struc-
tures

In this section, we present many examples of qu%)\—caas’s.

5.1.1 CPO )-models

Many “inverse limit” CPO A-models studied in the literature, e.g. those men-
tioned in Section 4.1, are pEq},A-caas. Therefore, by Theorem 5.1, they are
Eq},-cartesian applicative structures. For o = {I,v}, we have to take as DJ the
1-projection domain of D7, i.e. the two-element c.p.o. {—,Ad. —}.

5.1.2 Quotient A\-models

Another interesting class of qu?:,)\-caas arises from quotienting the applicative
and projective closure of the interior of a suitable A-aas. We recall that Z7, the
interior of a model D, is the subset consisting of the denotations of (A“)?. The
applicative and projective closure of the interior of a A-model D can be easily
defined using indexed terms, i.e. those terms generated by extending the set of
constants with symbols to denote projections.

Definition 5.2 The set of indexed \-terms ACT s defined as follows:
A=z | AA| Xz A | ¢ | P,

where ¢ € Var, c e C.
The set of closed indexed terms will be denoted by (A" )0,

In the sequel we shall assume that D = (D,Cp, ep, {pn}tnecw, [ ]) is a A-aas
modeling the set of A-terms A€. We can easily extend it canonically to a A-aas
D+, which models AC+, by extending [ ]]D on the new constants as follows: for

4
all n € w, [[cp"]]f = p,. Then the applicative and projective closure of Z7 is

0",

In the rest of this section, we will show how to quotient 7P* by a suitable
equivalence relation =%, and we will discuss conditions under which this quotient
structure is a pEq”)-caas. In effect, we start by introducing an appropriate
relation, which will be shown to be a preequivalence relation in Proposition 5.2
below. Notice that, for all n > 0, we have that p, =p ([[)\fb.fli]]?),H,l.

Definition 5.3 Let C% C IP" x IP" be the relation defined by
a9 b iff Vn>0.a,C} by,

where the relations C'}C (1'D1L N D,) x (1'D1L N D,,) are inductively defined as
follows:
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e alC%b iff aCpb.
e q E%“ b iff Ve d. ac C} bd.
Let =%, be the relation C% N(C%) 1.

The notion C¢, above generalizes the notion of call-by-value applicative bisim-
ulation introduced in [EHR92], and the corresponding notion used in [AO93] for
the lazy A-calculus. In [EHR92], this relation was utilized for showing that the
theory =, is Eq,-applicative. Notice that it is not at all obvious that the re-
lation C% is a preequivalence and a congruence w.r.t. application. The proof
of this (Proposition 6.1) and in particular of the fact that C% is reflexive is
rather involved. It generalizes the one carried out in [EHR92] for call-by-value
applicative bisimulation. Once we have this, we can define a quotient A-model
by endowing @7, with the structure of a A\-aas (Corollary 5.1). Then, we will

show that the relation C%, satisfies a ®,gq0 +—coinducti0n principle. Therefore
Q

D
the quotient structure QE is a qug)J5 A-caas and hence, by Theorem 5.1, it is
qu0Q+ -cartesian.
D
We start by isolating a crucial property of =%. We call it 0-projection

preservation, since it guarantees that if two terms are =% -related, then they
have the same 0-projection (see Lemma 5.1 below).

Definition 5.4 The relation =%, is O-projection preserving if, for all a,b €
P,
aChb = agLCY by .

Lemma 5.1 Let =“ be 0-projection preserving. Then
i)Vn.aChb = a E%H b;
it) Vn. a E’F‘l b = a, C} by.

Proof The proof of i) and ii) is by mutual induction on n.
Lemma 5.2 Let =%, be 0-projection preserving. Then, for all a,b € ID+,
aC%b < Ye,deI” . (cC%d = acC%bd) .

Proof (=) This follows from the fact that in finitary models ab =p | |,,c n anb,
and from the fact that C% is inclusive, i.e., if Vn. a, C% by, then a C%) b.

