
The return of VDM to AustriaPeter Gorm Larsen, IFAD, DenmarkMay 18, 1998AbstractAt the beginning of the seventies a new softwaredevelopment paradigm was invented at the IBMlaboratories in Vienna [12]. To show respect forthe origin of this technique its name was theVienna Development Method (or VDM as anacronym). The main contribution of this workwas the development of a speci�cation languagewhich was used to give a precise semantics to acomplex programming language. The notationof VDM was standardised by ISO [13]. In addi-tion it has been applied for making precise mod-els of many di�erent kinds of systems. Duringthe last 5 to 10 years IFAD have been develop-ing tools supporting this standard notation andan object-oriented version of it. In the last cou-ple of years close collaboration with Institute forSoftware Technology1 at TU Graz has emergedand we see this as a return of the VDM tech-nology to Austria. It is like the ugly ducklingreturning home as a swan. In this paper we pro-vide a short overview of the VDM technologyand exemplify how we see the future collabo-ration with TU Graz. Finally we will expressour vision for industrial use of VDM in Austriaarising from this collaboration.1 IntroductionThe ugly ducklingThe target domain for VDM was initially setnarrowly on language de�nition and compilerdesign. One of the best known results of theearly work was a formal de�nition of PL/I. Lateron, the target domain was broadened to soft-ware and systems development in general. Thiswas possible because the ideas were much moregenerally applicable than initially envisaged.The method part of VDM for developing sys-tems is to start with an abstract model of the1Ordinariat f�ur Softwaretechnologie

functionality of the desired system. This is thenfollowed by a series of precise models. Eachmodel in this series is more concrete and closerto the implementation than the previous one.Every level is linked to the previous one byan argument of correctness. These steps wouldbe considered as a re�nement of the previousmodel. The underlying assumption is that onewould be able to formally verify that the �-nal implementation indeed satis�es the require-ments stated in the �rst and most abstractmodel. In the early days of VDM rigorous proofsof certain compiler algorithms were actually de-veloped in this way.The returning swanHowever, this idealistic development approach isdi�cult to introduce into industrial practice un-less one has very well educated employees. Themethod part of VDM would not �t into tradi-tional companies development processes with-out a revolutionary change. At IFAD we havetherefore instead promoted a more evolutionaryand light-weight approach [1]. We believe thatthe main bene�t of VDM is to formulate the �rstabstract model of a system and validate whetherthe overall understanding makes sense. Intro-ducing VDM gradually where one initially usesit simply for gaining a higher level of con�dencein the understanding of the intended function-ality is a more cost-e�ective way to introduce itin an industrial setting. Later on we envisagethat the formal re�nement and the proof of var-ious properties may be introduced by companieswhich develop critical systems and have seen thebene�t from doing the abstract modelling.In order to use something like VDM industri-ally it is important to have powerful tools whichcan provide valuable insight in the VDM mod-els being produced in an easy way. At IFAD welearned this in the beginning of the nineties andsince then we have been involved with develop-ing such tool support. Here a pragmatic ap-1

VDM Specification

Code Interface Spec

C++ Code

Code

Graphical Notation Coupling Module

External Code Coupling Module

Interpreter & Debugger

Type Checker

Syntax Checker

Code Generator

VDM Tools

Specification Manager

Test Coverage and Statistics Tool

Document Generator
Document

Browser
Dependency
Class

UML Figure 1: Overview of the IFAD VDM Tools.proach focusing on validating VDM models us-ing execution has been chosen. For most modelsformulated in VDM it is actually possible to ex-ecute them in a way similar to what developersuse for their favourite programming languages.Thus, this is an easy way to gain valuable insightin the described functionality in an environmentwhich is familiar to the traditional developers.In addition the platform for tools must �t withthe traditional industrial environments. Nowa-days this primarily means that the tools mustrun under Windows and support text process-ing systems such as Microsoft Word. At IFADwe have also moved our tools in this directionas described below.We believe that it is due to our pragmaticapproach that we have been able to get ourVDM technology applied by industrial users.Some of these are con�dential but for a num-ber of them interesting papers have been writ-ten jointly with the industrial user. This in-cludes work at British Aerospace [10, 7], work atAerospatiale [11, 5], and work at Dassault Elec-tronique [2]. In Austria students have starteddoing thesis projects in collaboration with Aus-trian industrial companies using the VDM tech-nology. So far four such projects have been car-ried out and we expand on this below.2 The VDM Tools: ValidatedDesign through ModellingAn overview of the VDM Tools from IFAD ispresented in Fig. 1 which illustrates how a num-ber of facilities are integrated via a Speci�ca-tion Manager. Powerful analysis and consis-tency checking tools help the designer to achievethe highest con�dence in system designs. Thebi-directional coupling module for widespreadgraphical notations such as UML ensure the op-

