
Function Optimization Using Connectionist ReinforcementLearning Algorithms�Ronald J. Williams and Jing PengCollege of Computer ScienceNortheastern UniversityAppears in Connection Science, 3, pp. 241-268, 1991.AbstractAny nonassociative reinforcement learning algorithm can be viewed as a methodfor performing function optimization through (possibly noise-corrupted) samplingof function values. We describe the results of simulations in which the optima ofseveral deterministic functions studied by Ackley (1987) were sought using variantsof REINFORCE algorithms (Williams, 1987; 1988). Some of the algorithms usedhere incorporated additional heuristic features resembling certain aspects of someof the algorithms used in Ackley's studies. Di�ering levels of performance wereachieved by the various algorithms investigated, but a number of them performedat a level comparable to the best found in Ackley's studies on a number of the tasks,in spite of their simplicity. One of these variants, called REINFORCE/MENT,represents a novel but principled approach to reinforcement learning in nontrivialnetworks which incorporates an entropy maximization strategy. This was found toperform especially well on more hierarchically organized tasks.1 Introduction1.1 BackgroundIn his thesis, Ackley (1987) explored an interesting general approach to function opti-mization di�ering somewhat from more common approaches which emphasize limitingbehaviors or terminating conditions. He studied the behavior of a variety of general-purpose optimization algorithms, some already existing and some of his own design,on a number of optimization problems involving functions de�ned on binary n-tuples,and measured their performance using a criterion which does not require convergence.The algorithms he investigated were: 1) two forms of simple hillclimbing algorithm,combined with random restarts following convergence; 2) simulated annealing (Kirk-patrich, Gelatt, & Vecchi, 1983), combined with random restarts following convergence;�Preparation of this paper was partially supported by Grant IRI-8921275 from the National ScienceFoundation. 1

3) a �xed-temperature \thermally agitated" hillclimber (essentially simulated annealingbut without the annealing); 4) two variations on genetic algorithms (Goldberg & Hol-land, 1988; Holland, 1975), combined with random restarts following convergence; 5) acombination of hillclimbing and genetic search, together with random restarts followingconvergence; and 6) a connectionist network algorithm called stochastic iterated genetichillclimbing (SIGH), which contains elements drawn from a number of sources and hasan interesting description in terms of an election metaphor. Not studied were a num-ber of existing reinforcement learning algorithms which are also appropriate candidates,such as various algorithms from the stochastic learning automata literature (Narendra &Thathatchar, 1989), and various connectionist reinforcement learning algorithms, suchas the associative reward-penalty algorithm of Barto and colleagues (Barto, 1985; Barto& Anandan, 1985; Barto & Anderson, 1985) and REINFORCE algorithms (Williams,1987; 1988). In this paper we describe the results of experiments performed using severalvariants of REINFORCE on some of the same tasks studied by Ackley. A preliminaryreport of this work appeared in (Williams & Peng, 1989).1.2 The Problem FormulationThe problem formulation proposed by Ackley and adopted by us here can be loosely de-scribed as follows. Consider a generate-and-test scenario in which there is no particularstopping criterion. The job of the generator is to generate trial points and the testerdetermines the value of the function to be optimized at the given trial point. Becausethere is no stopping criterion, this process of generate-and-test is repeated inde�nitely.To make it interesting, however, we would like the generator to be adaptive, so that ittends to generate better points as it gains information about the function being opti-mized. We adopt the convention that a \better" point is one having a higher functionvalue.The systems of interest are thus ones which perform an endless repetition of a simplegenerate-test-adapt loop. To view such a system as carrying out an optimization algo-rithm, one has to add a stopping criterion of some sort, or at least a way of reporting outsome answer during any step of the process. There are several ways these issues might behandled. One way, suitable for a process which eventually converges, so that eventuallythe same trial point is always generated, is to test for this condition and report thispoint as the output of the algorithm. Another way is to always retain a memory of thebest point found so far and report this point as the output of the algorithm whenever itis to be terminated. The real value of this approach, however, is its attempt to isolate asmuch as possible the useful features of the generate-test-adapt loop from issues involvingthe choice of termination criterion. In particular, this approach does not require thata global optimum be recognized as such, either explicitly, so that the process actuallyterminates when a global optimum is generated, or implicitly, with eventual convergenceto the global optimum. The generator may continue generating inferior points even afterhaving generated a global optimum.Thus this approach stresses what Ackley has called sustained exploration. We believe2

that sustained exploration may turn out to be an important feature of procedures de-signed to perform some sort of optimization process,1 particularly when very large (yet�nite) search spaces (e.g., having 21000 points) are involved, or when the function to beoptimized actually varies over time (both of which one might expect to be characteristicof many realistic optimization problems).Of course, to study various approaches to the adaptive generation process throughsimulation, it is necessary to incorporate the adaptive generators to be studied intoterminating algorithms. We follow Ackley and adopt the strategy of using problemsfor which an optimum point is known and simply run the algorithm until either such apoint is �rst generated or some maximum computational e�ort has been expended. Themeasure of computational e�ort used is the number of function evaluations performed.This measure is used both to determine when to terminate a run (and declare failure) andas a measure of the performance of the various adaptive generation techniques studied.1.3 Reinforcement Learning Networks as Adaptive Trial GeneratorsA connectionist network can be used as a generator of trial points for any optimizationproblem as long as the domain of the function to be optimized can be represented asthe set of output patterns of the network. Furthermore, any reinforcement learningalgorithm for adjusting the weights in the network (e.g., Barto, 1985; Barto & Anandan,1985; Barto & Anderson, 1985; Munro, 1987; Sutton, 1984; Williams, 1986; 1987; 1988)can be used to provide a means of adapting the behavior of this trial point generatorsimply by regarding the function value as the reinforcement signal delivered to thenetwork in response to its output pattern.This particular use of a reinforcement learning algorithm actually represents an ex-treme specialization of a much more general formulation of the reinforcement learningproblem in which: 1) the reinforcement may be a stochastic rather than deterministicfunction of network output; 2) the network may be required to perform a mapping frominput to output (associative reinforcement learning); and 3) the reinforcement signaland input provided to the network may depend on past input and/or output patterns(so that the environment has memory). This more general formulation encompasses fea-tures much more characteristic of realistic learning situations. For this reason, there area number of sophisticated directions in which the study of such reinforcement learningsystems has been taken, including the use of temporal di�erence learning methods foradaptive prediction of future reinforcement (Barto, Sutton, & Anderson, 1983; Sutton,1984; Sutton, 1988a) and the use of internal models of the environment of one type orother (Munro, 1987; Sutton & Pinette, 1985), but most of these are not relevant toour purposes here. In this paper we treat the problem of maximizing a deterministicfunction as an extremely pared-down form of reinforcement learning task, one whichis nonassociative and involves a memoryless environment and noise-free reinforcement1The term optimization process here is meant to cover a variety of possibilities, including processeswhich actually terminate at a global maximum and processes which simply continue to discover betterand better points whenever possible but do not terminate.3

