
Combinatorics of wordsChristian Cho�rut1 and Juhani Karhum�aki21 Universit�e Paris VII, LITP, 2, place Jussieu, 75251 Paris Cedex 05, Franceemail: cc@litp.ibp.fr2 Department of Mathematics, University of Turku, FIN-20014 Turku, Finlandemail: karhumak@cs.utu.�1. IntroductionThe basic object of this chapter is a word, that is a sequence { �nite orin�nite { of elements from a �nite set. The very de�nition of a word immedi-ately imposes two characteristic features on mathematical research of words,namely the discreteness and the noncommutativity. Therefore the combinato-rial theory of words is a part of noncommutative discrete mathematics, whichmoreover often emphasizes the algorithmic nature of problems.It is worth recalling that in general noncommutative mathematical theo-ries are much less developped than commutative ones. This explains, at leastpartly, why many simply formulated problems of words are very di�cult toattack, or to put this more positively, mathematically challenging.The theory of words is profoundly connected to numerous di�erent �eldsof mathematics and its applications. A natural environment of a word is a�nitely generated free monoid, therefore connections to algebra are extensiveand diversi�ed. Combinatorics, of course, is a fundamental part of the theoryof words. Less evident but fruitful connections are those to probability theoryor even to topology via dynamical systems. Last but not least we mentionthe close interrelation of the theory of words and the theory of automata, ormore generally theoretical computer science.This last relation has without any doubt emphasized the algorithmic na-ture of problems on words, but even more importantly has played a major rolein the process of making the theory of words to a mature scienti�c topic of itsown. Indeed, while important results on words were til 1970's only scatteredsamples in the literature, during the last quarter of the century the researchon words has been systematic, extensive, and we believe, also successful.Actually, it was already at the beginning of this century when A. Thueinitiated a systematic study on words, cf. [Be6] for a survey of Thue's work.However, his fundamental results, cf. [T1], [T2] and also [Be8], remained quiteunnoticed for decades, mainly due to the unknown journals he used. Latermany of his results were discovered several times in di�erent connections.The modern systematic research on words, in particular words as elementsof free monoids, was initiated by M.P. Sch�utzenberger in the sixties. Two in-uencial papers of that time are [LySc] and [LeSc]. This research created also



2 C. Cho�rut and J. Karhum�akithe �rst monograph on words, namely [Len], which, however, never becamewidely used.Year 1983 was important to the theory: the �rst book \Combinatoricson Words" [Lo] covering major parts on combinatorial problems of wordsappeared. Even today it is the most comprehensive presentation of the topic.The goals of this presentation is to consider combinatorial properties ofwords from the point of view of formal languages. We do not intend to beexhaustive. Indeed, several important topics such as theory of codes, severalproblems on morphisms of free monoids, as well as unavoidable regularitieslike Shirshov's Theorem, are not considered in this chapter, but are discussedin other chapters of the Handbook. Neither the representations of the topicschosen are supposed to be encyclopedic.On the other hand, the criteria we have had in our minds when choosingthe material to this chapter can be summarized as follows. In addition totheir relevance to formal languages we have paid a special attention to selecttopics which are not yet considered in textbooks, or at least to have a freshpresentation of older topics. We do not prove many of the results mentioned.However, we do prove several results either as examples of proof techniquesused, or especially if we can give a proof which has not yet appeared intextbooks. We have made special e�orts to �x the terminology.The contents of our chapter is now summarized.In Section 2 we �x our terminology. In doing so we already present somebasic facts to motivate the notions. Section 3 deals with three selected prob-lems. These problems { mappings between word monoids, binary equalitylanguages and a separation of words by a �nite automaton { are selected toillustrate di�erent typical problems on words.Section 4 deals with the well-known defect e�ect: if n words satisfy anontrivial relation, then they can be expressed as products of at most n� 1words. We discuss di�erent variations of this result some of which emphasizingmore combinatorial and some more algebraic aspects. We point out di�erencesof these results, including the computational ones, as well as consider thedefect e�ect caused by several nontrivial relations.In Section 5 we consider equations over words and their use in de�ningproperties of words, including several basic ones such as the conjugacy. Wealso show how to encode any Boolean combination of properties, each ofwhich expressable by an equation, into a single equation. Finally, a survey ofdecidable and undecidable logical theories of equations are presented.Section 6 is devoted to a fundamental property of periodicity. We presenta proof of the Theorem of Fife and Wilf which allows to analyse its optimality.We also give an elegant proof of the Critical Factorization Theorem from [CP],and �nally discuss about an interesting recent characterization of ultimatelyperiodic words due to [MRS].In Section 7 we consider partial orderings of words and �nite sets of words.As we note there normally such orderings are not �nitary either in the sense



Combinatorics of words 3that all antichains or in the sense that all chains would be �nite. Thereare two remarkable exceptions. Higman's Theorem restricted to words statesthat the subword ordering, i.e., the ordering by the property being a (sparse)subword, allows only �nite antichains, and is thus a well-ordering. We alsoconsider several extensions of this ordering de�ned using special propertiesof words.The other �niteness condition is obtained as a consequence of the validityof the Ehrenfeucht Compactness Property for words, which itself states thateach system of equations with a �nite number of unknowns is equivalent toone of its �nite subsystems. As an application of this compactness propertywe can de�ne a natural partial ordering on �nite sets of words, such that itdoes not allow in�nite chains. This, in turn, motivates us to state and solvesome problems on subsemigroups of a free semigroup.Section 8 is related to the now famous work of Thue. We give a surveyon results which repetitions or abelian repetitions are avoidable in alphabetsof di�erent sizes. We also estimate the number of �nite and in�nite cube-freeand overlap-free words over a binary alphabet, as well as square-free wordsover a ternary alphabet. We present, as an elegant application of automatatheory to combinatorics of words, an automata-theoretic presentation due to[Be7] of Fife's Theorem, cf.[F], characterizing one-way in�nite overlap-free(or 2+-free) words over a binary alphabet. Finally, we recall the completecharacterization of binary patterns which can be avoided in in�nite binarywords.In Section 9, last of this chapter, we consider the complexity of an in�niteword de�ned as the function associating to n the number of factors of lengthn in the considered word. Besides examples, we present a complete classi�-cation, due to [Pan2], of the complexities of words obtained as �xed pointsof iterated morphisms.Finally, as a technical matter of our presentation we note that resultsare divided into two categories: Theorems and Propositions. The division isbased on the fact whether the proofs are presented here or not. Theorems areeither proved in details or outlined in the extend that an experienced readercan recover those, while Propositions are stated with only proper referencesto the literature.2. PreliminariesIn this section we recall basic notions of words and sets of words, or languages,used in this chapter. The basic reference on combinatorics of words is [Lo],see also [La] or [Shy]. The notions of automata theory are not de�ned here,but can be found in any textbook of the area, cf. e.g. [Be1], [Harr], [HU] or[Sal1], or in appropriate chapters of this Handbook.



4 C. Cho�rut and J. Karhum�aki2.1 WordsLet � be a �nite alphabet. Elements of � are called letters, and sequences ofletters are called words, in particular, the empty word, which is denoted by1, is the sequence of length zero. The set of all words (all nonempty words,resp.) is denoted by �� (�+, resp.). It is a monoid (semigroup, resp.) underthe operation of concatenation or product of words. Moreover, obviously eachword has the unique representation as products of letters, so that �� and�+ are free, referred to as the free monoid and semigroup generated by �.Although we may assume for our purposes that � is �nite we sometimesconsider in�nite words as well as �nite ones: a one-way in�nite word, or brieyan in�nite word, can be identi�ed with a mapping IN ! �, and is normallyrepresented as w = a0a1 : : : with ai 2 �. Accordingly, two-way in�nite, orbi-in�nite, words over � are mappings ZZ ! �. We denote the sets of all suchwords by �! and !�! , respectively, and set �1 = �� [ �! . The notionsZZ and IN are used to denote the sets of integers and nonnegative integers,respectively.Let u be a word in ��, say u = a1 : : :an with ai 2 �. We de�ne u(i) todenote the ith letter of u, i.e., u(i) = ai. We say that n is the length of u, insymbols juj, and note that it can be computed by the morphism j j : �� ! INde�ned as jaj = 1 2 IN, for a 2 �. The sets of all words over � of length k,or at most k are denoted by �k and ��k, respectively. By juja, for a 2 �,we denote the total number of the letter a in u. The commutative image �(u)of a word u, often referred to as its Parikh image, is given by the formula�(u) = (juja1; : : : ; jujak�k), where k�k denotes the cardinality of � and � isassumed to be ordered. The reverse of u is the word uR = an : : :a1, and u iscalled a palindrome if it coincides with its reverse. For the empty word 1 wepose 1R = 1. By alph(w) we mean the minimal alphabet where w is de�ned.Finally a factorization of u is any sequence u1; : : : ; ut of words such thatu = u1 : : :ut. If words ui are taken from a set X, then the above sequenceis called an X-factorization of u. A related notion of an X-interpretation ofu is any sequence of words u1; : : : ; ut from X satisfying �u� = u1 : : : ut forsome words � and �, with j�j < ju1j and j�j < jutj. These notions can beillustrated as in Figure 2.1. � �ut� � �� �u1 u� �u2 � �ut� � �� �u1 u� �u2� �� �Figure 2.1. An X-factorization and an X-interpretation of uFor a pair (u; v) of words we de�ne four relations:u is a pre�x of v, if there exists a word z such that v = uz;



Combinatorics of words 5u is a su�x of v, if there exists a word z such that v = zu;u is a factor of v, if there exist words z and z0 such that v = zuz0;u is a subword of v, if v as a sequence of letters contains u as asubsequence, i.e., there exist words z1; : : : ; zt and y0; : : : ; yt such thatu = z1 : : : zt and v = y0z1y1 : : : ztyt.Sometimes factors are called subwords, and then subwords are called sparsesubwords. We, however, prefer the above terminology. Each of the above re-lations holds if u = 1 or u = v. When these trivial cases are excluded therelations are called proper. A factor v of a word u can occur in u in di�erentpositions each of those being uniquely determined by the length of the pre�xof u preceding v. For example, ab occurs in abbaabab in positions 0, 4 and 6.If v = uz we write u = vz�1 or z = u�1v, and say that u is the rightquotient of v by z, and that z is the left quotient of v by u. Consequently, theoperations of right and left quotients de�ne partial mappings ����� ! ��.Note that the above terminology is motivated by the fact that the free monoid�� is naturally embedded into the free group generated by �. We also writeu � v (u < v, resp.) meaning that u is a pre�x (a proper pre�x, resp.) ofv. Further by prefk(v) and sufk(v), for k 2 IN, we denote the pre�x and thesu�x of v of length k. Finally, we denote by pref(x), suf(x), F (x) and SW (x)the sets of all pre�xes, su�xes, factors and subwords of x, respectively.It follows immediately that �� satis�es, for all words u; v; x; y 2 �� thecondition(1) uv = xy ) 9t 2 �� : u = xt and tv = y; or x = ut and v = ty:Similarly, as we already noted, the length function of �� is a morphism intothe additive monoid IN:(2) h : �� ! IN with h�1(0) = 1:Conditions (1) and (2) are used to characterize the freeness of a monoid, cf.[Lev]. Consequently, �� is indeed free as a monoid.For two words u and v neither of these needs to be a pre�x of another.However, they always have a uniquemaximal common pre�x denoted by u^v.Similarly, they always have among their common factors longest ones. Let usdenote their lengths by l(u; v). These notions allow us to de�ne a metric onthe sets �� and �! . For example, by de�ning distance functions asd(u; v) = juvj � 2l(u; v) for u; v 2 ��;and d1(u; v) = 2�ju^vj for u; v 2 �!;(��; d) and (�! ; d1) become metric spaces.As we shall see later the above four relations on words are partial or-derings. The most natural total orderings of �� are the lexicographic andalphabetic orderings, in symbols �l and �a, de�ned as follows. Assume that



6 C. Cho�rut and J. Karhum�akithe alphabet � is totally ordered by the ordering �. This is extended to ��in the following ways:u �l v i� u�1v 2 �+ or pref1((u ^ v)�1u) � pref1((u ^ v)�1v)and u �a v i� juj < jvj or juj = jvj and u �l v:Consequently, u is lexicographically smaller than v if, and only if, either uis a proper pre�x of v, or the �rst symbol after the maximal common pre�xu ^ v is smaller in u than in v. It follows that the orderings �a and �lcoincide on words of equal length. In some respects they, however, behavequite di�erently: each word u is preceded only by �nitely many words in �a,while for �l this holds only for words composed on the smallest letter of �.It follows directly from the de�nition that the alphabetic ordering �a iscompatible with the product on two sides: for all words u; v; z; z0 2 �� wehave u �a v i� zuz0 �a zvz0:For the lexicographic ordering �l the situation is slightly more complicated.As is straightforward to see we have for all u; v; z; z0 2 ��,u �l v i� zu �l zv;and u �l v and u 62 pref(v) implies that uz �l vz0:2.2 Periods in wordsWe continue by de�ning some further notions of words, in particular thoseconnected to periodicity.We say that words u and v are conjugates, if they are obtainable fromeach other by the cyclic permutation c : �� ! �� de�ned asc(1) = 1;c(u) = pref1(u)�1u pref1(u) for u 2 �+:Consequently, u and v are conjugates if, and only if, there exists a k such thatv = ck(u). It follows that the conjugacy is an equivalence relation, each classconsisting of words of the same length. It also follows that the equivalenceclass [u] is included in F (uu), or even in F (pref1(u)�1uu).Next we associate periods to each word u 2 �+. Let u = a1 : : : an withai 2 �. A period of u is an integer p such that(1) ap+i = ai for i = 1; : : : ; n� p:The smallest p satisfying (1) is called the period of u, and it is denoted byp(u). It follows that any q � juj is a period of u, and that



Combinatorics of words 7u 2 pref(prefp(u)(u))! and u 62 F (v!) for any v 2 ��p(u)�1:It also follows that the conjugates have the same periods. The words in theconjugacy class [prefp(u)(u)] are called cyclic roots of u. Note that not allcyclic roots of u need to be factors of u, but at least one, namely the pre�xof u of length p(u), is so.We say that a word u 2 �+ is primitive, if it is not a proper integer powerof any of its cyclic roots. We claim that this is equivalent to the followingcondition (often used as the de�nition of the primitiveness):(2) 8z 2 �� : u = zn implies n = 1 (and hence u = z):Clearly, (2) implies the primitiveness. To see the reverse we assume thatu is primitive and u = zn with n � 2. Then denoting r = prefp(u)(u) we havethe situation depicted asu : � �� �� �� �� �r r rz z � � �� � � � �� �rzSince jrj is the period necessarily jzj � jrj. Moreover, by the primitivenessz 62 r�. Consequently, comparing the pre�xes of length jrj in the �rst twooccurrences of z we can write(3) r = ps = sp with p; s 6= 1:The identity (3) is the most basic on combinatorics of words, and implies {after a few line proof, cf. Corollary 4.1 { that p and s are powers of a nonemptyword. Therefore u would have a smaller period than jrj, a contradiction.We derive directly from the above argumentation the following represen-tation result of words.Theorem 2.1. Each word u 2 �+ can be uniquely represented in the formu = �(u)n, with n � 1 and �(u) primitive. utThe word �(u) in Theorem 2.1 is called the primitive root of the word u.There exist two particularly interesting subcases of primitive words: un-bordered and Lyndon words. A word u 2 �+ is said to be unbordered, if noneof its proper pre�x is one of its su�xes. In terms of the period p(u) this canbe stated as u 2 �+ is unbordered if; and only if; p(u) = juj:It follows that unbordered words are primitive. Moreover, unbordered wordshave the following important property: di�erent occurrences of an unborderedfactor u in a word w never overlap, i.e., they are separate:



8 C. Cho�rut and J. Karhum�akiw : � � � � � �u u uOn the other hand, if u 2 �+ is not unbordered, i.e., is bordered, then itcontains an overlap:(4) � �� �uu tConsequently, bordered words are sometimes called overlapping.As we noted the situation depicted in (4) is impossible for unborderedwords. If u is only primitive, then a variant of (4) is as follows: no primitiveword u can be an inside factor of uu, i.e., whenever uu = pus, then necessarilyp = 1 or s = 1. Being an inside factor can, of course, be illustrated asu u� �uThis, indeed, is impossible for primitive words by the argument used in (3).We note that this simple lemma of primitive words is extremely usefulin many concrete considerations. As a general example fast algorithms fortesting the primitiveness can be based on that. Indeed, use any (linear time)pattern matching algorithm, cf. [CR], to test whether the pattern u is a factorin uu in a nontrivial way, and if \no" the primitiveness of u has been veri�ed.Now, we go to the second important subcase of the primitive words. ALyndon word u 2 �+ is a word which is primitive and the smallest one in itsconjugacy class [u] with respect to the lexicographic ordering.It is easy to see that a Lyndon word is unbordered. This follows sinceof the words vuv, vvu and uvv, with u; v 2 �+ and vuv primitive, the �rstone is never the smallest one. Indeed, by the primitiveness of vuv, we canuse the argumentation of (3) to conclude that vuv 62 pref(v!). Consequently,vuv deviates from v! before its end, and so uvv does it earlier and vvu later,if ever, than vuv. Therefore if vuv �l v! , then uvv �l vuv, and otherwisevvu �l vuv.Let L denote the set of all Lyndon words. A fundamental property ofthese words is the following representation result:Proposition 2.1. Each word u 2 �+ admits the unique factorization as aproduct of nonincreasing Lyndon words, i.e., in the formu = l1 : : : ln; with lj 2 L and ln�l ln�1�l : : :�l l1:



Combinatorics of words 9The proof of Proposition 2.1 can be found in [Lo], which studies exten-sively Lyndon words and their applications to factorizations of free monoids.Algorithmic aspects of Lyndon words can be found in [Du2] and [BePo].2.3 Repetitions in wordsOne of the most intensively studied topics of combinatorics of words is thatof repetitions in words initiated already by Thue in [T1] and [T2]. This di�ersfrom the above periodicity considerations in the sense that the focus is onfactors of words instead of words themselves. We state the basic de�nitionshere to be used later in Section 8.A nonprimitive word is a proper power of another, and hence contains arepetition of order at least 2. More generally, a word u is said to contain arepetition of order k, with a rational k > 1, if it contains a factor of the formz 2 pref(r!); with jzjjrj = k:In particular, if jzj = 2jrj and u = z1rrz2, with z1; z2 2 ��, u contains arepetition of order 2, i.e., a square as a factor.Special emphasis has been put to study repetition-free words. We de�nethree di�erent variants of this notion as follows. Let k > 1 be a real number.We say that u 2 �1 isk-free, if it does not contain as a factor a repetition of order at least k;k+-free, if, for any k0 > k, it is k0-free;k�-free, if it is k-free, but not k0-free for any k0 < k.It follows that the k�-freeness implies the k-freeness, which, in turn, impliesthe k+-freeness. The reverse implications are not true in general, cf. Example8.1 and Theorem 8.1. There exist commonly used special terms for a few mostfrequently studied cases: 2-free, 2+-free and 3-free words are often calledsquare-free, overlap-free and cube-free words, respectively.In order to illustrate further the above notions we note that in the casek = 2, the 2-freeness means that u does not contain as a factor any square, the2+-freeness means that it does not contain any factor of the form vwvwv,with v; w 2 �+, and the 2�-freeness means that it does not contain anysquare, but does contain repetitions of order 2 � ", for any " > 0. As anexample, for the word u = babaabaabb the highest order of repetitions is 223 ,since it contains the factor (aba)2 23 = abaabaab. Note that although u doesnot contain a factor of the form v2 35 it is not 235-free, since it contains arepetition of order 223 > 235 .The above notions were generalized in [BEM], and independently in [Z],to arbitrary patterns as follows. Let � be another alphabet, and P a wordover �, so-called pattern. We say that u 2 �1 avoids the pattern P 6= 1 in�, if u does not contain a factor of the form h(p), where h is a morphism



10 C. Cho�rut and J. Karhum�akih : �� ! �� with h(x) 6= 1 for all x in �. Further a pattern P is calledavoidable in �, if there exists an in�nite word u 2 �! avoiding P .For example, the pattern xx is avoidable in � if there exists an in�nitesquare-free word over �, and as we already indicated, the pattern xyxyxis avoidable in � if there exists an in�nite 2+-free word over �. It is worthnoting here that the existence of a factor of the form vwvwv, with v; w 2 �+,in u is equivalent to the existence of an overlapping factor in u, i.e., of twooccurrences of a factor overlapping in u. This explains the term of overlap-free.Natural commutative variants of the above notions can be de�ned, whenk 2 IN and only the k-freeness is considered: we say that u 2 �1 is abeliank-free, if it does not contain a factor of the form u1 : : :uk with �(ui) = �(uj),for i; j = 1; : : : ; k.In order to motivate the use of in�nite words in connection with avoidablewords we note the following simple equivalence: for each pattern P there existin�nitely many words in �� avoiding P if, and only if, there exists an in�niteword in �! avoiding P . This follows directly from the �niteness of �. Indeed,in one direction the implication is trivial. In the other direction it followssince, by the above reason, from any in�nite set L of words, each of whichcontains a pre�x v, we can choose an in�nite subset L0 and a letter a 2 �such that each element of L0 contains va, as a pre�x.We conclude this subsection by listing all the cases when the number ofk-free or abelian k-free words, for an integer k, is �nite. It is an exhaustivesearch argument which shows that this is the case for the 2-freeness in thebinary alphabet, as well as the abelian 3-freeness in the binary and the abelian2-freeness in the ternary alphabets. Figure 2.2 describes the correspondingtrees T2;2, AT2;3 and AT3;2, respectively. All the words of the required types(up to symmetry) are found from the paths of these trees starting at theroots.As we shall see in Section 8, in all the other cases there exists an in�niteword avoiding corresponding k-repetitions or abelian k-repetitions. By thesetrees all binary words of length at least 4 contain a square, and all binarywords of length at least 10 contain an abelian cube. Finally, all ternary wordsof length at least 8 contain an abelian square.2.4 MorphismsAs we shall see, or in fact have already seen, morphisms play an important rolein combinatorics of words. Morphisms are mappings h : �� ! �� satisfyingh(uv) = h(u)h(v) for all u; v 2 ��:In particular, necessarily h(1) = 1, and the morphism h is completely deter-mined by the words h(a), with a 2 �. Therefore, as a �nite set h(�) of wordsa morphism is a very natural combinatorial object.



Combinatorics of words 11��a@@b��aT2;2 a!!!!a aaaabb ��a @@b��a @@b ��a AAb a��a @@b a b ��a AAb ��a AAbb ��a AAb ��a AAb ��a AAb a b��a AAb a b a aa a b ��a AAb��a AAb bAT2;3
a���b HHHc��a @@c ��b QQac ��a AAb ��c AAa b��a AAb ��b AAc a a ��b AAc ��c AAab ��a AAc a b c a ��b AAa ca b c b c aAT3;2Figure 2.2. Trees T2;2 , AT2;3 and AT3;2We shall need di�erent kinds of special morphisms in our later consider-ations. We say that a morphism h : �� ! �� isbinary, if k�k = 2;periodic, if there exists a z such that h(�) � z�;1-free or nonerasing, if h(a) 6= 1 for each a 2 �;uniform, if jh(a)j = jh(b)j for all a; b 2 �;prolongable, if there exists an a 2 � such that h(a) 2 a�+;a pre�x, if none of the words of h(�) is a pre�x of another;a su�x, if none of the words of h(�) is a su�x of another;a code, if it is injective;of bounded delay p, if for each a; b 2 �, u; v 2 �� we have: h(au) � h(bv)with u 2 �p ) a = b;simpli�able, if there exist morphisms f : �� ! � � and g : � � ! ��,with k�k < k�k, such that h = g � f ;elementary, if it is not simpli�able.In many cases the alphabets � and � coincide. In the case of equationsor patterns we consider morphisms h : �� ! ��, i.e., the set of unknownsis denoted by �. For a uniform morphism h we de�ne its size as the numberjh(a)j, with a 2 �. Sometimes periodic morphisms are called cyclic. Finally,as an example of a morphismwith an unbounded delay we give the morphismde�ned as h(x) = a, h(y) = ab and h(z) = bb. Then, indeed, the word ab!can be factorized as h(y)h(z)! or h(x)h(z)! in fh(x); h(y); h(z)g+.2.5 Finite sets of wordsIn this last subsection we turn our attention to sets of �nite words, i.e., tolanguages. Indeed, our main interest will be, on one hand, in words includ-



12 C. Cho�rut and J. Karhum�akiing the in�nite ones, and on the other hand, on �nite, or at most �nitelygenerated, languages.Many of the operations de�ned above for words extend, in a natural way,to languages. Consequently, we may talk about, for instance, a commutativeimage of a language, or quotients of a language by another one. As an exam-ple, let us remind that the set of all factors of words in a language X can beexpressed as F (X) = ���1X���1 . We de�ne the size s(X) of a �nite set Xby the identity s(X) =Px2X jxj.Let X � �� and u1; : : : ; ut 2 X. We already said that such a sequenceu1; : : : ; ut is an X-factorization of u if u = u1 : : :ut. Exactly as � was ex-tended to �� or �+, we can extend the set X to a monoid or semigroup itgenerates by considering all X-factorizations:X� = fu1 : : :ut j t � 0; ui 2 Xg;and X+ = fu1 : : :ut j t � 1; ui 2 Xg:Algebraically, such semigroups are subsemigroups of a �nitely generated freesemigroup�+, and are called F -semigroups. Note that 1 2 X+ if, and only if,1 2 X. For convenience we concentrate to the semigroup case, and normallyassume that 1 62 X.Contrary to �+ the semigroup X+ need not be free in the sense thateach u 2 X+ would have only one X-factorization. However, what is true isthat X+ (as a set) has the unique minimal generating set, namely the set Yde�ned byY = (X+ � f1g)� (X+ � f1g)2; or simply Y = X+ �X+2 ; if 1 62 X:Indeed, any set Z generating X+, i.e., satisfying Z+ = X+, must contain Y .On the other hand, any element of X+, i.e., a product of elements of X, canbe expressed as a product of elements of Y , so that Y generates X+ .If each word of X+ has exactly one Y -factorization then the semigroupX+ is free, and its minimal generating set Y is a code, cf. [BePe].One of our goals is to measure the complexity of a �nite set X � �+ . Acoarse classi�cation is obtained by associating X with a number, referred toas its combinatorial rank or degree, in symbols d(X), de�ned asd(X) = minfkFk j X � F �g:Consequently, d(X) tells how many words are needed to build up all wordsof X. The simplest case corresponds to periodic sets, when all words of Xare powers of a same word. The above notion will be compared to, but mustnot be confused with other notions of a rank of a set which will be called inSection 4 algebraic ranks, cf. [Lo].Another way of measuring the complexity of X is to consider all relationssatis�ed byX. In this approach codes, i.e., those sets which satisfy only trivial



Combinatorics of words 13relations, are the \simplest" ones. We prefer to consider these as the largestones, since, indeed, kXnk assumes the maximal value namely kXkn, for alln � 1.To formalize the above let X = fu1; : : : ; utg � �+ be an ordered set ofwords and let � = fx1; : : : ; xtg be an ordered set of unknowns. Let hX :�� ! �� be a morphism de�ned as hX (xi) = ui. Then the setRX = ker(hX) � �� ���de�nes all the relations in X+. Further the subrelationmin(RX) = f(y; z) 2 RX j 8y0; z0 2 �+ : y0 < y; z0 < z ) (y0; z0) 62 RXgcorresponds to minimal relations in X+. Note that obviously RX is a sub-monoid of the product monoid �����, and min(RX) is the minimal gener-ating set of it, i.e., min(RX) generates RX , and no element of min(RX ) is anontrivial product of two elements of RX .Now we de�ne a partial ordering �r on the set of ordered subsets X � �+of a �xed cardinality as follows:X �r Y if; and only if; RY � RX ;or equivalently if, and only if, min(RY ) � min(RX). We notice that �r is apartial ordering, where codes are maximal elements, i.e., for any n-elementset X and any n-element code C we have X �r C. We also note that theequality under this ordering means the isomorphism of the corresponding F -semigroups. We call this ordering a relation ordering, and shall see in Section7 that is has quite interesting properties.We conclude this section of preliminaries with an example illustrating theabove de�nitions.Example 2.1. Consider the following four ordered setsX1 = fa; abb; bba; baab; babb; babag;X2 = fa; abb; bba; bb; babb; babag;X3 = fa; abb; bba; bb; bbb; babag;X4 = fa; abb; bba; bb; bbb; bag:Using �nite transducers, cf. [Be1], we can compute all words of X+1 havingtwoX1-factorizations, i.e., all nontrivial relations in X+1 , as explicitly noticedin [Sp1]. All minimal such relations are computed by a transducer �X1 shownin Figure 2.3. The idea of the construction of �X1 is obvious: �X1 searchesfor minimaldoubleX1-factorizations systematically remembering at its stateswhich of the factorizations is \ahead" and by \how much". Such a transducercontains always two isomorphic copies, so that in our illustration we can omithalf of the transducer (the spotted lines in �X1).



14 C. Cho�rut and J. Karhum�aki�������� �������� ����1a; 11; bb 1; abb; 1(1; a)(a; abb) (a; 1)(abb; a) (1; bba)(bba; 1) ������*HHHHHHY ??6? HHHHHHHHY��������*Figure 2.3. Transducer �X1Let us denote by idX1 the identity relation of X+1 . Then, �X1 can betransformed to compute min(RX1)�idX1 simply by relabelling the transitionsas shown in Figure 2.4. Let us denote this transducer by �1. Similarly, we cancompute, as shown in Figure 2.5, the transducers �i de�ning the relationsmin(RXi)� idXi , for i = 2; 3; 4.It follows that X4 �r X3 �r X2 �r X1 �r C6, where C6 is any sixelement code. As we shall see in Section 7, the above procedure cannot becontinued for ever, i.e., each proper chain is �nite. ut3. Selected examples of problemsIn this section we consider three di�erent problems which, we believe, il-lustrate several important aspects and techniques used in combinatorics ofwords. The problems deal with di�erent possibilities of mapping �� into ��,a characterization of binary equality languages, and a problem of separatingtwo words by a �nite automaton.3.1 Injective mappings between F -semigroupsIn this subsection we consider a problem of mapping a word monoid, ormore generally a �nitely generated F -semigroup, into another one. Moreover,we require that such a mapping satisfy either some algebraic or automata-theoretic properties. The properties we require are that mappings areisomorphisms;embeddings mapping generators into generators;general embeddings;bijective sequential mappings.In particular, all mappings are injective.