(<) First of all, notice that, using Lemma 5.1, one can easily show that Va,b €
I7?+. a Ch b <= a L% b. Using this fact, one can easily show that ¥n >
0. apy1 E”[’,H bnt1- The thesis follows using the hypothesis a; Ch b1 =
agp EOD bo. |
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Lemma 5.3 Let =¥ be U—piojection preserving. Then, for all M € AC+, for
all p,p' : Var = (Dyar NIPT),

w D —y D
pED p’ = IIM]]p ED [[M]]p’ )

where p C% p' denotes the fact that Yz € Var. p(z) C% p'(z).

Proof By structural induction. In particular, for the application case use
Lemma 5.2(=), for the abstraction case use Lemma 5.2(<).

In what follows, we assume that D,,,. N I(?Jr £ (.

Proposition 5.2 Let =} be 0-projection preserving. Then C%, is a preequiva-
lence which is a congruence w.r.t. application.

Proof Reflexivity follows from Lemma 5.3, since the interpretation of closed
terms in (AC+)0 does not depend on the environment, and, by the blanket
assumption DWTQIOD+ # [, there exist environments p, p' : Var — (D yqr DID+)
such that p C% p'. Transitivity follows by showing, by induction on n, that,
the relations C7, are all transitive. The fact that CY, is a congruence w.r.t.
application follows from Lemma 5.2(=).

Finally we can define a A-caas out of the quotient QJ[S.

Corollary 5.1 Let D = (D,Cp,ep,{pn}tncw,[]) be a A-aas. If =¥ is 0-
projection preserving, then the structure (QF, Eg,o,{[pn];g Ynews[]) is a A-
aas, where:

+ w
B = (Z” =%);

. ELZ, 18 the partial order induced on the quotient by C;

o [d=s o[e]=s = [de]

—w

modulo =%;

o forallp:Var = (QF)vars [M], = [M[p(z1)/1,...,p(zn)/Tn]l=s , where
FV(M) C {z1,...,2,}, and p(z;) is a representative of the equivalence
class p(z;).

where [d]=s denotes the equivalence class of d

—w
=D )

We can show that all quotient structures arising from relations which are
0O-projection preserving are ®,g,0 +—coinductive. To this end we need to give
Q

D
an alternative applicative characterization of the relation C%,. But first we need
the following lemma, which is easily proved by induction on n, using Lemma
5.1.

Lemma 5.4 If =% is 0-projection preserving, then, for all n > 0,

aChb = Vd',...,a* EI[?Jr. (aa'...a¥)o Cp (ba'...a")s .
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Proposition 5.3 If =Y, is 0-projection preserving, then
aC%b < Vad',...,a" EI(?Jr. (aa*...a*)o Cp (ba'...a")q .

Proof (=) This follows by contradiction, using Lemma 5.4 and properties of
application in an aas.

(<) Suppose, by contradiction, that In. a, £} b,. Then, since =¥ is 0-
projection preserving, n > 0. By definition of C’, there exist al,_;,...,a,
bl 1,...,b7 such that Vi = 1,...,n. a%,_, T b, A (anal ...a%)o Zp

(bpbl_1...b0)o. Moreover, by Lemma 5.1, a’,_, C% bi_,; then, since C% is a

congruence, we have (bpal_;...a%)o C% (bnbl_;...b%})o, and hence a fortiori

(aal_1...a8)o Zp (bal_; ...af)o, whichis a contradiction by Lemma5.4.

Theorem 5.2 Let (D,Cp,ep, {Pn}ncw; [ ]]D) be a A-aas. If =% is 0-projection
preserving, then the structure (QB, E%,o,{[ n]m% Ynew, [ ]), defined in Corol-
lary 5.1, is a qu%Jr A-caas.

Using Theorem 5.1, we get immediately the following

Corollary 5.2 Let D be a X-aas. If =%, is 0-projection preserving, then the

~—w . . . .
structure (QB, Cp, & {[Pnl=¢ tnew: [ ]) s @ quOQg—carteszan applicative struc-
ture.

