The return of VDM to Austria

Peter Gorm Larsen, IFAD, Denmark

May 18, 1998

Abstract

At the beginning of the seventies a new software
development paradigm was invented at the IBM
laboratories in Vienna [12]. To show respect for
the origin of this technique its name was the
Vienna Development Method (or VDM as an
acronym). The main contribution of this work
was the development of a specification language
which was used to give a precise semantics to a
complex programming language. The notation
of VDM was standardised by ISO [13]. In addi-
tion it has been applied for making precise mod-
els of many different kinds of systems. During
the last 5 to 10 years IFAD have been develop-
ing tools supporting this standard notation and
an object-oriented version of it. In the last cou-
ple of years close collaboration with Institute for
Software Technology! at TU Graz has emerged
and we see this as a return of the VDM tech-
nology to Austria. It is like the ugly duckling
returning home as a swan. In this paper we pro-
vide a short overview of the VDM technology
and exemplify how we see the future collabo-
ration with TU Graz. Finally we will express
our vision for industrial use of VDM in Austria
arising from this collaboration.

1 Introduction

The ugly duckling

The target domain for VDM was initially set
narrowly on language definition and compiler
design. One of the best known results of the
early work was a formal definition of PL/I. Later
on, the target domain was broadened to soft-
ware and systems development in general. This
was possible because the ideas were much more
generally applicable than initially envisaged.
The method part of VDM for developing sys-
tems is to start with an abstract model of the

1Ordinariat fiir Softwaretechnologie

functionality of the desired system. This is then
followed by a series of precise models. Each
model in this series is more concrete and closer
to the implementation than the previous one.
Every level is linked to the previous one by
an argument of correctness. These steps would
be considered as a refinement of the previous
model. The underlying assumption is that one
would be able to formally verify that the fi-
nal implementation indeed satisfies the require-
ments stated in the first and most abstract
model. In the early days of VDM rigorous proofs
of certain compiler algorithms were actually de-
veloped in this way.

The returning swan

However, this idealistic development approach is
difficult to introduce into industrial practice un-
less one has very well educated employees. The
method part of VDM would not fit into tradi-
tional companies development processes with-
out a revolutionary change. At IFAD we have
therefore instead promoted a more evolutionary
and light-weight approach [1]. We believe that
the main benefit of VDM is to formulate the first
abstract model of a system and validate whether
the overall understanding makes sense. Intro-
ducing VDM gradually where one initially uses
it simply for gaining a higher level of confidence
in the understanding of the intended function-
ality is a more cost-effective way to introduce it
in an industrial setting. Later on we envisage
that the formal refinement and the proof of var-
ious properties may be introduced by companies
which develop critical systems and have seen the
benefit from doing the abstract modelling.

In order to use something like VDM industri-
ally it is important to have powerful tools which
can provide valuable insight in the VDM mod-
els being produced in an easy way. At IFAD we
learned this in the beginning of the nineties and
since then we have been involved with develop-
ing such tool support. Here a pragmatic ap-



VDM Tools

VDM Specification
Code Interface Spec

(&/ntax Checker
LType Checker

Specification Manager

Document Generator
| Document
[Teﬁ Coverage and Statistics Tool }

Interpreter & Debugger

|

| =

External Code Coupling Module

Dependency
Browser

[Oode Generator }»‘ C++ Code

*[Graphical Notation Coupling Module]

Figure 1: Overview of the IFAD VDM Tools.

proach focusing on validating VDM models us-
ing execution has been chosen. For most models
formulated in VDM it is actually possible to ex-
ecute them in a way similar to what developers
use for their favourite programming languages.
Thus, this is an easy way to gain valuable insight
in the described functionality in an environment
which is familiar to the traditional developers.
In addition the platform for tools must fit with
the traditional industrial environments. Nowa-
days this primarily means that the tools must
run under Windows and support text process-
ing systems such as Microsoft Word. At IFAD
we have also moved our tools in this direction
as described below.

We believe that it is due to our pragmatic
approach that we have been able to get our
VDM technology applied by industrial users.
Some of these are confidential but for a num-
ber of them interesting papers have been writ-
ten jointly with the industrial user. This in-
cludes work at British Aerospace [10, 7], work at
Aerospatiale [11, 5], and work at Dassault Elec-
tronique [2]. In Austria students have started
doing thesis projects in collaboration with Aus-
trian industrial companies using the VDM tech-
nology. So far four such projects have been car-
ried out and we expand on this below.