signal. An important feature of the type of problem we seek to attack with these tech-niques is the large space over which the optimization is to be performed. This di�ersmarkedly from the emphasis in 2-armed bandit and similar problems heavily studiedin the learning automata literature (Narendra & Thathatchar, 1989). While these arealso reinforcement learning tasks, the issue in such problems is how to sample the entirespace enough to determine with statistical con�dence which action gives the best averageresult while also converging toward selecting that action exclusively. Here, however, weconsider search spaces which are so large that it is infeasible to consider sampling morethan a miniscule subset of all the possible points.We also emphasize that the connectionist approach to optimization we study hereis quite di�erent from that initiated by Hop�eld and Tank (1985). In that approach,much more knowledge of the function being optimized is used than in the approachtaken here. That approach requires devising a function having the same global optimumas the actual function to be optimized. This new function must be one which can beincorporated into the network's weights so that the network always settles into localoptima of this function. In contrast, the technique being studied here makes use of nogeneral information concerning the function being optimized. Instead, the only informa-tion that becomes available about the function arises through sampling function valuesat various points. This is the same paradigm studied by those exploring the use of ge-netic algorithms (Goldberg & Holland, 1988; Holland, 1975) for function optimization,where the function to be optimized is usually called the �tness function, in accord withan approach inspired by the process of biological evolution through natural selection.As in most approaches to reinforcement learning, the networks we study here usestochastic units to allow sampling of a variety of output patterns. Thus for any givensetting of the weights in the network, a particular distribution of output patterns isgenerated. The broad goal of any adaptive sampling scheme is to try to reshape thesampling distribution in ways that make it more likely to sample better points. Applyinga reinforcement learning algorithm to the weights can be viewed as a means of doingjust this when the sample points are generated by a network.2 Formal Notation and TerminologyBefore discussing the speci�c algorithms used and the optimization problems investi-gated, we �rst introduce the general notational framework and mathematical assump-tions used in the description of reinforcement-learning networks throughout this paper.2.1 Network QuantitiesConsider a network having nI external input lines from the environment, nO output unitswhich a�ect the environment, and nH hidden units. We let xN denote the nI-tuple ofexternal input signals to the network at a particular time and we let yN denote thenO-tuple of network output produced as a result. It is also convenient to collect all theunit output values into the (nO + nH)-tuple y. A typical element of y is yi, the output4

of the ith unit in the network. In addition, we de�ne x to be the (nI + nH + nO)-tupleobtained by concatenating xN with y. Let U denote the set of indices used to designateunits in the networks and I the disjoint set of indices used to designate input lines. Thena typical element of x is xj , which is either the output of the jth unit in the network, ifj 2 U , or the value received on the jth input line, if j 2 I.Note that one consequence of our notational convention is that xk and yk are twodi�erent names for the same quantity when k 2 U . The general philosophy behindour use of this notation is that variables symbolized by x represent input and variablessymbolized by y represent output, whether at the level of individual units or at the levelof the entire network. Since the output of a unit may also serve as input to other units,we will consistently use xk when its role as input is being emphasized and yk when itsrole as output is being emphasized. Similarly, the input to the network is xN and itsoutput is yN .Let W denote the weight matrix for the network, with exactly one weight (whichmay be zero) between each pair of units and also from each input line to each unit. Theelement wij of this (nH + nO) � (nI + nH + nO) matrix represents the weight on theconnection to the ith unit from either the jth unit or the jth input line. To accommodatea bias weight for each unit, we simply include among the nI input lines one input whosevalue is always 1. We adopt the convention that this bias input has an index of 0, sothat wi0 represents the bias weight for the ith unit.Here we have introduced notation appropriate for the general case when the networkmay be provided with external environmental input. Thus this includes the associativecase. For the speci�c function optimization application considered here, we assume thatthere is no external input (except that we still need the bias input). Each time thenetwork computes an output vector yN , this is assumed to represent a single trial pointfor the function to be optimized.2.2 Bernoulli Logistic UnitsIn this paper we assume that the units in the network are Bernoulli logistic units, inthe terminology of (Williams, 1986; 1987; 1988). These are appropriate for our purposesbecause the functions to be optimized are de�ned over binary n-tuples. The output yiof such a unit is either 0 or 1, determined stochastically using the Bernoulli distributionwith parameter pi = f(si); (1)where f is the logistic function f(si) = 1=(1 + e�si) andsi = Xj2U[Iwijxj (2)is the usual weighted summation of input values to that unit. For such a unit, pirepresents its probability of choosing 1 as its output value.5

2.3 REINFORCE AlgorithmsThe main objective of the research reported here was to study how well the REINFORCEclass of algorithms would perform when used in function optimization tasks. Here wegive a brief overview of the particular form such algorithms take when applied to thenetworks of Bernoulli logistic units that we use in this paper. For extensive discussionof these algorithms, see Williams (1988).In the general reinforcement learning paradigm, the network generates output pat-tern yN and the environment responds by providing the reinforcement r as its evaluationof that output pattern, which is then used to drive the weight changes according to theparticular reinforcement learning algorithm being used by the network. For the Bernoullilogistic units used here, a general REINFORCE algorithm prescribes weight incrementsequal to �wij = �ij(r � bij)(yi � pi)xj ; (3)where �ij is a positive learning rate (possibly di�erent for each weight) and bij serves asa reinforcement baseline (which can also be di�erent for each weight). Here we consideronly algorithms having the form�wij = �(r � b)(yi � pi)xj ; (4)where �ij = � and bij = b for all i and j. It can be shown (Williams, 1986; 1988)that, regardless of how b is computed, whenever it does not depend on the immediatelyreceived reinforcement value r, such an algorithm satis�esE f�WjWg = �rWE frjWg ; (5)where E denotes the expectation operator. A reinforcement learning algorithm satisfying(5) can be loosely described as having the property that it statistically climbs the gradientof expected reinforcement.3 The Optimization ProblemsThe optimization problems whose simulation results we report here are particular max-imization problems originally studied by Ackley (1987). Of the six problems we detailhere, four are contrived problems designed to isolate speci�c features that various opti-mization problems may possess, and the other two are speci�c combinatorial optimiza-tion problems. We make no claim that this suite of problems represents a de�nitivebenchmark for optimization algorithms; we simply wished to be able to compare ourresults with Ackley's.Throughout this paper we use J generally to denote a function to be maximized,with u representing a point in its domain. For each of the problems studied here, J is amapping from the n-dimensional hypercube f0; 1gn into the real numbers, so each point6

u its domain is an n-dimensional bit vector (u1; u2; : : : ; un). Other notation we use inthe description of these problems is as follows:n1 = Xi ui = the number of 1s in u;n0 = n� n1 = the number of 0s in u;0 = the n-tuple u such that ui = 0 for all i; and1 = the n-tuple u such that ui = 1 for all i.3.1 Abstract ProblemsThe One-Max function is given by J(u) = 10n1; (6)which has the point 1 as its global maximum and no false maxima.The Two-Max function is given byJ(u) = j18n1 � 8nj; (7)which has a global maximum at 1 and a false maximum at 0. The function value is 10nat the global maximum (as it is for the other 3 abstract problems as well) and 8n atthe false maximum. The number of points in the space for which uphill moves lead tothe global maximum is somewhat larger than the number for which the false maximummight look attractive to a hillclimber.The Porcupine function is given byJ(u) = 10n1 � 15(n0 mod 2): (8)This is essentially the same as One-Max, but with a \high-frequency" component addedon to confound any myopic hillclimber. The global maximum is at 1, but every pointwhose Hamming distance from 1 is even is a local maximum.The Plateaus function is de�ned as follows, where it is assumed that n is divisible by4: J(u) = 4Xk=1 Jk(u); (9)where Jk(u) = 2:5n (k+1)n=4Yi=kn=4+1 ui: (10)In words, this function is computed as follows: Divide the bits into four equal-sizedgroups. For each group compute a score which is 2:5n if all the bits in that group are 1and is 0 otherwise. Then J(u) is the sum of these four scores. Like the previous ones,this function has a global maximum at 1. It also has very large plateaus over which thefunction is constant.For all of these abstract optimization problems, we report the results of simulationstudies for the case where n = 20. 7