Corollary 5.2 can be applied to the quotient A-aas generated by all the models
D", D', DY, D°, D", and DP of Section 4.1. Moreover, since projection functions
are A-definable in the models DY and D°, we can use Corollary 5.2 also for
showing that, for ¢ = v, 0 the theories ~, are Eq -cartesian. In fact, using
the Computational Adequacy Theorems 4.2 and 4.5, one can check that Eq, =

6 The congruence candidate method

In this section, we present a purely syntactical technique for establishing Eq, -
cartesianity of observational A-theories ~,. We recall that Eq, = {(M,N) €
(A€)° x (A€)° | M ||, & N | o}. This method, which we call congruence
candidate method, was introduced in [Len98]. It is inspired by the congruence
candidate method used in [How89] (see also [How96]), for showing that 2, for
lazy strategies is ®gq,-coinductive. The congruence candidate method will be
used here for showing that the A-theories ~,, for o = h, 1, v, p, are Eq,-cartesian.
In general, it can be applied to observational A-theories, which satisfy the ®gq -
coinduction and the technical condition (x) of Theorem 6.1 below.

The congruence candidate method makes an essential use of the Eq,-cartesian
coinduction principle itself. One starts out by defining a candidate relation on
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A€, which is a congruence, and which includes the greatest Vg, -bisimulation
~&. . This candidate relation is then shown to be a Wgq_-bisimulation. Hence
the Eq, -cartesian coinduction principle guarantees that ~ Yt itself is a congru-
ence w.r.t. application and thence it coincides with ~®&-. Since this method
is very technical we outline the:

General pattern of the congruence candidate method:

e Build a candidate relation &%~ C A¢ x A€ such that

Veq,, D ¥eq, .
= )

Q)

1.
AW, - ..

2. & ™ is a congruence w.r.t. application;
3.

A\p : . . -
R 7)(acyo is a Wgq -bisimulation.

—

e Use the Eq,-cartesian coinduction principle to deduce that ~Y& is a
congruence w.r.t. application.

We shall now present the congruence candidate method in general. The
following Definitions and Lemmata build up to Theorem 6.1. In the next sub-
section we shall apply Theorem 6.1 to various strategies.

In order to discuss uniformly both call-by-value and eager strategies we in-
troduce the following notation:

Notation Let M, N € A€ and let —, be a strategy. We put:

A [ AMEMO | MU} YM,N € (A). N o= MN §,,
771 (A9)° otherwise.

First of all, we have to explain how to build the candidate relation ~hLES
These are defined in terms of the extensions to open terms of Wg,_-bisimulations:

Definition 6.1 Let R be a Vg -bisimulation. For all M, N € AC such that
FV(M,N) C {z1,...,z}, we define

M R¥ N —

VPy,...,P, € Ay. AQ1,...,Qr € A,.

(Vlzl,,k PZRQZ A M[Pl/flilpk/xk]R N[Ql/ﬂile/xk]) A
VQi,...,Qr € Ay. APy, ..., Py € A,.

(VZ:].,,k P,RQ; A M[Pl/mlpk/mk]'R N[Ql/lek/mk])

In the sequel, by abuse of notation, we will simply denote R*** by R.

Definition 6.2 (candidate relation) Let R C A® x A be a reflezive and

transitive Wgq -bisimulation. Define the candidate relation R C A® x A by
induction on M as follows:
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My R M! M, R M, MM,R N

mEN v
R N MM R N
cR N MR M )M RN
¢cR N \e.M R N

Notice that the candidate relation is not simply the contextual closure of R;
this subtle definition of R, originally due to Howe, is necessary to guarantee the
crucial Substitutivity Lemma 6.2. The following lemma is an easy consequence
of the definition of R.

Lemma 6.1 Let R C A° x AY be a reflezive and transitive Wgq_-bisimulation.
Then:

i) R is reflezive.
i) RCR.
i11) R is a congruence w.r.t. application.
w) MRM' A M'RN = MRN.
Lemma 6.2 (substitutivity) Let R C A® x A® be a reflerive and transitive
Vg, -bisimulation. For all M, M' € A, N,N' € A,,
MRM' A NRN' = M[N/z]RM'[N'/z] .
Proof By induction on the structure of M.

e M=z: z R M
z R M
zRM' = IP € A,. NRP AN PRM'[N'/z], by definition of R, and hence,
by transitivity of R, N'RM'[N'/x]
NRN' A N'RM'|N'/z] = NRM'[N'/z], from iv) of Lemma 6.1.

e M=c: cR M this case is immediate.

cR M'

My R M, My, R M) MM,R M
MM R M’

o M= M1M2 : HM]’_,Mé s.t.