Combinatorics of words 15���� ��������1 1; abb; 1(x1; 1)(x2; x1) (1; x3)�����*HHHHHY ?� -Figure 2.4. Transducer �1 accepting min(RX1)
���� ��������1 1; abb; 1(x1; 1)(x2; x1)(1; x4) (1; x3)�����*������ HHHHHY ??6 �2 ���� ���� ��������AAAAAU ����AAAAAU����?6(x5; 1) (1; x5) ����?6(x5; 1) (1; x5)-�(1; x4)(x4; 1)b; 1 1; b1; bb bb; 1������ ������1a; 1 1; a?6 �- (x1; 1)(1; x1)(x3; 1) (x4; 1) (x2; x1) (1; x4) (1; x3)�������3�3 + transitions: ���� �������� ����1; bb; 1 a; 11; a(x6; 1)-(1; x6)-�4Figure 2.5. Transducers �2; �3 and �4



16 C. Cho�rut and J. Karhum�akiIsomorphisms. For �nitely generated free semigroups a required isomor-phism exists if, and only if, the minimal generating sets of the semigroups areof the same cardinality, and in such a case any bijection between those wouldwork. Also for F -semigroups a necessary condition is that the cardinalities ofthe minimal generating sets are equal. Therefore, for F -semigroups the prob-lem reduces to that of testing whether a given bijection between generatingsets is an isomorphism. How this can be done is shown in Section 7.Embeddings preserving generators. This problem can be solved by themethod of the �rst problem: guess the bijection, and test whether it is anisomorphism.Embeddings. Interestingly this is always possible, if only the target semi-group is not cyclic, i.e., a subsemigroup of u�, for some u 2 �+ . In order tosee this we consider �rst free semigroups �+1 and �+2 with countably manyand two generators, respectively. Let �1 = fai j i 2 INg and �2 = fa; bg.Then the morphism f : �+1 ! �+2 de�ned asf(ai) = aib for i 2 IN;gives a required embedding. This is due to the fact that f is injective, or evena pre�x.For �nitely generated F -semigroups X+ and Y + we proceed as follows.We allow X+ to be countably generated, say X = fui j i 2 INg � �+,and require that Y contains two noncommuting words �; � 2 �+. Then arequired embedding h : X+ ! Y + is obtained as the compositionui �7�! ai1 : : :ait f7�! ai1b : : : aitb c7�! �i1� : : :�it�;where � : X+ ! �+ is a natural projection, f is as above, and c : fa; bg�!�� is de�ned by c(a) = � and c(b) = �. The mapping h is indeed a morphism,and moreover, injective as a composition of injective morphisms. Note thatthe injectivity of c follows, since � and � are assumed to be noncommuting,so that they do not satisfy any nontrivial identity, cf. Corollary 5.1.Next we move from algebraic mappings to automata-theoretic ones.Bijective sequential mappings. We search for a bijective sequential map-ping T : �� ! ��, where � and � are �nite alphabets. Recall that sequen-tial mappings, or sequential transductions in terms of [Be1] or deterministicgeneralized sequential mappings of [GR], cf. also [Sal1], are realized by de-terministic �nite automata over �, without �nal states and equipped withoutputs in ��, i.e., for each transition an output word of �� is produced.Such automata are called sequential transducers in [Be1]. As an illustrationwe consider the sequential mapping T : fa; b; cg� ! fx; yg� realized by thetransducer of Figure 3.1.The requirement that � has to realize a bijection, implies that the un-derlying automaton with respect to inputs must be a complete deterministicautomaton. Consequently, the inputs can be ignored (if only there are k�koutgoing transitions from each state), and so we are left with the problem,
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���� ����-���� ����-6 ?@@@@@@R�6�� �6��@@R 12 34 ���� ����-���� ����-6 ?@@@@@@R�6�� �6��@@R 12 34a; xb; y a; xb; xyc; yb; yc; yxy a; xb; xyc; yya; xc;yyy xy xxyyyyxy xxyyyx yyyFigure 3.1. A sequential transducer � and its underlying output automaton Awhether the underlying output automaton of � , say A, accepts unambiguously��. Therefore we are led to the theory of �nite automata with multiplicities,or in terms of [Ei] to the theory of IN-rational subsets. Now, using the Equal-ity Theorem of [Ei] it is easy to check that the above T , constructed bySch�utzenberger, is actually a required bijection fa; b; cg�! fx; yg�.Next we introduce a systematic method from [Ch] for constructing se-quential bijections �� ! ��, and illustrate it in the case when � = fa; b; cgand � = fx; yg. We start from a maximal su�x code X over �, cf. [BePe].Such sets are exactly those represented by binary trees, each node of whichcontains either 0 or 2 descendants. It follows that if S is the subset of allproper su�xes of words in X, then each word u 2 �� has the unique repre-sentation in the form u = sx, with s 2 S [ f1g and x 2 X�. In other words,we have the following relation on IN-subsets (where we use + instead of [):(1) �� = (1 + S)X� :Now, let us return to our speci�c case, and �x X to be the smallestthree-element maximal su�x code, i.e., X = fx; xy; yyg (or its renaming).Consequently, S = fyg, and hence using standard properties of IN-subsets,cf. [Ei] chapter 3, we transform (1) as follows:�� = (1 + y)X� = 1 + (X + y)X�= 1 + (x+ xy + yy + y)X�= 1 + x(1 + y)X� + (y + yy)X�= 1 + x�� + (y + yy)X� :This relation leads to the two state unambiguous automaton AX of Figure3.2 accepting fx; yg�:Here, AX can be obtained, for example, by reversing the method of computingthe behaviour of an IN-automaton using linear systems of equations, cf. [Ei]chapter 7.



18 C. Cho�rut and J. Karhum�aki���� ����1- -� �� ��x yyy 2 �� ��K xxyyyFigure 3.2. Automaton AXAs we mentioned a sequential bijection fa; b; cg� ! fx; yg� is obtainedfrom AX by labelling, for each state, the outgoing transitions bijectively byfa; b; cg. We also note that the automaton A of Figure 3.1 can be derivedfrom the above AX by unrolling the loop of state 2 once, and redistributingthe loop-free unrolled paths between two states in a suitable way:���� ����1 2-fy; yyg � fx; xy; yyg is replaced by ��������22'���� ����1 2"y yxyyyyxy xyxy���@@R ?@@R��	More generally, for details cf. [Ch], if k�k � 1 divides k�k � 1, as in ourabove considerations, by choosing a maximal su�x code X of the cardinality(k�k� 1)=(k�k� 1), one can construct a rational sequential bijection �� !�� realized by a two state automaton of Figure 3.3, where x is an arbitraryletter of � and S = suf(X) � (f1g [X).���� ����1- -� �� ��x S +X � x(1 + S) 2 �� ��K XFigure 3.3. A two state automaton realizing a bijection �� ! ��An elaboration of the previous considerations, cf. [Ch], leads to the followingresult.Theorem 3.1. There exists a bijective sequential mapping �� ! �� if, andonly if, k�k = k�k or k�k > k�k > 1. Moreover, if this is the case, thensuch a mapping is realized by a two state sequential transducer. ut



Combinatorics of words 19The trivial parts of Theorem 3.1 are as follows. First, if k�k = k�k, thenthe identity mapping (or a renaming) works. Second, if 1 = k�k < k�kor k�k < k�k, then simple cardinality arguments show that no requiredbijection exists.Finally, we mention that a related problem searching for sequential trans-ductions mapping a given regular set onto another regular one was consideredin [MN] and [McN1].The issues presented in this subsection deserve some comments. Due tothe embedding f : �+1 ! �+2 , for many problems in formal language theory,as is well-known, it is irrelevant what the cardinality of the alphabet is, aslong as it is at least two. Certainly this is the case when the property P to bestudied is preserved under the encoding f in the following sense. The encodedinstance of a problem is still an instance of the original problem, and it hasthe property P if, and only if, the original instance has the property P.Let us take an example. Consider a property P of languages accepted by�nite automata. Clearly, rational languages are closed under the encodingf , and moreover many of the natural properties, such as the �niteness, forexample, holds for L if, and only if, it holds for f(L). However, if we wouldconsider P on languages accepted by n-state �nite automata, then P wouldnot be preserved under the encoding f , and hence the cardinality mightmatter.There are even more natural cases when the size of the alphabet is deci-sive. This happens, for instance, when the problem asks something about thedomain of morphisms. For example, whether for morphisms h; g : �� ! ��there exists a word w 2 �+ such that h(w) = g(w) { this is the well-knownPost Correspondence Problem for lists of length k�k, cf. [HK2]. On the otherhand, this problem is independent of the target alphabet, as long as it con-tains at least two letters. Another example is the avoidability of a patternin in�nite words. Of course no embedding from an alphabet of at least threeletters into a binary one preserves the square-freeness. Therefore, avoidabilityproblems depend, in general, crucially on the size of the alphabet.Finally, we note that normally it is enough that an encoding is injectiveinstead of bijective. However, if bijective encodings were needed the solutionsof the last problem might be useful, especially because they are de�ned interms of automata theory.3.2 Binary equality setsAs the second example we consider a simple combinatorial problem connectedto the above Post Correspondence Problem. For two morphisms h; g : �� !�� we de�ne their equality set asE(h; g) = fw 2 �� j h(w) = g(w)g:In the next result we present a partial characterization from [EKR2] of equal-ity sets of binary morphisms.



20 C. Cho�rut and J. Karhum�akiTheorem 3.2. The equality set of two nonperiodic binary morphisms is al-ways of one of the following formsf�; �g� or (���)� for some �; �;  2 ��:In particular, such a set is rational.Proof. By the considerations of the previous subsection we may assume thath and g are morphisms from fa; bg� into itself. The proof uses essentially thefollowing simple lemma which, we believe, is interesting on its own right.Lemma 3.1. Let X = fx; yg � �+ be a nonperiodic set. Then, for eachword u; v 2 X+ , we haveu 2 xX+; v 2 yX+ ; juj; jvj � jxy ^ yxj ) u ^ v = xy ^ yx:Proof of Lemma. By symmetry, we may assume that jyj > jxj. Let z = xy ^yx, so that, by the nonperiodicity of X, we have jzj < jxyj, cf. Corollary 4.1.Now, if jzj < jxj we are done. In the other case we have the situation depictedas ���HHH� �x� �z#" ��yyxNow, v 2 yyX+ [ yxX+ and y 2 x��, so that jv ^ yxj > jzj.We shall show that also ju ^ xyj > jzj, from which the claim follows,i.e., ju ^ vj = jzj = jxy ^ yxj. To see this we �rst note, by the identityxy ^ yx = z, that z has a period jxj, i.e., z 2 pref(x!). Second, by theinequality jyj > jzj�jxj, we conclude that y has a pre�x of length jzj�jxj+1in pref(x!). Therefore, the words u 2 xX+ and xy have a common pre�x oflength jzj+ 1 (in pref(x!)). So our proof is complete. utProof of Theorem (continued). We are going to use this lemma to show thatin the exhaustive search for elements in the equality set of the pair (h; g)there exists a unique situation when this search does not go deterministically.Before doing this we need some terminology.Referring to the Post Correspondence Problem, let us call elements ofE(h; g) solutions, elements of (E(h; g) � f1g) � (E(h; g) � f1g)2 minimalsolutions, and pre�xes of solutions presolutions. Further with each presolutionw we associate its overow o(w) as an element of the free group generatedby fa; bg: o(w) = h�1(w)g(w):



Combinatorics of words 21Finally, we say that a presolution w (or the overow it de�nes) admits ac-continuation, with c 2 fa; bg, if wc is a presolution as well.Now, let us consider a �xed overow o(w). Depending on whether it isan element of fa; bg� or not we can illustrate the situation by the following�gures: h(w) o(w)g(w) or g(w) o(w)�1h(w)Assuming that we have the �rst case (the other being symmetric) we nowanalyse what it means that w admits both a- and b-continuations. SinceE(h; g) is closed under the product this can be stated that there exist wordswa and wb, which can be chosen as long as we want, such that wawa andwbwb are solutions. This is illustrated in Figure 3.4.o(w)z }| { zgz }| {| {z }zhh(w) g(w) ���������������������������PPPPPPPPPPPPPPPP�����������PPPPPPPPPPPPPPPPg(awa)h(awa)g(bwb)h(bwb)Figure 3.4. a- and b-continuationsBy our choice, g(wawa) = h(wawa) and g(wawb) = h(wbwb). Now, by thelemma, necessarily g(awa) ^ g(bwb) = g(ab) ^ g(ba) = zgand h(awa) ^ h(bwb) = h(ab) ^ h(ba) = zh:Consequently, both wawa and wbwb can be solutions only ifo(w) = zhz�1g ;as already depicted in Figure 3.4. This value of o(w) is the unique elementof the free group depending only on the pair (h; g). In the case considered itis an element of fa; bg�, and in the symmetric case the inverse of an elementof fa; bg�.



22 C. Cho�rut and J. Karhum�akiSo we have proved that only one particular value of the overow may allowtwo ways to extend presolutions into minimal solutions. Let us call such anoverow critical. Having this property the completion of the proof is an easycase analysis.First, if the critical overow does not exist. Then the presolution 1, if itis such, can be extended to a minimal solution in a unique way. ThereforeE(h; g) = �� for some word � 2 fa; bg�. If the overow 1 is the critical one,then the above argumentation shows that E(h; g) = f�; �g� for some words�; � 2 fa; bg�.Finally, if the critical overow exists, and is di�erent from the emptyword, we proceed as follows. Let w be the pre�x of a minimal solution suchthat o(w) is critical. Clearly such a w is unique. We call a letter c repetitive,if there exists a word wc such thato(w) = o(wcwc) and wcw0 62 E(h; g) for any w0 2 prefwc:Now, if neither a nor b is repetitive, then by the de�nition of the criticaloverow, E(h; g) = f�; �g� for some words �; � 2 fa; bg+. If exactly oneof the letters a and b is repetitive, then E(h; g) = (���)� for some words�; �;  2 fa; bg�. Indeed, if a is the repetitive letter, then � = w,  = awa,and � equals to the unique word ŵb such that wbŵb is a minimal solution.Again the de�nition of the critical overow guarantees the existence of ŵb.A similar argumentation rules out the case that both a and b are repetitive.This completes the proof of Theorem 3.2. utTheorem 3.2 motivates a number of comments, which, we believe, illus-trate nicely how intriguing simple problems of words can be.First, the cases ruled out in Theorem 3.2, when at least one the morphismsis periodic are easy. If just one is periodic, then, by the defect theorem, cf.Theorem 5.1, the other is injective, and therefore the equality set may containat most one minimal solution, i.e., is of the form �� for some � 2 fa; bg�. Ifboth, in turn, are periodic, then the equality set, if not equal to f1g, consistsof all words containing the letters a and b in a �xed ratio q 2 Q+ [ f1g.Such languages are sometimes denoted by Lq .Second, the idea of the proof of Theorem 3.2 is not extendable into largeralphabets, since the Lemma 3.1, which is the basis of the proof, does notseem to have counterparts in larger alphabets. Note that this lemma allowsto construct from a given binary nonperiodic morphism h a so-called markedmorphism h0, i.e., a morphism h0 satisfying pref1h0(a) 6= pref1h0(b), simplyby applying the cyclic permutation c of Section 2.2 jh(ab) ^ h(ba)j timessimultaneously to h(a) and h(b).Third, and most interestingly, we compare the result of Theorem 3.2 tothe problem of testing whether, for two binary morphisms h and g, thereexists a word w 6= 1 such that h(w) = g(w), i.e., to the decidability problemof PCP(2). Certainly, our proof of Theorem 3.2 is nonconstructive. As such itis, however, if not very short, at least elementary and drastically shorter than



Combinatorics of words 23the existing decidability proofs of PCP(2), cf. [EKR1], [Pav] or also [HK2]in this handbook, which are about 20 pages long. As shown in [HKK] ourexistential proof of Theorem 3.2 can be made constructive, if an algorithmfor PCP(2), or in fact for its slight generalization so-called GPCP(2), forde�nitions cf. [HK2], is known. Moreover, the arguments used in [HKK] toconclude this are short.As a conclusion from above, we know that the equality set of two binarymorphisms h and g is always of one of the three di�erent forms, namelyLq, for some q 2 Q+ [ f1g, f�; �g� or (���)� for some words �; �;  2fa; bg�. Moreover, we can e�ectively �nd it, i.e., �nd a k or a �nite automatonaccepting the equality set. Still we do not know whether the third possibilitycan take place!We consider this open problem as a very nice example of challengingproblems of words. Although we think this problem is di�cult it is worthnoting that in free groups the sets of the form (���)�, with �; �;  2 ��,are generated by two elements only: �i� = (��(��)�1)i�� for i � 0.3.3 Separating words via automataGiven two distinct words x; y 2 �� we want to measure by how much theydi�er when processed by a �nite automaton. More precisely, we want to com-pute the minimal size s(x; y) of an automaton, i.e., the minimal cardinalityof the set of states, that accepts one word and rejects the other. That thisinteger exists results from the fact that the free monoid is residually �nite:an automaton of size jxj accepting only x separates the two words.It is easy to check that d(x; y) = 2�s(x;y) de�nes an ultrametric distanceon the free monoid, once we pose d(x; x) = 0. Indeed, if this were not thecase then for some x; y; z we would have d(x; z) > maxfd(x; y); d(y; z)g orequivalently s(x; z) < minfs(x; y); s(y; z)g. Then in a minimum size automa-ton A separating x and z, the words x and y are indistinguishable, i.e., theytake the initial state to the same state. But this means that y and z aredistinguished by A, contradicting the minimality of s(y; z).For a �xed integer n we denote by Sn the maximum of all s(x; y)'s forx; y of lengths bounded by n, and we study Sn as a function of n. Here �niteautomaton means deterministic �nite automaton, but it can be replaced by�nite non-deterministic automaton, �nite permutation-automaton (all lettersinduce a permutation of the set of states), �nite monoids, �nite groups etc.This question was implicitly posed in [Jo].Surprisingly enough, it is di�cult to come up with two words which wouldrequire a large automaton to be separated, say an in�nite family of pairs ofwords for which the size of the automaton would increase as n� for some� > 0. Actually, using elementary number theory, it is easy to verify thattwo words of di�erent lengths bounded by n can be separated by an au-tomaton whose size is of the order of O(logn). So in particular, two wordsof di�erent commutative images can be separated by an automaton of size



24 C. Cho�rut and J. Karhum�akiO(logmaxfjxj; jyjg). This observation can be drawn further. Indeed, assumethat a factor z of length k occurs a di�erent number of times in x and y.The above argument shows that counting the occurrences of z modulo m,for some m = O(logn), discriminates x and y. As a consequence, if it is truethat two di�erent words of length n di�er on the number of occurrences ofsome factor of length logn, then these two words can be separated by a �niteautomaton of size O(log2 n).The �rst non-trivial contribution to this problem is due to [GK], whereit was proved that Sn=n tends to 0 as n tends to in�nity. Approximately atthe same time in [Rob1] it was proved that Sn = O(n2=5 log3=5 n), and thenthat only a slightly worse upper bound holds when dealing with permutationautomata, to with O(n1=2), see [Rob2]. We reproduce from [Rob1] a weakerresult.Theorem 3.3. Given two words u and v of length n there exists an automa-ton of size O(n logn)1=2 that accepts u if, and only if, it rejects v.Proof. Let us �rst present the proof intuitively. Let w be the shortest pre�xof u that is not a pre�x of v. The discriminating automaton aims at recog-nizing some su�x z (as an occurrence) of w by counting its position in umodulo some integer. Clearly, z may not be too large since the automatonperforms a string-matching based on z. But it may not be too small either,else it might have many occurrences and the modulo counting that identi�esunambiguously this occurrence might envolve a large integer. Furthermore,the length of z does not by itself guarantee a small number of occurrences.It's its period that counts, so z has to be chosen with a long period comparedto its length. The proof consists in solving this trade-o�.Let �(n) be the number of primes that are less than or equal to n. Theprime number theorem asserts that there exists a constant c for which �(n) >c nlogn holds, see e.g. [HW], Theorem 6. The �rst claim is of pure number-theoretic nature.Claim 1. For su�ciently large n there exists a prime number p � 3c (n logn)1=2such that the following holds. Let I � [1; n] be a subset of less thann1=2 log�1=2 n elements and let i 2 I be a �xed element. Then we havei 6= j mod p; for all i 6= j and j 2 I:Proof of Claim 1. We �rst observe that the number of primes greater thann1=2 log�1=2 n dividing j� i, for some j 2 I, is less than 2n1=2 log�1=2 n. Thisfollows from the facts that jj � ij is less than n and that I contains at mostn1=2 log�1=2 n elements. Now the prime number theorem implies�(3c n1=2 log1=2 n) > 3 n1=2 log1=2 n12 logn + log 3c + 12 log logn:Here for su�ciently large n the numerator is smaller than logn, i.e.,



Combinatorics of words 25�(3c n1=2 log1=2 n) > 3n1=2 log�1=2 n:Clearly, among these primes there is one that is greater than n1=2 log�1=2 nand that divides no j � i. utThe second claim concerns the period p(w) of a word w, cf. Section 2.2.Claim 2. For all w 2 ��, maxfp(wa); p(wb)g > jwj2 holds.Proof of Claim 2. Assume to the contrary that p(wa); p(wb) � jwj2 . Clearly,p(wa) 6= p(wb). Now wa and wb have a common pre�x w of length greaterthan or equal to p(wa)+p(wb). By the Theorem of Fine andWilf, cf. Theorem6.1, this contradicts the minimality of p(wa) and p(wb). utThe last claim gives an estimate on the size of an automaton that carriesout a string-matching algorithm, see, Chapter on string-matching in thishandbook.Claim 3. Let 0 � i < p, be two integers and let w 2 �� be a word of lengthk < p. Then there exists an automaton of size less than 2p that recognizesthe set of words ending in w, having no other occurrence of w and for whichthis occurrence starts in position i modulo p.Proof of Claim 3. We let w = w1 : : :wk and [p� 1] = f0; : : : ; p� 1g. The setof states of the automaton equals [p� 1] [ fw1 : : :wjj1 � j � kg, the initialstate is 0 and the �nal state is w. The transition function satis�esw1 : : :wj:c = � w1 : : :wj+1; if c = wj+1;i+ j + 1 mod p; otherwise,and �:c = �+ 1 mod p;if � 2 [p� 1]� fig and c 2 � or if � = i and c 6= w1. utProof of Theorem (continued). Now we contruct an automaton that sepa-rates u and v. We denote by w their maximal common pre�x: u = wau1 andv = wbv1 for some u1; v1 2 �� and a; b 2 � with a 6= b.We �rst rule out an easy case where jwj < 2(n logn)1=2. It su�ces to con-sider the automaton accepting all words having wa as a pre�x. It recognizesu if, and only if, it rejects v.Thus we may assume that jwj � 2(n logn)1=2, and consider the su�x z ofw of length 2(n logn)1=2� 1. We have u = w1zau1, v = w1zbv1 and w = w1zfor some w1 2 ��. By Claim 2, we may assume without loss of generality thatp(za) > jzaj2 . In particular this means that two occurrences of za are at leastjzaj2 apart and therefore that there are less than 2n2(n logn)1=2 = (n logn)1=2occurrences of za in u.



26 C. Cho�rut and J. Karhum�akiIf v has no occurrence of za then it su�ces to construct the automatonthat performs the string-matching with za as the string to be matched (see,Chapter on string-matching). We know that this can be achieved with anautomaton of size jzaj = 2(n logn)1=2.We are left with the case where za has also an occurrence in v, i.e.,v = w2zav2 where jv2j < jv1j. Let I be the set of positions in u where theoccurrences of za end. Let p be as in Claim 1 and let i be the position modulop of the �rst occurrence of za in u. Then the automaton A accepting u andrejecting v consists of two subautomaton A1 and A2. Automaton A1 perfomsas prescribed by Claim 3. When the �rst occurrence of za is spotted thenA1 switches to A2, which separates the su�xes u1 and v2. We know that A2has size bounded by logn. Thus, the automaton A has size jjA1jj+ jjA2jj <4(n logn)1=2 + � logn, where � is some constant independent of n. ut4. Defect e�ectThe defect theorem is one of the important results on words. It is oftenconsidered to be a folklore knowledge in mathematics. This may be, at leastpartially, due to the fact that there does not exist just one result, but, as weshall see, rather many di�erent results which formalize the same defect e�ectof words: if a set X of n words over a �nite alphabet satis�es a nontrivialrelation E, then these words can be expressed simultaneously as products ofat most n � 1 words. One of the older papers where this is proved is [SkSe].It was also known in [Len].The defect e�ect can be considered from di�erent perspectives. One mayconcentrate on a set X satisfying one (or several) equation(s), or one mayconcentrate on an equation E (or a set of equations), and try to associate thenotion of a \rank" with the objects studied. Our emphasis is in combinatorialaspects of words, so we concentrate on the �rst approach.It follows already from the above informal formulation of a defect theorem,that it can be seen as a dimension property of words: if n words are \depen-dent" they belong to a \subspace of dimension" at most n � 1. However,as we shall see in Section 4.4, words possess only very restricted dimensionproperties in this sense.4.1 Basic de�nitionsAssume that X � �+ is a �nite set of words having the defect e�ect. Thismeans that X is of a \smaller" size than kXk, but \how much smaller"depends on what properties are required from words used to build up thewords ofX. This is what leads to di�erent formulations of the defect theorem.A combinatorial formulation is based on the notion of the combinatorialrank or degree of X � �+ , which we already de�ned in Section 2.5 by thecondition



Combinatorics of words 27(1) d(X) = minfkFk j X � F+g:It follows immediately that d(X) � min(kXk; k�k), so that the �nitenessof X is irrelevant. Note also that the degree of a set is not preserved underinjective encodings { emphasizing the combinatorial nature of the notion.In order to give more algebraic formulations we consider the followingthree conditions. Let X � �+ be a �nite set and S an F -semigroup. Wede�ne three properties of S as follows:(p) 8p; w 2 �+ : p; pw 2 S ) w 2 S;(f) 8p; q; w 2 �+ : p; q; wp; qw 2 S ) w 2 S;(u) 8p; q; w 2 �+ : pwq 2 X+; pw;wq 2 S ) w 2 S:Conditions (p) and (f) are very basic in the theory of codes, cf. [BePe].The �rst one characterizes those F -semigroups having a pre�x code as theminimal generating set. Such semigroups are often called right unitary. Thesecond condition, which is often referred to as the stability condition, char-acterizes those F -semigroups which are free, i.e., have a code as the minimalgenerating set, cf. [LeSc] or [BePe]. The third condition, which di�ers fromthe others in the sense that it depends also on X, is introduced here mainlyto stress the diversi�ed nature of the defect theorem. As shown in [HK1] itcharacterizes those F -semigroups, where X+ factorizes uniquely.For the sake of completeness we prove the following simpleLemma 4.1. An F-semigroup S is right unitary if, and only if, it satis�es(p).Proof. Assume �rst that S is right unitary. This means that the minimalgenerating set, say P , of S is a pre�x code. Let p = u1 : : :un and pw =v1 : : : vm, with ui; vj 2 P , be elements of S. Now, since P is a pre�x code wehave ui = vi, for i = 1; : : : ; n, and therefore vn+1 : : : vm 2 P+ = S.Conversely, assume that the F -semigroup S satis�es (p). Let v and q bein the minimal generating set of S. If v < q, then we can write q = vt witht 2 �+. Hence, by (p), t is in S, and q is a product of two nonempty words,a contradiction with the fact that q is in the minimal generating set of S. utFor each i = p; f; u, F -semigroups satisfying (i) are trivially closed underarbitrary intersections. Therefore the semigroupsX̂(i) = \X�SS sat: (i) Sare well-de�ned, and by the de�nition, the smallest F -semigroups of type (i)containingX. The semigroups X̂(i), for i = p; f; u, are referred to as free hull,pre�x hull and unique factorization hull of X. Denoting by X(i) the minimal



28 C. Cho�rut and J. Karhum�akigenerating set of X̂(i) we now de�ne three di�erent notions of an algebraicrank of a �nite set X � �+ :p(X) = kX(p)k; r(X) = kX(f)k and u(X) = kX(u)k:These numbers are called pre�x rank or p-rank, rank or f-rank and uniquefactorization rank or u-rank of X, respectively.The most commonly used notion of a rank of X in the literature is that ofour f-rank, cf. [BPPR], or [Lo]. From the purely combinatorial point of viewp-rank is often more natural. The reason we introduced all these variants,which by no means are all the possibilities, cf. [Sp2], is that they can be usedto illustrate the subtle nature of the phenomenon called the defect e�ect.Our next example modi�ed from [HK1] shows that all the four di�erentnotions of a rank may lead to a di�erent quantity.Example 4.1. Consider the setX = faa; aaaaba; aababac; baccd; cddaa; daa; baag:The only minimal nontrivial relation satis�ed by X isaa:aababac:cddaa= aaaaba:baccd:daa:Now, applying (u) we see that aaba; bac; cd 2 X̂(u). Replacing the wordsaababac, cddaa, aaaaba and baccd of X by the above three words we obtaina set, where X+ factorizes uniquely, i.e.,X(u) = faa; aaba; bac; cd; daa; baag:However, X(u)+ is not free, since we have(2) aa:bac:daa = aaba:cd:aa;which actually is the only nontrivial minimal relation in X(u)+. It followsthat X̂(u) is a proper subset of X̂(f). Applying now condition (f) to (2) weconclude that X̂(f) contains the words ba, c and d. But now the setX(f) = faa; ba; c; d; baagis a code, so that X(f) is this set, as already denoted. Finally, X(f) is nota pre�x code, so that applying (p) to X(f), or alternatively the proceduredescribed in a moment to the original X, we obtain thatX(p) = fa; ba; c; dg:Consequently, we have concluded that p(X) < r(X) < u(X) < kXk.In this example, the degree of X equals to p(X). However, if we replace Xby X 0 = e(X), where e : fa; b; c; dg� ! fa; b; cg� is a morphism de�ned ase(d) = bb and e(x) = x, for x 2 fa; b; cg, then the degree decreases to 3, whileall the algebraic ranks remain unchanged, as is easy to conclude. Thereforewe have an example of a set X 0 satisfying3 = d(X 0) < p(X 0) < r(X 0) < u(X 0) < kX 0k = 7: ut



Combinatorics of words 29Although we called our three notions of the rank algebraic, they do nothave all desirable algebraic properties like being invariant under an isomor-phism. Indeed, our next example shows that free hulls (or pre�x hulls) of two�nite sets generating isomorphic F -semigroups need not be isomorphic, i.e.,need not have the same number of minimal generators. On the other hand, asa consequence of results in the next subsection, one can conclude that all thealgebraic ranks, we de�ned, are closed under the encodings which are pre�xcodes.Example 4.2. Consider the setsX = fa; ab; babbb; abbbg and Y = fa; abb; bbba; bag:Then X+ and Y + are isomorphic, since both of these semigroups satisfyonly one minimal relation, which, moreover, is the same one under a suitableorderings of sets X and Y :X : a:babbb = ab:abbbY : a:bbba = abb:ba:From these relations we conclude, either by de�nitions or methods of the nextsubsection, that X(p) = X(f) = fa; bg, while Y (p) = Y (f) = fa; bb; bag. ut4.2 Defect TheoremsIn this subsection we show that each of our notions of a rank of a �nite setX can be used to formalize the defect e�ect. In our algebraic cases the wordsfrom which the elements of X are built up are, by de�nitions, unique, whilein the case of the degree the minimal F of (1) in Section 4.1 need not beunique.Let X � �+ be �nite. We introduce the following procedure using simpletransformations to compute the pre�x hull of X. Such transformations wereused already in [Ni] in connection with free groups.Procedure P . Given a �nite X � �+ , considered as an unambiguousmultiset.1. Find two words p; q 2 X such that p < q. If such words do not exist goto 4;2. Set X := X [ fp�1qg � fqg as a multiset;3. If X is ambiguous identify the equal elements, and go to 1;4. Output X(p) := X.We obtain the following formulation of the defect theorem.Theorem 4.1. For each �nite X � �+, the minimal generating set X(p) ofthe pre�x hull of X satis�es kX(p)k � kXk, and moreover kX(p)k < kXk,if X satis�es a nontrivial relation.