3.2 Graph Partitioning ProblemsAnother type of problem we have investigated is based on a type of combinatorial opti-mization problem known to be NP-complete, the minimum-cut graph partitioning prob-lem (Garey & Johnson, 1979). The usual form of this problem is: Given a graph with aneven number of nodes, assign each node to one of two groups in such a way that the twogroups contain equal numbers of nodes and the number of edges connecting nodes lyingin both groups is minimized. If there are n nodes in the graph, any assignment of nodesto groups can be represented by giving the groups the names 0 and 1 and consideringa binary n-tuple u to represent the assignment in which the ith node is assigned to thegroup ui. In order to treat this as an optimization problem over the set of all binaryn-tuples, the hard constraint that the two groups contain equal numbers of nodes mustbe replaced by an imbalance penalty. Thus, following Ackley, we treated the graphpartitioning problem as the problem of maximizing the functionJ(u) = �c(u)� 0:1(n1 � n0)2; (11)where c(u) is the number of edges which cross the partition for the particular assignmentu. Ackley studied both randomly generated graphs and graphs having a particular hi-erarchical structure. In the belief that it is for those problems having some type ofhigher-order structure that one might hope to develop useful general-purpose optimiza-tion algorithms, we restricted our attention to the two hierarchically structured graphshe studied. One such graph has 32 nodes and is depicted in Figure 1, while the otherhas 64 nodes and is depicted in Figure 2. Ackley called these multilevel hypercube graphsand gave them the names MLC-32 and MLC-64, respectively, which we also use here.||||||||||||||||||||||||Insert Figure 1 about here.||Insert Figure 2 about here.||||||||||||||||||||||||Note that the function to be optimized in such problems is symmetric under bitwisecomplementation of its argument for any graph. For these particular graph partitioningproblems there are exactly two global maxima, but a number of local maxima. Further-more, the minimum Hamming distance between any false peak and a global maximumis 8 for both MLC-32 and MLC-64.Note that when a network is used to generate the trial points u, the number of outputunits nO in the network must obviously be equal to n, and we identify the network outputpattern yN with u. 8

4 Experiments Using Team Networks4.1 Team NetworksHere we report the results of one set of studies using a very simple form of trial generat-ing network in which all of the units are output units and there are no interconnectionsbetween them. Later in the paper we discuss experiments using networks where intercon-nections play an important role. This degenerate class of network corresponds to whatis called a team of automata in the literature on stochastic learning automata (Narendra& Thathatchar, 1989). We thus call these networks teams of Bernoulli logistic units.Because all units are output units, we can use yN and y interchangeably for such anetwork. Figure 3 shows an example of a team network.||||||||||||||||||||||||Insert Figure 3 about here.||||||||||||||||||||||||For any Bernoulli logistic unit receiving no input from any sources external to thatunit except the constant bias input, the probability that that unit produces a 1 on anyparticular trial given the value of its bias weight wi0 isPr fyi = 1jwi0g = pi = f(si) = 11 + e�wi0 : (12)Because all units pick their outputs independently, it follows that for such a team ofBernoulli logistic units the probability of any particular output vector conditioned onthe current value of the weight matrix W is given byPr nyN jWo = Yi2U pyii (1� pi)1�yi : (13)The bias weights wi0 are adjusted according to the particular learning algorithmused, and the details of these algorithms are discussed below. Here we note that whenwi0 = 0, the unit is equally likely to pick either 0 or 1, while increasing wi0 makes a1 more likely. Adjusting the bias weights in a team of Bernoulli logistic units is thustantamount to adjusting the probabilities for the individual components.4.2 Team Algorithms UsedWe used a total of six di�erent algorithms with the team architecture, which are all ofthe same general form: At the tth time step, after generating output yN (t) and receivingreinforcement r(t) = J(y(t)), increment each bias weight wi0 by�wi0(t) = ��(t)ei0(t)� �wi0(t); (14)where �, the learning rate, and �, the weight decay rate, are parameters of the algo-rithm. We call � the reinforcement factor and ei0 the eligibility of the weight wi0. The9

reinforcement factor makes use of an exponentially weighted average, or trace, of priorreinforcement values r(t) = r(t� 1) + (1�)r(t); (15)and is computed by �(t) = r(t)� r(t� 1)� �; (16)where � is a parameter of the algorithm. The trace parameter was set equal to 0.9for all the experiments reported here. Finally, we considered two di�erent forms ofeligibility, either ei0(t) = yi(t)� pi(t) (17)or ei0(t) = yi(t)� yi(t� 1); (18)where yi(t) is an average of past values of yi computed by the same exponential weightingscheme used for r. That is,yi(t) = yi(t� 1) + (1�)yi(t): (19)Besides the two forms of eligibility we considered, we varied the algorithms we studiedalong two other feature dimensions: the size of the decay rate � and the size of �. Inparticular, we used two di�erent settings for �, zero and an appropriate nonzero value,which was chosen to be 0.01 in all our experiments. Similarly, we used two di�erentsettings for �, zero and an appropriate nonzero value, which, following Ackley (1987), wechose to be 4. The values 0.01 for the nonzero decay value and 0.9 for the trace parameterwere chosen solely because these are commonly used values for parameters that playcorresponding roles in a wide variety of similar algorithms; no attempt was made totune these parameters to explore possible variations in performance. The experimentalresults we report here used all combinations of these variations except the two where �and � are both nonzero.Two of these six algorithms are REINFORCE algorithms, as described earlier, whilethe other four can be viewed as slight variants of these. The two REINFORCE algo-rithms are those for which both ei0 = yi � pi and � = 0, as can be seen by comparingequation (4) with the result of combining equations (14), (16), and (17). Of these, theone where � = 0 uses the standard reinforcement comparison technique advocated bySutton (1984), in which the reinforcement baseline b in equation (4) is set equal to r.This essentially tries to make the reinforcement factor have zero mean. The versionwhere � > 0 corresponds to setting the reinforcement baseline b in equation (4) equal tor+�. This gives the reinforcement factor a negative bias, which one might expect woulddestabilize the algorithm whenever r fails to change much. Ackley used this techniqueas a component of his SIGH algorithm and we were curious to see if this alone couldprevent convergence and force sustained exploration.The use of the yi�yi form of eligibility was motivated by simulation results of Sutton(personal communication, 1986) suggesting that faster learning could be achieved thanwith the other form, and there are analytic results suggesting (but not proving) why this10

might be so. We omit the details of this analysis, except to remark that the algorithmthat results when combining the standard reinforcement-comparison reinforcement factorwith this eligibility factor has a close relationship to linear regression analysis when usingBernoulli logistic units.Finally, the use of weight decay was chosen as a simple heuristic method to force sus-tained exploration after it was discovered that the other four algorithms always seemedto converge. Having decay on the bias of any particular member of a team of Bernoulliunits is very closely related to having a nonzero mutation rate at a particular allele in agenetic algorithm (Goldberg & Holland, 1988; Holland, 1975). To see this, suppose thatpi represents the probability that a particular bit position ui in a randomly generatedbit vector is 1 with no mutation operator present. Then suppose that with probability�i a mutation operator complements the bit that would have been generated had therebeen no mutation. Then the probability that ui is 1 after this entire process is given byPr fui = 1jpi; �ig = (1� �i)pi + �i(1� pi)= pi � 2�i(pi � 12):Thus the overall e�ect of applying a mutation operator in this way is just like applying aproportional decay toward 1/2 of the probability of generating a 1. The only di�erencebetween this and proportional bias decay toward 0 is in the nonlinearity of the squashingfunction. If the squashing function were linear, the two approaches would be identical.4.3 Results Using Team AlgorithmsA summary of the results of the experiments we performed on the six optimizationproblems, including those using team networks, can be found in Table 1. All parameterswere �xed across all problems for each particular algorithm, except for the learning rate�. Some (but not an extensive amount of) �ne-tuning was performed on � for eachcombination of algorithm and problem. Thus the table shows for each such combinationthe particular value of learning rate used for all the runs of that combination and therounded mean run length (number of function evaluations) to reach a global optimum forthat set of runs. In each case this mean is based on 50 runs of each algorithm/problemcombination. Any result reported as in�nite indicates that the algorithm failed to �nda global maximum in at least some of the runs. As will be discussed below, in everycase where this happened the reason was that the algorithm became trapped at a localmaximum.For comparison, we also give the best average result reported by Ackley for each ofthe optimization problems. His results were reported as rounded means of 50 runs onthe �rst four problems, but the median of 7 runs was used in the graph partitioningproblems.
11