2 The VDM Tools: Validated
Design through Modelling

An overview of the VDM Tools from IFAD is
presented in Fig. 1 which illustrates how a num-
ber of facilities are integrated via a Specifica-
tion Manager. Powerful analysis and consis-
tency checking tools help the designer to achieve
the highest confidence in system designs. The
bi-directional coupling module for widespread
graphical notations such as UML ensure the op-

timal support for complementary graphical and
textual notations.

2.1 Executable Models: Clarify Re-

quirements and Find Defects

A key facility of the VDM Tools is an inter-
preter and interactive debugger for executing
and debugging high-level system models writ-
ten in the VDM notations. This supports early
validation and verification (V&V). For exam-
ple, system requirements and hidden assump-
tions can be clarified by applying rapid proto-
typing techniques in order to validate system
models, resulting in early trouble shooting and
thereby reducing development costs and time-
to-market. Furthermore, requirement proper-
ties can be documented explicitly by annotat-
ing VDM specifications with predicates which
are verified automatically while executing test
cases. Finally, the process of specification re-
viewing can be automated by this type of speci-
fication testing, thereby making it cheap to con-
duct and not subject to human errors nor lim-
itations. Moreover, the reviewing process can
be repeated at no cost which is particularly ad-
vantageous in situations with changing require-
ments.

Executable models are also essential from a
technology transfer perspective. Software en-
gineering practice is heavily based on testing
and so this technique is well-known to engineers.
The VDM Tools support the testing process by
providing test coverage and statistics informa-
tion at system model level and through a fa-
cility for executing models and external code
together. This external code dynamic link fa-
cility supports rapid prototyping, for example,
by building graphical front-ends for systems de-
signed in VDM. Hence, it is possible to get early
feedback on a model from a customer, manager



or colleague, who is not familiar with VDM.

2.2 Automatic Code Generation:
Reduce Costs and Time

Automatic code generation helps to solve the
consistency problem between specification and
implementation and eliminates the human fac-
tor concerning the potential introduction of er-
rors during implementation. Hence, automatic
code generation can help to minimise devel-
opment costs and time-to-market. Moreover,
bug fixing and other maintenance can be per-
formed at specification rather than implementa-
tion level (i.e. at a level corresponding to early
rather than late development steps), yielding
easier maintenance and lower costs.

The IFAD VDM Tools support automatic
generation of C++ code from high-level models
as an add-on feature. The tools generate fully
executable code for 95% of all VDM constructs
leaving facilities for including user defined code
for non-executable parts of the specification.

2.3 Graphical Notations: Master

Complexity

Graphical notations are widely used for object-
oriented designs and embedded real-time sys-
tems. The Venus solution offers the complemen-
tary benefits of the textual notation VDM++
and the graphical notation UML for object-
orientation through a bi-directional link to Ra-
tional Rose. Hence, Venus supports round trip
engineering where an engineer can begin the de-
velopment process by writing graphical mod-
els in UML, automatically translate these to
VDM++, incrementally develop more concise
models, test the models using the VDM++ in-
terpreter, change class structure, merge with ex-
isting UML, make changes in UML, merge with
existing VDM++, etc. The advantage of using
VDM++ is that it allows more concise system
specifications than with purely graphical nota-
tions and that these can be executed and de-
bugged early in the development process.

2.4 Tool Descriptions

The tools presented in Fig. 1 are described in
more detail below.

Specification Manager The Specification
Manager maintains a project by keeping

track of the status of modules. These
status indications present an easy overview
of the specification and they facilitate the
continuation of work from one session to
another. Furthermore, the Specification
Manager can automatically update the
specification with respect to syntax check-
ing, type checking, code generation, etc.
Finally, the user has a number of options,
e.g. he can select his favourite editor.

Interpreter The VDM-SL/VDM++ inter-
preter supports all executable constructs
in VDM-SL and VDM++. This range
from simple value constructors like set
comprehension and sequence enumeration
to more advanced constructs like excep-
tion handling, lambda expressions, loose
expressions and pattern matching. One
of the benefits of executing specifications
is that testing techniques can be used to
assist validation of the specifications. In
the development process small examples
for parts of a specification can be executed
to enhance the designer’s knowledge of,
and confidence in the specification. Fur-
thermore, an executable specification can
form a running prototype.