30 C. Cho�rut and J. Karhum�akiProof. First of all, by the de�nition of the pre�x hull and Lemma 4.1, theProcedure P computes X(p) correctly. Hence, kX(p)k � kXk always.The second sentence of the theorem is seen as follows. Whenever an iden-ti�cation is done in step 3 a required decrease in the size of kXk is achieved.Such an identi�cation, in turn, is unavoidable since, if it would not occur,steps 2 and 3 would lead from a set X satisfying a nontrivial relation to a newset of strictly smaller size still satisfying a nontrivial relation. Indeed, the newnontrivial relation is obtained from the old one by substituting q = pt, witht = p�1q, and by cancelling one p from the left in the old relation. Clearly,such a new relation is still nontrivial. utTheorem 4.1 motivates a few comments. By the de�nition of the pre�x hullas an intersection of certain free semigroups, it is not obvious that kX(p)k �kXk. Indeed, the intersection of two �nitely generated free semigroups, neednot be even �nitely generated, cf. [Ka2]. On the other hand, the �niteness ofkX(p)k is obvious, since it must consist of factors of X.As the second remark we note that although the proof of Theorem 4.1 isvery simple, it has a number of interesting corollaries.Corollary 4.1. Two words u; v 2 �+ are powers of a word if, and only if,they commute if, and only if, they satisfy a nontrivial relation. utNote that the argumentation of the proof of Theorem 4.1, gives a few lineproof for this basic result.Procedure P can be applied to derive the following representation resultfor 1-free morphisms h : �� ! ��. In order to state it let us call a morphisme : �� ! �� basic, if there are two letters a; b 2 � such that e(a) = ba ande(c) = c for c 2 � � fag. Then when applied P to h(�) in such a way thatthe identi�cations are done only at the end we obtainCorollary 4.2. Each 1-free morphism h : �� ! �� has a representationh = p � c � �;where p : �� ! �� is a pre�x, c : �� ! �� is length preserving and� : �� ! �� is a composition of basic morphisms. utObviously, Corollary 4.2 has also a two-sided variant, where p is a bipre�x,and in the de�nition of the basic morphism the condition e(a) = ba is replacedby e(a) = ba _ ab.Corollary 4.3. The pre�x hull of a �nite set X � �+ can be computed inpolynomial time in the size s(X) of X.Proof. Even by a naive algorithm each step in Procedure P can be done intimeO(s(X)3). So the result follows since the number of rounds in P is surelyO(s(X)). ut



Combinatorics of words 31As a �nal corollary we note a strengthening of Theorem 4.1.Corollary 4.4. If a �nite set X � �+ satis�es a nontrivial 1-way in�niterelation, i.e., X does not have a bounded delay (from left to right), thenkX(p)k < kXk.Proof. Indeed, it is not the property of being a noncode, but the property ofnot having a bounded delay (from left to right), which forces that at leastone identi�cation of words takes place in step 3 of Procedure P . utIt is interesting to note that Corollary 4.4 does not extend to 2-way in�nitewords.Example 4.3. The set X = fabc; bca; cg satis�es a nontrivial 2-way in�niterelation !(abc)! =! (bca)!, but still even d(X) = 3 = kXk. utNext we turn from a pre�x hull of a �nite set X to two other types ofhulls de�ned at the beginning of this subsection. Actually, from the algebraicpoint of view the free hull X(f)+ is the most natural one, and is consideredin details in [BPPR] and [Lo]. It yields the following variant of the defecttheorem.Theorem 4.2. For each �nite X � �+, which satis�es a nontrivial relation,we have kX(f)k < kXk:Without giving a detailed proof of this result we only mention the basicideas, from which the reader can reconstruct the whole proof, cf. [Sp2]. Ac-tually, the proof given in [BPPR] and [Lo] is even sharper de�ning preciselythe set X(f).We start from a double X-factorization depicted as� �� �� � � �� � �� � �� �� � � �� �x1 x2 xtwx01 x0s ,where xi; x0j 2 X and w 2 �+ . Then, by the property (f) and the de�nitionof the free hull, w is in the free hull, i.e., in the construction of X(f) we canreplace x01 of X by w. Now, the new set obtained may be ambiguous yieldinga required defect e�ect, or it is not a code. However, in any case it is of asmaller size than the old one guaranteeing that the procedure terminates.Note that we already used these ideas in Examples 4.1 and 4.2.It follows immediately that Corollary 4.3 extends to free hulls, whileCorollary 4.4, of course, does not have a counterpart here. Moreover, thefree hull of X satis�es the following important property, cf. [BPPR].



32 C. Cho�rut and J. Karhum�akiProposition 4.1. Let X � �+ be �nite and X(f) the minimal generatingset of its free hull. Then, for each x 2 X(f), we have xX(f)� \X 6= ;.The above result states that each word of X(f) occurs as the �rst one insome X(f)-factorization of a word of X, a property which is, by ProcedureP , also true for the pre�x hull, i.e., for X(p).What we said above about free hulls extends to unique factorization hulls.The details can be found in [HK1].Now, we are in the position to summarize our considerations of this sub-section. For a �nite X � �+ we have(1) d(X) � p(x) � r(x) � u(X) � kXk;where, moreover, the last inequality is proper ifX is not a code. Here the �rstinequality is trivial, the second follows, by the de�nitions, from the fact thatX(f) � X(p)+, and the third similarly from the fact that X(u) � X(f)+ .As we saw in Example 4.1, each of the inequalities in (1) can be propersimultaneously. They, of course, can be equalities as well.Example 4.4. Let X = fa; ab; cc; bccdd; ddag. Then the only nontrivial mini-mal relation is a:bccdd:a= ab:cc:ddafrom which we conclude that X(u) = fa; b; cc; ddg. But this is already a pre�xcode so that X(p) = X(f) = X(u). Finally, the exhaustive search shows thatd(X) = 4. Therefore we have an example for which d(X) = p(X) = r(X) =u(X) = kXk � 1. utAlthough we formulated everything in this subsection for sets X not con-taining the empty word 1, i.e., for free semigroups, the results hold for freemonoids, as well. This is because, if 1 2 X, then trivially any rank of X isstrictly smaller that kXk � 1.4.3 Defect e�ect of several relationsIn this subsection we consider possibilities of generalizing the above defecttheorems to the case of several nontrivial relations. A natural question is: ifa set of n words satis�es two \di�erent" nontrivial relations, can these wordsbe expressed as products of n � 2 words? Unfortunately, the answer to thisquestion is negative, as we shall see in a moment.We formalize the term \di�erent" as follows. Let X � �+ be a �nite set.relations in X+ are considered as equations with � as the set of unknownsand having X as a solution, cf. Section 2.5. This requires to consider X asan ordered set, and that k�k = kXk. This allows to state the set of allrelations of X+ as a set of equations over � having X as a solution. InSection 2.5 this was referred to as RX . Here we consider its subset consistingonly of so-called reduced equations, i.e., equations (u; v) 2 �+��+ satisfying



Combinatorics of words 33pref1(u) 6= pref1(v) and suf1(u) 6= suf1(v). For simplicity, we prefer to denotethe set of all reduced equations of X by E(X).We say that a system E of equations over the set � of unknowns isindependent in �+, if no proper subset E0 of E is equivalent to E, i.e., hasexactly the same solutions as E has. Now, identities of X+ are \di�erent" iftheir corresponding equations form an independent system of equations.Example 4.5. The pairxzy = yzx and xzzy = yzzxof equations is independent, since the former has a solutionx = aba; y = a and z = b;which is not a solution of the latter, while the latter has a solutionx = abba; y = a and z = b;which is not a solution of the former. However, they have a common solutionof degree two, namely x = y = a and z = b. utDespite of Example 4.5 there are some nontrivial conditions which forcesets satisfying these conditions to be of at most certain degree. Particularlyuseful such results are, if they guarantee that the sets are periodic.In our subsequent considerations, unlike in those of the previous subsec-tion, it is important that equations are over free semigroups and not over freemonoids.Let fu1; : : : ; ung = X � �+ be �nite and E(X) � �+ � �+ the set ofall (reduced) equations satis�ed by X. This means that X = h(�) for somemorphism h : �+ ! �+ satisfying h(�) = h(�) for all (�; �) in E(X). Witheach equation in E(X), saye : x� = y� with x 6= y; x; y 2 �; �; � 2 ��we associate �(e) = fh(x); h(y)g, and with the system E(X) we associate thefollowing graph GE(X):the set of nodes of GE(X) is X; andthe edges of GE(X) are de�ned by the condition: (u; v) is an edge inGE(X) , 9e 2 E(X) : �(e) = fu; vg.It follows that GE(X) de�nes via its compoments an equivalence relation onX. Now, the degree of X is bounded by the number of connected componentsof GE(X), which we denote by c(GE(X)), cf. [HK1]. Note that in above Xmaybe a multiset, and this indeed is needed in the next proof.Theorem 4.3. For each �nite X � �+ , we haved(X) � p(X) � c(GE(X)):



34 C. Cho�rut and J. Karhum�akiProof. We already know that the �rst inequality holds. To prove the secondwe proceed as in Procedure P of subsection 4.2.Let u� v be an edge in GE(X). Then assuming, by symmetry, that u � vwe have two possibilities:(i) if u = v we identify the nodes u and v;(ii) if v = ut with t 2 �+ , we replace X by (X [ ftg)� fvg.Let X 0 � �+ be a multiset obtained from X by applying either (i) or (ii)once. Note that due to (ii) X 0 indeed can be a multiset although X would beunambiguous. Our claim is that(2) c(GE(X0)) � c(GE(X)):If the operation performed is (i) there is nothing to be proved. So wehave to analyse what happens to the graph GE(X) when (ii) is performed. Inparticular, we have to consider what happens to a subgraph of it of the form:(3) ����� �����HHHHH HHHHHzpz1 wqw1u v��� ���Clearly, the connections zi � u remain, and connections v � wj are replacedby u � wj. Moreover, v disappears, and the new node t will be connectedin GE(X0) to all yk's in X such that uyk� = v�, with �; � 2 X�, are inE(X). In addition, the introduction of the new t may create some completelynew edges to GE(X0). But what is important is that, if GE(X) contains thesubgraph (3), then GE(X0) contains the following subgraphs����� �����HHHHH HHHHHzpz1 wqw1u��� ��� and �����HHHHH ysy1t ��� ,where, moreover, the nodes yk are nodes of EG(X), i.e., belong to some of thecomponents of EG(X). Therefore, the replacement of v by t does not increasethe number of the components, so that we have proved (2).By the construction s(X 0) < s(X), and therefore an iterative applicationof the rules (i) and (ii) leads �nally to the discrete graph, the edges of whichare labelled by a set X̂. It follows from the arguments of the proof of Theorem



Combinatorics of words 354.1, that X̂ is contained in the minimal generating set of the pre�x hull ofX. Therefore, by Theorem 4.1, kX(p)k � kX̂k. But, by the discreteness ofGE(X̂), we have kX̂k = c(GE(X̂)) � c(GE(X));and hence our proof is complete. utTheorem 4.3 has a number of interesting consequences. First, we have acounterpart of Corollary 4.4: if in (1) equations are replaced by !-equations,i.e., one-way in�nite equations, but otherwise the graph { let us denote itnow by GE!(X) { is de�ned as GE(X) we obtainCorollary 4.5. For each �nite set X � �+ we haved(X) � p(X) � c(GE! (X)): utMore concrete and useful corollaries are obtained, when the graph GE(X)is connected:Corollary 4.6. Let X � �+ be �nite. If GE(X) is connected, then X isperiodic. utCorollary 4.7. If a three element set X = fu; v; wg � �+ satis�es therelations ux = vy and uz = wt, with x; y; z; t 2 X1, then u, v and w arepowers of a same word. utCorollary 4.7 should be compared to Example 4.5. It also has to be no-ticed that in our above considerations it is essential that X consists of onlynonempty words. Indeed, the graph of the equationsx = yx and z = yzis connected, but it possesses a solution of degree 2, namely x = a, y = 1 andz = b.As the �nal application of Theorem 4.3 we give an example from [HK1],which shows that also the inside occurrence of the equations may cause somedefect e�ect.Example 4.6. Assume that words of X satisfy the reduced equations�u = �v� and �w" = �z�;where u; v; w; z 2 X and �; �; ; �; "; � 2 X+ and fpref1(�); pref1(�)g 6=fv; zg; fu;wg. We claim that d(X) � kXk � 2, which cannot be concludedsimply by considering the �rst occurrences of the unknowns in these equa-tions.There are two cases to be considered. First, if � = � (in �+), then uand v, as well as w and z, are in the same component proving the claim.Otherwise assuming, by symmetry, that � = �t, with t 2 �+, and denotingX0 = X [ ftg, we see that GE(X0) contain the edges t � z and t � v, andstill one more di�erent from v � z, due to the relation � = �t. Therefored(X) � d(X 0) � c(GE(X0)) � kX 0k � 3 = kXk � 2 as claimed. ut



36 C. Cho�rut and J. Karhum�aki4.4 Relations without the defect e�ectThis subsection is in a sense dual to the previous one, where we looked forconditions which would enforce an as large as possible defect e�ect. Here,motivated by Example 4.5, we try to construct as large as possible indepen-dent systems of equations having only a defect e�ect of a certain size, i.e.,still a solution of certain degree d. Two extreme cases, namely those whered = kXk � 1 or d = 2, are of a particular interest. The former asks, what isthe maximal number of independent equations forcing only the minimal de-fect e�ect, while the latter poses the question how many, if any, would allowonly periodic solutions.The �rst observation here is that there does not exist any in�nite inde-pendent system of equations (with a �nite number of unknowns). This isdue to the validity of the Ehrenfeucht compactness property for free semi-groups, considered in Section 7. Whether there can be unboundedly largesuch systems is an open problem.Nontrivial bounds for the numbers of independent equations in our aboveproblems are given in the following two examples from [KaPl2].Example 4.7. Let � = fx; yg[fui; vi; wiji = 1; : : : ; ng be the set of unknownsand S the following system of equations over �S : xujwkvjy = yujwkvjx for j; k = 1; : : : ; n:Then clearly kSk = n2 and k�k = 3n+ 2. We claim that(i) S has a solution of degree 3n+ 1; and(ii) S is independent.The condition (i) is easy to ful�ll: choose x = y, whence all the equationsbecome trivial, so that a required solution can be found in a free semigroupof 3n+ 1 generators.That the set S is independent is more di�cult to see. We have to showthat, for each pair (j; k), there exists a solution of the systemS(j; k) = S � fxujwkvjy = yujwkvjxg;which is not a solution of S. To �nd out such a solution is not obvious,however, here is such a solution:(1) 8>>>>>>>>>><>>>>>>>>>>: x = b2ab;y = b;ut = � ba if t = j;bab otherwise;wt0 = � bab2 if t0 = k;b otherwise;vt = � ba if t = j;a otherwise:



Combinatorics of words 37Then if t = j and t0 = k, we computexujwkvjy = b2ab:ba : : : 6= b:ba:bab2 : : : = yujwkvjxto note that (1) is not a solution of S. The veri�cation that it is a solutionof S � S(j; k) is a matter of simple calculations:t 6= j ^ t0 6= k : b2ab:bab:b:a:b= b:bab:b:a:b2ab;t 6= j ^ t0 = k : b2ab:bab:bab2:a:b = b:bab:bab2:a:b2ab;t = j ^ t0 6= k : b2ab:ba:b:ba:b= b:ba:b:ba:b2ab: utExample 4.8. Let � = fxi; yi; ui; wi; viji = 1; : : : ; ng be a set of 5n unknowns,and S0 the following system of n3 equationsS0 : xiujwkvjyi = yiujwkvjxi for i; j; k = 1; : : : ; n:Hence S0 is obtained from the system S of Example 4.7 by introducing indexi for x and y, and by allowing it to range from 1; : : : ; n. The solution (1) ofS is extended by setting(2) 8>><>>: xt00 = � b2ab if t00 = i;a otherwise;yt00 = � b if t00 = i;a otherwise:It follows directly from the computations of Example 4.7, that the solutiondescribed by (1) and (2) satis�es all the equations of S0 except one, namelyxiujwkvjyi = yiujwkvjxi.Note that S0 has a nonperiodic solution in �+. utThe message of Example 4.7 is that in a free semigroup there can be 
(n2)independent equations in n unknowns without forcing larger than the minimaldefect e�ect, i.e., has still a solution of degree n� 1. Similarly, Example 4.8shows that there can be 
(n3) independent equations in n unknowns havinga nonperiodic solution.Examples 4.7 and 4.8 motivate several comments and open problems.First, one may think that in Example 4.7 the requirement that � contains atleast 3n+1 generators makes the whole example arti�cial. However, if insteadof the degree, i.e., the combinatorial rank, for example the pre�x rank wouldbe considered, then the example can be encoded into the binary alphabet.Indeed, encoding the alphabet of 3n+1 letters into the binary one by a pre�xencoding, we can �nd for S a solution over the binary alphabet having thep-rank equal to 3n+ 1.Second, if the systems of equations are solved in a free monoid, instead ofa free semigroup, then the bounds of Examples 4.7 and 4.8 can be improvedto 
(n3) and 
(n4), respectively, cf. [KaPl2].Third, we state two open problems.



38 C. Cho�rut and J. Karhum�akiProblem 4.1. Improve the bounds 
(n2) and 
(n3) in Examples 4.7 and4.8. In particular, can they be exponential?Problem 4.2. Does there exist an independent system of three equationswith three unknowns having a nonperiodic solution in �+ ?Problem 4.2 is connected to Example 4.5, as well as to Corollary 4.7. Ourguess is that the answer to this problem is \no". However, the problem doesnot seem to be easy.4.5 The Defect Theorem for equationsIn this subsection we turn our focus explicitly from sets to equations, i.e., fromsolutions of equations to equations itself. The rank of an equation u = v, withthe unknowns � is de�ned as the maximal rank of its solutions h : �+ ! �+over all free semigroups �+. Consequently, di�erent notions of the rank ofa �nite set seem to lead to di�erent notions of the rank of an equation.Fortunately, this is not true, at least as long as the rank of a set is de�ned inone of the four ways we did. To establish this is the goal of this subsection.We start by comparing the combinatorial rank d and the pre�x rank p.This is done in two lemmas, the �rst one being obvious from the de�nitions.Lemma 4.2. Each solution h : �+ ! �+ of an equation over � satis�esd(h(�)) � p(h(�)).The second lemma is less obvious, and shows that, with each solution h,we can associate so-called principal solution of [Len].Lemma 4.3. Let u = v be an equation over �. For each solution h : �+ !�+ of the equation u = v, there exists another solution, h0 : �+ ! �0+ suchthat d(h0(�)) = p(h(�)).Proof. Let the minimal generating set of the pre�x hull of h(�) be U =fu1; : : : ; udg. Consequently, for each x 2 �, h(x) has a U -factorization, say(1) h(x) = ui1 : : : uit:Let � : �0 $ U be a one-to-one mapping, where �0 is an new alphabet anddenote by ci 2 �0 the element corresponding to ui 2 U in this mapping. Nextwe de�ne a morphism h0 : �+ ! �0+ by setting, for each x 2 �,h0(x) = ci1 : : : cit , h(x) = ui1 : : : uit with uij 2 U:By construction �(h0(x)) = h(x) holds for all x 2 � and since � is injective,we have h0(x) = h0(v) showing that h0 is a solution and by its de�nition,the minimal generating set of the pre�x hull of h0(�) is �0+. Consequently,d(h0(�)) � d = p(h(�)).



Combinatorics of words 39If d(h0(�)) < d, there would be at most d � 1 words of �0+, such thateach word h0(a) could be expressed as a product of these words. Thereforealso words in (1) could be expressed as products of at most d � 1 words ofU+. This, however, contradicts with the fact that each ui must be the lastfactor in at least one of the factorizations (1), cf. Proposition 4.1. Hence,necessarily d(h0(�)) = p(h(�)), as required. utBoth of the Lemmas 4.2 and 4.3 can be extended to the other algebraicranks. The detailed proofs, using Proposition 4.1 and its counterpart for theu-rank, are left to the reader.Now we are ready to formulate our main result of this section.Theorem 4.4. Let u = v be an equation over �. The rank of the equationu = v, de�ned as the maximal rank of its solutions, is independent of whichof our four ranks is used to de�ne the rank of a solution. utTheorem 4.4 allows to denote the rank of an equation simply by r(E), aswell as restate the defect theorem for equations.Theorem 4.5. For each nontrivial equation E over the unknowns �, therank r(E) of E satis�es r(E) < k�k. utNote that, as shown by the proof of Theorem 4.4, for all algebraic ranks therank of an equation can be de�ned over a �xed free semigroup �+ containingat least two generators, but the combinatorial rank requires it to be de�nedover all free semigroups �+.We already noted that the p-rank and the f-rank of a �nite set of wordscan be computed in a polynomial time. The same holds for the u-rank, but aswe shall see in the next subsection, is known not to hold for the combinatorialrank. Computing the rank of an equation is essentially more complicated.However, as shown in the next section, this can be achieved by applyingMakanin's algorithm.4.6 Properties of the combinatorial rankWe conclude Section 4 by pointing out some further di�erences between thecombinatorial rank and the algebraic ranks.First, however, we emphasize the usefulness of the notion of the combina-torial rank, or of the degree. The most important cases are the both extremes,namely when a degree of a �nite set X � �+ equals 1 or kXk. The formercorresponds to periodic sets, and the usefulness of the notion of the degree inconnection with periodic sets was already seen, for instance, in Theorem 4.3.In the other extreme we call a �nite X � �+ elementary, if d(X) = kXk,and simpli�able otherwise. Note that this de�nition is consistent with that ofan elementary morphism de�ned in Section 2.4.A striking example of the usefulness of the above notions is an elegantproof of the D0L equivalence problem in [ER1], cf. also [RoSa1]. A crucialstep in this proof was the following result.



40 C. Cho�rut and J. Karhum�akiTheorem 4.6. An elementary morphism has a bounded delay.Proof. Follows directly from Corollary 4.4. Indeed, a morphism h : �+ !�+ having an unbounded delay satis�es d(h(�)) < k�k so that it is notelementary. utOur next example shows that the elementary sets are not closed undercomposition of sets in the sense of codes, cf. [BePe].Example 4.9. Let X = fb; cab; cabcag. Then its composition with itself isX �X = fcab; cabcabcab; cabcabcabcabcabg � (cab)+:Consequently, d(X �X) = 1, while d(X) = 2. utAs shown in [Ne2] it is not di�cult to modify Example 4.9 to show that,for each n 2 IN, there exists a set Xn � �+ such that d(Xn�Xn)�d(Xn) � n.In [Ne2] it is also considered how the degree of a set behaves with respect tocertain operations, in particular with respect to rational operations.Finally, we deal with the problem of computing the degree of a given set.This seems to be computationally very di�cult, as a contrast to Corollary 4.3(or its variants to the other algebraic ranks), which shows that the algebraicranks are computable in polynomial time. This also explains why we didn'tgive any procedure to compute a set F in the de�nition of the degree: nofast method for that is known, or even likely to be discovered, as we nowdemonstrate.The complexity results for the degree, due to [Ne1], are as follows:Theorem 4.7. (i) The problem of deciding, for a given �nite set X � �+and for a given number k, whether d(X) � k is NP-complete.(ii) The problem of deciding whether a given �nite set is simpli�able isNP-complete.Actually, the problem of (i) remains NP-complete even if k is �xed tobe any number larger than 2. The choice k = 2 makes the problem com-putationally easy: as shown in [Ne3] it can be solved in time O(n log2m),where n = s(X) and m = maxfjxj j x 2 Xg. Note also that (ii) is equivalentto saying that the elementariness problem is in the class of co-NP-completeproblems, cf. [GJ]. In particular, it is not likely that a polynomial time algo-rithm will be found for it.We do not present the proof of Theorem 4.7 here, but in order to give anintuition why the result holds, we show, in the next example, that a relatedproblem is NP-complete. Actually, the NP-completeness of this is the �rststep in the proof of Theorem 4.7 in [Ne1].Example 4.10. (Strong Factorizability Problem.) The problem asks to decide,for a �nite setX � �+ and for a number k, whether there exists a set Y � �+such that



Combinatorics of words 41X � Y +; kY k � k and X \ Y = ;:If such a Y exists, we say that X is strongly k-factorizable, and we refer thisproblem to as the SF-problem. Note that if we drop from the SF-problem therequirement X \ Y = ;, we obtain the problem (i) of Theorem 4.7.Obviously the SF-problem is in NP. So to prove its NP-completeness wehave to reduce it to some known NP-complete problem, which will be thefollowing variant of the vertex cover problem, referred to as the special vertexcover problem, or the SVC-problem for short. For the NP-completeness ofthis, which is a straightforward modi�cation of the NP-completeness of theordinary vertex cover problem, we refer to [Ne2] or [GJ].The SVC-problem asks to decide for a given graph G = (V;E), withkV k = kEk and having no isolated points, and for a given natural numberk, whether there exists a subset V 0 of V , with kV 0k � k, such that the setof edges connected to V 0 equals that of all edges of G. In other words, theSVC-problem asks whether a graph of the required type has a vertex coverof size at most k. Now let((V;E); k) with kV k = kEk = n and 1 � k � n� 1be an instance of the SVC-problem. We associate it with an instance(X; k + n)of the SF-problem by de�ning a subset X � V TV , where T is a renaming ofE under the mapping c : E ! T , as follows(1) �a� 2 X , �; � 2 E and a = c(�; �):We have to show thatG = (V;E) has a vertex cover V 0 with kV 0k � k if, and only if,X is (k + n)-strongly factorizable.First, assume that G has a vertex cover of size at most k. Let �a� be aword in X. It is factorized as �:a�, if � 2 V 0, and �a:�, if � 2 V 0. Now letB be the set of all words of length 2 in these factorizations. Then, by (1),kBk = n, so that kV 0[Bk = kV 0k+n � k+n. Therefore, X is (k+n)-stronglyfactorizable.Second, assume that X is (k + n)-strongly factorizable via Y . We de�nea partition of X X = X1 [X2 with X1 \X2 = ;as follows. The word �a� 2 X1 if, and only if, it is factorized in Y as �a:� or�:a�, and therefore �a� 2 X2 if, and only if, it is factorized in Y as �:a:�.Let Vi, for i = 1; 2, consists of those letters of V which occur in the abovefactorizations of words of Xi. Similarly, let Ti � T [ TV [ V T , for i = 1; 2,consists of those words in Y �V which occur in these factorizations of wordsof Xi. Finally, for each w 2 X2, i.e., w being factorized as �:a:�, we pick up



42 C. Cho�rut and J. Karhum�akieither � or � from V2, and denote by V 02 the set of all letters picked up whenw ranges over X2. Now, we set K = V1 [ V 02 :Then, by the construction, K is a vertex cover. It also follows that the setsT1, T2 and V1 [ V2 are pairwise disjoint, and moreover, by (1), we havekTik = kXik, for i = 1; 2. Consequently, we obtain the following relationkY k = kV1 [ V2 [ T1 [ T2k = kV1 [ V2k+ kT1k+ kT2k= kV1 [ V2k+ kX1k+ kX2k = kV1 [ V2k+ kXkimplying, since kY k � k + n = k + kXk, thatkKk = kV1 [ V 01k � kV1 [ V2k � k:Therefore, the graph (V;E) has a vertex cover of size at most k, completingour proof. ut5. Equations as properties of wordsTwo elements x and y of a group are said conjugate if there exists an elementz such that equation x = zyz�1 holds. In order to extend this de�nition tomonoids, one has to eliminate the inverses which can be easily achieved bymultiplying two handsides by the element z to the right yielding equationxz = zyThe purpose of this section is to discuss the connection between equationsin words and some properties of words. We think that little is known so farand that much remains to be done.5.1 Makanin's resultWe already noted that the p-rank and the f-rank of a �nite set of wordscan be computed in a polynomial time. The same holds for the u-rank, butas we have seen in Section 4.6, it does not hold for the combinatorial rank.Computing the rank of an equation is essentially more complicated since weaim at computing the maximal rank over a (usually) in�nite set of solutions.However, this can be achieved by applying Makanin's algorithm which is oneof the major advances in combinatorial free monoid theory.We recall that given an alphabet � of unknowns and an alphabet �of constants, � and � being disjoint, an equation with constants is a pair(u; v) 2 (� [�)� � (� [�)�, also written u = v. A solution is a morphism



Combinatorics of words 43h : (� [�)� ! �� leaving � invariant, i.e., satisfying h(a) = a for all a 2 �,for which the following holds h(u) = h(v):For example, the equation ax = xb with a 6= b 2 � and x 2 � has no solutionsince the left handside has one more occurrence of a than the right handside,and the equation ax = xa has the solution x = a.We have the famous result of Makanin, cf. [Mak].Proposition 5.1. There exists an algorithm for solving an equation withconstants.The exact complexity of the problem is unknown but several authors havecontributed to lower the complexity of the original algorithm which was anexponential function of height 5. Actually, this complexity depends on thecomplexity of computing the minimal solutions of diophantine equations. Werefer the interested reader to [Ab1], [Do] and [KoPa] for the latest results onthis topic. Several sofware packages have been produced which work relativelywell up to length, see e.g., [Ab2].5.2 The rank of an equationOne of the most direct consequences of Makanin's result is the fact that therank of an equation may be e�ectively computed, cf. [Pec].Theorem 5.1. Given an equation without constants u = v, its rank can bee�ectively computed.Proof. The idea of the proof is as follows. Let � be the set of unknowns anddenote by � some mapping of � onto some disjoint subset � with jj�jj <jj�jj. Consider the morphism � : �� ! (� [ �)� de�ned for all x 2 �by �(x) = �(x)x. Then the rank of u = v is the maximum cardinality ofjj�(�)jj for which the equation with unknowns �(u) = �(v) has a solution.For example, starting with the equation xyz = zyx we would be led to de�nethe 4 equations axayaz = azayax, axaybz = bzayax, axbyaz = azbyax,axbybz = bzbyax and to apply Makanin's result to each of these equation.More precisely, assume the rank of u = v is r, i.e., there exists a morphismh : �� ! �� such that h(u) = h(v) and r(X) = r where X = h(�).Deleting, if necessary, some unknowns it is always possible to assume thatthe morphism is nonerasing. Furthermore, without loss of generality, we mayassume that the free hull X(f)� = ��. Indeed, let � : �0 $ h(�) be an one-to-one mapping, where �0 is a new alphabet. Then there exists an uniquesolution h0 : �+ ! �0+ such that �(h0(x)) = h(x) holds for all x 2 �.We have X(f) = �0 and r(h0(�) = r(h(�). Let � be the mapping thatassociates the initial letter of h(x) to each x. By Proposition 4.1, we knowthat � = f�(x)jx 2 �g. Consider the morphism � : �� ! (�[�)� satisfying