4.4 Discussion of Team ResultsThese experiments have convinced us that all four team algorithms not having weightdecay eventually converge, which we have also found to be true more generally of REIN-FORCE algorithms in arbitrary networks. We had expected this for the two algorithmshaving no negative bias in the reinforcement factor, but it turned out to be true evenwhen the negatively biased reinforcement factor was used. This convergence, generallyto a false maximum, is the reason why these algorithms were not usually successful inthe graph partitioning problems. Thus we conclude that the use of such a negative biasalone is not a mechanism for providing sustained exploration, as we had �rst believed.One consequence of this tendency to converge is that the problem for which the choiceof learning rate in the algorithms without weight decay was most critical (disregardingthe problems on which they typically failed) was the Plateaus function. Too large alearning rate guarantees that the search will converge on one of the plateaus.One particularly interesting result is that all the algorithms found the maximum ofPorcupine virtually as fast as they found the maximum of One-Max. This is almostcertainly because these reinforcement learning algorithms are able to handle noisy rein-forcement signals and treat the \porcupine quills" as if they were merely noise added tosome underlying function (which happens to be One-Max), which they quickly discoverand climb.One general conclusion we draw from our results on the abstract functions is thatall of these functions have the property that simple bitwise correlation with the rein-forcement function is su�cient to discover the maximum, assuming enough statisticsare collected. Clearly the Plateaus function requires waiting the longest for the rightstatistical pattern to emerge (each 5-bit group must sample the all-1s case at least once),and this is the reason all the algorithms take longer on it.The results in Table 1 suggest that, for the most part, some speedup is provided bychoosing the yi � yi form of eligibility over that used in REINFORCE. The situationsfor which the di�erence is most pronounced are those where the maximum can be foundvery rapidly. We conjecture that this is due to the fact that the learning algorithms usingeither form of eligibility are two di�erent estimators of the same underlying quantity andthe one using yi � yi has better small-sample properties.One result to be noted from Table 1 is that the combination of straight reinforcementcomparison with the yi � yi form of eligibility and weight decay almost always gave thelowest average time to �nd the maximum among all the team algorithms. While theyi � pi form of eligibility gave a better average result in the 64-node graph partioningproblem, this di�erence in performance is not statistically signi�cant since the standarddeviation is over 4000 for each of these sets of runs.The graph partitioning problems obviously provide the real challenge to these algo-rithms; those with too strong a tendency to hillclimb, even statistically, cannot avoidfailing at times by getting stuck on local maxima. One approach we could have adoptedto try to make such algorithms work on this problems is the same as that used byAckley for any algorithm which converges: detect convergence and perform a random12

restart. We speculate that perhaps the reason that combining weight decay with thesealgorithms allows the global maximum to be found is that the refusal to allow weights togrow beyond a certain point amounts to something like a continuing tendency to engagein random restarts coupled with the tendency to climb hills statistically. Indeed, analy-sis of the runs involving weight decay reveal a behavior which can be loosely describedas exploration around a local maximum for a while followed by what may amount to ajump to the neighborhood of another local maximum, exploration of that peak, and soon; eventually such a jump leads to the neighborhood of a global maximum.5 Experiments With Networks Having Nontrivial Connec-tivity5.1 The Importance of InterconnectionsThe real value of using a learning network to generate trial points for the function tobe optimized is that interconnections within the network can enforce coordination ofthe choices made by the output units in order to concentrate the search in suspectedhigh-payo� regions of the space. This can occur when output units have a direct in-uence on one another or when hidden units are present which can serve as commandcells. For either form of coordination, the presence of randomness in certain parts ofthe network insures that exploration will occur, but the interconnections insure thatthis randomness is channelled in appropriate directions. To support this process, thelearning algorithm used should allow the network to retain information gained duringthe exploration process which it can use to control any desired coordination in futuretrials. With the team approach the only information represented is the result of corre-lations between the behaviors of individual units and the reinforcement signal. In manyproblems these �rst-order correlations carry little or no information about the correctdirection to move, but higher-order correlations might be very helpful.A good example is given by the graph partitioning problems investigated here. Everybit vector representing a partition has the same reinforcement value as its component-wise complement. Thus the �rst-order correlations of the individual components withthe outcome must be zero if we sample uniformly. It is only after some bits becomemore strongly committed to one value that others discover some correlation betweentheir choice of value and the outcome. A network which can coordinate the choicesmade by the output units should be able to generate certain combinations of bits withgreater probability than if their individual components were selected independently. Inparticular, for graph partitioning one might hope that units corresponding to a highlyinterconnected group of nodes in the graph would have their operation coordinated tothe point that they would come to select with high probability both the all-0 and theall-1 assignment for that subset of nodes. If the network operates in this way it shouldexpect to �nd a solution for hierarchical graphs of the type studied here much morequickly than without coordination.The challenge, of course, is not only to be able to represent the higher-order statistics13

of the \good" points, but also to have a learning algorithm which allows the parameterscontrolling the search distribution to be adjusted so that this distribution comes tocapture the regularities of the set of \good" points. We now describe an algorithmwhich shows some promise in this regard.5.2 REINFORCE/MENT AlgorithmsWe have performed extensive simulations of REINFORCE algorithms in networks havingnontrivial connectivity, and these experiments have demonstrated that such algorithmsare not successful in capturing the regularities of a set of output patterns leading tohigh reinforcement, even when the network is potentially capable of representing theseregularities. One indication of their inability to capture such regularities is that theyalways converge to a single choice of output even when several output patterns all leadto the same maximum reinforcement value, as we demonstrate below. The end resultis that having nontrivial connectivity in the network does not diminish susceptibility toconvergence to false optima when REINFORCE is used. This has led us to devise a novelvariant which we call the REINFORCE/MENT algorithm. It combines the use of theREINFORCE approach with entropy maximization.2 The use of entropy maximizationis designed to help keep the search alive by preventing convergence to a single choice ofoutput, especially when several choices all lead to roughly the same reinforcement value.We begin with some observations which apply in general to any situation whereREINFORCE algorithms may be derived, and then we specialize to the case appropriatefor our application, a network of Bernoulli logistic units having no (nonconstant) externalinput. Let nO denote the number of output units in the network. Given an nO-tuple �,let h(�;W;xN) = � lnPr nyN = �jW;xNo : (20)ThenE nh(yN ;W;xN)jW;xNo = �X� Pr nyN = �jW;xNo lnPr nyN = �jW;xNo ;(21)which is the entropy of the output yN of the network, given the particular input patternxN and weights W. Thus, if we run the net with input xN and weights W and obtainoutput yN , the quantity h(yN ;W;xN) is an unbiased estimate of this entropy.Now we establish a key result. For the ith unit in the network we let wi denote thevector of weights on its incoming lines and we let xi denote the pattern of input to thatparticular unit. For the Bernoulli logistic units we use here, si is the inner product ofwi and xi, but this notation applies more generally to any form of internal computationwithin the unit. Its random output value yi is drawn from the discrete distributionhaving probability mass function gi, wheregi(�;wi;xi) = Pr nyi = �jwi;xio (22)2The su�x MENT stands for Maximization of ENTropy.14