Debugger A source-level debugger is essen-
tial when working with executable speci-
fications. The VDM debuggers supports
the functionality found in debuggers for or-
dinary programming languages including;:
setting breakpoints, stepping, inspection of
all variables defined in scope, and inspec-
tion of the call stack.

Type Checker The static semantic analyser
is an advanced type checker and it sup-
ports most of the static semantics levels
prescribed by the ISO Standard. It con-
tains a powerful type inference mechanism
which also shows proof obligations with re-
spect to the type system.

Test Facility Test coverage information can
be automatically recorded during the eval-
uation of a test-suite. The specifier can at
any point view which parts of the specifi-
cation are most frequently evaluated and
which parts have not been covered at all.
The test coverage information is displayed
directly in the source-file, a Word or LaTeX
document, in a comprehensive form which
is easy to read.



Automatic Code Generator The IFAD
VDM Tools support automatic genera-
tion of C++ code from a VDM-SL or
VDM++ specification which helps to
solve the consistency problem between
specification and implementation. The
code generator produces fully executable
code for 95% of all VDM constructs leaving
facilities for including user defined code for
non-executable parts of the specification.

Dynamic Link Facility The IFAD VDM-SL
Toolbox has an add-on feature which makes
it possible to integrate external code into
the execution of a specification. This can be
used to integrate a formal model with com-
ponents developed in a traditional way and
provide graphical front-ends for a model.

Rose-VDM++ Link The Rose-VDM++
Link integrates UML and VDM++.
Through translations the link provides
a tight coupling of the IFAD VDM++
Toolbox and Rational Rose. Hence the link
supports round trip engineering between
UML and VDM++, where the graphical
notation is used to provide the structural,
diagrammatic overview of a model while
the formal notation is used to provide the
detailed functional behaviour of a model.

3 Collaboration with TU
Graz

After the return of Professor Peter Lucas to
Austria collaboration between IFAD and IST at
TU Graz has emerged. At IST the students are
taught VDM using the new VDM tutorial book
[6] which includes an educational version of the
tools mentioned above called Toolbox Lite.
The first visible result of the collaboration
came from the work Brigitte Frohlich did at a
visit to IFAD. She developed the first version of
the dynamic link feature mentioned above [9].
The subject of her PhD thesis is to what extent
one can execute implicit definitions from VDM-
SL [8]. This work can been closely followed and
guided jointly by both IST and IFAD. The dif-
ferent conceptual ideas have been tried out using
the VDM-SL Toolbox extending specifications
already developed at IFAD. In case that the re-
sults are sufficiently encouraging the work here
will be incorporated in the IFAD tools at a later

stage.

The second visible result came from Bernhard
Aichernig who carried out his MSc project at
IFAD. The subject of this work was to auto-
mate the generation of proof obligations [3, 4]
for VDM-SL. This is already scheduled to be in-
corporated in the IFAD VDM Tools. In his PhD
work he is now looking at how one can automate
a larger part of the testing efforts based on spec-
ifications formulated in VDM-SL or VDM++.
Just like the work mentioned above joint guid-
ance is given to his work including visits to Den-
mark to discuss and present alternative routes
for the future work.

In August Oliver Oppitz will start his MSc
project at IFAD. The subject of his work will
be automatic code generation from the paral-
lel part of VDM++ to Java. For the sequential
part of VDM++ to Java code generator is cur-
rently being developed at IFAD. We believe that
this will again be a successful visit with mutual
benefits.

Industrial dissemination

In Austria students have started doing thesis
projects in collaboration with Austrian indus-
trial companies using the VDM technology. So
far several projects have been carried out in-
cluding a project with Siemens PSE Graz where
several ambiguities and gaps have been dis-
covered in the informal description of a pro-
tocol which has been formalised using VDM-
SL. Another of these projects which deserves to
be mentioned is one together with Ferk Infor-
matik where VDM-SL is combined with struc-
tured analysis and entity-relationship diagrams.
Currently the VDM technology is applied in
a project in the safety-critical area of air con-
trol. The goal of this project is the specification
and derivation of test-cases for the communica-
tion system of the Viennese company Frequen-
tis. Furthermore, in an ongoing PhD project in
cooperation with the Research Centre Seibers-
dorf a Guard Route Control System is formally
redeveloped using VDM.