44 C. Cho�rut and J. Karhum�aki�(x) = �(x)x. Then the morphism g(x) = (�(x))�1h(x) satis�es the equationwith constants �(u) = �(v).Example 5.1. With � = fx; y; zg and xyz = zyx, we have the solutionx = a; y = bab; z = aba. Then by � we obtain an equation with unknownsaxbyaz = azbyax for which g(x) = 1; g(y) = ab; g(z) = ba is a solution. utProof of Theorem (continued). Conversely, let � be a mapping of� onto some� with �\� = ; and jj�jj < jj�jj. Consider the morphism � : �� ! (�[�)�de�ned for all x 2 � by �(x) = �(x)x, and assume that the equation withunknowns �(u) = �(v) has a solution g. The morphism h(x) = �(x)g(x) isclearly a solution of u = v. Now we claim that its rank is greater than or equalto k�k. Indeed, let X � �� be the minimal generating set of the free hull ofh(��): h(x) 2 X� for all x 2 �. Every element in X appears as the leftmostfactor in the decomposition of some h(x). If kXk < k�k, then some letterof � does not appear in the leftmost position contradicting the de�nition ofh utActually, this result carries over to the rank of equations with constants, aftera suitable extension of the notion of rank.5.3 The existential theory of concatenationMakanin's result can be interpreted either as a statement on systems of equa-tions and inequations, or equivalently as a statement of formulae of the ex-istential theory of concatenation. More precisely, it has been observed thatat the cost of introducing new unknowns, negations and disjunctions canbe expressed as conjunctions of equations and further that all conjunctionsare equivalent to a single equation. In other words, starting from a Booleancombination of equations on the unknowns �, it is possible to de�ne a singleequation on the unknowns�[� 0 for some� 0, whose set of solutions restrictedto the unknowns � equals the set of solutions of the Boolean combination.It is worthwhile considering the power of equations in expressing proper-ties or n-ary relations on words, for some integer n. Following the tradition,we call diophantine a relation on words R(x1; : : : ; xn) that is equivalent to aformula of the form(1) 9y1; : : : ; 9ym�(x1; : : : ; xn; y1; : : : ; ym) = �(x1; : : : ; xn; y1; : : : ; ym)with � = � an equation. For example, \x is imprimitive" can be expressed as9y; z : x = 1 _ (x = yz ^ yz = zy ^ y 6= 1 ^ z 6= 1)and \x and y are conjugate" can be expressed with two extra unknowns as9u; v : x = uv ^ y = vu;or with one extra unknown only as



Combinatorics of words 45(2) 9z : xz = zy:These formulae are diophantine. No characterization of diophantine relationsseems to exist in the literature. There is no available tool either for showingthat a given property is not diophantine, a natural candidate would be, e.g.,primitivity. Neither do we know which are the properties that are diophantineand whose negation also is diophantine. Intuitively, this imposes very strongrestrictions on the property, one such example being \x is a pre�x of y". Yetanother area of research is to study the hierarchy of diophantine formulaewhere the number of existential quanti�ers is taken into account, i.e., theinteger m of equation (1). In this vein, it was shown in [Sei] that the relation\x is a pre�x of y" can not be expressed without an extra variable.Let us now briey show how to reduce a Boolean combination of equationsto a single equation. Assuming that � contains two di�erent constants a andb, the system consisting of the two equations x = y and u = v is equivalentto the single equation xauxbu = yavybv as noticed in [Hm]. To check this,identify the unknowns with their images under the solution h and observethat xau; xbu; yav and ybv have all the same length, to wit half the commonlength of the left- and right-handsides. Thus xau = yav and xbu = ybv holds.If x 6= y, say jxj < jyj without loss of generality, then the �rst equation saysthat there is an occurrence of a in position jxj in y, while the second saysthat this occurrence is equal to b.Similarly, as noted, e.g., in [CuKa2], introducing new unknowns, the in-equation x 6= y is equivalent to a disjunction of equations saying that x and yare pre�xes of each other or that their maximum common pre�x is a properpre�x of both. Hence three new unknowns are needed here in this reduction.Finally, with the help of more unknowns a disjunction of equations can beexpressed as a conjunction of equations as we show in a moment. So, in termsof logics, Makanin's result implies that the existential fragment of the theoryof concatenation is decidable. We formulate the above as.Theorem 5.2. For any Boolean combination B of equations with � as theset of unknowns we can construct a single equation E with � [ � 0 as theset of unknowns such that solutions of B and those of E restricted to � areexactly the same. utAs we said, in the process of reducing a Boolean combination to a singleequation new unknowns are introduced. A more precise computation of howmany are needed has been studied though the issue of the exact number is notyet settled. In particular reducing a disjunction to conjunctions has receivedvarious solutions. B�uchi and Senger used 4 new unknowns in [BS], Senger inhis thesis needs 3, while Serge Grigorie� achieves the same result with 2. It isan open question whether or not one unknown su�ces though it is suspectedit does not.We reproduce here the unpublished proof of S. Grigorie�.



46 C. Cho�rut and J. Karhum�akiTheorem 5.3. The disjunction x = u _ y = v is equivalent to a formula ofthe form 9z9t�(x; y; u; v) = z�(x; y; u; v)twhere �(x; y; u; v) and �(x; y; u; v) are words over the alphabet fx; y; u; v; a; bgand z; t are new variables.Proof. First by observing that x = u_ y = v is equivalent to xv = uv_uy =uv, without loss of generality we may start with a disjunction of the formx = u _ x = v. By making the further observation that x = u _ x = v isequivalent to xa = ua _ xa = va we may assume that x; u; v are nonemptywords.Now we use the pairing function < x; y >= xayxby. We set�(x; u; v) =< uuu; vvv >2 x < uuu; vvv >3 x < uuu; vvv >2�(x; u; v) =< uuu; vvv >3 u < uuu; vvv >3 u < uuu; vvv >2 v< uuu; vvv >3 v < uuu; vvv >3Making use of the primitivity of < uuu; vvv >, a case study shows thatthe factor � �ts in � in only two places, either� =< uuu; vvv > �v < uuu; vvv >3 v < uuu; vvv >3implying that x = u, or� =< uuu; vvv >3 u < uuu; vvv >3 u� < uuu; vvv >implying that x = v. utFinally we note that Makanin's result is on the borderline between the de-cidability and the undecidability. Indeed, [Marc] established the undecidabil-ity of the fragment 894-positive of the concatenation theory, further improvedto 893-positive. The previous reduction of disjunctions yields the undecidabil-ity of the theory consisting of formulae of the form895�(x1; : : : ; x6) = �(x1; : : : ; x6);where � = � is an equation.5.4 Some rules of thumb for solving equations by \hand"There is unfortunately no method, in the practical sense of the word, forsolving equations. We list here just a few simple-minded tricks that are widelyused when dealing with real equations. Most of them lead to proving thatthe equation has only cyclic solutions by reducing the initial equation to theequations that are well-known, such as Levi's Lemma, cf. (1) in Section 2.1,the conjugacy, cf. e.g. (2), or the commutativity, cf. Corollary 4.1.First of all, conditions on the lengths of the unknowns are expressed aslinear equations over the positive integers. When some of these unknowns



Combinatorics of words 47have length 0 then the number of unknowns reduces. An elaboration of thisidea is exempli�ed by the followingwell-known fact that appears when solvingthe general equation xnym = zp for n;m; p � 2. Let us verify that x2y2 = z2implies that x, y and z are powers of the same elements. Indeed, observingthat xy2x is a conjugate of z2, there exists a conjugate z0 of z such thatxy2x = z02. Since xy and yx have same length, they are both equal to z0implying that x; y 2 t� for some word t and thus that z 2 t� also.Splitting represents another approach. In the easy cases, there is a pre�xof the left- and right-handsides that have the same length, i.e., zxyxzy =yxxzyz splits into zxyx = yxxz and zy = yz. This ideal situation is rare,however a variant of it is not so seldom. Assume a primitive word x hasan occurrence in both handsides of the equation, say uxv = u0xxv0 whereu; u0; v; v0 2 �� are products of unknowns. Assume further ju0j � juj � ju0xj.Then the equation splits into u = u0x and v = v0 or into u = u0 and v = xv0.Combinatorial problems on words in the theory of �nite automata, rationalrelations,varieties etc: : : , usually come up as families of equations involving aparameter, e.g., xynz = zynt with x; y; z; t 2 � and n 2 IN. Then the abovecondition on the lengths can be enforced by choosing an appropriate value ofn. Another technique proves useful in some very special cases. It was thestarting point of the theory developped in [Len] and it consists, for �xedlengths of a solution, to compute the \freest" solution with these lengths. Asan illustration let us consider the equation(3) xyz = zyxand assume jxj = 3, jyj = 5, jzj = 1, with a total length of 9. Writex = x1x2x3; y = y1y2y3y4y5; z = z1:The idea is to identify the positions which bear the same letter in bothhandsides, such as 3 and 9 (carrying x3) and 5 and 3 (carrying y2).x1 x2 x3 y1 y2 y3 y4 y5 z1z1 y1 y2 y3 y4 y5 x1 x2 x3More precisely, de�ne a graph whose 9 vertices are in one-one correspon-dence with the 9 occurrences of letters in the solution, and whose non-orientededges are the pairs (i; j); 0 � i; j � 9, where the letter in position i in the lefthandside is equal to the letter in position j in the right handside of (3) orvice versa. Then each connected component of the graph is associated witha distinct letter in the target alphabet. In other words, the \richest" alpha-bet for a solution of (3) has cardinality equal to the number of connectedcomponents of the graph.If we had chosen jxj = 2, jyj = 4 and jzj = 1 for a total length of 7, thenwe would have found one connected component, actually one Hamiltonianpath 1; 5; 4; 3;2; 6, i.e., the richest solution would be cyclic.



48 C. Cho�rut and J. Karhum�akiFixing the lengths may look like too strong a requirement, however, thisvery technique allows us to prove in the next section that the Theorem ofFine and Wilf is sharp, i.e., that on a binary alphabet there exist only twowords of length p and q, p and q coprimes, whose powers have a commonpre�x of length exactly equal to p+ q � 2.6. PeriodicityPeriodicity is one of the fundamental properties of words. Depending on thecontext, and traditions, the term has had several slightly di�erent meanings.What we mean by it in di�erent contexts is recalled here, cf. also Section2.2. The other goals of this section is to present three fundamental results onperiodicity of words, namely the Periodicity Theorem of Fine and Wilf, theCritical Factorization Theorem, and recent characterizations of ultimatelyperiodic 1-way in�nite words and periodic 2-way in�nite words.6.1 De�nitions and basic observationsWe noted in Section 2.2 that each word w 2 �+ has the unique period p(w)as the length of the minimal u such that(1) w 2 F (u!):Such a p(w) is called the period of w as a distinction of a period of w which isthe length of any u satisfying (1). When the period refers to a word, and notto the length, then the periods of w are all the conjugates of the minimal uin (1), often called cyclic roots of w. Similarly periods of w are all conjugatesof words u satisfying (1). Finally, we call w periodic, if jwj � 2p(w), i.e., wcontains at least two consecutive factors of its same cyclic root. Local variantsof these notions are de�ned in Section 6.3.In connection with in�nite words periodic 1-way and 2-way in�nite wordsare de�ned as words of the forms u! and !u!, with u 2 �+, respectively. Byan ultimately periodic 1-way in�nite word we mean a word of the form uv!,with u 2 �� and v 2 �+. Formally, the word !u!, for instance, is de�ned bythe condition !u!(i) = u(i mod juj); for all i 2 ZZ :Finally, a language L � �� is periodic, if there exists a z 2 �� such thatL � z�.There should be no need to emphasize the importance of periodicity eitherin combinatorics of words or in formal language theory. Especially in thelatter theory periodic objects are drastically simpler than the general ones:the fundamental di�culty of the noncommutativity is thus avoided. Thereforeone tries to solve many problems of languages by reducing them to periodiclanguages, or at least to cases where a \part" of the language is periodic.



Combinatorics of words 49Based on the above it is important to search for the periodicity forcingconditions, i.e., conditions which forces that the words involved form a pe-riodic language. We have already seen several such conditions, cf. Section4: any nontrivial relation on fx; yg � ��;any pair of nontrivial identities on X = fx; y; zg � �+ of the formx� = y�, y = z� with �; �; ; � 2 X�;any condition on X = fx1; : : : ; xng � �+ satisfying: the transitive clo-sure of the relation � de�ned asx�y , xX! \ yX! 6= ;equals X �X.Another classical example of a periodicity forcing condition is the equation,cf. [LySc] or [Lo], xnyn = zk with n;m; k � 2:As we observed in Section 5 many properties of words are expressable interms of solutions of equations. Thus it is often of interest to know whethersuch languages, or more generally parts of such languages, either are alwaysperiodic or can be periodic. By considerations of Section 5, Makanin's algo-rithm can be used to test this. Indeed, we only have to add to the system Sde�ning the property suitable predicates of the formsxy = yx or xy 6= yx;and transform the whole predicate into one equation.For example, if we want to know, whether there exist words x, y, z, uand v satisfying the equation � = � in these unknowns such that x, y and zare powers of a same word, and u and v are not powers of a same word, weconsider the system 8>><>>: � = �xy = yxxz = zxuv 6= vu;and test whether it has a solution.6.2 The Periodicity Theorem of Fine and WilfOur �rst result of this section is the classical periodicity theorem of Fine andWilf, cf. [FW]. Intuitively it determines how far two periodic events have tomatch in order to guarantee a common period. Interestingly, although theresult is clearly a result on sequences of symbols, i.e., on words, it was �rstpresented in connection with real functions!



50 C. Cho�rut and J. Karhum�akiTheorem 6.1. (Periodicity Theorem). Let u; v 2 �+. Then the words uand v are powers of a same word if, and only if, the words u! and v! have acommon pre�x of length juj+ jvj � gcd(juj; jvj).Proof. We �rst note that we can restrict to the basic case, where gcd(juj; jvj) =1. Indeed, if this is not the case, say juj = dp and jvj = dq, with gcd(p; q) = 1,then considering u and v as elements of (�d)+ the problem is reduced to thebasic case with only a larger alphabet.So assume that juj = p, jvj = q and gcd(p; q) = 1. The implication inone direction is trivial. Therefore, we assume that u! and v! have a commonpre�x of length p+q�1. Assuming further, by symmetry, that p > q we havethe situation depicted in Figure 6.1. Here the vertical dashline denotes howfar the words can be compared, the numbers tell the lengths of the words uand v, and the arrows the procedure de�ned below.u! :v! : | {z }q pz }| {| {z }q � 1-� ?���������������������� ��Figure 6.1. An illustration of the procedureWe denote by i, for i = 1; : : : ; p + q � 1, the corresponding position inthe common pre�x of u! and v! . Next we describe a procedure to �x newpositions with the same value as a given initial one i0. Let i0 2 [1; q�1]. Then,by the assumption, the position obtained as follows, cf. arrows in Figure 6.1,gets the same value as i0(1) i0 +p�! i0 + p mod q�! i1 = i0 + p (mod q);where i1 is reduced to the interval [1; q]. Moreover, since gcd(p; q) = 1, i1 isdi�erent from i0. If i1 is also di�erent from q we can repeat the procedure, andthe new position obtained is di�erent from the previous ones. If the procedurecan be continued q� 1 steps, then all the positions in the shadowed area willbe �xed, so that these together with i0 make v unary. Hence, so is u, and weare done.The procedure (1) can indeed be continued q � 1 steps if i0 is chosen asi0 + (q � 1)p � q (mod q):



Combinatorics of words 51This is possible since gcd(p; q) = 1. After this choice all the values i0 + jp(mod q), for j = 0; : : : ; q� 2, are di�erent from q, which was the assumptionof the procedure (1). utIn terms of periods of a word and the distance of words, cf. Section 2.1,Theorem 6.1 can be restated in the following forms, the latter of which doesnot require that the comparison of words has to be started from either ends.Corollary 6.1. If a word w 2 �+ has periods p and q, and it is of the lengthat least p+ q � gcd(p; q), then it also has a period gcd(p; q). utCorollary 6.2. For any two words u; v 2 �+ , we havel(u!; v!) � juj+ jvj � gcd(juj; jvj)) �(u) and �(v) are conjugates: utWe tried to make the proof of Theorem 6.1 as illustrative as possible. Atthe same time it shows clearly, why the bound given is optimal, and evenmore, as we shall see in Example 6.1.Theorem 6.1 allows, for each pair (p; q) of coprimes, the existence of aword w of length p + q � 2 having the periods p and q. Let Wp;q be the setof all such words, and de�nePER = [gcd(p;q)=1Wp;q:So, we excluded unary words from PER.Example 6.1. We claim that, for each pair (p; q) of coprimes, Wp;q containsexactly one word (up to a renaming), which moreover is binary. These obser-vations follow directly from our proof of Theorem 6.1. The idea of that proof,namely �lling positions in the shorterword v, can be illustrated in Figure6.2. The nodes of this cycle corre-spond the positions of v, two labelledby ? are those which are missing fromthe shadowed area of Figure 6.1, andeach arrow corresponds one applica-tion of the procedure (1). By the con-struction, starting from any position,and applying (1) the letter in the newposition may di�er from the previousone, only when to a position labelledby ? is entered. Consequently, during
����9����� @@@R - XXXXy CCCCO����?i0 ?Fig. 6.2. The case PERthe cycle it may change at most twice, but, in fact, the latter change is backto the value of i0. The fact that all positions are visited is due to the conditiongcd(p; q) = 1. Hence, we have proved our claim.As a concrete example, the word of length 12 in PER starting with a andhaving the periods 5 and 9 is as depicted below:



52 C. Cho�rut and J. Karhum�akia a a a a aa a a ab b2 1 5 4 3 2 1 5 4 3 2 1Here the word, that is (aaaba)2aa = (aaabaaaab)1aaa, is described on theupper line, and the order of �lling the positions, starting from the second one,on the lower line. Note that the change can take place in steps number 4 and5, but the latter must assume the same value as the next one encountered inthe procedure, which is the value of the second position. utExample 6.2. Consider a word w of length dp+dq�d�1 with gcd(p; q) = 1,having the periods dp and dq, but not d, for some d. The argumentationof Example 6.1 shows that such a word exists, proving that in all cases thebound given in Theorem 6.1 is optimal. Moreover, for each i = 1; : : : ; d� 1,the positions i+jd are �lled by the same letter ai, while in position d+jd thesituation is as in Example 6.1: they are uniquely �lled by a word inWp;q . utExample 6.1 can be generalized also as follows.Example 6.3. Let p; q; k 2 IN, with p > q, gcd(p; q) = 1 and 2 � k � q. Thenthere exists a unique word wk up to a renaming such thatjwkj = p+ q � k; kalph(wk)k = k and wk has periods p and q:Indeed, the considerations of Example 6.1 extend immediately to this case,when the number of ?'s in Figure 6.2 is k. It follows that all words of lengthp+ q � k, with gcd(p; q) = 1, having periods p and q are morphic images ofwk under a length preserving morphism. utWe conclude this section by reminding that the set PER has remarkablecombinatorial properties, cf. e.g. [dLM], [dL] and [BdL]. For example, all�nite Sturmian words are characterized as factors or words in PER.Finally we recall a result of [GO], which characterizes the set of all periodsof an arbitrary word w.6.3 The Critical Factorization TheoremOur second fundamental periodicity result is the Critical Factorization The-orem discovered in [CV], and developped into its current form in [Du1], cf.also [Lo]. Our proof is from [CP]. The di�erence between [CV] and [Du1] wasessentially, in terms of Figure 6.3 below, that [CV] considered only the case(i).



Combinatorics of words 53Intuitively the theorem says that the period p(w) of a word w 2 �+is always locally detectable in at least one position of the word. To makethis precise we have to de�ne what we mean by a local period of w at someposition. We say that p is a local period of w at the position juj, if w = uv,with u; v 6= 1, and there exists a word z, with jzj = p, such that one of thefollowing conditions holds for some words u0 and v0:(1) 8>><>>: (i) u = u0z and v = zv0 ;(ii) z = u0u and v = zv0 ;(iii) u = u0z and z = vv0 ;(iv) z = u0u = vv0 :Further the local period of w at the position juj, in symbols p(w; u), is de�nedas the smallest local period of w at the position u. It follows directly from(1), cf. also Figure 6.3, that p(w; u) � p(w).The intuitive meaning of the local period is clear: around that positionthere exists a factor of w having as its minimal period this local period. Thesituations of (i), (ii) and (iv) in (1) can be depicted as in Figure 6.3.w : � �z � �zu v(i) � �z � �zu0 u v(ii) � �z � �zu0 u v v0(iv)Figure 6.3. The illustration of a local periodNow, we can say precisely what the above local detectability means. Itmeans that there exists a factorization w = uv, with u; v 6= 1, such thatp(w; u) = p(w);i.e., the local period at position juj is that of the (global) period of w. Thecorresponding factorization w = uv is called critical. The theorem claimsthat each word possesses at least one critical factorization (if it possesses anynontrivial factorization at all).Example 6.4. Consider the words w1 = aababaaa and w2 = anban. The pe-riods of these words are 6 and n + 1. The local periods of w1 in positions1; 2; : : :; 7 are 1; 5; 2; 6; 6; 1;1, respectively. For example, at position 4 we havew = aaba:baaa so that z = baaaba contains baaa as a pre�x and aaba as asu�x, but no shorter z can be found to satisfy (1). The word w1 has two crit-ical factorizations. The critical factorizations of w2 are anb:an and an:ban,showing that there are none among the �rst n � 1 factorizations. utExample 6.5. As an application of Lyndon words we show that, any wordw 2 �+ satisfying jwj � 3p(w), has a critical factorization. Indeed, we canwrite



54 C. Cho�rut and J. Karhum�akiw = ullv;where u; v 2 �� and l is the Lyndon word in the class [prefp(w)(w)]. Aswe noted in Section 2.2 Lyndon words are unbordered. Consequently, thefactorization w = u:llv is critical. Hence, in a critical factorization we caneven choose 1 � juj � p(w). utTo extend Example 6.5 for all words is much more di�cult.Theorem 6.2 (Critical Factorization Theorem). Each word w 2 �+,with jwj � 2, possesses at least one factorization w = uv, with u; v 6= 1,which is critical, i.e., p(w) = p(w; u). Moreover, u can be chosen such thatjuj < p(w).Proof. Our proof from [CP] not only shows the existence of a critical factor-ization, but also gives a method to de�ne such a factorization explicitly. Wemay assume that w is not unary, i.e., p(w) > 1.Let �l be a lexicographic ordering of �+ , and �r another lexicographicordering obtained from �l by reversing the order of letters, i.e., for a; b 2 �,a �l b if, and only if, b �r a. Let v and v0 be the maximal su�xes of w withrespect to the orderings �l and �r , respectively. We shall show that one ofthe factorizations w = uv or w = u0v0is critical. More precisely, it is the factorization w = uv, if jvj � jv0j, andw = u0v0 otherwise. In addition, in both the cases(2) juj; ju0j < p(w):We need two auxiliary results. The �rst one holds for any lexicographicordering �.Claim 1. If v is the lexicographically maximal su�x of w, then no nonemptyword t is both a pre�x of v and a su�x of u = wv�1.Proof of Claim 1. Assume that u = xt and v = ty. Then, by the maximalityof v, we have tv � v and y � v. Since v = ty these can be rewritten astty � ty and y � ty. Now, from the former inequality we obtain that ty � y,which together with the latter one means that y = ty. Therefore, t is emptyas claimed. utThe second one, which is obvious from the de�nitions, claims that theorderings �l and �r together de�ne the pre�x ordering �.Claim 2. For any two words x; y 2 �+, we havex �l y and x �r y , x � y; i:e:; x is a pre�x of y: ut



Combinatorics of words 55Proof of Theorem (continued). Assume �rst that jvj � jv0j. We intend toshow that the factorization w = uv is critical. First we show that u 6= 1. Ifthis is not the case, and w = at, with a 2 �, then w = v = v0. Therefore, bythe de�nitions of v and v0, we have both t �l w and t �r w. So, by Claim 2,t is a pre�x of w = at, and hence t 2 a+, i.e., p(w) = 1. This, however, wasruled out at the beginning. Hence, the word u, indeed, is nonempty.From now on let us denote p(w; u) = p. By Claim 1, we cannot havep � juj and p � jvj simultaneously. Hence, if p � juj, then necessarily p > jvj,implying that v is a su�x of u. This, however, would contradict with themaximality of v, since v �l vv. So we have concluded that p > juj. Since p isa local period at the position juj, there exists a word z such that p = jzuj,and the words zu and v are comparable in the pre�x ordering, i.e., one of thewords v and zu is a pre�x of another. We consider these cases separately.� �� �� �� �� �z u vz uwFigure 6.4. The case p = jzuj > jvjCase I: p > jvj. Now, the situation can be depicted as in Figure 6.4.It follows that juzj is a period of uv = w, i.e., p(w) � juzj. On the otherhand, the period p(w) is always at least as large as any of its local periods,so that p(w) � p(w; u) = p = juzj. Therefore, p(w) = p(w; u) showing thatthe factorization w = uv is critical.Case II: p � jvj. Now the illustration is as shown in Figure 6.5, wherealso the words u0 and v0 from the factorization w = u0v0 are shown.� �� �� �� �� �� �� �� u0 u00u vz u z0v0wFigure 6.5. The case p = jzuj � jvj



56 C. Cho�rut and J. Karhum�akiSince p � jvj, and jvj � jv0j we indeed have words u0, u00 and z0 such thatu = u0u00 and v = zuz0. We have to show, as in Case I, that uv has a periodjzuj.By the maximality of v0, the su�x u00z0 of v0 satis�es u00z0 �r v0 = u00v,implying that z0 �r v. On the other hand, the maximality of v yields therelation z0 �l v. Therefore we conclude from Claim 2 that z0 is a pre�x ofzuz0. It follows that z0 2 pref(zu)!, and hence w = uv = uzuz0 2 pref(uz)!,showing that w has a period p = jzuj. Consequently, also the Case II iscompleted.It remains to be proved that (2) holds true, i.e., juj < p(w) and ju0j <p(w). The former follows from the fact juj < p, which we already proved, andthe latter from our assumption ju0j � juj.Finally, to complete the proof of Theorem 6.2 we have to consider the casejv0j � jvj. But this reduces to the above case by interchanging the orderings�l and �r . utAs we already noted we proved more than the existence of a critical fac-torization. Namely, we proved that such a factorization can be found by com-puting a lexicographically maximal su�x of a word, or in fact two of thosewith respect to two di�erent orderings. There exist linear time algorithms forsuch computations, cf. [CP] or [CR]. For example, one can use the su�x treeconstruction of [McC].The Critical Factorization Theorem is certainly a very fundamental resulton periodicity of words. It is probably due to its subtle nature, as shown alsoby the above proof, that it has not been applied as much as it would havedeserved.One application of the theorem, which actually is the source of its dis-covery, cf. [CV], is as follows. To state it we have to recall the notion of anX-interpretation of a word de�ned in Section 2.1. An X-interpretation of aword w 2 �+ is a sequence x; x1; : : : ; xn; y of words such thatxwy = x1 : : :xn;where xi 2 X, for i = 1; : : : ; n, x is a proper pre�x of x1 and y is a propersu�x of xn. Two X-interpretations x; x1; : : : ; xn; y and x0; x01; : : : ; x0m; y0 of ware disjoint, if for each i � n and j � m, we have x�1x1 : : :xi 6= x0�1x01 : : : x0j.Now an application of Theorem 6.2 yields, cf. [Lo]:Proposition 6.1. Let w 2 �+ and X � �+ be a �nite set satisfying p(x) <p(w) for all x 2 X. Then w has at most kXk disjoint X-interpretations.Proposition 6.1 requires two remarks. First the disjointness is essential:if X-interpretations are required to be only di�erent, then taking X to be anoncode the number of di�erent X-interpretations could grow exponentiallyon jwj. In Proposition 6.1 the growth is bounded by a constant.