timal support for complementary graphical andtextual notations.2.1 Executable Models: Clarify Re-quirements and Find DefectsA key facility of the VDM Tools is an inter-preter and interactive debugger for executingand debugging high-level system models writ-ten in the VDM notations. This supports earlyvalidation and veri�cation (V&V). For exam-ple, system requirements and hidden assump-tions can be clari�ed by applying rapid proto-typing techniques in order to validate systemmodels, resulting in early trouble shooting andthereby reducing development costs and time-to-market. Furthermore, requirement proper-ties can be documented explicitly by annotat-ing VDM speci�cations with predicates whichare veri�ed automatically while executing testcases. Finally, the process of speci�cation re-viewing can be automated by this type of speci-�cation testing, thereby making it cheap to con-duct and not subject to human errors nor lim-itations. Moreover, the reviewing process canbe repeated at no cost which is particularly ad-vantageous in situations with changing require-ments.Executable models are also essential from atechnology transfer perspective. Software en-gineering practice is heavily based on testingand so this technique is well-known to engineers.The VDM Tools support the testing process byproviding test coverage and statistics informa-tion at system model level and through a fa-cility for executing models and external codetogether. This external code dynamic link fa-cility supports rapid prototyping, for example,by building graphical front-ends for systems de-signed in VDM. Hence, it is possible to get earlyfeedback on a model from a customer, manager2

or colleague, who is not familiar with VDM.2.2 Automatic Code Generation:Reduce Costs and TimeAutomatic code generation helps to solve theconsistency problem between speci�cation andimplementation and eliminates the human fac-tor concerning the potential introduction of er-rors during implementation. Hence, automaticcode generation can help to minimise devel-opment costs and time-to-market. Moreover,bug �xing and other maintenance can be per-formed at speci�cation rather than implementa-tion level (i.e. at a level corresponding to earlyrather than late development steps), yieldingeasier maintenance and lower costs.The IFAD VDM Tools support automaticgeneration of C++ code from high-level modelsas an add-on feature. The tools generate fullyexecutable code for 95% of all VDM constructsleaving facilities for including user de�ned codefor non-executable parts of the speci�cation.2.3 Graphical Notations: MasterComplexityGraphical notations are widely used for object-oriented designs and embedded real-time sys-tems. The Venus solution o�ers the complemen-tary bene�ts of the textual notation VDM++and the graphical notation UML for object-orientation through a bi-directional link to Ra-tional Rose. Hence, Venus supports round tripengineering where an engineer can begin the de-velopment process by writing graphical mod-els in UML, automatically translate these toVDM++, incrementally develop more concisemodels, test the models using the VDM++ in-terpreter, change class structure, merge with ex-isting UML, make changes in UML, merge withexisting VDM++, etc. The advantage of usingVDM++ is that it allows more concise systemspeci�cations than with purely graphical nota-tions and that these can be executed and de-bugged early in the development process.2.4 Tool DescriptionsThe tools presented in Fig. 1 are described inmore detail below.Speci�cation Manager The Speci�cationManager maintains a project by keeping

track of the status of modules. Thesestatus indications present an easy overviewof the speci�cation and they facilitate thecontinuation of work from one session toanother. Furthermore, the Speci�cationManager can automatically update thespeci�cation with respect to syntax check-ing, type checking, code generation, etc.Finally, the user has a number of options,e.g. he can select his favourite editor.Interpreter The VDM-SL/VDM++ inter-preter supports all executable constructsin VDM-SL and VDM++. This rangefrom simple value constructors like setcomprehension and sequence enumerationto more advanced constructs like excep-tion handling, lambda expressions, looseexpressions and pattern matching. Oneof the bene�ts of executing speci�cationsis that testing techniques can be used toassist validation of the speci�cations. Inthe development process small examplesfor parts of a speci�cation can be executedto enhance the designer's knowledge of,and con�dence in the speci�cation. Fur-thermore, an executable speci�cation canform a running prototype.Debugger A source-level debugger is essen-tial when working with executable speci-�cations. The VDM debuggers supportsthe functionality found in debuggers for or-dinary programming languages including:setting breakpoints, stepping, inspection ofall variables de�ned in scope, and inspec-tion of the call stack.Type Checker The static semantic analyseris an advanced type checker and it sup-ports most of the static semantics levelsprescribed by the ISO Standard. It con-tains a powerful type inference mechanismwhich also shows proof obligations with re-spect to the type system.Test Facility Test coverage information canbe automatically recorded during the eval-uation of a test-suite. The speci�er can atany point view which parts of the speci�-cation are most frequently evaluated andwhich parts have not been covered at all.The test coverage information is displayeddirectly in the source-�le, a Word or LaTeXdocument, in a comprehensive form whichis easy to read.3