4 Concluding Remarks

Where VDM for a long number of years has been
almost unknown in Austria we believe that the
fruitful collaboration between TFAD and IST at
TU Graz will mean the return of VDM to Aus-



tria. We believe that the TU Graz focus on
VDM will spread into more and more industrial
applications using the VDM technology. Here
the students projects carried out on problems
from the industrial companies play an impor-
tant role.

We envisage that the collaboration will be ex-
tended where more students in Austria will be
exploiting ideas for extending the VDM Tools
using a new API (Application Programmers In-
terface) which has been developed for the Tool-
box. In this way new features will be added and
those which looks most promising will probably
be further enhanced and maintained on a com-
mercial basis by IFAD afterwards.

We really believe that this story with VDM
returning to Austria is similar to that of the
ugly duckling’s return as a beautiful swan. In
particular because IFAD comes from Odense in
Denmark which is the home city of H.C. Ander-
sen who wrote the fairy-tale.

References

[1] Sten Agerholm and Peter Gorm Larsen. A
Lightweight Approach to Formal Methods.
In Submitted to FM-Trends, Boppand, Ger-
many, October 1998.

Sten Agerholm, Pierre-Jean Lecoeur, and
Etienne Reichert. Formal Specification and
Validation at Work: A Case Study using
VDM-SL. In Proceedings of Second Work-
shop on Formal Methods in Software Prac-
tice. ACM, Florida, March 1998.

Bernhard Aichernig. A Proof Obligation
Generator for the IFAD VDM-SL Toolbox.
Master’s thesis, Technical University Graz,
Austria, March 1997.

Bernhard K. Aichernig and Peter Gorm
Larsen. A proof obligation generator for
vdm-sl. In John Fitzgerald, Cliff B. Jones,
and Peter Lucas, editors, FMFE’97: Indus-
trial Applications and Strengthened Foun-
dations of Formal Methods (Proc. 4th Intl.
Symposium of Formal Methods FEurope,
Graz, Austria, September 1997), volume
1313 of Lecture Notes in Computer Science,
pages 338-357. Springer-Verlag, September
1997. ISBN 3-540-63533-5.

Lionel Devauchelle, Peter Gorm Larsen,
and Henrik Voss. Picgal: Practical use of

formal specification to develop a complex
critical system. In John Fitzgerald, Cliff B.
Jones, and Peter Lucas, editors, FMFE’97:
Industrial Applications and Strengthened
Foundations of Formal Methods (Proc. 4th
Intl. Symposium of Formal Methods Eu-
rope, Graz, Austria, September 1997), vol-
ume 1313 of Lecture Notes in Computer
Science, pages 221-236. Springer-Verlag,
September 1997. ISBN 3-540-63533-5.

John Fitzgerald and Peter Gorm Larsen.
Modelling Systems — Practical Tools and
Techniques in Software Development. Cam-
bridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998.
ISBN 0-521-62348-0.

John S. Fitzgerald.
Form: Home Page.

ESSI Project Con-
WWW at URL

http://www.csr.ncl.ac.uk/projects/ConForm.html,

1994.

Brigitte Frohlich. Towards Executability of
Implicit Definitions. PhD thesis, TU Graz,
Institute of Software Technology, Septem-
ber 1998.

Brigitte Frohlich and Peter Gorm Larsen.
Combining VDM-SL Specifications with
C++ Code. In Marie-Claude Gaudel and
Jim Woodcock, editors, FME’96: Indus-
trial Benefit and Advances in Formal Meth-
ods, pages 179-194. Springer-Verlag, March
1996.

Peter Gorm Larsen, John Fitzgerald, and
Tom Brookes. Applying Formal Specifica-
tion in Industry. IEEE Software, 13(3):48—
56, May 1996.

Peter Gorm Larsen Lionel Devauchelle and
Henrik Voss. PICGAL: Lessons Learnt
from a Practical Use of Formal Specifica-
tion to Develop a High Reliability Software.
In DASIA’97. ESA, May 1997.

VDM: Origins, Hopes, and
Achievements. In Airchinnigh Bjgrner,
Jones and Neuhold, editors, VDM 87
VDM — A Formal Method at Work, pages
1-18. VDM-Europe, Springer-Verlag LNCS
252, 1987.

Peter Lucas.

P. G. Larsen and B. S. Hansen and H.
Brunn N. Plat and H. Toetenel and D.
J. Andrews and J. Dawes and G. Parkin



and others. Information technology — Pro-
gramming languages, their environments
and system software interfaces — Vienna
Development Method — Specification Lan-
guage — Part 1: Base language, December
1996.