Combinatorics of words 57Second, the bound is close to the optimal one as noted in [Lo]: for eachn � 2, words of the form w 2 (a2n�2b)+ have exactly n � 1 disjoint X-interpretations for X = fan; aibai j i = 0; : : : ; n� 1g.Another elegant application of Theorem 6.2 was given in [CP], where itwas used to describe an e�cient pattern matching algorithm.6.4 A characterization of ultimately periodic wordsIn this subsection we introduce a recent characterization of ultimately peri-odic words from [MRS]. The characterization is in terms of local propertiesof the considered word, or more precisely, in terms of repetitions at the endsof �nite pre�xes of the considered word. Variants for 2-way in�nite words arepresented, too.Clearly, if w = a0a1 : : :, with ai 2 �, is ultimately periodic, then thefollowing condition holds for any real number �:(1) 9n = n(�) 2 IN : 8m � n : prefmw contains a repetition oforder at least � as a su�x:Our next simple example shows that in�nite words satisfying (1) for � = 2need not be ultimately periodic.Example 6.6. Let X = fab; abag. Note that X is an !-code, i.e., each word inX! has a unique X-factorization, due to the fact that any binary nonperiodicset is such, by Corollary 5.1. We consider in�nite words in X! satisfying thatin their X-factorizations(i) there are no two consecutive blocks of ab; and(ii) there are no three consecutive blocks of aba.Let X2 be the set of all such words. Obviously, the set X2 is nondenumerable,and therefore contains words which are not ultimately periodic. Moreover, weclaim that words in X2 satisfy (1) for � = 2.To see this we consider all possible sequences of ab- or aba-blocks im-mediately preceding ab (aba, resp.) in X-factorizations, and note that anyposition of ab (aba, resp.) is an endpoint of a square in these left exten-sions of ab (aba, resp.). Luckily there is only a �nite number of cases to beconsidered as illustrated in Figure 6.6.aba ab @@aba �� aba ab aba ababa ab ��aba @@ abaFigure 6.6. An exhaustive search for left extensions of ab and aba



58 C. Cho�rut and J. Karhum�akiA concrete example of a word which satis�es (1) for � = 2, and is not ulti-mately periodic is obtained by starting from abaaba and extending it on theright nonperiodically by the blocks ab and aba. This particular word satis�es(1) for � = 2 with n = 6. utExample 6.6 does not extend to higher integer repetitions, i.e., to the case� = 3, as we shall see in the next theorem. The proof of it is a modi�cationdue to A. Restivo from the proof of a more general result in [MRS].Theorem 6.3. A word w 2 �! is ultimately periodic if, and only if, itsatis�es (1) for � = 3, i.e., contains a cube as a su�x of any long enoughpre�x of w.Proof. To prove the nontrivial part we assume that w satis�es (1) with � = 3.We start with an auxiliary result.Lemma 6.1. Let w = v2. If w has a period q satisfying 23 jvj < q < jvj, thenw = ux3, with jxj = jvj � q.Proof of Lemma. Denoting w = zt, with jtj = q, we can illustrate the situa-tion in Figure 6.7.w : � �v � �v� �t � �t� �z�Figure 6.7. Factorizations of w with jvj = p and jtj = qBy the Theorem of Fine and Wilf, v and t has a commonperiod, and thereforejvj � jtj is a period of z. By our assumption 23 jvj < q = jtj implying that3(jvj � jtj) < p:It follows that z contains as a su�x a cube x3, with jxj = jvj � jtj. Now, thelemma follows since any su�x of z is a su�x of w, as well. utProof of Theorem (continued). Let w = a0a1 : : :, with ai 2 �, and setp(n) = minfd j 9v 2 �+ : jvj = d and a0a1 : : :an = uv3g:Now, let n(3) be the constant of the condition (1), and m > n(3). As a crucialpoint of the proof we show the following implication:(2) if p(n) < p(m); for n = n(3); : : : ;m� 1; then m� n(3) < p(m):To prove (2) we denote p(m) = p, and assume that p(n) < p for n =n(3); : : : ;m � 1. By the de�nition of p, we can write a0 : : :am = uv3, withjvj = p. Therefore



Combinatorics of words 59a0 : : : am�p = uv2; with jvj = p:Now, assume contrary to our claim thatm�n(3) � p. Therefore m�p � n(3),and so by our assumption, we can writea0 : : :am�p = u0x3; with jxj = p(m � p) = q < p:There are two cases to be considered.First, if q > 23p, then v2 satis�es the conditions of Lemma 6.1, and so wecan write v2 = sy3, with jyj = p� q. This, however, is a contradiction withthe choice of q, since p� q � 23p < q.Second, if q � 23p, then v2 has as a su�x a cube of a word of length q.Hence, the same holds for the word a0 : : : am. This, however, is a contradictionsince q < p = p(m). This ends the proof of (2).Next we apply (2) to conclude that(3) supfp(n) j n � n(3)g < n(3):Indeed, if (3) does not hold, we choose the smallestm such that p(m) � n(3).Then, by (2), we know thatm�n(3) < p(m), and therefore m < p(m)+n(3) �2p(m). This, however, contradicts with the fact that a0 : : : am = uv3 withjvj = p(m). Hence (3) is indeed proved.Now, we de�ne P = supfp(n) j n � n(3)g:By (3), we know that P � n(3), and we complete the proof of the theoremby induction on P .The starting point P = 1 is obvious. To prove the induction step thereare two possibilities (where actually only the �rst one relies on induction).Case I: If there exist only �nitely many numbers n such that p(n) = P ,we can set n(3) := maxfn j p(n) = Pg+ 1;and apply induction hypothesis to conclude that w is ultimately periodic.Case II: If there exist in�nitely many integers n such that p(n) = P weproceed as follows. Let the values n = m1;m2; : : : be all such values. We shallprove, again by an induction, that, for i = 1; 2; : : :, the word(4) an(3) : : : ami has a period P:The starting point i = 1 is clear, since, by Lemma 6.1, m1 � n(3) < P .So assume that the word an(3) : : : ami has a period P , and consider the wordan(3) : : :ami+1 . Applying again Lemma 6.1, where n(3) is replaced by mi, weconclude that mi+1 �mi < P .We write an(3) : : : ami+1 = uvw;



60 C. Cho�rut and J. Karhum�akiwith jwj = mi+1 �mi;and jvj = 2P � 1:Then, by induction hypothesis, uv has a period P . On the other hand, sincejvwj < 3P it follows that also vw has a period P . But, since the overlappingfactor v is of length at least P + 1, it is easy to conclude that also uvw hasa period P , which completes the latter induction, as well as the whole proofof Theorem 6.3. utActually, as shown in [MRS], Theorem 6.3 can be sharpened as follows:Proposition 6.2. A word w 2 �! is ultimately periodic if, and only if, itsatis�es (1) for � = '2, where ' is the number of the golden ratio.Recall that ' = 12 (p5 + 1), i.e., the positive root of the equation '2 �' � 1 = 0. It is also shown in [MRS] that Proposition 6.3 is optimal in thesense that the validity of (1) for any smaller � than '2 does not imply thatthe word is ultimately periodic. This can be seen from the in�nite Fibonacciword wF considered in Section 8.Our above considerations deserve two comments. First results extend to2-way in�nite words. Indeed, from the proof of Theorem 6.3 one can directlyderive the following characterization.Theorem 6.4. A two-way in�nite word w = : : : ai�1aiai+1 : : :, with ai 2 �is periodic if, and only if, there exists a constant N such that, for any i, theword w : : :ai�1ai contains a cube of length at most N as its su�x. utNote that in Theorem 6.4 the requirement that the cubes must be of abounded length is necessary, as shown by the next example. In Theorem 6.3this was not needed, since it dealt with only 1-way in�nite words.Example 6.7. We de�ne a nonperiodic two-way in�nite wordw = : : : a�1a0a1 : : : ;which contains a cube as a su�x of any factor : : : ai�1ai as follows. We setw0 = aaa and de�new2i+1 = �iw2ia and w2i+2 = �iw2i+1; for i � 0;where a 2 � and the words �i and �i are chosen such that both w2i+1 andw2i+2(suf2i(w2i+2))�1 are cubes. Clearly, this is possible. It is also obviousthat this procedure yields a word of the required form. ut



Combinatorics of words 61As the second comment we introduce a modi�cation of the above consid-erations. Surprisingly the results are quite di�erent.In above we required that repetitions occurred at any position \immedi-ately to the left from that position". Now, we require that they occur at anyposition such that this position is the center of the repetition. We obtain thefollowing characterization for periodic 2-way in�nite words, in terms of localperiods, cf. Section 6.3. Note that the notions of local periods extend in anatural way to in�nite words, as well.Theorem 6.5. A two-way in�nite word w is periodic if, and only if, thereexists a constant N such that the local period of w at any point is at most N .Proof. Clearly, the periodicity of w implies the existence of the required N .The converse follows directly from the Critical Factorization Theorem: peri-ods of all �nite factors of w are at most N , and hence by the Theorem ofFine and Wilf w indeed is periodic. utWe note that Theorem 6.5, can be seen as a weak variant of the CriticalFactorization Theorem, cf. [Du1]. It is also worth noticing that the bound-edness of local periods is crucial, the argumentation being the same as inExample 6.7. Finally, the next example shows the optimality of Theorem 6.5in a certain sense.Example 6.8. Theorem 6.5 can be interpreted as follows. If a two-way in�niteword w contains at any position a bounded square \centered" at this position,then the word is periodic. The wordw =!aba!shows that no repetition of smaller order guarantees this. Indeed, for any� < 2, the word w contains at any position a bounded repetition of order ofat least � centered at this position. Here, of course, the bound depends on�. ut7. Finiteness conditionsIn this section we consider partial orderings of �nite words and �nite lan-guages, and in particular orderings that are �nite in either of two naturalsenses: either each subset contains only �nitely many incomparable elements,i.e., each antichain is �nite, or each subset contains only �nitely many pair-wise comparable elements, i.e., each chain is �nite. Hence our interest is intwo fundamental properties which are dual to each other.



62 C. Cho�rut and J. Karhum�aki7.1 Orders and quasi-orderingsFor the sake of completeness we recall some basic notions on binary relationsR over an arbitrary set S.A binary relation R is a strict ordering if it is transitive, i.e., (x; y) 2 Rand (y; z) 2 R implies (x; z) 2 R, and irreexive, i.e., (x; x) 2 R holds for nox 2 S. It is a quasi-ordering if it is transitive and reexive, i.e., (x; x) 2 Rholds for all x 2 S. It is a partial ordering if it reexive, transitive andantisymmetric, i.e., (x; y) 2 R and (y; x) 2 R implies x = y for all x; y 2 S.A total ordering is a partial ordering � for which x � y or y � x holdsfor all x; y 2 S. An element x of a set S (resp. of a subset X � S) orderedby � is minimal if for all y 2 S (resp. y 2 X) the condition y � x impliesx = y. Of course each subset of a totally ordered set has at most one minimalelement.There is a natural interplay between these three notions. With each quasi-ordering � it is customary to associate the equivalence relation de�ned asx � y if, and only if, x � y and y � x holds. This induces a relation � onthe quotient S= � [x] � [y] if, and only if, x � y;which is a partial ordering on S.Example 7.1. The relation on �� de�ned by x � y, whenever jxj � jyj, is aquasi-ordering. The equivalence relation associated with it is: x � y if, andonly if, jxj = jyj. utIf � is a strict ordering then the relation � de�ned by x � y if, and onlyif, x � y or x = y, is a partial ordering. If � is a quasi-ordering, then therelation < de�ned by x < y if, and only if, x � y and y �= x, is a strictordering.Two important notions on partial orderings from the viewpoint of ourconsiderations are those of a chain and an antichain. A subset X of an orderedset S is a chain if the restriction of � to X is total. It is an antichain if itselements are pairwise incomparable. A partial ordering in which every strictlydescending chain is �nite is well-founded orNoetherian. If in addition every setof pairwise incomparable elements is �nite it is a well-ordering. For example,the set of integers ordered by njm if, and only if, n divides m is well-founded,but is not a well-ordering.We concentrate on partial orderings over �� and Fin(��), the familyof �nite subsets of ��. We already observed how total orderings like lexico-graphic or alphabetic orderings are crucial, in considerations envolving words,for example for de�ning Lyndon words and proving the Critical FactorizationTheorem.Partial quasi-orderings can be de�ned on �� and Fin(��) in many ways.Without pretending to be exhaustive, here are a few important examples:alphabetic quasi-ordering: x�a y i� alph(x) � alph(y),



Combinatorics of words 63length ordering: x�l y i� jxj < jyj or x = y,commutative image quasi-ordering: x�c y i� jxja � jyja for all a 2 �,pre�x ordering: x�p y i� there exits z with xz = y,factor ordering: x�f y i� there exits z; t with zxt = y,subword ordering: x�d y i� there exist x1; : : : ; xn; u0; : : : ; un 2 �� suchthat x = x1x2 : : :xn and y = u0x1u1x2u2 : : : xnun:Similarly, for the family Fin(��) we de�ne the following orderings. Herethe notation RX denotes the set of relations satis�ed by X.size quasi-ordering: X �s Y i� jjXjj � jjY jj,inclusion ordering: X �i Y i� X � Y ,semigroup quasi-ordering: X �m Y i� X+ � Y + where X and Y areminimal generating sets,relation quasi-ordering: X �r Y i� there exits a bijection ' : X ! Ysuch that R'(X) � RX .We summarize into the following table the facts on how the above partialorderings behave with respect to our two �niteness conditions, i.e., whetheror not they allow in�nite antichains or chains.Table 7.1. Finiteness conditions of certain quasi-orderings�a �l �p �f �d �s �i �m �rno in�nite chains + � � � � � � � �no in�nite antichains + + � � � + � � �There are two particularly interesting entries in this table, namely thosedenoted by �. These state two fundamental �niteness conditions on wordsand �nite sets of words we shall be studying in more details later. That theother entries are correct is, as the reader can verify, easy to conclude. We onlynote that the relation ordering �r is not a well-ordering even in the familyof sets of the same size as shown by the family fXi = fa; aib; bgji � 1g.7.2 Orderings on wordsIn this subsection we consider orderings on ��, in particular the subwordordering and another one related to it.The subword ordering is called division ordering in [Lo], but this notionhas another use in the literature, where by division ordering is meant a partialordering satisfying the following two conditions for all x; y; z; t 2 ��



64 C. Cho�rut and J. Karhum�aki(1) 1 � x(2) x � y implies zxt � zyt:Observe that, by (1), we have 1 � z and 1 � y, and hence, by (2),x � zx; x � xy and zx � zxy, i.e., x � zx � zxy. Thus every word is greaterthan or equal to each of its factors:(3) for all x; y; z; the inequality x � yxz holds.Actually, the subword ordering is the smallest ordering satisfying theconditions (1) and (2), i.e., for all x; y 2 �� the relation x�d y impliesx � y. Indeed, we have 1�d 1 and 1 � 1 by condition (1). Now, considerx = ax0�d y = by0 with a; b 2 � and x0; y0 2 ��, and let us proceed byinduction on jxj+ jyj. If a = b, then x0�d y0, i.e., x0 � y0 by induction, andby (2), x = ax0 � y = ay0. On the other hand, if a 6= b, then x�d y0, andthus by induction x � y0. Condition (1) yields 1 � a and condition (2) yieldsy0 � y = ay0, so by the transitivity x � y.Total division orderings have been studied in [Mart]. It is proved undera certain assumption, namely the ordering being \tame", that each divisionordering is �ner than the strong commutative image ordering, which is ob-tained from �c by replacing inequalities by the strict inequalities in eachcomponent. It is also conjectured that the statement holds true even withoutthis condition. However, when the alphabet is binary, each division orderingis tame, and thus the result holds.Theorem 7.1. Let � be a total division ordering on the free monoid gener-ated by fa; bg and let u; v be two words. Then(4) juja < jvja and jujb < jvjb implies u � v:Proof. Since � is total, we may assume without loss of generality that ba � abholds. In particular, by commutating the occurrences of a and b in u 2 ��,we have, by equality (2):(5) bnam � u � ambn with m = juja and n = jujb:Now assume that condition (4) is violated: juja < jvja, jujb < jvjb andu � v. By setting juja = m, jvja = m0, jujb = n, jvjb = n0 we havebnam � u � v � am0bn0 � am+1bn+1:Thus we may assume that we have u = bnam, v = am+1bn+1 and u �v. We �rst observe that bnu � ubn+1. Indeed, we have bnu = bnbnam �bnam+1bn+1. Now, by (3), we have am+1 � am, i.e., bnam+1bn+1 � bnambn+1= ubn+1.Assume b � a and for all k > 0 compute:



Combinatorics of words 65b(k+1)nbm � b(k+1)nam = bknu� ubk(n+1)� vbk(n+1) = am+1bn+1bk(n+1) = am+1b(k+1)n+1bk� b(k+1)n+1bk:This does not hold when k + 1 > m. Now, if a � b, a similar argument leadsto the same type of contradiction, proving the theorem. utThe author shows that the inequalities of condition (4) must be strict.Indeed, consider the ordering � on fa; bg�, where words are ordered by theirnumber of occurrences �rst, and then lexicographically with a � b. Thenu = bababa � v = abbabba, but juja = jvja and jujb < jvjb.We turn to consider the subword ordering. We already observed that itis right- and left-invariant, cf. (2). Its second major property, solving onenontrivial entry in Table 7.1, is that it is a well-ordering implying that everysubset X � �� has �nitely many minimal elements.Theorem 7.2. The subword ordering �d over a �nitely generated free mo-noid is a well-ordering.Proof. Clearly subword ordering is well-founded. So we have to prove thatany antichain of �� with respect to �d is �nite. Assume to the contrary thatF = ffiji 2 INg is an in�nite set of incomparable words. Then, in particular,we have(6) if i < j; then fi 6�d fj:Among the sequences satisfying (6) there exist such sequences, where f1 isthe shortest possible. Continuing inductively we conclude that there exists asequence, say (gi)i�0, which satis�es (6) and none of the sequences (hi)i�0,with jhij < jgij for some i, satis�es (6).Now, consider the sequence (gi)i�0. Since � is �nite there exist a letter asuch that, for in�nitely many i, we can write gi = ag0i with g0i 2 ��. Say thisholds for values i1; i2; : : : . Then the sequenceg1; g2; : : : ; gi1�1; g0i1; g0i2; : : :satis�es (6) and, moreover, jg0i1j < jgi1 j. This contradicts with the choice ofthe sequence (gi)i�0. utThis theorem is due to Higman in [Hi], where it is proved in a muchmore general setting. Subsequently, it has been rediscovered several times,see [Kr] for a complete account. Our proof of Theorem 7.2 is from [Lo]. Itis very short and nonconstructive. It is also worth noticing that there is nobound for the size of a maximal antichain in ��, as shown by the antichainsAn = faibn�iji < ng for n � 0.



66 C. Cho�rut and J. Karhum�akiWe also note that Dickson's Lemma is a consequence of Theorem 7.2.We recall that it asserts that INk is well-ordered, where the ordering is theextension of the usual componentwise ordering on IN. Indeed, it su�ces tointerprete the k-tuple (n1; : : : ; nk) as the word an11 : : : ankk over the alphabetfa1; : : : ; akg.An interesting formal language theoretic consequence of Theorem 7.2 isthe following.Theorem 7.3. For each language L � �� the languages SW (L) = fw j9z 2 L : w�d zg and SW1(L) = fw j 9z 2 L : z�a wg are rational.Proof. By Theorem 7.2, the set of minimal elements of L with respect to �dis �nite, say F . So, SW1(L) = SW1(F ), and hence SW1(L) is rational. A bitmore complicated proof for SW (L) is left to the reader. utOur above considerations on the subword ordering were purely existential.As an example of algorithmic aspects we state a problemmotivated by molec-ular biology. The problem asks to �nd, for a given �nite set X = fx1; : : : ; xngof words, a shortest word z such that xi�p z for all i = 1; : : : ; n. This problemis usually referred to as the smallest common supersequence problem, and itis known to be NP-complete, cf. [GJ].7.3 Subwords of a given wordIn this a bit isolated subsection we consider an interesting problem asking todi�erentiate two words by a shortest possible subword occurring in one butnot in the other.Example 7.2. The word bbaa occurs in abbaab, but does not occur in abababas a subword. All words of length 3 occur in both words. utWe refer the reader to [Lo] for a full exposition of the problem. In par-ticular it is established that a word of length n is determined by the set ofits subwords of length dn+12 e, the pair am�1bam; ambam�1 showing that thebound is sharp. In [Si] it is proved that a shortest subword distinguishingtwo given di�erent words can be found in linear time. This is not a prioriobvious since there may exist exponentially many subwords of a given lengthin a word. For instance, (ab)n contains all words of length n as subwords.The linearity of the algorithm is based on several properties among whichthe fact that, if two words u and v have the same subwords of length m, thenthey can be merged in a word having also the same subwords of length m.An elaboration of this question is to consider the subwords with theirmultiplicities. In the previous example baab occurs twice in abbaab but oncein ababab. Milner (personal communication) de�nes the k-spectrum of a wordu as the function that associates with each word of length 0 < k � juj, thenumber of its occurrences in u. Given an integer k, consider the maximal



Combinatorics of words 67integer n = f(k) such that two di�erent words of length n have di�erentk-spectrums. The question is to �nd a reasonable upper bound on n.Example 7.3. De�ne 3 sequences of words byu0 = aba; v0 = 1; w0 = baa,u1 = ab; v1 = 1; w1 = ba,uk+2 = wkuk+1; vk+2 = uk+1uk; uk+2 = uk+1wk if k is even,uk+2 = uk+1wk; vk+2 = ukuk+1; uk+2 = wkuk+1 if k is odd.Then uk and vk are di�erent, and have the same k-spectrum. Their commonlength �(k) grows as a \Fibonacci" type function, starting from the values 2and 5: �(1) = 2, �(2) = 5, �(3) = 7, �(4) = 12, �(5) = 19, �(6) = 31; : : : .The exact values for small k arek 1 2 3 4f(k) 3 5 8 13 ;but for k = 5, �(5) = 19 is far from being optimal due to the following twowords of length 16 having the same 5-spectrum:u = abbaaaaabbbaaaab and v = baaaabbbaaaaabba: utThe same questions substituting \factor" for \subword" can be posed. Itis shown in [Lo], Exercise 6.2.11, that whenever u is not of the form (xy)nxwith n � 2, then it is uniquely determined by its factors of length d juj2 + 1e.If this restriction is relaxed, then the word can not be determined by itsproper factors: (ab)na and (ba)nb have the same factors (ab)n and (ba)n asoccurrences. It is also possible to de�ne the k-factor spectrum of a word uwhich associates with each word of length k the number of its occurrences inu. To our knowledge no nontrivial bounds are known.7.4 Partial orderings and an unavoidabilityIn this section we state a generalization of Higman's Theorem. This result isbased on the notion of an unavoidable set of words, which is not connectedto the unavoidability of Section 8. We also consider some other problemsconnected to this notion of an unavoidability.We say that a set X � �� is unavoidable, if there exists a constant k suchthat each word w 2 �k contains a word of X as a factor. For example, the setX = faa; ba; bbg is unavoidable over the free monoid fa; bg�, since avoidinga2 and b2 obliges a word to be a sequence of a and b alternatively.This de�nition was given in [EHR] in connection with an attempt tocharacterize the rational languages among the context-free ones. In particular,unavoidable subsets are used for extending Theorem 7.2 showing that thesubword ordering �d on words is a well-ordering. Actually, saying that aword u is subword of v means that v can be obtained from u by inserting



68 C. Cho�rut and J. Karhum�akiletters. Instead of inserting letters we can insert words from a �xed subset.GivenX � �� de�ne �X as the reexive and transitive closure of the relationf(u1u2; u1xu2)jx 2 X;u1; u2 2 ��g:For instance, if X = fabg, then we get 1 �X ab �X aabb �X aabbab.Then the following is proved in [EHR].Proposition 7.1. The ordering �X is a well-ordering if, and only if, X isunavoidable.We continue with some elementary properties of unavoidability. It is clearfrom the de�nition that from each unavoidable set we can extract a �niteunavoidable subset, so the study can be reduced to �nite unavoidable sets.It is also easy to verify that a set X is unavoidable if, and only if, it avoidsall one-way in�nite words if, and only if, it avoids all two-way in�nite words.Indeed, let us verify, e.g., that ifX is unavoidable, then every two-way in�niteword : : :a�1a0a1 : : : has a factor in X. By hypothesis, there are in�nitelymany words avoiding X, so there are in�nitely many such words of evenlength. Now, say a word x is a central occurrence of a word y, if y = y1xy2with jy1j = jy2j. An in�nite two-way word avoiding X is constructed asfollows. For some (a0; b0) 2 � � � there are in�nitely many words havingx0 = a0b0 as a central factor and avoidingX. Now, for some (a1; b1) 2 ���there are in�nitely many words having x1 = a1a0b0b1 as a central factor andavoiding X, and so on. The in�nite word : : :a2a1a0b0b1b2 : : : thus de�nedavoids X.Testing the unavoidability of X can be done in di�erent ways. We mayconstruct a �nite automaton recognizing ��X � ��X�+ , and then checkwhether or not there is a loop in the automaton. Another approach is morecombinatorial and consists in simplifyingX as much as possible. For example,assume that fbabba; bbbg are elements of a set X. We claim that by substi-tuting babb for babba the set of two-way in�nite words that are avoided isunchanged. Indeed, if an in�nite word contains babb, then this occurrence iseither followed by a, and then the word contains babba, or it is followed by b,but then it contains the occurrence bbb. The point here is that the occurrencebabbb has a su�x in X � fbabbag. This leads to the following de�nitions.A set X immediately left- (resp. right-) simpli�es to the set Y , if eitherY = X � fxg, where x has a proper factor in X, or Y = X � fwag [ fwg(resp.Y = X � fawg[ fwg), where wa 2 X (resp.aw 2 X) with w 2 �� anda 2 �, such that the following holds:for all b 2 �; b 6= a, wb has a su�x (resp. bw has a pre�x) in X �fwag(resp. X � fawg).Further a set X simpli�es (resp. left-, right-) simpli�es to the set Y , ifthere exists a sequence of n � 0 sets X0 = X; : : : ;Xn = Y such that Xi im-mediately simpli�es (resp. left-, right-simpli�es) to Xi+1, with the convention



Combinatorics of words 69X = Y , if n = 0. Finally, a set X is simple (resp. left-, right-simple), if thereis no Y 6= X such that X simpli�es (resp. left-, right-simpli�es) to Y .Above simpli�cations can be used to test unavoidability, as shown in[Ros2] and also known to J.-P. Duval (private communication).Proposition 7.2. A subset X is unavoidable if, and only if, it simpli�es(resp. left-simpli�es, right-simpli�es) to the set consisting of the empty wordonly.Example 7.4. As an illustration, when the above is applied to the set faaa,aba, bbg the following sequence of sets is obtained: X0 = faaa; aba; bbg, X1 =faaa; ab; bbg, X2 = faa; ab; bbg, X3 = faa; a; bbg, X4 = fa; bbg, X5 = fa; bg,X6 = fa; 1g, X7 = f1g. utActually, a more general problem was solved in [Ros2] by showing thatfor all �nite subsets X there exists a unique simple set Y equivalent to X, inthe sense that it avoids the same set of in�nite words. Furthermore, Y canbe obtained by �rst right-simplifying X as long as possible and then left-simplifying it. More precisely, for each X denote by X (resp. Xr , X l) anysimple (resp. right-, left-simple) subset which is the last element in a chain ofsimpli�cation (resp. right-, left-simpli�cation) starting fromX. The followingasserts a property of conuence saying that the result of a maximal sequenceof simpli�cation does not depend on the intermediate choices.Proposition 7.3. For all X, there exists a unique simple subset equivalentto it, namely X = Xr l = X lrNow we come to the problem that motivated the study of unavoidable sets.Haussler conjectured that every unavoidable set of words X can be extendedin the sense that there exists an element u 2 X and a letter a 2 � such thatsubstituting ua for u in X yields a new unavoidable set. For instance, in theprevious example, the word ba can be replaced by bab (but not by baa, a2 orb2 as is easily veri�ed). This conjecture held for some time and was supposedto be true. It was a nontrivial statement since, extending a word need notpreserve the avoidability, but all computed examples con�rmed that therealways existed an extendable word. In [CC] some equivalent statements tothe conjecture were given and some particular cases were settled. In fact, theconjecture turned out to be wrong, though it needed some clever e�orts toexhibit the following counter-example (with the minimal possible number ofelements) from [Ros1]:X = faaa; bbbb; abbbab; abbab; abab; bbaabb; baabaabg:The reader may run the above procedure to check that X is unavoidable, aswell as to use an exhaustive case study to show that no word can be extended.Finally, [Ros2] introduces another interesting notion. Two subsets X andY are weakly equivalent, written X �w Y , if the sets of in�nite periodic



70 C. Cho�rut and J. Karhum�akiwords, i.e., of the form : : :uu : : : for some u 2 �+, avoiding them are equal.This notion seems to deserve further research. In particular the proof ofthe fact that two words u 6= v 2 fa; bg�, satisfy u �w v if, and only if,fu; vg = fanb; bang or fu; vg = fbna; abng is rather long and should besimpli�able.7.5 Basics on the relation quasi-ordering �rWe turn to consider orderings on �nite sets of words, in particular that of thequasi-ordering �r . By de�nition it was associated with relations satis�ed bywords of X, and hence with solutions of equations. This leads us to considersystems of equations with a �nite number of unknowns and without constants.Let � be a �nite set of unknowns andS : ui = vi with ui; vi 2 ��; for i 2 I;be a system of equations over �. We are interested in all solutions of such asystem in a given free monoid ��, i.e., all morphisms h : �� ! �� satisfyingh(u) = h(v) for all u = v in S. We are going to show that any system Sis equivalent to one of its �nite subsystems, i.e., any solution of this �nitesubsystem is also a solution of the whole S. Clearly, this states a fundamentalcompactness property of systems of equations over free monoids, and hencealso of words. This property was conjectured by A. Ehrenfeucht at the be-ginning of 70's in a slightly di�erent form, as we shall see in a moment, cf.also [Ka3].Let us start with a simple example.Example 7.5. Consider systems of equations with only two unknowns. Then,by the defect theorem, each solution h : fx; yg� ! �� is periodic. Thereforethe set of all solutions of a given nontrivial equation consists of morphismssatisfying one of the following conditions:(i) h(x) = h(y) = 1;(ii) 9k 2 Q+ [ f1g : jh(x)j=jh(y)j = k and h is periodic;(iii) h(x); h(y) 2 z� for some z 2 �+, i.e., h is periodic.Actually, condition (ii) consists of in�nitely many di�erent conditions, one foreach choice of k. It follows straightforwardly that the set of all solutions of agiven system of equations over fx; yg is determined by at most two equations.For example, if S contains equations of type (ii) for two di�erent k's, then theonly common solution is that of (i), and hence these two equations constitutean equivalent subsystem of two equations. utIt is interesting to note that no similar analysis is known to work in thecase of three unknowns. Indeed, no upper bound for the size of an equivalent�nite subsystem is known. This is despite of the fact that there exists a



Combinatorics of words 71�nite classi�cation for sets of all equations satis�ed by a given morphismh : fx; y; zg� ! ��, cf. [Sp1].As we already mentioned the original Ehrenfeucht's Conjecture was statedin a slightly di�erent form, more in terms of formal languages. In order toformulate it let us say that twomorphismsh; g : �� ! �� agree on a wordw ifh(w) = g(w). Motivated by research on questions when two morphisms agreeon all words of a certain language, for more details cf. [Ka3], he conjecturedthat 8L � ��; 9 �nite F � L : 8h; g : �� ! �� :h(w) = g(w) for all w 2 L, h(w) = g(w) for all w 2 F:In other words, the conjecture states that, for any language L, there existsa �nite subset F of L such that to test whether two morphisms agree onwords of L it is enough to do that on words of F . Such a �nite F is called atest set for L. In terms of equations the conjecture states that any system ofequations of the form S : ui = �ui; for i 2 I;where �ui is an isomorphic copy of ui in a disjoint alphabet, is equivalent toone of its �nite subsystems. As was �rst noted in [CuKa1], cf. also [HK2], thisrestricted formulation of the conjecture is actually equivalent to the generalone.As a result related to Example 7.5 we show next that all languages overa binary alphabet has a very small test set.Theorem 7.4. Each binary language possesses a test set of size at mostthree.Proof. The proof is based on Theorem 3.2. Here we present the main ideasof it, but omit a few technical details which can be found in [EKR2].Let L � fa; bg� be a binary language. We de�ne the ratio of w 2 fa; bg+as the quantity r(w) = jwja=jwjb. Hence, r(w) 2 Q+ [ f1g. A simple lengthargument shows that no two morphisms h; g, with h 6= g, can agree on twowords with a di�erent ratio. Consequently, if L contains two words with adi�erent ratio, then they constitute a two-element test set for L.So we assume that, for some k, r(w) = k for all w in L. Now, each wordw in L can be factorized as w = w1 : : :wn, where, for each i, r(wi) = k and,for each pre�x w0i of wi, we have r(w0i) 6= k. Let Lk be the set of all factorsin the above factorizations of all words of L. It follows that if Lk has a testset of cardinality at most three, so has L: take a subset of L containing allwords of the test set of Lk in the above factorizations.So it remains to be shown that Lk has a test set of size at most three. IfjjLkjj � 2, there is nothing to be proved. So, assume that jjLkjj � 3. Now,we use the partial characterization of binary equality sets proved in Theorem3.2. Such a set is always of one of the following forms:



72 C. Cho�rut and J. Karhum�aki(i) Xr = fwjr(w) = rg with r 2 Q+ [ f1g,(ii) f�; �g� for some words �; � 2 ��,(iii) (���)� for some words �; �;  2 ��.For morphisms having an equality set of form (i) any one-element subsetof Lk works as a test set. For morphisms having an equality set of form (ii)any two-element subset of Lk works, since no word in Lk is a product of wordshaving the same ratio. Finally, morphisms having an equality set of the form(iii) (if there are any!) are most complicated to handle. In this case one canshow, cf. [EKR2], that if an equality set of form (iii) contains two elementsof Lk, then these two elements determine this equality set uniquely. Con-sequently, for morphisms having equality sets of form (iii) any two-elementsubset of Lk works for all other pairs of morphisms except for those havingas an equality set the one determined by these two words. And for those thistwo-element set can be extended to a three-element test set by adding a thirdword from Lk.Consequently, in all the cases three words are enough. utOf course, even in Theorem 7.4 a test set cannot be found e�ectively, ingeneral. However, our above proof indicates that under a rather mild assump-tions on L this can be done, cf. [EKR2].7.6 A compactness propertyIn this section we prove the compactness property conjectured by Ehren-feucht, and will later interprete it as a �niteness condition on �nite sets ofwords, as well as consider its consequences.Theorem 7.5. Each system of equations with a �nite number of unknownsover a free monoid is equivalent to one of its �nite subsystems.Proof. Let � be a �nite set of unknowns in the equationsS : ui = vi for i 2 I;and �� a free monoid, where these equations are solved. We exclude the casek�k = 1, since this is a trivial exercise in linear algebra. We also note thatdue the embeddings of Section 3.2 it does not matter what k�k is { it canbe even nondenumerable. Let us �x � = fa0; : : : ; an�1g with n � 2.The basic idea is that we convert equations on words into polynomialequations on numbers. This is possible simply because a word w can beinterpreted as the number it presents in n-ary notations.More precisely, consider an equation(1) u = v with u; v 2 �+:De�ne two copies of �, say �1 and �2, and associate with (1) the followingpair of polynomial equations



Combinatorics of words 73(2) � l(u) � l(v) = 0;n(u)� n(v) = 0;where l; n : �� ! (�1 [�2)� are mappings de�ned recursively as(3) 8>><>>: l(a) = a1; for a 2 �;l(wa) = l(w)a1; for a 2 � and w 2 �+;n(a) = a2; for a 2 �;n(wa) = n(w)l(a) + n(a); for a 2 � and w 2 �+:Equations (2) are well-de�ned, and they are polynomial equations over theset �1[�2 of commuting unknowns. In fact, coe�cients of the monomials in(2) are from the set f�1; 0; 1g. Note also that the function n, as is obviousby induction, satis�es the relation(4) n(w1w2) = n(w1)l(w2) + n(w2); for all w1; w2 2 �+:Now, let w = aik�1 : : : ai0, with aij 2 �, be a word in �+. We associatewith it two numbers�(w) = ai0 + ai1n+ : : :+ aik�1nk�1and �0(w) = nk:Hence �(w) is the value of w as the n-ary number and �0(w) is the valuenjwj. This guides us to set �(1) = 0 and �0(1) = n0 = 1.Obviously, the correspondence w $ (�0(w); �(w)) is one-to-one, and weuse it to show:h : �� ! ��, i.e., (h(a0); : : : ; h(an�1)), is a solution of (1),if, and only if,the 2n-tuple (�0(h(a0); : : : ; �0(h(an�1)); �(h(a0)); : : : ; �(h(an�1))) is asolution of (2).To prove this equivalence , let us denote s = (h(a0); : : : ; h(an�1)), s1 = �0(s)and s2 = �(s), where �0 and � are applied to s componentwise. Then, ifh(u) = h(v), we conclude thatl(u)���s1 = njh(u)j = njh(v)j = l(v)���s1;i.e., s1 is a solution of the equation l(u) � l(v) = 0. Similarly, factorizingu = u1u2, with h(u1); h(u2) 6= 1, we conclude from (4) thatn(u)���s1;s2 = n(u1)���s1;s2 � l(u2)���s1;s2 + n(u2)���s1;s2= �(h(u1))njh(u2)j + �(h(u2)) = �(h(u1u2)) = �(h(u));



74 C. Cho�rut and J. Karhum�akiwhere the second equality is due to induction. The above holds also, as thebasis of induction, when u does not have the above factorization. Symmetri-cally, n(v)���s1;s2 = �(h(v)), so we have shown that (s1; s2) is a solution of (2).On the other hand, if in above notations s = (s1; s2) is a solution of (2) theabove calculations show that h is a solution of (1), proving the equivalence.Now, assume that S is our given system of equations, with � as the setof unknowns, consisting of equations ui = vi for i 2 I. Letpj(�1; �2) = 0 for j 2 Jbe a set of polynomial equations, with �1 [ �2 as the set of unknowns,consisting of those equations which are obtained in (2) when i ranges overI. For simplicity let pj = pj(�1; �2) and P = fpjjj 2 Jg. By Hilbert'sBasis Theorem, cf. [Co], P is �nitely based, i.e., there exists a �nite subsetP0 = fpjjj 2 J0g � P such that each p 2 P can be expressed as a linearcombination of polynomials in P0:p = Xj2J0 gjpj with gj 2 ZZ (�1 [�2):Consequently, the systems \Pj = 0 for j 2 J" and \Pj = 0 for j 2 J0"have exactly the same solutions. Therefore, by the equivalence we proved,our original system S is equivalent to its �nite subsystem containing onlythose equations of S needed to construct P0. utThe proof of Theorem 7.5 deserves a few comments. There are severalproofs of this important compactness result, however, all of those rely onHilbert's Basis Theorem. The two original ones are those by Albert andLawrence in [AL1] and Guba in [MS]. Our proof is modelled from ideas ofGuba presented in [McN2] and [Sal3], cf. also [RoSa2], using n-ary numbers.The other simple possibility of proving this result is to use embeddings of ��into the ring of 2�2-matrices over integers, cf. [Per] or [HK2]. The advantageof the above proof is that it uses only twice as many unknowns as there arein the original system.It is also worth noticing that we did not need above the full power ofHilbert's Basis Theorem. Indeed, we only needed the fact that the commonroots of the polynomials Pj, for j 2 J0, are exactly the same as those of thepolynomials Pj, for j 2 J , which is not the Hilbert's Basis Theorem, butonly its consequence. Note also that the reduction from word equations topolynomial equations goes only in one direction. Indeed, the existence of asolution of an equation is decidable for word equations, as shown by Makanin,while it is undecidable for polynomial equations, as shown by Matiyasevich,cf. [Mat] and also [Da].Finally, let us still emphasize one peculiar feature of the above proof. Theoriginal problem is, without any doubts, a problem in a very noncommuta-tive algebra, while its solution relies { unavoidably according to the currentknowledge { on a result in a commutative algebra.



Combinatorics of words 75Of course, a �nite equivalent subsystem for a given system of equationscannot be found e�ectively, in general. However, in several restricted casesthis goal can be achieved. The proofs are normally direct combinatorial proofsnot relying, for example, on Hilbert's Basis Theorem. We present one suchexample needed in our later considerations, for other such results we refer to[ACK], [Ka3], [HK2], [KRJ] or [KPR].We recall that a system of equations in unknowns � is called rational ifit is a rational relation of �� � ��, cf. [Be1].Theorem 7.6. For each rational system of equations in a �nite number ofunknowns one can e�ectively �nd an equivalent �nite subsystem.Proof. Of course, the formulation of Theorem 7.6 silently assumes that thesystem S is e�ectively given, for example, de�ned by a �nite transducer � ,cf. [Be1]. Let n be the number of states of � . SetS0 = fu = v 2 S j (u; v) has an accepting computation in � of length atmost 2ng.We claim that S0 is equivalent to S. Assume the contrary that h : �� ! ��is a solution of S, but not of S0. Choose an equation u = v from S such thath(u) 6= h(v), and moreover, (u; v) is minimal in the sense that there is nosuch equation in S which would have a shorter computation in � than whatis the shortest one for (u; v).By the choice of S0, words u and v factorize as u = u1u2u3u4 and v =v1v2v3v4 such that in � we havei u1; v1��������! q u2; v2��������! q u3; v3��������! q u4; v4��������! tfor some states i; q and t, with i initial and t �nal. It follows from the mini-mality of (u; v) that(5) 8<: h(u1u2) = h(v1v2);h(u1u2u4) = h(v1v2v4) andh(u1u3u4) = h(v1v3v4):We apply to these identities the following implication on words, the proof ofwhich is straightforward and left to the reader: for any words u, v, w, z, u0,v0, w0, z0 2 �� we have(6) 8<: uv = u0v0uwv = u0w0v0uzv = u0z0v0 ) uwzv = u0w0z0v0:Now, conditions (5) and (6) imply that h(u) = h(v), a contradiction. utWe note that although our above proof does not imply that S0 can bechosen \small", a more elaborated proof in [KRJ] shows that it can be chosento be of the size O(n), where n denotes the number of transitions in � .Possibilities of generalizing the fundamental compactness property of The-orem 7.5 are considered in [HKP], cf. also [HK2].



76 C. Cho�rut and J. Karhum�aki7.7 The size of an equivalent subsystemTheorem 7.5 leaves it open how large a smallest equivalent subsystem for agiven system can be. This is the problem we consider here. Consequently,this section is closely connected to Section 4.4.Recall that a system S in unknowns � is independent if it is not equivalentto any of its proper subsystems. Our problem is to estimate the maximal sizeof an independent system of equations. Very little seems to be known on thisproblem. Indeed, we do no know whether the maximal size can be boundedby any function on jj�jj.What we can report here are some nontrivial lower bounds achieved in[KaPl1]. First we note that Example 4.8 introduces an independent systemof equations over a free semigroup �+ consisting of n3 equations in 3n un-knowns. Therefore a lower bound for the maximal size of independent systemof equations over a free semigroup is 
(jj�jj3).Our next example shows that we can do better in a free monoid.Example 7.6. Let � = fyi; xi; ui; vi; �yi; �xi; �ui; �vi; ~yi; ~xi; ~ui; ~vi j i = 1; : : : ; ngand S a system consisting of the following equationsS : yixjukvl�xj�uk�vl~xj~uk~vl = xjukvl�xj�uk�vl~xj~uk~vlyi for i; j; k; l = 1; : : : ; n:Therefore k�k = 12n and kSk = n4. Let us �x the values i; j; k and l anddenote the corresponding equation by e(i; j; k; l). In order to prove that S isindependent we have to construct a solution of the system S � fe(i; j; k; l)gwhich is not a solution of e(i; j; k; l). Such a solution is given as follows:8>>>><>>>>: yi = ababa;xj = uk = vl = ab;�xj = �uk = �vl = a;~xj = ~uk = ~vl = ba;z = 1; for all other unknowns:This is not a solution of the equation e(i; j; k; l), sinceababa:ab : : : 6= ab:ab:ab : : : :However, it is a solution of any other equation since the alternatives areyi 6= ababa, when the equations become an identity, oryi = ababa and 0; 1 or 2 of the words xj; uk and vl 6= ab, when thecorresponding relations are:ababa = ababa,ababa:ab:a:ba= ab:a:ba:ababa,ababa:ab:ab:a:ba:ba= ab:ab:a:a:ba:ba:ababa.Finally, we emphasize that this example uses heavily the empty word 1. ut



Combinatorics of words 77We summarize the above considerations toTheorem 7.7. (i) A system of equations with n unknowns may contain
(n4) independent equations over a free monoid.(ii) A system of equations with n unknowns may contain 
(n3) indepen-dent equations over a free semigroup without the unit element.A natural problem arises.Problem 7.1. Does there exist an independent system of equations over afree semigroup or a free monoid consisting of exponentially many equationswith respect to the number of unknowns?We note that if the above question is posed in free groups then the answeris a�rmative, although our compactness property is still valid, cf. [HK2]. Evenmore strongly, in [AL2] it is shown that systems of independent equations inthree unknowns over a free group may be unboundedly large.7.8 A �niteness condition for �nite sets of wordsIn this section we interpret the above compactness result in terms of order-ings. We consider relation quasi-ordering �r de�ned on �nite set of words bythe conditionX �r Y , 9 bijection ' : X ! Y such that R'(X) � RX :Consequently, a �nite set X is here considered as a solution of a system ofequations, and Y is larger than X if X satis�es all equations Y does.Now, we obtain as a direct interpretation of Theorem 7.5 our secondnontrivial �niteness condition of Table 7.1 in Section 7.1.Theorem 7.8. Each chain with respect to relation ordering �r is �nite. utNote that Theorem 7.8 states that �r is well-founded, and moreover, thatalso the reverse of �r is well-founded. We also want to emphasize that ourtwo nontrivial �niteness conditions, namely those stated in Theorems 7.2 and7.8, are di�erent in the sense that in Theorem 7.2 arbitrarily large, althoughalways �nite, antichains are known to exist, while it is not known whetherthere exist arbitrary large chains with respect to �r .Two natural questions connected to the ordering �r are to decide, for twogiven �nite sets X and Y of the same cardinality, whether X �r Y or whetherX = Y with respect to �r. These problems have very natural interpretationsin terms of questions considered in Section 3.1. The latter asks whether F -semigroups X+ and Y + are isomorphic, and the former asks (essentially)whether an F -semigroup can be strongly embedded into another one, i.e.,whether there exists an injective morphismmapping generators to generators.Recall, as we showed in Section 3.1, that an F -semigroup X+ can always beembedded into any Y + containing two words which do not commute.As the answer to the above questions we prove, cf. [HK1].



78 C. Cho�rut and J. Karhum�akiTheorem 7.9. Given two �nite sets X;Y � �+ it is decidable whether theF -semigroups X+ and Y + are isomorphic.Proof. We may assume that jjXjj = jjY jj, and restrict our considerations toa �xed bijection ' : X ! Y . We have to decide whether the extension of' : X+ ! Y + is an isomorphism, i.e., whether X and '(X) satis�es exactlythe same relations. Let the sets of these relations be RX and R'(X) havinga common set � of unknowns, respectively.It is an easy exercise to conclude that RX and R'(X) are rational relations,cf. constructions in Example 2.1. Now, deciding whether RX = R'(X) wouldsolve our problem, but unfortunately the equivalence problem for rationalrelations is undecidable, cf. [Be1]. So we have to use some other method. Sucha method can be found, when noticing that we are asking considerably lessthan whether RX and R'(X) are equal, namely we are asking only whetherY = '(X) satis�es RX , and vice versa. To test this is not trivial, but byTheorem 7.5 it reduces to testing whether Y satis�es a �nite subsystem ofRX , and moreover, by Theorem 7.6 such a �nite subsystem can be founde�ectively. Hence, indeed, we have a method to test whether X+ and Y + areisomorphic. utNote that the proof of Theorem 7.9 does not need the full power of The-orem 7.5. Only its e�ective validity for rational systems is needed, and thiswas easy to prove by direct combinatorial arguments.Theorem 7.9 and its proof have the following two interesting consequences:Theorem 7.10. Given �nite sets X;Y � �+ it is decidable whether the F -semigroup X+ is strongly embeddable into the F -semigroup Y +. utTheorem 7.11. For �nite sets X;Y � �+ it is decidable whether(i) X �r Y or (ii) X = Y with respect to �r. utThe proof of Theorem 7.9 is not di�cult, however, it contains quite asurprising feature: it does not seem to be extendable to rational subset of �+.This is interesting to note since for many problems �nite and rational setsbehave in a similar way { due to the fact that rational sets are �nite via theirsyntactic monoids. For instance, in a special case of the above isomorphismproblem asking only whether a given F -semigroup X+ is free, there is noessential di�erence whether X is �nite or rational, cf. [BePe]. In the generalisomorphism problem it is not only so that the method of Theorem 7.9 doesnot seem to work, but we have an open problem:Problem 7.2. Is it decidable whether two rational subsets of �+ generateisomorphic semigroups?We conclude this section by considering how equations can be used todescribe subsemigroups of �+. These considerations are connected to thevalidity of Ehrenfeucht's Conjecture.



Combinatorics of words 79Let � be a �xed �nite alphabet and � a denumerable set of unknowns.We say that a system S of equations, with a �nite number of unknowns from�, F-presents an F -semigroup X+ if, and only if, the following holds(i) X is a solution of S; and(ii) S is equivalent to RX .Intuitively this means that X satis�es the equations of S, but nothing elsein the sense that any other equation e satis�ed by X is dependent on S, i.e.,S and S [ feg are equivalent.Example 7.7. Consider the following three singleton sets of equationsS1 : xy = zx ; S2 : xy = yx ; S3 : xyy = yxxx :The �rst one is an F -presentation of X+1 with X1 = fa; ba; abg, for example.Indeed, denoting these words by x; y and z in this order, we see that theminimal nontrivial relations of X1 are xyn = znx for n � 1. But this set ofnontrivial relations is equivalent to the equation xy = zx:xyn = xyyn�1 = zxyn�1 = zzn�1y = zny:On the other hand, S2 is not an F -presentation. Indeed, assume that X =fx; yg satis�es S2. Then there is a word z 2 �+ and integers p and q suchthat x = yp and y = zq . The cases p = 0 or q = 0 are easy to rule out.In the remaining case RX is equivalent to the equation xq = yp, which isnot equivalent to S2. Finally, the above argumentation shows that S3 is anF -presentation of the semigroup fa; aag+. utWe did not require in the de�nition of an F -presentation that the set S isneither �nite nor independent. However, such an F -presentation can alwaysbeen found for any �nitely generated F -semigroup.Theorem 7.12. For each �nite X � �+ the F -semigroup X+ has a �niteF -presentation consisting of an independent set of equations. Moreover, suchan F -presentation can be found e�ectively.Proof. It is the proof of Theorem 7.6 which allows us to �nd a �nite F -presentation S for X+ . It follows trivially that some of the equivalent subsetsof S is independent, and hence a required F -presentation. To �nd it e�ectivelywe proceed as follows. By employingMakanin's algorithmwe can test whethertwo �nite systems of equations are equivalent, cf. Section 5. Hence a requiredF -presentation can be found by an exhaustive search. utThe problem of characterizing those systems of equations which are F -presentations seems to be so far a neglected research area. Our Example 7.7shows that not all �nite systems are F -presentations. As a related questionwe state



80 C. Cho�rut and J. Karhum�akiProblem 7.3. Is it decidable whether a given �nite system of equations isan F -presentation?We note that Problem 7.3 is semidecidable, i.e., if we know that a given�nite S is an F -presentation, then an F -semigroup X+ having S as an F -presentation can be e�ectively found. This follows by an exhaustive searchand arguments presented in the proof of Theorem 7.12.8. AvoidabilityThe goal of this section is to give a brief survey on most important results ofthe theory of avoidable words, or as its special case of repetition-free words.A typical question of this theory asks: does there exist an in�nite word overa given �nite alphabet which avoids a certain pattern (repetition, resp.),that is does not contain as a factor any word of the form of the pattern(any repetition of that order, resp.). If the pattern is xx all squares must beavoided. It should be clear that, contrary to many other fragments of formallanguage theory, results of this theory depend on the size of the alphabet.8.1 PreludeThe theory of avoidable words is among the oldest in formal language theory.A systematic study was carried out by A. Thue at the beginning of thiscentury, see [T1], [T2], [Be6] and [Be8] for a survey of Thue's work. Laterthese problems have been encountered several times in di�erent connections,and many important results, including most of Thue's original ones, have beendiscovered or rediscovered, cf. Chapter 3 in [Lo]. The topic has been under avery active research since early 80's, and it is no doubt that this revival is dueto a few important papers, such as [BEM], and papers emphasizing a closeconnection of this theory to the theory of �xed points of iterated morphisms,cf. [Be2] and [CS].Some basic results of the theory have already been published in detailsin books like [Lo] and [Sal2]. For survey papers we refer to [Be4] and [Be5].Finally, applications of the theory especially to algebra, are discussed in [Sap].To start with our presentation we recall that the basic notions were al-ready de�ned in Section 2.3. The theory, at its present form, is closely relatedto an iteration of a morphism h : �� ! ��. For convenience we consider only1-free prolongable morphisms, i.e., 1-free morphisms h satisfying h(a) = a�for some a 2 � and � 2 �+. Then obviously, for each i, hi+1(a) is a properpre�x of hi(a), so that the unique wordwh = limi!1hi(a)is obtained. Consequently, wh is a �xed point of h, i.e., h(wh) = wh. Since itis de�ned by iterating morphism h (at point a) we say that wh is obtained as



Combinatorics of words 81a �xed point of iterated morphism h. This mechanism, often generalized by apossibility of mappingwh by another morphism, is by far the most commonlyused method to construct avoidable in�nite words.As an illustration let us consider morphismsT : � a! abb! ba and F : � a! abb! a :The words they de�ne as iterated morphisms at a arewT = abbabaabbaababbabaababbaabbabaab : : :and wF = abaababaabaababaababaabaababa : : :The �rst one played an important role in the considerations of Thue, andlater it was made well-known by Morse, cf. [Mor1] and [Mor2]. Therefore it isusually referred to as Thue{Morse word, although it was actually consideredby Prouhet already in 1851, cf. [Pr]. The latter one is normally referred to asFibonacci word, due to the fact that the lengths of the words F i(a) form thefamous Fibonacci sequence. Accordingly, the morphisms T and F are calledThue{Morse and Fibonacci morphisms.It is striking to note that these two words are among the most simpleones obtained by iterated morphisms, and still they have endless numberof interesting combinatorial properties. In fact they seem to be the mostcommonly used counterexamples. For instance, pre�xes of wT of length 2nshow that factors of a word w of length n with multiplicities do not determinew uniquely, cf. Section 7.3. Similarly,wF can be used to show that Proposition6.2 is optimal, as well as that pre�xes of lengths p + 2, q + 2, with p and qconsecutive Fibonacci numbers, can be used to show the optimality of theTheorem of Fife and Wilf.As an illustration of another way of de�ning repetition-free words we notethat wT can be de�ned recursively by formulas� u0 = a;v0 = b; � un+1 = unvn for n � 0;vv+1 = vnun for n � 0;since then Tn(a) = un, as is easy to verify.8.2 The basic techniquesThe following two examples illustrate the basic techniques of proving thata �xed point of an iterated morphism avoids a certain pattern or a certaintype of a repetition. In principal, the techniques is very simple, namely thatof the in�nite descending already used by Fermat, but its implementationmight lead to a terrifying case analysis.



82 C. Cho�rut and J. Karhum�akiExample 8.1. We claim that the �xed point wh of the iterated morphismh : a! abab! abbis 3�-free, in other words, does not contain any cube, but does contain rep-etitions of any order smaller than 3. The latter statement is trivial since anyword of the form uuu(suf1(u))�1is mapped under h to a word of the same form, and as the starting point whcontains a factor aab.To prove the second sentence, assume that wh contains a cube v = uuu,with juj = n � 2. Now we consider the four cases depending on the pre�x u2of u of length 2, and analyse the cutpoints in fh(a); h(b)g-interpretations ofu. It is due to a favourable form of h that, with the exception of the pre�xba, such a cutpoint in u2 is unique, as depicted in Figure 8.1.u : � � � �� � � � � �aa ab ba bbFigure 8.1. Cutpoints inside u2In the cases aa, ab and bb the three pre�xes in di�erent occurrences of uhave exactly the same cutpoints. Consequently, in the case of ab there existsa word u0 such that h(u0) = u, and in the other two cases there exists a wordu0 such that h(u0) = sufk(u)u sufk(u)�1, for k = 1 or 2, i.e., h(u0) is obtainedfrom u by a shift as illustrated in Figure 8.2 for the pre�x aa.u3 :h :u03 : @@@@@@ AAAAAA ������ab aa ab aa ab aa abI K 6 �� � � � � �Figure 8.2. The case u2 = aaIn the case ba is the pre�x of u, if the ba pre�xes of the �rst and thesecond u have the same cutpoint, so have the third one as well, by the lengthargument. Hence, the above considerations apply. On the other hand, if the�rst and the second pre�x have a di�erent cutpoint, then the third one has,again by the length argument, still a di�erent one. This, however, is notpossible.



Combinatorics of words 83From above we conclude that, if wh contains a cube longer than 6, then itcontains also a shorter cube, and hence inductively a cube of length at most6. That this is not the case is trivial to check. utOur second example deals with abelian repetitions, and is due to [Dek].The basic idea of the proof is as above, only the details are more tedious.Example 8.2. Let wh be the word de�ned by the iterated morphismh : a! abbb! aaab:We intend to show that wh is abelian 4-free, i.e., does not contain 4 consecu-tive commutatively equivalent factors. The idea of the proof is that illustratedin Figure 8.2. Starting from an abelian 4-repetition, we conclude that its smallmodi�cation by a shift is an image under h of a shorter abelian 4-repetition.Now, the 4 consecutive blocks are only commutatively equivalent, so that itis not clear how to do the shifting. This means that h must possess somestrong additional properties. To formalize these we associate with a wordu 2 fa; bg� a value in the group ZZ5 (of integers modulo 5) by a morphism� : fa; bg� ! ZZ5 de�ned as�(a) = 1 and �(b) = 2:It follows that(i) �(h(w)) = 0 for all w 2 fa; bg�:Now assume thatB1B2B3B4 is an abelian 4-repetition inwh. We illustratethis, as well as an fh(a); h(b)g-interpretation of it in Figure 8.3.v1 v01 v2 v02 v3 v03 v04 v5 v05� �� �� �� �� �� �� �� �� �B1 B2 B3 B4h(a1) h(�1) h(a2) h(�2) h(a3) h(�3) h(a4) h(�4) h(a5)Figure 8.3. fh(a); h(b)g-interpretation of B1B2B3B4Formally, the above means thath(a1�1 : : :�4a5) = v1B1B2B3B4v05 with ai 2 �; �i 2 ��;where, for i = 1; : : : ; 5 and j = 1; : : : ; 4;h(ai) = viv0i and Bj = v0jh(�j)vj+1 with vi 2 ��; v0i 2 �+:Since � is a morphism we obtain from (i) that, for j = 1; : : : ; 4,



84 C. Cho�rut and J. Karhum�aki�(vj+1) = �(Bj)� �(h(�j)) � �(v0j)= �(Bj) + �(vj) = g + �(vj);where g, due to the commutative equivalence of Bj 's, denotes a constantelement of ZZ5. Therefore the sequence(1) �(v1); �(v2); �(v3); �(v4); �(v5)is an arithmetic progression in ZZ5. We want to allow only trivial arithmeticprogressions, which guides us to require that(ii) S = fa 2 ZZ5 j 9z 2 preffh(a); h(b)g : a = �(z)gis 5-progression free, i.e., does not contain any subset fa + ngjn = 0; : : : ; 4gwith g 6= 0. That our morphism h satis�es this condition is easy to see:indeed, we have(2) (�(a); �(ab)) = (1; 3) and (�(a); �(aa); �(aaa)) = (1; 2; 3);so that S = f0; 1; 2; 3g, while in ZZ5 any arithmetic progression of length 5,with g 6= 0, equals the whole ZZ5.Since vi's in (1) are pre�xes of h(a) or h(b) we can write the arithmeticprogression (1) in the form(3) �(v1) = �(v2) = �(v3) = �(v4) = �(v5):What we would need, in order to have a shift, is that from (3) we couldconclude that either the words vi or the words v0i are equal. This is ournext condition imposed for h and �. We say that � is h-injective, if for allfactorizations viv0i 2 fh(a); h(b)g, with i = 1; : : : ; 5, we have(iii) �(v1) = � � � = �(v5)) v1 = � � � = v5 or v01 = � � � = v05:From our computations in (2) we see that the only case to be checked is thecase when v1 = ab and v2 = aaa. And then indeed v01 = b = v02, so that our� is h-injective.We are almost �nished. We know that the words vi (or symmetricallythe words v0i) coincide. Consequently, the four abelian repetitions can beshifted to match with the morphism h: instead of Bi's we now consider thecommutatively equivalent blocks Di = viBiv�1i (or Di = v0�1i Biv0i), for i =1; : : : ; 4. Then there are words Ci such that(4) h(Ci) = Di with �(Di) = �(Dj) for i; j = 1; : : : ; 4 ;where � gives the commutative image of a word. If we would know thatCi's were commutatively equivalent, we would be done. Indeed, then by aninductive argumentation wh would contain either aaaa or bbbb as a factor,and this is clearly not the case.