By definition of R, 3P € A, such that N'RP and M| Mi[P/z|RM'[N'/z].
In particular, from NRN' and N'RP, we get NRP. By induction hypothesis,
M;[N/z]RM![P/z] and MQ[N/m]RM’[NP/m]. Hence:

Mi[N/a] R M{[P/a] Ms[N/a] R M§[P/z] M{M;[P/a] R M'[N'/a]
M1M2[N/a:] R M’[N’/ZE]
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My R M! X\y.M|R M’
Ay.M; R M

o M= X\y.M;: IM] s.t.

By definition of R, there exists P € A, such that N'RP and R
(A\y.M{)[P/z]RM'[N'/z]. In particular, from NRN' and N'RP, we get NRP.
By induction hypothesis, M;[N/z]RM/[P/z]. Hence:

My[N/a] R Mj[P/z] (y.M;)[P/z] R M'[N'/a]
(\y.M1)[N/z] R M'[N'/z]

: O

Thus, if we take R to be the equivalence ~¥=., we get a relation EJ\IJE““,

which, by ii) of Lemma 6.1, includes ~Y&-. Moreover, by iii) of the same
lemma, it is a congruence w.r.t. application. In order to show that ~¥. is
itself a congruence w.r.t. application, we prove that (Q\IJECIU)‘(AC)O = (~¥e
)i(acyo- This is done using the Wgq -coinduction principle, by proving that

(Q\IJEq”)‘(Ac)o is a Wgq_-bisimulation. In order to prove that (&‘IJEQ")‘(A(J)O is a
Vg, -bisimulation, it is sufficient to show that, for all M, N € (A€)O,

MRY™ N A M|, = N, .
Hence we can state the following
Theorem 6.1 If, for all M, N € (A)°,
MRY™S N A M|, = N, (%,

then ~¥e. is a congruence w.r.t. application.

6.1 The congruence candidate method at work

The validity of hypothesis (x) of Theorem 6.1 depends on the particular strat-
egy. In this section we show that hypothesis (%) holds for all the observational
congruences induced by the strategies —;, —,, —+5, —+,. First we need the
following two lemmata. Notice that for the “non lazy” strategies h and p we
refer to the alternative “lazy” axiomatizations |J2 introduced in Definitions 4.7
and 4.8.

Lemma 6.3 Let o € {l,v,h,p}. Then, for all Az.M)N € A° and N € A,,
(A\z.M)N ~Y&s M[N/z] .

Proof Tt is easy to see that
(Az.M)N ~*%= M[N/z] .

The thesis follows from ~®f, Ca¥eas 0O
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Lemma 6.4 Let o € {h,p}. Then, for all M € A°
MY = M xVee P

Proof It is sufficient to prove that M ~®fs P, and this follows from the
correctness of —5(—p, ) reduction.

First we prove that condition () holds for the “lazy” strategies, namely:

Theorem 6.2 Let M, N € A°, and let o € {l,v}. Then
M&EY™ N A M, \z.P = 3Q.(N |, \z.Q A PRY™ Q).

Proof The proof proceeds by induction of the derivation of M |, Az.P.

~ g, e
e M =)\z.P: 3N'sit. Pxf N Az’ ~Ve, N
Ax.P =~ Fe N

From the definition of ~¥=. it follows that there exists @ such that N |, \z.Q.
By Lemma 6.3, Na~Y&- \z.Q, hence, by transitivity of ~¥&  \z. N'~¥50 A\z.Q.
In particular, using again Lemma 6.3, it is easy to check that N'a~¥&. Q. In
fact: in order to show N'a~Y%-(Q, we have to show that VPIR. PxYs- R A
N'[P/z]~Ye: Q[R/z]. But, A\z.N'~Ves A\z.Q implies

VP3R. PxVs: R A (Az.N')PxYes (A2.Q)R.

Then the thesis follows from Lemma 6.3. Hence, from PRYSe N and N'~ ¥, Q,

using iv) of Lemma 6.1, we get PR % Q.