Automatic Code Generator The IFADVDM Tools support automatic genera-tion of C++ code from a VDM-SL orVDM++ speci�cation which helps tosolve the consistency problem betweenspeci�cation and implementation. Thecode generator produces fully executablecode for 95% of all VDM constructs leavingfacilities for including user de�ned code fornon-executable parts of the speci�cation.Dynamic Link Facility The IFAD VDM-SLToolbox has an add-on feature which makesit possible to integrate external code intothe execution of a speci�cation. This can beused to integrate a formal model with com-ponents developed in a traditional way andprovide graphical front-ends for a model.Rose-VDM++ Link The Rose-VDM++Link integrates UML and VDM++.Through translations the link providesa tight coupling of the IFAD VDM++Toolbox and Rational Rose. Hence the linksupports round trip engineering betweenUML and VDM++, where the graphicalnotation is used to provide the structural,diagrammatic overview of a model whilethe formal notation is used to provide thedetailed functional behaviour of a model.3 Collaboration with TUGrazAfter the return of Professor Peter Lucas toAustria collaboration between IFAD and IST atTU Graz has emerged. At IST the students aretaught VDM using the new VDM tutorial book[6] which includes an educational version of thetools mentioned above called Toolbox Lite.The �rst visible result of the collaborationcame from the work Brigitte Fr�ohlich did at avisit to IFAD. She developed the �rst version ofthe dynamic link feature mentioned above [9].The subject of her PhD thesis is to what extentone can execute implicit de�nitions from VDM-SL [8]. This work can been closely followed andguided jointly by both IST and IFAD. The dif-ferent conceptual ideas have been tried out usingthe VDM-SL Toolbox extending speci�cationsalready developed at IFAD. In case that the re-sults are su�ciently encouraging the work herewill be incorporated in the IFAD tools at a later

stage.The second visible result came from BernhardAichernig who carried out his MSc project atIFAD. The subject of this work was to auto-mate the generation of proof obligations [3, 4]for VDM-SL. This is already scheduled to be in-corporated in the IFAD VDM Tools. In his PhDwork he is now looking at how one can automatea larger part of the testing e�orts based on spec-i�cations formulated in VDM-SL or VDM++.Just like the work mentioned above joint guid-ance is given to his work including visits to Den-mark to discuss and present alternative routesfor the future work.In August Oliver Oppitz will start his MScproject at IFAD. The subject of his work willbe automatic code generation from the paral-lel part of VDM++ to Java. For the sequentialpart of VDM++ to Java code generator is cur-rently being developed at IFAD. We believe thatthis will again be a successful visit with mutualbene�ts.Industrial disseminationIn Austria students have started doing thesisprojects in collaboration with Austrian indus-trial companies using the VDM technology. Sofar several projects have been carried out in-cluding a project with Siemens PSE Graz whereseveral ambiguities and gaps have been dis-covered in the informal description of a pro-tocol which has been formalised using VDM-SL. Another of these projects which deserves tobe mentioned is one together with Ferk Infor-matik where VDM-SL is combined with struc-tured analysis and entity-relationship diagrams.Currently the VDM technology is applied ina project in the safety-critical area of air con-trol. The goal of this project is the speci�cationand derivation of test-cases for the communica-tion system of the Viennese company Frequen-tis. Furthermore, in an ongoing PhD project incooperation with the Research Centre Seibers-dorf a Guard Route Control System is formallyredeveloped using VDM.4 Concluding RemarksWhere VDM for a long number of years has beenalmost unknown in Austria we believe that thefruitful collaboration between IFAD and IST atTU Graz will mean the return of VDM to Aus-4