Combinatorics of words 85So to complete the proof we still impose one requirement for h, namelythat(iv) M (h) = � jh(a)ja jh(a)jbjh(b)ja jh(b)jb � is invertible:Then, by (4), we would have �(Ci) �M (h) = �(Di), or equivalently �(Ci) =�(Di) �M (h)�1, for i = 1; : : : ; 4, so that Ci's would be commutatively equiva-lent. That M (h) is indeed invertible is clear, since it equals to � 1 23 1 �. utIt is worth noticing that conditions (i){(iv) in the above proof are generalones, which can be used to prove similar results for di�erent values of thesize of the alphabet and/or the order of the repetition.The argumentation of Examples 8.1 and 8.2 was already used by Thue inorder to concludeTheorem 8.1. The Thue-Morse word wT is 2+-free, i.e., does not containany overlapping factors. utWhen applied to the Fibonacci word wF , the above argumentation, withrather di�cult considerations, yields the result that it is (2+')�-free, where' is the number of the golden ratio, i.e., 12 (1 +p5), cf. [MP].From Theorem 8.1 we easily obtainTheorem 8.2. There exists a 2-free in�nite word in the ternary alphabet.Proof. De�ne the morphism ' : fa; b; cg� ! fa; bg� by setting '(a) = abb,'(b) = ab and '(c) = a. Since ' has a bounded delay, the word '�1(w) forw 2 fa; bg!, if de�ned, is unique, and since it is de�ned for each w containingno three consecutive b's, it follows that the word(5) w2 = '�1(wT ) = abcacbabcbacabca : : :is well-de�ned. Moreover, it is 2-free since wT is 2+-free, and each of thewords '(d), with d 2 fa; b; cg, starts with a. utThe word w2 can be obtained also as the �xed point of the iterated mor-phism h de�ned as h(a) = abc, h(b) = ac and h(c) = b.For the sake of completeness we state the result of Example 8.2, and itsmodi�cation for abelian 3-free words in the ternary alphabet, also due to[Dek], as the following theorem.Theorem 8.3. (i) There exists an in�nite abelian 4-free word in the binaryalphabet.(ii) There exists an in�nite abelian 3-free word in the ternary alphabet.ut



86 C. Cho�rut and J. Karhum�akiTable 8.1. Lengths of maximal words avoiding integer repetitions and abelianrepetitions @@@jj�jj k 2 323 3 @@@jj�jj k 2 323 31 1 � � ����Word case 9 74 41 11 � � ����Abelian caseNow, with the calculations in Section 2.3 we can summarize all avoidableinteger repetitions and abelian repetitions to the following table. Here k tellsthe order of the repetition, and the value of each entry the length of thelongest word avoiding this repetition in the considered alphabet.We note that special cases of (ii) in Theorem 8.3 was solved earlier. The�rst step was taken in [Ev], where it was shown that the 25th abelian powerswere avoidable in the binary case. This was improved to 5 in [Pl] using aniterated uniform morphism h of size 15, i.e., jh(a)j = 15 for each letter a.Later the same result was shown in [Ju] using uniform morphisms of size 5.Finally, the problem whether abelian squares can be avoided in the 4-letter alphabet, sometimes referred to as Erd�os' Problem, was open for a longtime, until it was solved a�rmatively in [Ke2]. The proof is an interestingcombination of a computer checking and of a mathematical reasoning showingthat an abelian 4-free word can be obtained as the �xed point of an iterateduniform morphism of size 85. Moreover, it is shown that no smaller uniformmorphism works here!By Table 8.1, all 2-free words in the binary alphabet are �nite, while byTheorem 8.1, there exists an in�nite 2+-free binary word. This motivates usto state the following notion explicitly de�ned in [Bra], cf. also [Dej]. For eachn � 2, the repetitiveness treshold in the alphabet of n letters is the numberT (n) satisfying:(i) there exists a T (n)+-free in�nite word in the n-letter alphabet; and(ii) each T (n)-free word in the n-letter alphabet is �nite.It follows from the fact that for any irrational number r, the notions ofr-free and r+-free coincide, that the repetitiveness treshold is always rational,if it exists. And it is known to exist for n � 11: As we noted T (2) = 2. Thevalue of T (3) was solved in [Dej], by showing that each ternary 74 -free word is



Combinatorics of words 87�nite, and by constructing an in�nite 74+-free ternary word as the �xed pointof a uniform morphism of size 19. She also conjectured the values of T (n)correctly up to the current knowledge, which is shown in Table 8.2. For 4 theproblem was solved in [Pan1] and for the values from 5 up to 11 in [Mou].Table 8.2. The repetitiveness tresholds and the lengths max(n) of longest T (n)-freewords in the n-letter alphabetHHHH jj�jjT (n)max(n) 2 3 4 5 6 7 8 9 10 112 7=4 7=5 5=4 6=5 7=6 8=7 9=8 10=9 11=103 38 122 6 7 8 9 10 11 12It is interesting to note that, for all k � 2, only very short words canavoid repetitions of order kk�1 . Indeed, any word of length k+2 in the k-letteralphabet �k either contains a factor of length k in a (k � 1)-letter alphabetor an image of the word 1 : : :k12 under a permutation of �k. Consequently,such a word contains either a repetition of order at least kk�1 or k+2k , andboth of these are at least kk�1 , for k � 2. Consequently, assuming the �rstline of Table 8.2 the second one follows for k at least 5 by noting that words1 : : :k1 are kk�1-free.8.3 Repetition-free morphismsAs we have seen, constructions of repetition-free words rely typically on it-erated morphisms, which preserve this property when started from a lettera, or in general, from a word having this property. This guides us to statethe following de�nition. A morphism h : �� ! �� is said to be k-free if itsatis�es: whenever w 2 �+ is k�free; so is h(w):Note that the de�nition of the k-freeness does not require k to be a number{ it can also be �+ or �� for some number �. For example, the Thue-Morsemorphism is 2+-free. Similarly, a morphism can be abelian k-free, for aninteger k, as in Example 8.2.The problem of deciding, for a given k and a morphism h, whether h isk-free is very di�cult. Indeed, even for integer values of k it seems to bestill open, cf. [Ke1] for partial solutions. On the other hand, computationallyfeasible su�cient conditions for the k-freeness, with k 2 IN, are known, anexample being the following result from [BEM].Proposition 8.1. Let k be an integer � 2. A morphism h : �+ ! �+ isk-free if it satis�es the following conditions



88 C. Cho�rut and J. Karhum�aki(i) h is k-free on k-free words of length at most k + 1;(ii) whenever h(a) 2 F (h(b)), with a; b 2 �, then a = b; and(iii) whenever h(b)h(c) = uh(a)v, with a; b; c 2 �, then u = 1 and a = b, orv = 1 and a = c.The �rst complete characterization of 2-free morphisms was achieved in[Be3]. Later in [Cr] it was extended to the following sharp form, where M (h)and m(h) denote the maximal and minimal lengths of h(a), when a rangesover the domain alphabet of h.Proposition 8.2. (i) A morphism h : �+ ! �+ is 2-free if, and only if, itis 2-free on 2-free words of length at most maxf3; (M (h)� 3)=m(h)g.(ii) A morphism h : fa; b; cg+ ! fa; b; cg+ is 2-free if, and only if, it is2-free on 2-free words of length at most 5.A characterization similar to (ii) { requiring to check words up to length10 { was shown for 3-free morphism over the binary alphabet in [Ka1]. Notehere that not only the decidability of the k-freeness of a morphism, in general,but also the decidability of the 3-freeness in the arbitrary alphabet seems tobe open.We conclude these considerations with two more sharp characterizationresults. The �rst one was already known to Thue, cf. also [Harj]. The secondone, due to [LeC], considers the problem whether a given morphism h : �+ !�+ is k-free, for all integer values of k � 2, in other words is power-free.Proposition 8.3. A binary morphism h : fa; bg+ ! fa; bg+ is 2+-free if,and only if, it is of the form T k or T k � �, where T is the Thue-Morsemorphism, � is the permutation of fa; bg and k is an integer � 1.Proposition 8.4. A morphism h : �+ ! �+ is power-free if, and only if,(i) h is 2-free; and(ii) h(a2) is 3-free for each a 2 �.8.4 The number of repetition-free wordsIn this subsection we study the number of repetition-free words in somespecial cases. More precisely we consider 2+- and 3-free words in the binarycase and 2-free words in the ternary case. Let us denote by SFn(3) the set ofall 2-free words of length n over the ternary alphabet, where n is allowed tobe 1, as well. Similarly, let S+Fn(2) and CFn(2) denote the correspondingsets of 2+- and 3-free words over the binary alphabet.We shall show the following result of [Bra], cf. also [Bri].Theorem 8.4. kSFn(2)k is exponential, i.e., there exist constants A, B, �and �, with A;B > 0 and �; � > 1, such thatA�n � kSFn(3)k � B�n for all n:



Combinatorics of words 89Proof. The existence of B and � are clear. The crucial point in proving thelower bound is to �nd a 2-free morphism h : �+ ! fa; b; cg+, with k�k > 3.As shown in [Bra] such a morphism exists for each value of k�k, and moreover,can be chosen uniform. For small values of k�k it is not di�cult to �nd sucha morphism using Proposition 8.2.Now, let h : fa; b; c;�a;�b; �cg+ ! fa; b; cg+ be a uniform 2-free morphism.As shown in [Bra] the smallest size of such a morphism is 22, which means thatafter having it, the checking of its 2-freeness is computationally easy. Nextwe de�ne a �nite substitution � : fa; b; cg+ ! fa; b; c;�a;�b; �cg+ by setting� (x) = fx; �xg for x 2 fa; b; cg:We �x a 2-free word wk of length k, which by Theorem 8.2 exists, and considerthe set h(� (wk)) of words. Clearly, words in this set are 2-free, and of length22k. Moreover, kh(� (wk))k contains 2k words, since h must be injective, oreven a pre�x code, by its 2-freeness. So we have concluded that, for eachn � 2, the cardinality of SF22n(3) � 2n. This implies that � can be chosento be 2 122 � 1; 032. utTheorem 8.4 stimulates for a few comments. First of all, a closer analysisof the problem shows that the constants can be chosen such that6 � 1; 032n � kSFn(3)k � 6 � 1; 38n:Moreover, the 20 smallest values of the number of 2-free words of length nover fa; b; cg are: 3, 6, 12, 18, 30, 42, 60, 78, 108, 144, 204, 264, 342, 456, 618,798, 1044, 1392, 1830, 2388.Second, the above proof immediately extends to in�nite words. Startingfrom a �xed in�nite 2-free word over the ternary alphabet �3, say w2 of The-orem 8.2, � creates nondenumerably many of those over a six-letter alphabet�6, and h being injective also on �!6 brings equally many back to �!3 . So wehaveTheorem 8.5. SF1(3) is nondenumerable.Finally, the above ideas can be applied to estimate the number of 3-freewords over the binary alphabet �2, if a uniform 3-free morphism h : �+ !�+2 , with k�k > 2, is found. Again, as shown in [Bra], such morphisms existfor each value of k�k > 2. Therefore, since the uniformity and the 3-freenessimply a bounded delay, and hence the injectivity on �! , we obtainTheorem 8.6. CFn(2) is exponential, and CF1(2) is nondenumerable.The bounds given for the number of 3-free words of length n in the binarycase are 2 � 1; 08n � kCFn(2)k � 2 � 1; 53n:For 2+-free words the results are not quite the same as the above for2- and 3-free words. The result stated as Proposition 8.5 follows from the



90 C. Cho�rut and J. Karhum�akicharacterizations of �nite and in�nite 2+-free binary words presented in thenext subsection.Proposition 8.5. S+Fn(2) is polynomial, while S+F1(2) is nondenumer-able.Recently, it was shown in [Car2], using the morphism of [Ke2], that thenumber of abelian 2-free words over the 4-letter alphabet grows exponentially,as well as that of abelian 2-free in�nite words is nondenumerable. This seemsto be the only estimate for the number of abelian repetition-free words. Forrepetition-free words over partially commutative alphabets we refer to [CF].At this point the following remarks are in order. As we saw in all thebasic cases the sets of repetition-free in�nite words form a nondenumerableset. Consequently, \most" of such words cannot be algorithmically de�ned. Inparticular, the by far most commonly used method using iterated morphismscan reach only very rare examples of such words. In the case of 2+-free wordsthe situation is even more striking: as shown in [See] the Thue-Morse word isthe only binary 2+-free word which is the �xed point of an iterated morphism.8.5 Characterizations of binary 2+-free wordsIn this subsection we present structural characterizations of both �nite andin�nite binary 2+-free words. These are obtained by analysing how a given2+-free word can be extended preserving the 2+-freeness. In order to be moreprecise, let us recall that the recursive de�nition of the Thue-Morse word wasbased on two sequences (un)n�0 and (vn)n�0 of words satisfyingu0 = a v0 = bun+1 = unvn vn+1 = vnun for n � 0:Let us call words un and vn Morse blocks of order n, and set Un = fun; vngand U = S1n=1 Un. Clearly, the lengths of Morse blocks are powers of 2, andfor instance v3 = baababba.Now, a crucial lemma in the characterizations is the following implication:(1) uvwx 2 S+F3�2n+1(2); u; v 2 Un; jwj = 2n; x 2 � ) w 2 Un:This means that, if a product of two Morse blocks of the same order, can beextended to the right, preserving the 2+-freeness, by a word which is longerthan these blocks, then the extension starts with a Morse block of the sameorder than the original ones.The proof of (1) is by induction on n. For n = 0 there is nothing to beproved. Further the induction step can be concluded from the illustration ofFigure 8.4. Indeed, the possible extensions of length 2n for un+1vn+1 are, byinduction hypothesis, words un and vn, and of the two potential extensionsof these of length jvnj one is ruled out in both the cases, since the word must



Combinatorics of words 91@@@un���vn| {z }vnununvn vnun xxun+1 vn+1Figure 8.4. The proof of (1) for un+1vn+1remain 2+-free. Consequently, for un+1vn+1, the word w is either un+1 orvn+1 as claimed. Similarly, one can prove the other cases of the products.Based on (1), and a bit more detailed analysis, the following characteri-zation is obtained for 2+-free �nite words in [ReSa]: for each 2+-free word wthere exists a constant k such that w can be written uniquely in the form(2) w = l0 : : : lk�1urk�1 : : : r0 with li 2 Li; ri 2 Ri and u 2 12[i=1U ik;where k = O(jwj) and the sets Li and Ri, for i = 0; : : : ; k � 1, are of thecardinality 15.Denoting n = jwj we obtain from (2) thatkS+Fn(2)k � k 12[i=1U ikk � 152k = O(n�);for some � > 0. Actually, as computed in [ReSa], � can be chosen to belog2 15 < 4. Hence, the �rst sentence of Proposition 8.5 holds.Note that (2) gives only a necessary condition, and hence only a partialcharacterization, for �nite 2+-free words. Later a more detailed analysis hasimproved estimates for the number of binary 2+-free words of length n, cf.[Kob], [Car1], [Cas1] and [Lep2]. The strictest bounds are given in [Lep2],where, as well as in [Car1], a complete characterization of all �nite 2+-freewords is achieved: A � n1;22 � kS+Fn(2)k � B � n1;37:On the other hand, in [Cas1] it is shown that the limitlimn!1 kS+Fn(2)kn�does not exist for any �, meaning that the number of 2+-free binary wordsof length n behaves irregularly, when n grows.Now, let us move to a characterization of 1-way in�nite binary 2+-freewords. This remarkable result was proved in [F], while our automata-theor-etic presentation is from [Be7]. Let us recall that Un denoted the set of Morse



92 C. Cho�rut and J. Karhum�akiblocks of order n and U the set of all Morse blocks. Further for each binary wlet �w denote its complement, i.e., word obtained fromw by interchanging eachof its letters to the other. The crucial notion here is the so-called canonicaldecomposition of a word w 2 ��U1, which is the factorizationw = zy�y;where �y is chosen to be the longest possible �y in U such that w ends with y�y.Next, three mappings, interpreted as left actions, �; �;  : ��U1 ! ��U1 arede�ned based on the canonical decompositions of words:(3) 8<: w � � = zy�y � � = zy�yyy�y = wyy�yw � � = zy�y � � = zy�yy�y�yy = wy�y�yyw �  = zy�y �  = zy�y�yy = w�yy:We consider A = f�; �; gas a ternary alphabet. The mappings �, � and  extend a word w = zy�y fromthe right by words yy�y , y�y�yy and �yy, respectively. The use of the canonicaldecompositions makes these mappings well-de�ned. It also follows from thefact that w is a proper pre�x of w � �, for any � 2 A, that any in�nite word! 2 A! de�nes a unique word w�! 2 �! . Such an ! is called the descriptionof w � !. Of course, the description can be �nite, as well.The mappings �, � and  are chosen so that, given the canonical descrip-tion zy�y of w, they add to the end of w two Morse blocks of the same orderas �y in all possible ways the condition (1) allows this to be done preservingthe 2+-freeness. Actually, in the case of � such a block would be yy, but nowalso one extra �y is added, since the next block of this length would be �y inany case, again by (1). Similarly � adds istead of y�y the word y�y�yy.It follows from these considerations that each 1-way in�nite binary 2+-free word has a description, which moreover, by (3), is unique. Which ofthe descriptions actually de�ne a 2+-free in�nite word is the contents of thecharacterization we are looking for. In order to state the characterization weset I = f�; �g(2)�f��; �; �g;and consider the following sets of in�nite words over A:F = A! �A�IA! and G = ��1F:Now, we are ready for the characterization known as Fife's Theorem.Proposition 8.6. Let w 2 �! .(i) A word w 2 ab�! is 2+-free if, and only if, its description is in F ;(ii) A word w 2 aab�! is 2+-free if, and only if, its description is in G.



Combinatorics of words 93The detailed proof of this result is not very short, cf. e.g. [Be7]. On theother hand, the result provides a very nice example of the usefulness of �-nite automata in combinatorics. Namely, the set of all descriptions of binary2+-free in�nite words can be read from the �nite automaton of Figure 8.5accepting any in�nite computation it allows.
���� ���� ��������

����1- -� �� �� �;� 2 -��������@@@@@R 3 �� ��K �?�5@@@@@I �;  4 �� ��K �?Figure 8.5. Fife's automaton AFNow the second sentence of Proposition 8.5 stating that there exist de-numerably many in�nite 2+-free words over the binary � is obvious. Indeed,the automaton contains two loops in state 3, for example.We conclude our discussion on 2+-free words by recalling a characteriza-tion of 2-way in�nite binary 2+-free words. This characterization has inter-esting interpretations in the theory of symbolic dynamics, cf. [MH].Proposition 8.7. A two-way in�nite binary word w is 2+-free if, and onlyif, there exists a two-way in�nite word w0 such that w = T (w0), where T isthe Thue-Morse morphism.This characterization was already known to Thue, and it is much easierto obtain than that of Proposition 8.6, by using standard tools presented atthe beginning of this section.We note that no characterization of 2-free words { either �nite or in�nite{ over the three letter alphabet is known. Some results in that direction areobtained in [She], [ShSo1] and [ShSo2]. For example it is shown that the setof such in�nite words is perfect in the sense of topology implying immediatelyTheorem 8.5.



94 C. Cho�rut and J. Karhum�aki8.6 Avoidable patternsIn this last subsection we consider an interesting problem area introduced in[BEM], and also in [Z], namely that of the avoidability of general patterns. Wede�ned this notion already in Section 2.3, and moreover have used it implicitlyseveral times. Indeed, Theorem 8.2 says that the pattern xx is avoidable inthe ternary alphabet, i.e., there exists an in�nite ternary word having nosquare as a factor. It is trivially unavoidable in the binary alphabet, whilethe pattern xyxyx, as shown in Theorem 8.1, is avoidable in this alphabet.It follows, as expected, that the avoidability of a pattern depends on thesize of the alphabet considered { contrary to many other problems in formallanguage theory. More precisely, the pattern P2 = xx separates the binaryand ternary alphabets.It turned out much more di�cult to separate other alphabets of di�erentsizes. A pattern separating 3- and 4-letter alphabets was given in [BMT]. Thepattern, containing 7 di�erent letters and being of length 14, is as follows:P3 = ABwBCxCAyBAzAC:It was shown that any word over fa; b; cg of length 131293 (which, however,is not the optimal bound) contains a morphic image of P3 under a 1-freemorphism into fa; b; cg+ as a factor. On the other hand, the in�nite wordobtained { again { as the �xed point of a morphism avoids the pattern P3.Such a morphism is given by h(a) = ab, h(b) = cb, h(c) = ad and h(d) = cd,i.e., can be chosen uniform of size 2.We summarize the above as follows.Proposition 8.8. For each i = 1; 2; 3 there exists a pattern Pi which isunavoidable in the i-letter alphabet, but avoidable in the (i+1)-letter alphabet.x����xx HHHHxy��xxx xxy xyxHHHH xy2

x2yx JJx2y2 

xyx2 JJxyxy @@xy2xHHHHxy3��x2yx2 x2yxy ��x2y2x BBx2y3 ��xyx3 BBxyx2y xyxyx@@xyxyy BBxy2x2bbbxy2xy��x2yx3 x2yx2y x2yxyx@@x2yxy2 ��xyxy2x xyxy3Figure 8.6. Avoidable and unavoidable binary patterns



Combinatorics of words 95It is an open question to settle whether Proposition 8.8 extends to largeralphabets.As we saw, the problem of settling whether a pattern is avoidable in agiven alphabet is not easy at all. However, the case where both the patternand the alphabet are binary, is completely solved. By a binary pattern we, ofcourse, mean a pattern consisting of two letters only, say x and y.The research leading to this interesting result was initiated in [Sc], con-tinued and almost completed in [Rot], and �nally completed in [Cas2].The result is summarized in Figure 8.6. There the labels of the leaves,and hence also any word obtained as their extensions, are avoidable, whilethose of inside nodes are unavoidable. Note that the tree covers all the wordsstarting with x, and hence up to the renaming all binary patterns, and yieldsProposition 8.9. Each binary pattern of length at least 6 is avoidable in thebinary alphabet.Each of these avoidable patterns was shown to be so by constructing anin�nite word avoiding the pattern as the �xed point of an iterated morphism,or as a morphic image of the �xed point of an iterated morphism. For eachunavoidable pattern � let max(�) be the length of the longest �nite binarywords avoiding�. The values of max(�), for all unavoidable patterns omittingsymmetrical cases, are listed in Table 8.3.Table 8.3. Unavoidable patterns and maximal lengths of binary words avoidingthose� :max(�) : x xy x2 x2y xyx x2yx xy2x x2y2 xyxy x2yx2 x2yxy0 1 3 4 4 9 10 11 18 18 38In accordance with Theorem 8.6 and Proposition 8.5 we note the resultof [GV] showing that any avoidable binary pattern is avoided by nondenu-merably many in�nite words.9. Subword complexityIn this �nal section we consider a problem area which has attracted quitea lot of attention in recent years, and which provides a plenty of extremelychallenging combinatorial problems. A survey of this topic can be found in[Al].9.1 Examples and basic propertiesLet w 2 �! be an in�nite word. We de�ne its subword complexity, or brieycomplexity, as the function gw : IN! IN by



96 C. Cho�rut and J. Karhum�akigw(n) = kfu 2 �n j u 2 F (w)gk:Consequently, gw(n) tells the number of di�erent factors of length n in w. Avery related notion can be de�ned for languages (consisting of �nite words)instead of in�nite words in a natural way.Two problems are now obvious to be asked:(i) Given a w 2 �!, compute its complexity gw.(ii) Given a complexity g, �nd a word having g as its complexity.In both of these cases one can work either with the exact complexity orwith the asymptotic complexity, i.e., identifying complexities g and g0 if theysatisfy g(n) = �(g0(n)). The above problems are natural to call the analysisproblem and the synthesis problem for complexities of in�nite words. Mostlyonly asymptotic versions of these problems are considered here.We start with two examples.Example 9.1. Let wK 2 f1; 2g! be the famous Kolakoski word, cf. [Kol],[Lep1] or [CKL], wK = 221121221221121122121121 : : :de�ned by the rule: wK consists of consecutive blocks of 1's and 2's such thatthe length of each block is either 1 or 2, and the length of the ith block isequal to the ith letter of wK . Hence, odd blocks consists of 2's and even onesof 1's. The word is an example of a selfreading in�nite word, cf. [Sl]. Theanswer to the analysis problem of wK is not known, in fact it is not evenknown whether gwK (n) = O(n2). utExample 9.2. As an example of the case when the complexity of a word isprecisely known we consider the Fibonacci word wF de�ned as the �xed pointof the Fibonacci morphism:F (a) = ab; F (b) = a. We show that its complexitysatis�es(1) gwF (n) = n+ 1 for n � 1:This is seen inductively by showing that, for each n, there exists just oneword w of length n such that both wa and wb are in F (wF ). Let us call suchfactors special. For n = 1 and n = 2 the sets of factors of these lengths arefa; bg and faa; ab; bag, where a and ba are the special ones. Now consider afactor w of length n + 1, with n � 2. If w ends with b, then, by the form ofthe morphism F , w admits only the continuation by a, i.e., the a-extension.If w = xw0a, with x 2 fa; bg, then by the induction hypothesis of the wordsw0a, with jw0j = n� 1, only one is special. Therefore, we are done, when weshow that of the words aw0a and bw0a, with jw0j � 1, only one is special.Indeed, one is special since wF is obtained by iterating a morphism so thatany factor appears arbitrary late.



Combinatorics of words 97Assume to the contrary that both of these words are special. Then allwords aw0aa, aw0ab, bw0aa and bw0ab are in F (wF ). From the form of F itfollows that the fF (a); F (b)g-interpretations of all of these words match withthe word w0, i.e. w0 is an image of a unique word w00 under F . But then bothof the words aF�1(w00) and bF�1(w00) are special, a contradiction with theinduction hypothesis. utBinary words satisfying (1) are so-called in�nite Sturmian words. Suchwords have several equivalent de�nitions, cf. [MH] and [Ra] emphasizing dif-ferent aspects of these words, and [Bro] containing a brief survey. Their prop-erties has been studied extensively, cf. [CH], [DG], [Mi] and [Ra], in particularrecent works in [BdL], [dL] and [dLM] have revealed their fundamental im-portance in the theory of combinatorics of words.Our next simple result, noted already in [CH], shows that the complexityof Sturmian words is the smallest unbounded complexity. In particular, theFibonacci word is an example of a word achieving this.Theorem 9.1. Let w 2 �! with k�k � 2. If gw is not bounded, thengw(n) � n+ 1 for all n � 1.Proof. We prove that, if for some n � 1, gw(n + 1) = gw(n), then w isultimately periodic, and therefore gw is bounded. Consequently, Theorem9.1 follows from the fact that the complexity of a word is a nondecreasingfunction.Assume now that gw(n0 + 1) = gw(n0). This implies that each factor uof w of length n0 admits one and only one way to extend it by one symbolon the right such that the result is in F (w). Let the function E : �n0 ! �de�ne such extensions. Let now u0 2 �n0 be a factor of w, say �u0 is a pre�xof w. We de�ne recursivelyui+1 = ui �E(sufn0(ui)) ; for i � 0:Then, by the de�nition of E, �ui is a pre�x of w for all i, implying thatw = limi!1 �ui. But by the pigeon hole principle and the fact that E is afunction limi!1 �ui is ultimately periodic. utTheorem 9.1 states that there exists a gap (�(1); �(n)) in the family ofcomplexities of �nite words. According to the current knowledge this is theonly known gap. We also note that Theorem 9.1 can be reformulated asCorollary 9.1. Let w 2 �! with k�k � 2. Then w is ultimately periodic if,and only if, gw is bounded. utAbove corollary yields a simple criterium to test whether the complexity ofa given word is bounded. Unfortunately, however, it is not trivial to verify thiscriterium. Indeed, even for �xed points of iterated morphisms the veri�cationis not obvious, although can be done e�ectively, cf. [HL] and [Pan3].



98 C. Cho�rut and J. Karhum�akiWe continue with another example where the asymptotic complexity canbe determined. This is a special case of so-called Toeplitz words consideredin [CaKa].Example 9.3. We de�ne an in�nite word wt 2 f1; 2g! as follows. Let p =1?2?2 be a word over the alphabet f1; 2; ?g, and de�ne recursivelyw0 = p!wi+1 = t(wi) for i � 0;where t(wi) is obtained from wi by substituting w0 to the positions of wi�lled by the letter ? . Consequently,w1 = (112?2122?2122121?2221?222)!;and the word wt = limi!1wi is well-de�ned over f1; 2g. The word w canbe de�ned as a selfreading word like the Kolakoski word as follows. For eachi � 1, replace the ith occurrence of ? in w0 by the ith letter of the wordso far de�ned. Clearly, this yields a unique word w0, and moreover w0 = wt.These two alternate mechanisms to generate w are referred to as iterativeand selfreading, respectively.In order to compute gwt we consider factors of wt of length 5n. Each suchfactor is obtained, by the selfreading de�nition of wt, from a conjugate ofun = (1?2?1)n by substituting a factor vn of length 3n to the positions �lledby ?'s. Therefore,(2) gwt(5n) � 5gwt(3n):It is a straightforward to see that un is di�erent from any of its conjugatesfor n � 2. Moreover, when di�erent vn's are substituted to a given conjugateof un, di�erent factors of wt are obtained. Therefore (2) would become theequality, if we could show that each factor v which occurs in wt occurs inany position modulo 3, i.e., the length of the pre�x immediately precedingv can be any number modulo 3. This, indeed, can be concluded from theiterative de�nition of wt. First, for each i, the word wi is periodic over f1; 2; ?gwith a period 5i. Second, each factor v of wt is a factor of wi0 for some i0.Consequently, since 3 and 5 are coprimes, the above v occurs in all positionsmodulo 3 in the pre�x of length 3 � 5i0 of wt.So far we concluded the formulagwt(5n) = 5gwt(3n) ; for n � 2:It is a simple combinatorial exercise to derive from this that gwt(n) = �(nr)with r = log 5=(log5� log 3). utNext we say a few words about the synthesis problem.