~T ~ 0
Ml ~ e Nl M2 r e N2 N1N2 N\IJEqU N

o M = M1M2 : ENI,NZ s.t. M1M2 Q\IIE“U N

We deal with the case 0 = [, the other case is similar. Since M; M |};, there
exist P, P’ such that

M, |, Az.P'  P'[M,/z] | A\z.P

1M2 ‘U’l .

By induction hypothesis, since Mlﬁ\p&‘” N; and M; |; Mz.P', there exists
Q' such that N; {; )\z.Q' and P'&Y™-Q'. By the Substitutivity Lemma,
P’[Mz/m]ﬁ\h“” Q'[N2/z]. Hence, by induction hypothesis, there exists ) such
that Q'[Na/z] I \z.Q and PRY™ Q.

Next we discuss the “eager” strategies, notice again the use of |2 .

Theorem 6.3 Let M,N € A°, and let o € {h,p}. Then

MRS N A M2 \z.P = 3Q.(N |2 \z.Q A PRV™" Q).
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Proof The proof proceeds by induction of the derivation of M |2 Az.P. For
simplicitly, we work out in detail only the case of o = h, the other case being
similar.

e The only rule applied in the derivation of M | Az.P is the first rule in
Definition 4.7. Then M is solvable, i.e. M = Azy...z,.x;M;... M. Hence
ANy, ..., Ny, NO ... NE-1 N/ ... N! s.t.

z; ~ Ve NO
— XUe.. -0 ~T
;R NO AL RTYER N, NON; a¥en N1

~W
I,;M1N Fan ]V1

~¥ _ ~T _
o, Mi... M1~ Ban Nk—1 M= " r Ny, Nk 1Nk ~YEa N7ll

~W
IiMl e MkN Fan N;,,
and

< UE ' T '
wiMy . MR N, Az Ny & N,y
~UE ]
Nz M ... MyR =n N

~W

Ao ... Tp.ziMy ... M= 5 NJ ey . N! ~Yen N
=7

)\Il .. IT,I,Ml . .Mk% Ban N

In order to show that 3Q. N {9 A\z1.Q A QQ\IJE% ALs ... xp.zi My ... My, it is
sufficient to prove that Az1.N{ |%. Then the thesis follows using Theorem 4.3
and Lemma 6.1 iv), and using the fact that Azy ... z,.2;M; ... MR YEn Nj.
But

z; Ve N0 — z;N; Ve NON;

z; Ny x%en NON; A NONp x¥e N — 2;N; ~¥en N1

z;Ny...Ny &% NFIN, A NFIN, %8 N = 2;N;... N ¥ N/,
Using Theorem 4.3, N, |9 = Az, N, U5 = N _; U9 = ...N{ |} = Az;.Nj.

e M = Az.P and M is not a head normal form then:

IV sy, BRI N AgN'aen N
Az.P &7 F N

Since Az.P | Az.P, then, by definition of |9, 3P'. P[P'/z] ||. From P RYen N
and P’ &Y% P’ by the Substitution Lemma, P[P’/z] "% N'[P'/z]. Hence,
by induction hypothesis, N'[P'/z] %, and then Az.N' ¢ Az.N' and P |9
N'. But, since Az.N'~¥&n N, then 3Q. N ¢ A\z.Q and, using Lemma 6.4,
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Az.N'~%en \z.Q. Using Lemma 6.3, we get N'~"&xr Q. Finally, from PR N/
and N'~"&n Q, we get PRYV=n Q.

o M= (Ax.M;)M5...My: then, by hypothesis 3V s.t.

and ANy,..., N, N',... , N¥1 st.

~¥
MR7Fr Ny Az.Ny ~¥ean N1

U ~¥
)\I.M1% th’Nl MQN th’N2 N1N2 N\I}th ]V2

(Az.My) Mo RV N2

(2. My)Mp ... My &7 Fn NF-1 MRY5n N, NF-1N, a%en N

(Az.My)Ms, ... MR s N
Hence
NF-2N,_; aVen NF-1 A NE-IN, Ve N —
NE=2N, | Np ¥ N
Nkistfz Ve NE-2 A Nkiszlek Ve N =
NF=3Ny_oNp_1 Ny, =¥en N

NNy ~%en N2 A N2N;3...Nj =% N = N!N,...Nj =% N

ANy ~%en N1 A N'Ny...Np ~¥%6n N = (Az.N;)N;... N ~¥en N.