tria. We believe that the TU Graz focus onVDM will spread into more and more industrialapplications using the VDM technology. Herethe students projects carried out on problemsfrom the industrial companies play an impor-tant role.We envisage that the collaboration will be ex-tended where more students in Austria will beexploiting ideas for extending the VDM Toolsusing a new API (Application Programmers In-terface) which has been developed for the Tool-box. In this way new features will be added andthose which looks most promising will probablybe further enhanced and maintained on a com-mercial basis by IFAD afterwards.We really believe that this story with VDMreturning to Austria is similar to that of theugly duckling's return as a beautiful swan. Inparticular because IFAD comes from Odense inDenmark which is the home city of H.C. Ander-sen who wrote the fairy-tale.References[1] Sten Agerholm and Peter Gorm Larsen. ALightweight Approach to Formal Methods.In Submitted to FM-Trends, Boppand, Ger-many, October 1998.[2] Sten Agerholm, Pierre-Jean Lecoeur, andEtienne Reichert. Formal Speci�cation andValidation at Work: A Case Study usingVDM-SL. In Proceedings of Second Work-shop on Formal Methods in Software Prac-tice. ACM, Florida, March 1998.[3] Bernhard Aichernig. A Proof ObligationGenerator for the IFAD VDM-SL Toolbox.Master's thesis, Technical University Graz,Austria, March 1997.[4] Bernhard K. Aichernig and Peter GormLarsen. A proof obligation generator forvdm-sl. In John Fitzgerald, Cli� B. Jones,and Peter Lucas, editors, FME'97: Indus-trial Applications and Strengthened Foun-dations of Formal Methods (Proc. 4th Intl.Symposium of Formal Methods Europe,Graz, Austria, September 1997), volume1313 of Lecture Notes in Computer Science,pages 338{357. Springer-Verlag, September1997. ISBN 3-540-63533-5.[5] Lionel Devauchelle, Peter Gorm Larsen,and Henrik Voss. Picgal: Practical use of

formal speci�cation to develop a complexcritical system. In John Fitzgerald, Cli� B.Jones, and Peter Lucas, editors, FME'97:Industrial Applications and StrengthenedFoundations of Formal Methods (Proc. 4thIntl. Symposium of Formal Methods Eu-rope, Graz, Austria, September 1997), vol-ume 1313 of Lecture Notes in ComputerScience, pages 221{236. Springer-Verlag,September 1997. ISBN 3-540-63533-5.[6] John Fitzgerald and Peter Gorm Larsen.Modelling Systems { Practical Tools andTechniques in Software Development. Cam-bridge University Press, The EdinburghBuilding, Cambridge CB2 2RU, UK, 1998.ISBN 0-521-62348-0.[7] John S. Fitzgerald. ESSI Project Con-Form: Home Page. WWW at URLhttp://www.csr.ncl.ac.uk/projects/ConForm.html,1994.[8] Brigitte Fr�ohlich. Towards Executability ofImplicit De�nitions. PhD thesis, TU Graz,Institute of Software Technology, Septem-ber 1998.[9] Brigitte Fr�ohlich and Peter Gorm Larsen.Combining VDM-SL Speci�cations withC++ Code. In Marie-Claude Gaudel andJim Woodcock, editors, FME'96: Indus-trial Bene�t and Advances in Formal Meth-ods, pages 179{194. Springer-Verlag, March1996.[10] Peter Gorm Larsen, John Fitzgerald, andTom Brookes. Applying Formal Speci�ca-tion in Industry. IEEE Software, 13(3):48{56, May 1996.[11] Peter Gorm Larsen Lionel Devauchelle andHenrik Voss. PICGAL: Lessons Learntfrom a Practical Use of Formal Speci�ca-tion to Develop a High Reliability Software.In DASIA'97. ESA, May 1997.[12] Peter Lucas. VDM: Origins, Hopes, andAchievements. In Airchinnigh Bj�rner,Jones and Neuhold, editors, VDM '87VDM { A Formal Method at Work, pages1{18. VDM-Europe, Springer-Verlag LNCS252, 1987.[13] P. G. Larsen and B. S. Hansen and H.Brunn N. Plat and H. Toetenel and D.J. Andrews and J. Dawes and G. Parkin5

and others. Information technology | Pro-gramming languages, their environmentsand system software interfaces | ViennaDevelopment Method | Speci�cation Lan-guage | Part 1: Base language, December1996.

6