For the special case of a Bernoulli logistic unit,gi(�;wi;xi) = (pi if � = 11� pi if � = 0, (23)where pi is the result of passing the inner product of wi and xi through the logisticfunction, as given by equations (1) and (2).Lemma 1 Let � be an nU -tuple whose ith coordinate is �i, for all i 2 U . Then, for anyfeedforward network of stochastic units,Pr ny = �jW;xNo = Yi2U gi(�i;wi;xi): (24)Proof. We prove this by induction. Assume that the vector x is indexed by integers insuch a way that all the unit outputs correspond to indices in the range [a; b] and in sucha way that that wij is nonzero only if j < i. Because the network is feedforward therenecessarily exists such an indexing. With this indexing, the value of each yi dependsonly on the values xj for j < i.Now for any k 2 [a; b], let y(k) denote the vector (ya; ya+1; : : : ; yk) and let �(k) denotethe vector (�a; �a+1; : : : ; �k). Clearly,Pr ny(a) = �(a)jW;xNo = Pr nya = �ajW;xNo= ga(�a;wi;xi);and to establish the induction step we assume thatPr ny(k) = �(k)jW;xNo = kYi=a gi(�i;wi;xi) (25)for some k 2 [a; b). ThenPr ny(k+1) = �(k+1)jW;xNo = Pr nyk+1 = �k+1jy(k) = �(k);W;xNoPr ny(k) = �(k)jW;xNo= gk+1(�k+1;wk+1;xk+1) kYi=a gi(�i;wi;xi)= k+1Yi=a gi(�i;wi;xi);and the induction step is established. Therefore the Lemma is proved.Note that this result is obvious for a team, in which all the output values are selectedindependently, but the Lemma shows that it holds more generally. It follows immediatelyfrom this Lemma that� lnPr ny = �jW;xNo = �Xi2U ln gi(�i;wi;xi): (26)15

Thus, for a network having no hidden units, so that yN = y, the quantityh(yN ;W;xN) = �Xi2U ln gi(�i;wi;xi) (27)is an easily computed unbiased estimate of the entropy of the output of the network as afunction of its input. For example, when the network consists of Bernoulli logistic units,equation (23) shows that all that is needed to compute h is for each unit to send to acentral summation location either ln pi, if its output yi is 1, or ln(1 � pi), if its outputyi is 0.Even if there are hidden units, we could de�ne h(y;W;xN) similarly, and it wouldbe an unbiased estimate of the entropy of the state of the network given the input, butthis turns out not to be as useful. When there are stochastic hidden units, which couldserve as command cells, for example, such an unbiased estimate of the output entropyis not easy to obtain, since h(yN ;W;xN) involves a summation over all possible statesof such units and cannot be computed readily from quantities currently present in thenetwork.For our purposes here, we consider the nonassociative case, for which xN is constant.Thus we may suppress any reference to xN in the above and de�ne the functionh(�;W) = � lnPr nyN = �jWo : (28)For a network having no hidden stochastic units, then,h(�;W) = �Xi2U ln gi(�i;wi;xi) (29)serves as an unbiased estimate of the output entropy on a particular trial whenever theactual output obtained on that trial is yN = y = �.We thus restrict attention to feedforward networks in which every random unit isan output unit. We de�ne a simplex network to be a maximally connected feedforwardnetwork having no nonconstant input and no hidden units. An example of a simplexnetwork is given in Figure 4. For such a network there is an ordering of the units suchthat every unit has a connection to all higher-numbered units but to no lower-numberedunits.3 In addition, each unit has a bias input.||||||||||||||||||||||||Insert Figure 4 about here.||||||||||||||||||||||||3Our use of the term simplex to describe such a network is based on the fact that the topologicalsimplex can be de�ned combinatorially in a related fashion, based on such an ordering property. Tosee the relationship, note, for example, that a 3-node simplex network can be laid out in the form of atriangle and a 4-node simplex network can be laid out in the form of a tetrahedron.
16

A REINFORCE/MENT algorithm for optimizing the function J de�ned on the out-put patterns yN = y of a network having no stochastic hidden units is obtained by usinga REINFORCE algorithm in which the reinforcement signal is given byr = J(yN) + "h(yN ;W); (30)where " > 0 is a parameter of the algorithm and h is computed via equation (27).For Bernoulli logistic units, a reinforcement comparison version of this algorithm is thefollowing. After each trial, each weight wij is incremented by�wij = �(r � r)(yi � pi)xj ; (31)where � > 0 is the learning rate, r is computed using equation (30), and r is computedusing equation (15).Thus a REINFORCE/MENT algorithm is just a REINFORCE algorithm in whichthe overall reinforcement signal combines the \external" reinforcement (here given byJ) with an \internal" reinforcement which is intended to reward variety. This internalcontribution to the reinforcement has expected value proportional to the entropy of thedistribution of output vectors produced by the reinforcement-learning network. This hasthe e�ect that the network is willing to sacri�ce some performance to achieve the higherentropy enjoyed by continuing to explore. More importantly, as the experiments belowdemonstrate, it has the e�ect that if, during its exploration, the network discovers thatthere are a number of output patterns which lead to high reinforcement, the networkweights will attempt to capture the regularities of all these points. This then biasesfuture searching toward new points which share these regularities. In cases where itis appropriate to search in a hierarchical or modular fashion, the network can discoverand exploit this organization of the search space, assuming that the particular networkarchitecture used is capable of representing it.To gain a better understanding of the behavior of the algorithm, consider the casewhen J is constant and assume that reinforcement comparison is used. Then, whenevera relatively unlikely point is sampled, the weights are adjusted to make this point morelikely in the future; whenever a point of high likelihood is sampled, the weights areadjusted to make this point less likely in the future. The overall e�ect when J is notconstant is that the algorithm trades o� some performance (measured by J) in order tomake the entropy higher.The actual algorithm we used in the experiments whose results are reported in Table1 was a slight modi�cation of that given by equation (31), based on the use of unitswhose output values are -1 and +1 rather than 0 and 1. For uniformity of presentation,however, we will discuss the results as though 0/1 units were used. The weight updatealgorithm for this version is given by�wij = �(r � r)(y�i � pi)xj ; (32)where y�i = yi + 12 (33)17

and all other quantities are the same as in equation (31). We found that this led tofaster learning than when 0/1 units were used. In order to check that this speedup wasnot due simply to a fortuitous match between the -1/+1 representation used and theparticular problems studied, we also ran some of the experiments using 0/1 units andtwo alternative algorithms. One algorithm we tried updates all weights using�wij = �(r � r)(yi � pi)(2xj � 1): (34)This algorithm seeks weights appropriate for 0/1 units but makes the weight changes asif input to any unit comes from -1/+1 units. Another algorithm we tried updates eachbias according to equation (31), and updates all other weights using�wij = �(r � r)(yi � pi)(xj � xj); (35)where xj is an exponentially weighted trace of past values of xj. This conforms toan approach recommended by Sutton (1988b) to accelerate learning by decorrelatingthe learning of the biases from the learning of the other weights. We found that all3 algorithms, pure REINFORCE/MENT using -1/+1 units and the two modi�cationsjust described for 0/1 units, performed essentially the same, and all were much fasterthan pure REINFORCE/MENT applied to 0/1 units.5.3 Preliminary DemonstrationsTo explore the e�ect of adding the entropy term, we ran both REINFORCE and RE-INFORCE/MENT on two problems involving a 2-unit simplex architecture. In the �rstexperiment the function to be optimized is de�ned byJ(0; 0) = J(1; 1) = 10 and J(0; 1) = J(1; 0) = 0; (36)as illustrated in Figure 5. Treating J as the network's \reward" (i.e., disregarding theadded entropy term), this corresponds to rewarding the network only when both unitsproduce the same output. When REINFORCE is used, the network will always \godeterministic," converging to a single optimal choice of output, either (0; 0) or (1; 1),on any particular training run. On the other hand, using REINFORCE/MENT with" = 1 and � = 0:05 leads to weights like those shown in Figure 5 after several hundredtrials. These weights have the e�ect that the two high-payo� points are each generatedwith probability very close to 1=2 while the probability of generating the remaining twopoints is very close to zero.||||||||||||||||||||||||Insert Figure 5 about here.||||||||||||||||||||||||In the second experiment the function to be optimized is de�ned byJ(0; 1) = J(1; 0) = J(1; 1) = 10 and J(0; 0) = 0; (37)18