In order to show that 3Q.N |7 A\z.Q A PRV Q, it is sufficient to show that
AQ".(Az.N1)N2 ... Ny U9 Az.Q" A PQ\IIE‘”"Q’. Then the thesis follows using
Lemma 6.3 and Lemma 6.4. Hence we need only to show that

3Q'.Ni [Ny /z]... Ny U5 \z.Q' A PRY»Q'. Now, using the Substitutivity

Lemma, we get M;[Ms/z]... M&"En N, [No/x]...Ni. And finally, applying
the induction hypothesis, we get the thesis. 0O

7 Set-theoretical applicative structures

In this section we discuss briefly set-theoretical applicative structures, and their
connections with Eqj-cartesian applicative structures. First of all, we introduce
the crucial definition

Definition 7.1 A set D is a set-theoretical applicative structure over a set Up,
if

1. UpnN(DxD)=10

2. DCP(D xD)UUp);
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3. Vdy,dy € D. 3lds € D. (da,ds) € dy.

In the above definition the set Up plays the role of a set of Urelementen used
for tagging different copies of the same graph. The condition on Up allows to
introduce the notion of set-theoretical applicative structure even in an atomless
universe.

Definition 7.2 A functional set-theoretical applicative structure is a set-theore-
tical applicative structure D such that D C DP.

The above definitions are justified by the following obvious fact:

Proposition 7.1 Let D be a set-theoretical applicative structure. Then the
structure (D, ep), where

diepdy =d3 <= (dp,d3) €dy
is an applicative structure.

The following proposition shows that the existence of set-theoretical ap-
plicative structures is sensitive to the foundation/antifoundation properties of
the universe.

Proposition 7.2 1. The Foundation Axiom implies that there are no set-
theoretical applicative structures.

2. BAFA (see [Acz88]) implies that all functional applicative structures are
applicatively isomorphic to an extensional set-theoretical applicative struc-
ture.

3. ZF°X1 (see Appendiz A) implies that there are no non-trivial functional
set-theoretical applicative structures.

Proof

1) Immediate, since a set-theoretical applicative structure is a non-wellfounded
set.

2) Immediate from the definition of BAFA.

3) Immediate from the strong extensionality of a universe satisfying Xj. 0O

Hence the theory of set-theoretical applicative structures is most interesting
when the universe satisfies the Axiom X; of [FH83] (see Appendix A). In this
case, the universe itself satisfies the well known strong extensionality property,
which amounts to the fact that the universe is strongly extensional and final
P( )-coalgebra (see Appendix A).

The following proposition illuminates on the connections between set-theore-
tical applicative structures and Vg, -cartesian coinduction principles in a uni-
verse satisfying X;.

31



Proposition 7.3 Assume ZF°X;.

1. Any applicative structure of cardinality x is applicatively isomorphic to a
set-theoretical applicative structure D over a set Up of cardinality k.

2. Let D be a set-theoretical applicative structure over the set Up. Then
(D,ep) is an Eqp-cartesian applicative structure, for Eqp defined by
dEqp d' & dNUp = d'NUp. Moreover (D,idp) is a strongly extensional

v .
H‘UE;[" -coalgebra in Set*.

3. Any Eqp-cartesian applicative structure is applicatively isomorphic to a
set-theoretical applicative structure over a set Up whose cardinality is the
cardinality of the equivalence classes of Eqp.

Proof Straightforward using the definitions. O

It is somewhat funny to point out that the very last proposition of this
paper was actually what triggered the whole investigation carried out in the
paper itself.