Combinatorics of words 99Example 9.4. We already saw how the smallest unbounded complexity ofbinary words could be achieved. The largest one is even easier to obtain.Indeed, the complexity of the word wbin = bin(1)bin(2) : : :, where bin(i)is the binary representation of the number i, equals the exponent functiong(n) = 2n. utExample 9.5. In [Cas3] the synthesis problem is elegantly solved to all linearfunction f(n) = an+ b, with (a; b) 2 IN � ZZ . Namely, it is shown that sucha function is the complexity of an in�nite word if, and only if, a+ b � 1 and2a+b � (a+b)2, and in the a�rmative case a word w having this complexityis constructed as a morphic image of the �xed point of an iterated morphism.ut9.2 A classi�cation of complexities of �xed points of iteratedmorphismsThe rest of this section is devoted to a classi�cation of the asymptotic com-plexities of words obtained as �xed points of iterated morphisms. This re-search was initiated in [ELR], later continued in [ER2], [ER3], [ER4], and�nally completed in [Pan2]. The classi�cation is based on the structure ofthe morphism, and it allows to decide the asymptotic complexity of such aword, i.e., to solve the analysis problem for iterated morphisms. It also allowsan easy way to solve the asymptotic synthesis problem for those complexitieswhich are possible as �xed points of iterated morphisms. As we shall see thereexist only �ve di�erent such possibilities.Let h : �� ! �� be a morphism which need not be 1-free, but is assumedto satisfy the condition a 2 pref(h(a)), for some a, in order to yield theunique word wh = limi!1hi(a):Consequently, wh may be �nite or in�nite. In the former case the complexityof wh is O(1). Of course, we assume here that � is minimal, i.e., all of itsletters occur in wh.The classi�cation of morphisms is based on their growth properties aspresented in [SaSo] and [RoSa1]. For a letter a 2 � we consider the functionha : IN! IN de�ned by ha(n) = jhn(a)j for n � 0:It follows that there exists a nonnegative integer ea and an algebraic realnumber �a such that ha(n) = �(nea�na );the pair (ea; �a) being referred to as the growth index of a in h.The set �B of so-called bounded letters plays an important role in theclassi�cation. A letter a is called bounded if, and only if, the function ha isso, i.e., its growth index equals either to (0; 0) or (0; 1). We say that h is



100 C. Cho�rut and J. Karhum�akinongrowing, if there exists a bounded letter in �;quasi-uniform, if �a = �b > 1 and ea = eb = 1 for each a; b 2 �;polynomially diverging, if �a = �b > 1 for each a; b 2 �, and ea > 1 forsome a 2 �;exponential diverging, if �a > 1 for each a 2 �, and �a > �b for somea; b 2 �.It is not di�cult to conclude, cf. [SaSo] or [RoSa1], that this classi�cationis both exhaustive and unambiguous, i.e., each morphism is in exactly oneof these classes. In particular, if we call a morphism growing, whenever ha isunbounded for each a 2 �, then the three last notions de�ne a partition onthe set of growing morphisms.The above classi�cation is constructive in the sense that for a given mor-phism we can decide which of the above types it is. Indeed, the growth indexof a letter a can be e�ectively computed, as well as the questions \qa > 1 ?"and \�a > �b ?" can be e�ectively answered. Details needed to conclude theseobservations can be found in [SaSo].Now we are ready for the classi�cation proved in [Pan2]. Unfortunately,it does not depend only on the type of the morphism h, but also on thedistribution of the bounded letters in wh. Even worsely, the complexity canbe the smallest possible, namely �(1), in each of the four cases, since ulti-mately periodic words can be �xed points of morphisms of any of the abovetypes. However, as we already mentioned, it is decidable whether an iteratedmorphism de�nes an ultimately periodic word.Proposition 9.1. Let h be a growing iterated morphism. Then if wh is notultimately periodic, its complexity is either �(n), �(n log logn) or �(n log n)depending on whether h is quasi-uniform, polynomially diverging or exponen-tially diverging, respectively.The case of nongrowing morphisms is more complicated, essentially due tothe fact that this notion is de�ned existentially, i.e., a morphism is nongrowingwhenever there exists a bounded letter.Proposition 9.2. Let h be a nongrowing (not necessarily 1-free) iteratedmorphism generating a non-ultimately periodic word wh. Then(i) if wh contains arbitrarily long factors over �B , the complexity of whis �(n2);(ii) if all factors of wh over �B are shorter than a constant K, the com-plexity of wh is that of one of the cases in Proposition 9.1, namely �(n),�(n log logn) or �(n logn), and moreover it is decidable which of these it is.Propositions 9.1 and 9.2 together with our earlier remarks yield immedi-ately the following important results.Corollary 9.2. The asymptotic analysis problem for (not necessarily 1-free)iterated morphisms is decidable. ut



Combinatorics of words 101Corollary 9.3. The asymptotic synthesis problem for the complexities �(1),�(n), �(n log logn), �(n log n) and �(n2) can be solved. utDetailed proofs of Propositions 9.1 and 9.2 can be found in [Pan2]. Herewe outline two basic observations of the proofs, as well as give an example ofa morphism of each of the above types, and compute the complexities of thecorresponding words.A proof of the fact that the complexity of wh, for any h, is at mostquadratic is not di�cult, cf. [ELR]. To see this let us �x n and considera factor v of wh of length n. First assume that v is derived in one stepfrom a word v0 containing at least one unbounded letter, i.e., the considered(occurrence of) v is a factor in h(v0). Let v0 be as short as possible and denotev0 = v and v1 = v0. Obviously, v1 satis�es automatically our requirement forv, so that we can de�ne inductively v0; v1; v2; : : : up to vk with vk 2 �. Itfollows that k � k�k � n. Therefore all the factors of length n satisfying ourabove restriction can be found among the factors of h(v), for j = k; : : : ; 1.There are at most O(n2) such factors. To cover all the factors of length n, itis enough to note that, for any v 2 ��B , the language fhi(v)ji � 0g containsat most K words for some �nite K independent of v. Therefore O(n2) is alsoa valid upper bound for all factors of length n.Our second remark concerns case (ii) in Proposition 9.2. In [Pan2] this isconcluded as follows. Now the factors of wh in ��B are shorter than a �xedconstant, say K. In particular, each factor v of wh longer than K containsa growing letter, and therefore for some i independent of v, the word hi(v)is longer than K. Hence, replacing h by its suitable power, and consideringthat as a morphism which maps factors of lengths from K + 1 to 2K intowords of factors of these lengths, we can eliminate the bounded letters. Leth0 be a new morphism constructed in this way. It follows that h0 is growing,and moreover, generates as an iterated morphism a word which consists ofcertain consecutive factors of wh. Hence, the original wh can be recoveredfrom the word wh0 by using a 1-free morphism mapping the above factorsto the corresponding words of ��. Consequently, the word wh0 is nothingbut a representation of wh in a larger alphabet, and therefore the asymptoticcomplexities ofwh andwh0 coincide. This explains how case (ii) in Proposition9.2 is reduced to Proposition 9.1.As we already said instead of proving Proposition 9.1 and case (i) inProposition 9.2, we only analyse one example in each of the complexityclasses. First, any ultimately periodic word is a �xed point of an iteratedmorphism yielding the complexity �(1). Second, the Fibonacci word wF ofExample 9.2 has the complexity �(n), and indeed the morphism is quasi-uniform with �a = �b = 12 (1 + p5). The remaining cases are covered inExamples 9.6{9.8.Example 9.6. Consider the morphism h de�ned by h(a) = aba and h(b) = bb.Now h is polynomially diverging since



102 C. Cho�rut and J. Karhum�akijhi(a)j = (12 i+ 1)2i and jhi(b)j = 2i for i � 0:To prove that gwh(n) = �(n log logn) we �rst note that under the interpre-tation a $ 0 and b2i $ i + 1 the word hi(a) equals to the so-called ithsesquipower si de�ned recursively bys0 = 0;si+1 = si(i + 1)si for i � 0:This means that hi(a) can be described ashi(a) = s3z }| {s12s13s12s1 4s3| {z }s4 5s4 : : : si�2| {z }si�1 isi�1:We �x integer n � 2 and choose i0 = dlogn� log logne+2, where logarithmsare at base 2. Then we havejsi0 j � i02i0 � (logn+ 3)2logn�log logn+3 � (logn+ 3) 8nlogn � 32n:Consider now factors of length n occurring in wh such that they overlap with,or contain as a factor, the �rst occurrence of i, i.e., b2i, in wh. Clearly, anyfactor of wh of length n is among these factors for some i � blognc. Since,for each i, there are at most n+ 2 � 2i such factors we havegwh(n) � jsi0 j+ blogncXi=i0+1(n + 2 � 2i) � 32n+ blogncXi=i0+1 3n = O(n log logn):On the other hand, of the above factors at least n�2i, for i = i0; : : : ; dlogne,are such that they do not occur earlier in wh. Therefore we also havegwh(n) � dlogneXi=i0 (n� 2i) � blognc�1Xi=i0 n2 = 
(n log logn):So we have proved that gwh(n) = �(n log logn). utExample 9.7. Consider the morphism de�ned by h($) = $ab, h(a) = aa andh(b) = bbb. Then jhi(a)j = 2i, jhi(b)j = 3i and �$ > 1, so that h is exponen-tially diverging. Denote�(i) = $aba2b3 : : :a2ib3i 2 pref(wh):Clearly each factor of wh of length n occurs in �(blog3(n)c), so we obtaingwh(n) � j�(blog3 nc)j = 1 + blog3 ncXi=0 (2i + 3i) = O(n logn):



Combinatorics of words 103On the other hand, for i = dlog3 ne; : : : ; blog2 nc, wh contains at leastblog2 ncXi=dlog3 ne(n � 2i) � 
(n logn)di�erent factors in b+a+b� [ b�a+b+. Therefore we have concluded thatgwh(n) = 
(n logn). utExample 9.8. Finally consider the wordw = abcbccbccc : : :bcn : : : ;which is the �xed point of the morphism de�ned as h(a) = abc, h(b) = bcand h(c) = c. So h is nongrowing and w contains unboundedly long factors inb�. Let �(i) = hi(a). Now, all the factors of w of length n occur in the pre�x�(n+ 1). On the other hand, all factors of �(dn2 e1) of length n are di�erent.Therefore the estimate j�(i)j = 1 + iXj=0(1 + j) = �(i2)shows that gwh(n) = �(n2). utOur above classi�cation can be straightforwardly modi�ed to D0L lan-guages, i.e., to the language of the form fhi(w) j i � 0g, where h is a mor-phism and w is a �nite word, cf. [RoSa1]. Indeed each iterated morphism h,with a 2 pref(h(a)), de�nes a D0L language via the pair (h; a), and each pair(h;w) determines an iterated morphism h0 as an extention of h de�ned byh0($) = $w, where $ is a new letter. The classi�cation of complexities of D0Llanguages leads exactly to the above �ve classes { although the transforma-tion (h;w)! h0 might change the class.Acknowledgement. The authors are grateful to J. Berstel, S. Grigorie�, T. Harju, F.Mignosi, J. Sakarovitch and A. Restivo for useful discussions during the preparationof this work.References[Ab1] H. Abdulrab, R�esolution d'�equations en mots: �etude et impl�ementation LISPde l'algorithme de Makanin, Ph.D. Thesis, Universit�e de Rouen, 1987.[Ab2] H. Abdulrab, Implementation of Makanin's algorithm, Springer LNCS 572,1991.[ACK] J. Albert, K. Culik II and J. Karhum�aki, Test sets for context-free languagesand algebraic systems of equations in a free monoid, Inform. Control 52, 172{186, 1982.



104 C. Cho�rut and J. Karhum�aki[AL1] M.H. Albert and J. Lawrence, A proof of Ehrenfeucht's Conjecture, Theoret.Comput. Sci. 41, 121{123, 1985.[AL2] M.H. Albert and J. Lawrence, The descending chain condition on solutionsets for systems of equations in groups, Proc. Edinburg Math. Soc. 29, 69{73,1985.[Al] J.-P. Allouche, Sur la complexit�e des suites in�nies, Bull. Belg. Math. Soc. 1,133{143, 1994.[BMT] K.A. Baker, G.F. McNulty and W. Taylor, Growth problems for avoidablewords, Theoret. Comput. Sci. 69, 319{345, 1989.[BEM] D.R. Bean, A. Ehrenfeucht and G.F. McNulty, Avoidable patterns in stringsof symbols, Paci�c J. Math. 85, 261{294, 1979.[Be1] J. Berstel, Transductions and Context-Free Languages, Teubner, 1979.[Be2] J. Berstel, Mots sans carr�e et morphismes it�er�es, Discr. Math. 29, 235{244,1979.[Be3] J. Berstel, Sur les Mots sans carr�es d�e�nis par morphisme, Springer LNCS71, 16{25, 1979.[Be4] J. Berstel, Some recent results on squarefree words, Springer LNCS 166,17{25, 1984.[Be5] J. Berstel, Properties of in�nite words, Springer LNCS 349, 36{46, 1989.[Be6] J. Berstel, Axel Thue's work on repetitions in words, Proc. 4th FPSAC,Montreal, 1992; also LITP Report 70, 1992.[Be7] J. Berstel, A rewriting of Fife's Theorem about overlap-free words, SpringerLNCS 812, 19{29, 1994.[Be8] J. Berstel, Axel Thue's papers on repetitions in words: a translation, Publi-cations du Laboratoire de Combinatoire et d'Informatique Mathematique, Uni-versit�e du Qu�ebec �a Montr�eal 20, 1995.[BdL] J. Berstel and A. de Luca, Sturmian words, Lyndon words and trees, LITPReport 24, 1995.[BePe] J. Berstel and D. Perrin, Theory of Codes, Academic Press, 1985.[BPPR] J. Berstel, D. Perrin, J.F. Perrot and A. Restivo, Sur le Th�eor�eme dud�efaut, J. Algebra 60, 169{180, 1979.[BePo] J. Berstel and M. Pocchiola, Average cost of Duval's algorithm for gener-ating Lyndon words, LITP Report 23, 1992.[Bra] F.-J. Brandenburg, Uniformly growing k-th powerfree homomorphisms, The-oret. Comput. Sci. 23, 69{82, 1989.[Bri] J. Brinkhuis, Non-repetitive sequences on three symbols, Quart. J. Math.Oxford 34, 145{149, 1983.[Bro] T.C. Brown, Descriptions of the characteristic sequence of an irrational,Canad. Math. Bull. 36, 15{21, 1993.[BS] R. B�uchi and S. Senger, Coding in the existential theory of concatenation,Arch. Math. Logik 26, 101{106, 1986/87.[Car1] A. Carpi, Overlap-free words and �nite automata, Theoret. Comput. Sci.115, 243{260, 1993.[Car2] A. Carpi, On the number of abelian square-free words on four letter alpha-bet, manuscript, 1994.[Cas1] J. Cassaigne, Counting overlap-free binary words, Springer LNCS 665, 216{225, 1993.[Cas2] J. Cassaigne, Unavoidable binary patterns, Acta Informatica 30, 385{395,1993.[Cas3] J. Cassaigne, Motifs �evitables et r�egularit�e dans les mots, Th�ese de Doctorat,Universit�e Paris VI, 1994.



Combinatorics of words 105[CaKa] J. Cassaigne and J. Karhum�aki, Toeplitz words, generalized periodicity andperiodically iterated morphisms, Springer LNCS 959, 244{253, 1995; also J.Eur. Comb. (to appear).[CV] Y. C�esari and M. Vincent, Une caract�erisation des mots p�eriodiques, C.R.Acad. Sci. Paris 286 A, 1175{1177, 1978.[Ch] C. Cho�rut, Bijective sequential mappings of a free monoid onto another,RAIRO Theor. Inform. Appl. 28, 265{276, 1994.[CC] C. Cho�rut and K. Culik II, On Extendibility of Unavoidable Sets. Discr.Appl. Math. 9, 125{137, 1984.[Co] P.M. Cohn, Algebra, Vol 2, John Wiley and Sons, 1989.[CF] R. Cori and M.R. Formisano, On the number of partially abelian square-freewords on a three-letter alphabet, Theoret. Comput. Sci. 81, 147{153, 1991.[CH] E.M. Coven and G.A. Hedlund, Sequences with minimal block growth, Math.Syst. Theory 7, 138{153, 1973.[Cr] M. Crochemore, Sharp characterizations of squarefree morphisms, Theoret.Comput. Sci. 18, 221{226, 1982.[CP] M. Crochemore and D. Perrin, Two-way string matching, J. ACM 38, 651{675, 1991.[CR] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press,1994.[CuKa1] K. Culik II and J. Karhum�aki, Systems of equations and Ehrenfeucht'sconjecture, Discr. Math. 43, 139{153, 1983.[CuKa2] K. Culik II and J. Karhum�aki, On the equality sets for homomorphismson free monoids with two generators, RAIRO Theor. Informatics 14, 349{369,1980.[CKL] K. Culik II, J. Karhum�aki and A. Lepist�o, Alternating iteration of mor-phisms and the Kolakoski sequence, in: G. Rozenberg and A. Salomaa (eds.):Lindenmayer Systems, Springer, 93{106, 1992.[CS] K. Culik II and A. Salomaa, On in�nite words obtained by iterating mor-phisms, Theoret. Comput. Sci. 19, 29{38, 1982.[Da] M. Davis, Hilbert's tenth problem is undecidable, Amer. Math. Monthly 80,233{269, 1973.[Dej] F. Dejean, Sur un Th�eor�eme de Thue, J. Comb. Theor, Ser. A 13, 90{99,1972.[Dek] F.M. Dekking, Strongly non-repetitive sequences and progression-free sets,J. Comb. Theor., Ser. A 27, 181{185, 1979.[dL] A. de Luca, Sturmian words: Structure, combinatorics and their arithmetics,Theoret. Comput. Sci. (to appear).[dLM] A. de Luca and Filippo Mignosi, Some combinatorial properties of Sturmianwords, Theoret. Comput. Sci. 136, 361{385, 1994.[Do] E. Domenjoud, Solving Systems of Linear Diophantine Equations: An Alge-braic Approach, Springer LNCS 520, 1991.[DG] S. Dulucq and D. Gougou-Beauchamps, Sur les facteurs des suites de Sturm,Theoret. Comput. Sci. 71, 381{400, 1990.[Du1] J.P. Duval, P�eriodes et r�ep�etitions des mots de mono��de libre, Theoret. Com-put. Sci. 9, 17{26, 1979.[Du2] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4,363{381, 1983.[EHR] A. Ehrenfeucht, D. Haussler and G. Rozenberg, On Regurality of Context-free Languages. Theoret. Comput. Sci. 27, 311{322, 1983.[EKR1] A. Ehrenfeucht, J. Karhum�aki and G. Rozenberg, The (generalized) PostCorrespondence Problem with lists of consisting of two words is decidable, The-oret. Comput. Sci. 21, 119{144, 1982.



106 C. Cho�rut and J. Karhum�aki[EKR2] A. Ehrenfeucht, J. Karhum�aki and G. Rozenberg, On binary equality lan-guages and a solution to the test set conjecture in the binary case, J. Algebra85, 76{85, 1983.[ELR] A. Ehrenfeucht, K.P. Lee and G. Rozenberg, Subword complexities of variousclasses of deterministic developmental languages without interactions, Theoret.Comput. Sci. 1, 59{75, 1975.[ER1] A. Ehrenfeucht and G. Rozenberg, Elementary homomorphisms and a solu-tion to the D0L sequence equivalence problem, Theoret. Comput. Sci. 7, 169{183, 1978.[ER2] A. Ehrenfeucht and G. Rozenberg, On the subword complexity of square-freeD0L-languages, Theoret. Comput. Sci. 16, 25{32, 1981.[ER3] A. Ehrenfeucht and G. Rozenberg, On the subword complexity of D0L-languages with a constant distribution, Inform. Proc. Letters 13, 108{113, 1981.[ER4] A. Ehrenfeucht and G. Rozenberg, On the subword complexity of locallycatenative D0L-languages, Inform. Proc. Letters 16, 121{124, 1983.[Ei] S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press,1974.[Ev] A.A. Evdokimov, Strongly asymmetric sequences generated by a �nite numberof symbols, Dokl. Akad. Nauk. SSSR 179, 1268{1271, 1968 (English transl.Soviet Math. Dokl. 9, 536{539, 1968).[F] E.D. Fife, Binary sequences which contain no BBb, Trans. Amer. Math. Soc.261, 115{136, 1980.[FW] N.J. Fine and H.S. Wilf, Uniqueness theorem for periodic functions, Proc.Am. Math. Soc. 16, 109{114, 1965.[GJ] M.R. Garey and D.S. Johnson, Computers and Intractrability: A Guide tothe Theory of NP-Completeness, Freeman, 1979.[GK] P. Goral�cik and V. Koubek, On discerning words by automata, SpringerLNCS 226, 116{122, 1986.[GV] P. Goral�cik and T. Vani�cek, Binary patterns in binary words, Intern. J. Al-gebra Comput. 1, 387{391, 1991.[GR] S. Ginsburg and G.F. Rosen, A characterization of machine mappings, Can.J. Math. 18, 381{388, 1966.[GO] L.J. Guibas and A.M. Odlyzko, Periods in strings, J. Comb. Theory, Ser. A30, 19{42, 1981.[HW] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers,1959.[Harj] T. Harju, On cyclically overlap-free words in binary alphabets, in: G. Rozen-berg and A. Salomaa (eds.), The Book of L, Springer, 123{130, 1986.[HK1] T. Harju and J. Karhum�aki, On the defect theorem and simpli�ability, Semi-group Forum 33, 199{217, 1986.[HK2] T. Harju and J. Karhum�aki, Morphisms, in this Handbook.[HKK] T. Harju, J. Karhum�aki and D. Krob, Remarks on generalized Post Corre-spondence Problem, Springer LNCS 1046, 39{48, Springer-Verlag, 1996.[HKP] T. Harju, J. Karhum�aki and W. Plandowski, Compactness of systems ofequations in semigroups, Springer LNCS 944, 444{454, 1995; also Int. J. Al-gebra Comp (to appear).[HL] T. Harju and M. Linna, On the periodicity of morphisms on free monoids,RAIRO Theor. Inform. Appl. 20, 47{54, 1986.[Harr] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley,1978.[Hi] G. Higman, Ordering with divisibility in abstract algebras, Proc. LondonMath. Soc. 3, 326{336, 1952.



Combinatorics of words 107[Hm] Y.I. Hmelevskii, Equations in free semigroups, Proc. Steklov Inst. Math. 107,1971; Amer. Math. Soc. Translations, 1976.[HU] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languagesand Computation, Addison-Wesley, 1979.[Jo] J.H. Johnson, Rational equivalence relations, Springer LNCS 226, 167{177,1986.[Ju] J. Justin, Characterization of the repetitive commutative semigroups, J. Al-gebra 21, 87{90, 1972.[Ka1] J. Karhum�aki, On cube-free !-words generated by binary morphisms, Discr.Appl. Math. 5, 279{297, 1983.[Ka2] J. Karhum�aki, A note on intersections of free submonoids of a free monoid,Semigroup Forum 29, 183{205, 1984.[Ka3] J. Karhum�aki, The Ehrenfeucht Conjecture: A compactness claim for �nitelygenerated free monoids, Theoret. Comput. Sci. 29, 285{308, 1984.[KRJ] J. Karhum�aki, W. Rytter and S. Jarominek, E�cient construction of testsets for regular and context-free languages, Theoret. Comput. Sci. 116, 305{316, 1993.[KaPl1] J. Karhum�aki and W. Plandowski, On the size of independent systems ofequations in semigroups, Theoret. Comput. Sci. (to appear).[KaPl2] J. Karhum�aki and W. Plandowski, On defect e�ect of many identities infree semigroups, in: G. Paun(ed.), Mathematical Aspects of Natural and FormalLanguages, World Scienti�c, 225{232, 1994.[KPR] J. Karhum�aki, W. Plandowski and W. Rytter, Polynomial size test sets forcontext-free languages, J. Comput. System Sci. 50, 11{19, 1995.[Ke1] V. Ker�anen, On the k-freeness of morphisms on free monoids, Ann. Acad.Sci. Fenn. Ser. A I Math. Dissertationes 61, 1986.[Ke2] V. Ker�anen, Abelian squares are avoidable on 4 letters, Springer LNCS 623,41{52, 1992.[Kob] Y. Kobayashi, Enumeration of irreducible binary words, Discr. Appl. Math.20, 221{232, 1988.[Kol] W. Kolakoski, Self generating runs, Problem 5304, Amer. Math. Monthly 72,674, 1965; Solution by N. �Ucoluk, Amer. Math. Monthly 73, 681{682, 1966.[KoPa] A. Koscielski and L. Pacholski, Complexity of Makanin's algorithm, JACM43, 1996.[Kos] M. Koskas, Complexit�es de suites de Toeplitz, Discr. Math. (to appear).[Kr] J.B. Kruskal, The Theory of Well-Quasi-Ordering: A Frequently DiscoveredConcept, J. Combin. Theory Ser. A 13, 297{305, 1972.[La] G. Lallement, Semigroups and Combinatorial Applications, Wiley ,1979.[LeC] M. Le Conte, A charcterization of power-free morphisms, Theoret. Comput.Sci. 38, 117{122, 1985.[Len] A. Lentin, Equations dans les Monoides L��bres, Gauthier-Villars, 1972.[LeSc] A. Lentin and M.P. Sch�utzenberger, A combinatorial problem in the theoryof free monoids, in: R.C. Bose and T.E. Dowling (eds.), Combinatorial Mathe-matics, North Carolina Press, Chapel Hill, 112{144, 1967.[Lep1] A. Lepist�o, Repetitions in Kolakoski sequence, in: G. Rozenberg and A.Salomaa (eds.), Developments in Language Theory, World Scienti�c, 130{143,1994.[Lep2] A. Lepist�o, Master's thesis, University of Turku, 1995[Lev] F.W. Levi, On semigroups, Bull. Calcuta Math. Soc. 36, 141{146, 1944.[Lo] M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983.[LySc] R.C. Lyndon and M.P. Sch�utzenberger, The equation am = bncp in a freegroup, Michigan Math J. 9, 289{298, 1962.



108 C. Cho�rut and J. Karhum�aki[McN1] R. MacNaughton, A decision procedure for generalized mappability-ontoof regular sets, manuscript.[McN2] R. MacNaughton, A proof of the Ehrenfeucht conjecture, Informal memo-randum, 1985.[Mak] G.S. Makanin, The problem of solvability of equation in a free semigroup,Mat. Sb. 103, 147{236, 1977 (English transl. in Math USSR Sb. 32, 129{198).[Marc] S.S. Marchenkov, Undecidability of the 89-positive Theory of a free Semi-group, Sibir. Mat. Journal 23, 196{198, 1982.[Mart] U. Martin, A note on division orderings on strings. Inform. Proc. Letters36, 237{240, 1990.[Mat] Y. Matiyasevich, Enumerable sets are diophantine, Soviet Math. Doklady 11,354{357, 1970 (English transl. Dokl. Akad. Nauk. SSSR 191, 279{282, 1971).[MN] H.A. Maurer and M. Nivat, Rational bijections of rational sets, Acta Infor-matica 13, 365{378, 1980.[McC] E.M. McCreight, A space-economical su�x tree construction algorithm, J.ACM 23, 262{272, 1976.[Mi] F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput.Sci. 82, 71{84, 1991.[MP] F. Mignosi and G. Pirillo, Repetitions in the Fibonacci in�nite word, RAIROTheor. Inform. Appl. 26, 199{204, 1992.[MRS] F. Mignosi, A. Restivo and S. Salemi, A periodicity theorem on words andapplications, Springer LNCS 969, 337{348, 1995.[Mor1] M. Morse, Recurrent geodesics on a surface of negative curvature, Trans.Am. Math. Soc. 22, 84{100, 1921.[Mor2] M. Morse, A solution of the problem of in�nite play in chess, Bull. Am.Math. Soc. 44, 632, 1938.[MH] M. Morse and G. Hedlund, Symbolic dynamics, Am. J. Math. 60, 815{866,1938.[Mou] J. Moulin-Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7,8, 9, 10 and 11 letters, Theoret. Comput. Sci. 95, 187{205, 1992.[MS] A.A. Muchnik and A.L. Semenov, Jewels of Formal Languages (Russian trans-lation of [Sal2]), Mir, Moskow, 1986.[Ne1] J. N�eraud, Elementariness of a �nite set of words is co-NP-complete, RAIROTheor. Inform. Appl. 24, 459{470, 1990.[Ne2] J. N�eraud, On the rank of the subset a free monoid, Theoret. Comput. Sci.99, 231{241, 1992.[Ne3] J. N�eraud, Deciding whether a �nite set of words has rank at most two,Theoret. Comput. Sci. 112, 311{337, 1993.[Ni] J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91,169{209.[Pan1] J.-J. Pansiot, A propos d'une conjecture de F. Dejean sur les r�ep�etitionsdans les mots, Discr. Appl. Math. 7, 297{311, 1984.[Pan2] J.-J. Pansiot, Complexit�e des facteurs des mots in�nis engendr�es par mor-phismes it�er�es, Springer LNCS 172, 380{389, 1984.[Pan3] J.-J. Pansiot, Decidability of periodicity for in�nite words, RAIRO Theor.Inform. Appl. 20, 43{46, 1986.[Pav] V.A. Pavlenko, Post Combinatorial Problem with two pairs of words, DokladiAN Ukr. SSR 33, 9{11, 1981.[Pec] J.P. P�ecuchet, Solutions principales et rang d'un syst�eme d'�equations avecconstantes dans le mono��de libre, Discr. Math. 48, 253{274, 1984.[Per] D. Perrin, On the solution of Ehrenfeucht's Conjecture, Bull. EATCS 27,68{70, 1985.



Combinatorics of words 109[Pl] P.A. Pleasants, Non repetitive sequences, Mat. Proc. Cambridge Phil. Soc. 68,267{274, 1970.[Pr] M.E. Prouhet, M�emoire sur quelques relations entre les puissances des num-bres, C.R. Acad. Sci. Paris. 33, Cahier 31, 225, 1851.[Ra] G. Rauzy, Mots in�nis en arithm�etique, Springer LNCS 95, 165{171, 1984.[ReSa] A. Restivo and S. Salemi, Overlap-free words on two symbols, SpringerLNCS 192, 198{206, 1984.[Rob1] J.M. Robson, Separating Strings with Small Automata, Inform. Proc. Let-ters 30, 209{214, 1989.[Rob2] J.M. Robson, Separating Words with Machines and Groups, (to appear),1995.[Ros1] L. Rosaz, Making the inventory of unavoidable sets of words of �xed cardi-nality, Ph.D. Thesis, Universit�e de Paris 7, 1992.[Ros2] L. Rosaz, Unavoidable Languages, Cuts and Innocent Sets of Words, RAIROTheor. Inform. Appl. 29, 339{382, 1995.[Rot] P. Roth, Every binary pattern of length six is avoidable on the two-letteralphabet, Acta Informatica 29, 95{107, 1992.[RoSa1] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems,Academic Press, 1980.[RoSa2] G. Rozenberg and A. Salomaa, Cornerstones of Undecidability, PrenticeHall, 1994.[Sal1] A. Salomaa, Formal Languages, Academic Press, 1973.[Sal2] A. Salomaa, Jewels of Formal Languages, Computer Science Press, 1981.[Sal3] A. Salomaa, The Ehrenfeucht Conjecture: A proof for language theorists,Bull. EATCS 27, 71{82, 1985.[SaSo] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal PowerSeries, Springer, 1978.[Sap] M. Sapir, Combinatorics on words with applications, LITP Report 32, 1995.[Sc] U. Schmidt, Avoidable patterns on two letters, Theoret. Comput. Sci. 63,1{17, 1985.[See] P. S�e�ebold, Sequences generated by in�nitely iterated morphisms, Discr. Appl.Math. 11, 93{99, 1985.[Sei] S. Seibert, Quanti�er Hierarchies and Word Relations, Springer LNCS 626,329{338, Springer-Verlag, 1992.[She] R. Shelton, Aperiodic words on three symbols I, J. Reine Angew. Math 321,195{209, 1981.[ShSo1] R. Shelton and R. Soni, Aperiodic words on three symbols II, J. ReineAngew. Math 327, 1{11, 1981.[ShSo2] R. Shelton and R. Soni, Aperiodic words on three symbols III, J. ReineAngew. Math 330, 44{52, 1982.[Shy] H.J. Shyr, Free Monoids and Languages, Hon Min Book Company, Taiwan,1991.[Si] I. Simon, An Algorithm to Distinguish Words E�ciently by Their Subwords,manuscript, 1983.[SkSe] D. Skordev and Bl. Sendov, On equations in words, Z. Math. Logic Grund-lagen Math. 7, 289{297, 1961.[Sl] N.J.A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973.[Sp1] J.-C. Spehner, Quelques probl�emes d'extension, de conjugaison et de presen-tation des sous-mono��des d`un mono��de libre, Ph.D. Thesis, Universit�e ParisVII, 1976.[Sp2] J.-C. Spehner, Quelques constructions et algorithmes relatifs aux sous-mono��des d'un mono��de libre, Semigroup Forum 9, 334{353, 1975.



110 C. Cho�rut and J. Karhum�aki[T1] A. Thue, �Uber unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana, Nr. 7, 1906.[T2] A. Thue, �Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana, Nr. 12, 1912.[Z] A.I. Zimin, Blocking sets of terms, Math USSR Sb. 47, 353{364, 1984.