as illustrated in Figure 6. Thus the network receives optimal reward for any outputpattern having at least one 1. Once again, REINFORCE always causes the network toconverge to one of the three optimal choices of output on any particular training run. Onthe other hand, using REINFORCE/MENT with " = 1 and � = 0:05 leads to weightslike those shown in Figure 6 after several hundred trials. These weights have the e�ectthat the three high-payo� points are each generated with probability very close to 1=3while the probability of generating (0; 0) is very close to zero. The way this works isas follows: The bias on the �rst unit causes it to generate a 0 about 1=3 of the timeand a 1 about 2=3 of the time; the remaining weight and bias cause the second unit toalmost always generate a 1 when the �rst unit produces a 0 and to generate a 0 or 1with roughly equal probability when the �rst unit produces a 1.||||||||||||||||||||||||Insert Figure 6 about here.||||||||||||||||||||||||To appreciate the signi�cance of these results, consider a high-dimensional optimiza-tion problem in which, early in the search, there is a pair of bit positions for which thepayo�, when viewed as a noisy function of only those bit positions, is like, say, the �rstproblem. That is, early in the search, approximately equally high payo� is received ifthey match, but much lower payo� is received if they don't. An algorithm like REIN-FORCE will then essentially rule out either (0; 0) or (1; 1) for these bits even thoughthere is no good reason to do so. In fact, there may be good reason not to do so, becauseit may happen that one or the other may turn out to be much better when used in con-junction with other choices discovered much later in the search. REINFORCE/MENT,on the other hand, tries to keep all the options open during the search.There is another point that is nicely illustrated by the weights obtained in the secondexperiment. Note that for a team, the use of bias decay amounts to an alternative way toincorporate a force toward increased entropy into the learning algorithm. The essentialdi�erence between the use of bias decay and REINFORCE/MENT applied to a teamis that the weight changes prescribed by REINFORCE/MENT on any particular trialdepend on the actual behavior of the network on that trial, while weight decay doesnot. On the average, however, the e�ect is the same. One might thus imagine thatweight decay is a reasonable alternative to the REINFORCE/MENT algorithm in anyinterconnected network, not just a team network. However, it is clear that if the biasof the �rst unit in the network of Figure 6 were to decay toward zero, that unit wouldproduce a 0 or 1 with roughly equal probability, which would not allow the three high-payo� points to be generated with equal probability.5.4 Results on the Optimization Problems||||||||||||||||||||||||Insert Table 1 about here.||||||||||||||||||||||||19

A summary of the results of the experiments we performed using REINFORCE/MENTwith a simplex architecture on the six optimization problems is included in Table 1. Theparameter " was �xed at 1 for all the problems, but some variation in the learning rate� was explored. As with each of the team algorithms, the table shows for each problemthe particular value of learning rate used for all the runs using the algorithm on thatproblem and the rounded mean run length (number of function evaluations) to reach aglobal optimum for that set of runs. In each case this mean is based on 50 runs of eachalgorithm/problem combination.5.4.1 The Abstract ProblemsIt is interesting to note that REINFORCE/MENT did not perform as well as the teamalgorithms on the four abstract problems, but it easily outperformed the best of themon the hierarchical graph partitioning problems. Like the team algorithms, it performedessentially as well on Porcupine as on One-Max. However, unlike the team algorithms,it performed better on Two-Max than on One-Max. We believe that the reason forthis last result may be related to its strengths on problems like the hierarchical graphpartitioning problems. The fact that there are two local optima in the Two-Max problemmay give the algorithm a better chance of �nding the global maximum because someof what it learns exploring around the false peak generalizes more readily to the globalpeak; in particular, it may be learning that making all the bits identical is good.These observations should be regarded as purely speculative; we have not yet ana-lyzed in any detail the performance of simplex network REINFORCE/MENT on theseabstract problems because we have chosen to concentrate on its performance in the hier-archical graph partitioning problems, which provided the main motivation for devisingit in the �rst place. One likely reason why it may be inferior to the team algorithms onsimpler problems is that a simplex network having nO units has nO(nO + 1)=2 weightswhile a team network having the same number of units has nO weights. While the teamtries to �t a 20-parameter distribution to its current view of the high-payo� parts ofthe space for these abstract problems, the corresponding simplex network tries to �t a210-parameter distribution to the same data. The network having more weights must,in a sense, rule out many more hypotheses about what it is that the high-payo� pointsseen so far have in common.5.4.2 The Hierarchical Graph Partitioning ProblemsAs shown in Table 1, REINFORCE/MENT in a simplex architecture was able to �ndone of the two global maxima for the MLC-32 problem in an average of just over 1000function evaluations, and it was able to �nd one of the two global maxima for theMLC-64 problem in an average of just over 4900 function evaluations. To gain furtherinsight into the performance of REINFORCE/MENT on these multilevel hypercubegraph problems, we also performed some more detailed analysis of its behavior over thecourse of seeking a solution. 20

In what follows, we illustrate those aspects of the behavior we analyzed for REIN-FORCE/MENT in a simplex network by contrasting it with the corresponding behaviorof REINFORCE with bias decay in a team network, the one other algorithm/architecturecombination which has also successfully solved these problems in our experiments. Ourintent here is simply to demonstrate that the former combination does appear to con-duct its search in an manner appropriate for this type of problem, in contrast to othertechniques which might also be able to eventually �nd a solution as well.4One way to determine if an algorithm for exploring a space is truly �nding regularitiesshared by many points giving relatively high payo� is to see what it generates after�nding a global maximum (or, in a broader context, after �nding a \very good" point,in some sense). In particular, since there are 2 equally good solutions for each of theseproblems, we did not terminate a run when one was found; instead, we let the networkcontinue to generate trial points to see how long it would take until the other solutionwas found as well. The result for MLC-32 was that, over the 50 runs, an average ofonly 145 additional function evaluations was required before the second optimal pointwas generated. Thus, on the average, both solutions were found within 1161 functionevaluations. For MLC-64 it took an average of 260 additional function evaluations to�nd the second optimal solution, so that both solutions were found within 5161 functionevaluations on the average. Although we did not try this with the team algorithmsincorporating weight decay, there is no doubt that it would take them at least as longas, and almost certainly much longer than, it takes them to �nd the �rst optimal solution.The team obviously cannot represent the necessary regularities for these problems.Figure 7 shows a plot of the value of J as a function of trial number for one typicalrun of REINFORCE/MENT on the MLC-32 problem. Note that the value of J at aglobal optimum is 0 for the MLC-32 graph since it can be partitioned with no edge cuts.Thus the plot shows that a global optimum was �rst found near trial number 1000. Italso shows that some of the subsequent trials led to generation of global optima as well,with such points being generated with ever-increasing frequency. Furthermore, althoughthis plot does not show which points are generated on each trial, it turns out that bothoptimal points were generated numerous times during this run.||||||||||||||||||||||||Insert Figure 7 about here.||||||||||||||||||||||||For comparison, Figure 8 shows a corresponding plot of the behavior of one runof team REINFORCE with bias decay on the same problem. This particular run isatypical in the sense that a global optimum was found much sooner than in the average4Note that the architectures and algorithms used in these comparisons can be combined in two otherways. While these other combinations may be capable of solving these graph-partitioning problems aswell, we did not experiment with them because it is clear that they do not have the properties we describehere. The representational limitation of the team architecture is obviously not a�ected by the algorithmused, and, as we have noted earlier, the use of bias decay or weight decay together with REINFORCEdoes not necessarily help identify the appropriate regularities.21