8 Concluding remarks

e In [HL95], we had given already a proof of the fact that the theory =,
is Eq,-cartesian. The proof which derives from the general method of
Section 5 is conceptually simpler. The results concerning the strategies [
and v, and techniques in Section 6 are essentially those of [Len98].

e In this paper we did not fully address all possible natural questions which
can arise in connection with the operator Wgq_, let alone all the other
operators of Section 2. For instance, one could ask whether =, is Eq,,-
cartesian. Although we confidently conjecture that this is the case, the
proof could be extremely technical, since in defining |}? for abstractions
one should test termination on infinitely many closed terms.

Some interesting observations concerning the other operators can be made
readily. For example, the @Eq”—coinduction principle, for n > 1, is clearly
unsound for lazy strategies, but it is sound for those strategies which yield
extensional term models such as h,n,o. More general results, however,
seem extremely hard to establish.
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A Non-wellfounded sets

Non-wellfounded sets are elements of a Universe of a Zermelo Fraenkel-like set-
theory ZF°X;. ZF°X; is the theory consisting of the axioms ezxtensionality,
Pairing, Union, Power Set, Replacement, Infinity, Choice, and the Antifounda-
tion Axiom X; of [FH83] (or equivalently, by the Antifoundation Axiom AF'A
of [Acz88]).

Let V denote the Universe of sets (without atoms).

Definition A.1 (X;) Let X be a set. For every function f : X — P(X), there
18 a unique function g : X — V which makes the following diagram commute

X = p(x)

| A

v

Le., for allz € X, g(z) = {g(y) | y € f(z)} .

It is interesting to point out that X; express precisely the fact that the
universe V is final coalgebra for the functor P(-).

The Antifoundation Axiom X; yields immediately a coinductive characteri-
zation of equality between sets, i.e. strong extensionality ([FH83, Acz88]).

Proposition A.1 (strong extensionality) Two sets z,y are equal if and only
if there erists a ®T-bisimulation R such that x R y, where ® is the following
operator on relations of the universe V :

T (R) = {(z,y) |Vz1 €x. Fy1 €Ey. 21 Ry A Yyy €y. Iz €2. 21 Ry1} .

The notion of ®*-bisimulation was called id-admissible relation in [FH83].

B Coalgebraic description of coinduction

In this appendix we recall the categorical coalgebraic description of coinduction.
This arises from the Final Semantics Paradigm introduced by Aczel ([Acz88,
AM89]), and further developed by Rutten and Turi ([RT93, Tur96, Rut96]).

Coalgebraically, coinduction principles for reasoning on the possibly circular
and infinite objects of a data type X arise when X can be viewed as F'-coalgebra
for a suitable endofunctor F' : C — C.
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Definition B.1 Let F : C — C be a functor. An F-coalgebra is a pair (X, ax),
where ax : X — F(X) is a morphism of C.

The F-coalgebras are the objects of a category whose morphisms between F'-
coalgebras (X,ax) and (Y,ay) are morphisms f : X — Y of the category C
such that the following diagram commutes

|
(X) 55~ F(Y)

f

_ Y
ax
F
The categorical counterpart of the the set-theoretic notion of maximal fix-
point is the notion of final F'-coalgebra.
The categorical counterpart of the set-theoretic notion of bisimulation is

the notion of F'-bisimulation. We give the definition of F'-bisimulation in the
category Set*:

Definition B.2 An F'-bisimulation on the F'-coalgebras (X,ax) and (Y, ay)
is a set-theoretic relation R C X X Y such that there exists an arrow of C,
v :R— F(R), making the following diagram commute:

T R T Y
4

F(X)WF(R)TWJF(Y)

Definition B.3 (strong extensionality) An F'-coalgebra, (U, ary), is strongly
F-extensional if for all u,u' € U,

u=u' <= IR F-bisimulation on (U,ay). u R u' .

We recall the crucial theorem of the Final Semantics Paradigm, which allows
to characterize coinductively the equivalence induced by the unique F-coalgebra
morphism into the final F-coalgebra ([Acz88, RT93)):

Theorem B.1 Let F' preserve weak pullbacks, and let (X, ax) be an F-coalgebra.
If there exists final F-coalgebra (U, arr), then the equivalence ~; induced by the

unique morphism f : (X,ax) = (U,ay) can be characterized as follows:

~p = U{R | R is an F-bisimulation on (X,ax)} .
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