case (around trial number 1000 rather than trial number 5571), but we use it hereto illustrate the behavior over a comparable time interval. Unlike the results usingREINFORCE/MENT with a simplex network, this algorithm/architecture combinationdoes not lead to ever-more-frequent generation of high-payo� points. Furthermore, onlyone of the two optimum points is generated.||||||||||||||||||||||||Insert Figure 8 about here.||||||||||||||||||||||||In order to examine how well the simplex network using REINFORCE/MENT learnsto represent the regularities of high-payo� points as it explores, we also studied boththe distribution of points it generated and the weight matrix it evolved throughoutsingle runs on the MLC-32 problem. Because the essence of solving this problem isdiscovering the eight highly connected 4-node clumps in the graph, we concentrated onexamining how well it seemed to represent and exploit this information. Examinationof the weights evolved shows that, well before the network �rst generates an optimalpoint, the within-clump weights begin to take on positive values while the between-clump weights stay closer to zero, in general. This allows exploration to proceed in sucha way that whole clumps can be freely placed on either side of the partition, whichrepresents an appropriate strategy for dealing with such graphs, e�ectively reducing thesize of the search space from 32 dimensions to 8 dimensions for MLC-32. We believethat the success of REINFORCE/MENT on such problems rests on what can be roughlycharacterized as its ability to �nd and experiment with placement of these clumps; acorresponding strategy is also behind the well-known graph partitioning algorithm ofKernighan and Lin (1970).Detailed understanding of the search behavior from the weights alone is not thateasy, however. This is because all the weights tend to have relatively small magnitudesin the 32-unit simplex network used for these experiments since, in any n-unit simplexnetwork, the nth unit receives input from n + 1 sources. Thus we also examined thedistribution of output values selected by the network within each clump during individualruns. In particular, we plotted histograms, one for each clump, showing the numberof 1s generated for that clump during periods consisting of 100 consecutive functionevaluations. Figure 9 shows a subset of the histograms generated for the same run ofREINFORCE/MENT used for Figure 7. The histograms for the �rst 100 trials showthe approximately bell shape appropriate for a sum of 4 Bernoulli random variables (inthis case, with p = 1=2, since all weights are initialized at 0). The histograms for trials401-500 have already begun to atten out, indicating a preference for the all-0 or all-1cases. The remaining histograms show that this tendency continues as more sampling isdone, so that by the �nal 100 trials of this run, which was terminated after 1500 trials,the network has evolved a very strong preference for having all values within a clumpbe the same, but almost no preference for whether they all be 0 or all be 1. Thus,throughout the run, the search evolves in such a way that within-clump coordination22

becomes more and more likely. In short, the network discovers the signi�cance of theclumps and allows exploration to proceed using clump-level manipulations.||||||||||||||||||||||||Insert Figure 9 about here.||||||||||||||||||||||||For comparison, Figure 10 shows the corresponding histograms for the same runof team REINFORCE with bias decay depicted in Figure 8. All the histograms havethe approximately bell shape appropriate for a sum of 4 Bernoulli random variables,regardless of how far the run has proceeded, since the team network cannot coordinatethe behaviors of individual units. The histograms for the �nal 100 function evaluationsshow that the network has a fairly strong preference for having all units correspondingto nodes in the �rst 4 clumps on one side output a 1 while having all other units outputa 0. Thus this network has not captured the regularities characteristic of a wide rangeof high-payo� points.||||||||||||||||||||||||Insert Figure 10 about here.||||||||||||||||||||||||Note that we have omitted any mention of the precise mapping of nodes in the graphto units in the simplex network in this discussion. While there is an obvious symmetryamong all members in a team network, there is a de�nite ordering to the computationperformed within a simplex network. This leads to the possibility that assigning di�erentproblem representation roles to the individual units in such a network might lead todi�erent results when performing the search for an optimum. We investigated this for thegraph partitioning problems by running a number of trials in which the mapping betweengraph nodes and network units was mediated by randomly generated permutations.What we found was that there was virtually no di�erence in the results.Finally, another interesting result we observed is that not only did REINFORCE/MENTin the simplex network �nd solutions to the graph partitioning problems more rapidlyon average than any other algorithm we tried, it was also much more consistent in itsability to �nd solutions relatively quickly. For this algorithm, the standard deviation ofthe length of time to �nd a global maximum over the 50 runs was 415 for MLC-32 and1368 for MLC-64. In contrast, the standard deviations for the team using REINFORCEwith weight decay were 3580 for MLC-32 and 4379 for MLC-64; for the version usingyi � yi eligibility, the standard deviations were 4648 for MLC-32 and 5013 for MLC-64.The longest time for any run of the simplex network using REINFORCE/MENT was1787 on MLC-32 and 9707 on MLC-64, while the longest times for the two successfulteam algorithms were in the range 17,000-26,000 for these two tasks.
23

6 DiscussionIn this paper we have described the results of applying a number of variants of REIN-FORCE algorithms to some optimization problems studied by Ackley. These algorithmsinclude team algorithms as well as a novel network algorithm we have derived whichincorporates an entropy maximization strategy. The relatively good performance of thesimple single-bit correlation team algorithms on many of these problems was surprisingto us and may be an indication that these particular problems are not as challenging asone might have hoped.However, we should point out that there is another function, studied by Ackley, calledthe Trap function, for which none of the algorithms we have discussed here is successfulat �nding the global maximum. This function is essentially a version of Two-Max inwhich a much larger proportion of the space leads uphill to the false peak. In Ackley'sstudies, the only algorithm which was at all successful at solving this type of problem wasa simple hillclimber which is restarted after reaching any peak.5 The useful explorationperformed by such an iterated hillclimber is really only in the restarts; if it begins in theright region, it will succeed, but not otherwise. All the other algorithms he studied, andall the algorithms investigated here, involve some amount of more global sampling whichprevents them from taking the necessarily myopic point of view necessary to succeed atsuch tasks. It is interesting to note that a still more di�cult function can be created byadding \porcupine quills" to the entire space, or just to the vicinity of the global peak,leading to a function that an iterated hillclimber would �nd essentially impossible tooptimize as well.Another aspect of the relation of our work to Ackley's which we should point out isthat he was careful to use uniform parameter settings for each algorithm throughout hisexperiments. This is obviously the only fair way to optimize a black-box function. Incontrast, not all the parameters of the algorithms whose results we have reported havebeen �xed across problems, although most have. In particular, only one parameter,the learning rate, was varied across problems, and in many cases the results we havereported here involve relatively little variation of this parameter across problems forany �xed algorithm. To be able to claim that any of the algorithms here are trulyuseful black-box optimization algorithms we would need to conduct more studies usingone �xed value of the learning rate; alternatively, one might imagine adding a meta-leveladaptation designed to determine useful settings of these usually experimenter-controlledparameter settings.An interesting potential application of Lemma 1 that we did not take advantage ofin these studies is to avoid extensive Monte Carlo simulations by directly computing theprobability that a network having all random units as output units would produce aparticular output. This can be used for a pattern already generated, as when a network5Ackley's SIGH algorithm could also �nd the global peak in the special case when the global andfalse peak were at bitwise complementary points, because its distribution of trial points was biased infavor of such symmetry; with more general placement of these two peaks, SIGH failed like all the othernon-hillclimbers. 24

produces a global optimum for a function and it would be useful to know whether thathappened as a uke or was destined to happen soon anyway, and it can also be used totest the network on a pattern without having to wait for it to be generated. By simply\loading" the pattern in as if it were the actual output generated and then performingthe computation of the p values, one can determine through the use of Lemma 1 theprobability that the network would have generated this pattern on its own.Of all the work described here, the part we are most interested in investigating fur-ther is that dealing with the REINFORCE/MENT algorithm. There are several aspectsof REINFORCE/MENT which could be explored further. It would be helpful if it didnot have to be limited to cases where all random units are output units, and it would alsobe interesting if a version could be devised which allows more symmetrical interactionsamong the units, perhaps involving the use of something more like an asynchronousupdate strategy or some type of settling behavior. Although we have not investigatedit in any detail, it appears that the reinforcement learning algorithm for a Boltzmannmachine described by Hinton (1989) is one such way to use more symmetrical interac-tions, although it would be interesting to �nd others which do not require a completeannealing process just to generate a single trial point.More generally, it would be worthwhile to understand the relation between the RE-INFORCE/MENT approach and other approaches which also incorporate an entropyformulation, such as simulated annealing. Clearly, " is essentially a temperature param-eter. Initial investigation of this question has led us to suspect that while there are someimportant similarities which might be useful to exploit, there also appear to be somedi�erences. Whether these di�erences are signi�cant or merely super�cial must awaitfurther analysis.Finally, an interesting extension of the REINFORCE/MENT approach which wehave begun to explore is its possible applicability in associative reinforcement learning,where the input presented to the network is not constant. In this case, adding to theexternal reinforcement the entropy of the entire state of the network as a function of theinput, computed according to equation (27), seems intuitively reasonable. The idea isthat this entropy is best optimized by �nding a set of internal representations, viewedas patterns of activity over the hidden units, any of which could potentially do the jobrequired for the particular input presented, without committing prematurely to any par-ticular one. We have studied the use of this algorithm in the 2-hidden-unit XOR task(using all Bernoulli logistic units) and found that it succeeds. The external reinforcementused in this task is 1 if the output is correct and 0 otherwise. This form of reinforcementalmost always leads to failure for the statistically gradient-following pure REINFORCEalgorithm because of the presence of attractive local maxima, although more sophisti-cated reinforcement functions can be devised which allow pure REINFORCE to solvethe XOR problem. Another algorithm which succeeds on such tasks, using the samesuccess/failure reinforcement signal, is the associative reward-penalty (AR�P) algorithm(Barto & Anderson, 1985). Our preliminary studies comparing the behavior of RE-INFORCE/MENT with AR�P on this task show that REINFORCE/MENT may besomewhat slower, but this is probably because it does not incorporate the absolute25

standard of reinforcement which AR�P does.7 ReferencesAckley, D. H. (1987). Stochastic iterated genetic hillclimbing. Ph.D. Dissertation, Dept.of Computer Science, Carnegie-Mellon University, Pittsburgh, PA. Also available as:A Connectionist Machine For Genetic Hillclimbing. Norwell, MA: Kluwer.Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-likecomputing elements. Human Neurobiology, 4, 229-256.Barto, A. G. & Anandan, P. (1985). Pattern recognizing stochastic learning automata.IEEE Transactions on Systems, Man, and Cybernetics, 15, 360-374.Barto, A. G. & Anderson, C. W. (1985). Structural learning in connectionist systems.Proceedings of the Seventh Annual Conference of the Cognitive Science Society, 43-53.Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike elements that cansolve di�cult learning control problems. IEEE Transactions on Systems, Man, andCybernetics, 13, 835-846.Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to theTheory of NP-Completeness. San Francisco: W. H. Freeman.Goldberg, D. E. & Holland, J. H. (Eds.) (1988). Special Issue on Genetic Algorithms,Machine Learning, 3, nos. 2/3.Hinton, G. E. (1989). Connectionist learning procedures. Arti�cial Intelligence, 40,185-234.Holland, J. H. (1975). Adaptation in Natural and Arti�cial Systems. Ann Arbor: Uni-versity of Michigan Press.Hop�eld, J. J. & Tank, D. W. (1985). Neural computation of decisions in optimizationproblems. Biological Cybernetics, 52, 141-152.Kernighan, B. W. & Lin, S. (1970). An e�cient heuristic technique for partitioninggraphs. Bell Systems Technical Journal, 49, 291-307.Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulatedannealing. Science, 220, 671-680.Munro, P. (1987). A dual back-propagation scheme for scalar reward learning. Pro-ceedings of the Ninth Annual Conference of the Cognitive Science Society, 165-176.Narendra, K. S. & Thathatchar, M. A. L. (1989). Learning Automata: An Introduction.Englewood Cli�s, NJ: Prentice Hall. 26

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Ph.D.Dissertation, University of Massachusetts, Amherst (also COINS Technical Report84-02).Sutton, R. S. (1988a). Learning to predict by the methods of temporal di�erences.Machine Learning, 3, 9-44.Sutton, R. S. (1988b). NADALINE: A normalized adaptive linear element that learnse�ciently (Technical Report 88-509.4). GTE Laboratories Inc., Waltham, MA.Sutton, R. S. & Pinette, B. (1985). The learning of world models by connectionistnetworks. Proceedings of the Seventh Annual Conference of the Cognitive ScienceSociety, 54-64.Williams, R. J. (1986). Reinforcement learning in connectionist networks: a mathemat-ical analysis (Technical Report 8605). University of California, San Diego, Institutefor Cognitive Science.Williams, R. J. (1987). A class of gradient-estimating algorithms for reinforcementlearning in neural networks. Proceedings of the First Annual International Confer-ence on Neural Networks, II, pp. 601-608.Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist sys-tems (Technical Report NU-CCS-88-3). Northeastern University, Boston, MA.Williams, R. J. & Peng, J. (1989). Reinforcement learning algorithms as function op-timizers. Proceedings of the International Joint Conference on Neural Networks,Washington, DC, Vol. II, 89-95.

27

AlgorithmArchitecture Reinforcement WeightFactor Eligibility DecayTeam r � r yi � pi NoTeam r � r � � yi � pi NoTeam r � r yi � pi YesTeam r � r yi � yi NoTeam r � r � � yi � yi NoTeam r � r yi � yi YesSimplex REINFORCE/MENTBest found by Ackley for task
Optimization TaskOne-Max Two-Max Porcupine Plateaus MLC-32 MLC-64� Time � Time � Time � Time � Time � Time0.009 130 0.004 149 0.009 139 0.002 465 1 10.01 123 0.004 147 0.01 120 0.002 446 1 10.05 112 0.005 273 0.05 119 0.01 335 0.4 5571 0.2 66430.009 9 0.004 102 0.009 9 0.002 435 1 10.009 10 0.011 38 0.009 10 0.004 314 1 10.05 6 0.3 16 0.1 6 0.01 234 0.4 5127 0.2 73560.002 335 0.001 203 0.001 364 0.001 862 0.007 1016 0.0015 490119 35 357 494 2574 24905Table 1: Summary of simulation results on the optimization problems.Figure 1: The hierarchically structured graph MLC-32.Figure 2: The hierarchically structured graph MLC-64.Figure 3: A 5-unit team network. Every unit is an output unit, and the only adjustableweights are the biases, which can be treated as weights on the connections indicated bythe arrows. The \presynaptic" signal on each of these connections is the constant 1.Figure 4: A 4-unit simplex network. Every unit is an output unit. Among the adjustableweights are the biases, which can be treated as weights on the connections indicated bythe arrows. The \presynaptic" signal on each of these connections is the constant 1.28

Figure 5: A 2-unit simplex network and the optimization problem it has learned to solveusing the REINFORCE/MENT algorithm. Ideally, the bias of the �rst unit should be0 and the bias of the second unit should have half the magnitude of the weight betweenthe units.
Figure 6: A 2-unit simplex network and the optimization problem it has learned to solveusing the REINFORCE/MENT algorithm. Ideally, the bias of the �rst unit should beln 2 and the remaining two weights should have equal magnitude.
Figure 7: Plot of J as a function of trial number for a typical run of REINFORCE/MENTin a simplex architecture facing the MLC-32 graph partitioning problem.
Figure 8: Plot of J as a function of trial number for one run of REINFORCE with biasdecay in a team architecture facing the MLC-32 graph partitioning problem.
Figure 9: Histograms showing the number of 1s generated in each of the 8 MLC-32clumps during speci�c 100-trial periods for a typical run of REINFORCE/MENT in asimplex architecture. Clumps are ordered so that the �rst 4 should all be placed togetherin an optimal partition.
Figure 10: Histograms showing the number of 1s generated in each of the 8 MLC-32clumps during speci�c 100-trial periods for one run of REINFORCE plus weight decay ina team architecture. Clumps are ordered so that the �rst 4 should all be placed togetherin an optimal partition. The solution found in this experiment clearly assigns each nodein the �rst 4 clumps to the 1 side of the partition and the remaining nodes to the 0 side.29

