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1. Introduction

The basic object of this chapter is a word, that is a sequence  finite or
infinite  of elements from a finite set. The very definition of a word immedi-
ately imposes two characteristic features on mathematical research of words,
namely the discreteness and the noncommutativity. Therefore the combinato-
rial theory of words is a part of noncommutative discrete mathematics, which
moreover often emphasizes the algorithmic nature of problems.

Tt is worth recalling that in general noncommutative mathematical theo-
ries are much less developped than commutative ones. This explains, at least
partly, why many simply formulated problems of words are very difficult to
attack, or to put this more positively, mathematically challenging.

The theory of words is profoundly connected to numerous different fields
of mathematics and its applications. A natural environment of a word is a
finitely generated free monoid, therefore connections to algebra are extensive
and diversified. Combinatorics, of course, is a fundamental part of the theory
of words. Less evident but fruitful connections are those to probability theory
or even to topology via dynamical systems. Last but not least we mention
the close interrelation of the theory of words and the theory of automata, or
more generally theoretical computer science.

This last relation has without any doubt emphasized the algorithmic na-
ture of problems on words, but even more importantly has played a major role
in the process of making the theory of words to a mature scientific topic of its
own. Indeed, while important results on words were til 1970’s only scattered
samples in the literature, during the last quarter of the century the research
on words has been systematic, extensive, and we believe, also successful.

Actually, it was already at the beginning of this century when A. Thue
initiated a systematic study on words, cf. [Be6] for a survey of Thue’s work.
However, his fundamental results, cf. [T1], [T2] and also [Be8], remained quite
unnoticed for decades, mainly due to the unknown journals he used. Later
many of his results were discovered several times in different connections.

The modern systematic research on words, in particular words as elements
of free monoids, was initiated by M.P. Schiitzenberger in the sixties. Two in-
fluencial papers of that time are [LySc] and [LeSc]. This research created also
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the first monograph on words, namely [Len], which, however, never became
widely used.

Year 1983 was important to the theory: the first book “Combinatorics
on Words” [L.o] covering major parts on combinatorial problems of words
appeared. Even today it is the most comprehensive presentation of the topic.

The goals of this presentation is to consider combinatorial properties of
words from the point of view of formal languages. We do not intend to be
exhaustive. Indeed, several important topics such as theory of codes, several
problems on morphisms of free monoids, as well as unavoidable regularities
like Shirshov’s Theorem, are not considered in this chapter, but are discussed
in other chapters of the Handbook. Neither the representations of the topics
chosen are supposed to be encyclopedic.

On the other hand, the criteria we have had in our minds when choosing
the material to this chapter can be summarized as follows. In addition to
their relevance to formal languages we have paid a special attention to select
topics which are not yet considered in textbooks, or at least to have a fresh
presentation of older topics. We do not prove many of the results mentioned.
However, we do prove several results either as examples of proof techniques
used, or especially if we can give a proof which has not yet appeared in
texthooks. We have made special efforts to fix the terminology.

The contents of our chapter is now summarized.

In Section 2 we fix our terminology. In doing so we already present some
basic facts to motivate the notions. Section 3 deals with three selected prob-
lems. These problems  mappings between word monoids, binary equality
languages and a separation of words by a finite automaton  are selected to
illustrate different typical problems on words.

Section 4 deals with the well-known defect effect: if n words satisfy a
nontrivial relation, then they can be expressed as products of at most n — 1
words. We discuss different variations of this result some of which emphasizing
more combinatorial and some more algebraic aspects. We point out differences
of these results, including the computational ones, as well as consider the
defect effect caused by several nontrivial relations.

In Section 5 we consider equations over words and their use in defining
properties of words, including several basic ones such as the conjugacy. We
also show how to encode any Boolean combination of properties, each of
which expressable by an equation, into a single equation. Finally, a survey of
decidable and undecidable logical theories of equations are presented.

Section 6 is devoted to a fundamental property of periodicity. We present
a proof of the Theorem of Fife and Wilf which allows to analyse its optimality.
We also give an elegant proof of the Critical Factorization Theorem from [CP],
and finally discuss about an interesting recent characterization of ultimately
periodic words due to [MRS].

In Section 7 we consider partial orderings of words and finite sets of words.
As we note there normally such orderings are not finitary either in the sense
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that all antichains or in the sense that all chains would be finite. There
are two remarkable exceptions. Higman’s Theorem restricted to words states
that the subword ordering, i.e., the ordering by the property being a (sparse)
subword, allows only finite antichains, and is thus a well-ordering. We also
consider several extensions of this ordering defined using special properties
of words.

The other finiteness condition 1s obtained as a consequence of the validity
of the Ehrenfeucht Compactness Property for words, which itself states that
each system of equations with a finite number of unknowns is equivalent to
one of its finite subsystems. As an application of this compactness property
we can define a natural partial ordering on finite sets of words, such that it
does not allow infinite chains. This, in turn, motivates us to state and solve
some problems on subsemigroups of a free semigroup.

Section 8 is related to the now famous work of Thue. We give a survey
on results which repetitions or abelian repetitions are avoidable in alphabets
of different sizes. We also estimate the number of finite and infinite cube-free
and overlap-free words over a binary alphabet, as well as square-free words
over a ternary alphabet. We present, as an elegant application of automata
theory to combinatorics of words, an automata-theoretic presentation due to
[BeT] of Fife’s Theorem, cf.[F], characterizing one-way infinite overlap-free
(or 2F-free) words over a binary alphabet. Finally, we recall the complete
characterization of binary patterns which can be avoided in infinite binary
words.

In Section 9, last of this chapter, we consider the complexity of an infinite
word defined as the function associating to n the number of factors of length
n in the considered word. Besides examples, we present a complete classifi-
cation, due to [Pan2], of the complexities of words obtained as fixed points
of iterated morphisms.

Finally, as a technical matter of our presentation we note that results
are divided into two categories: Theorems and Propositions. The division is
based on the fact whether the proofs are presented here or not. Theorems are
either proved in details or outlined in the extend that an experienced reader
can recover those, while Propositions are stated with only proper references
to the literature.

2. Preliminaries

In this section we recall basic notions of words and sets of words, or languages,
used in this chapter. The basic reference on combinatorics of words is [L.o],
see also [La] or [Shy]. The notions of automata theory are not defined here,
but, can be found in any textbook of the area, cf. e.g. [Bel], [Harr], [HU] or
[Sal1], or in appropriate chapters of this Handbook.
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2.1 Words

Let X be a finite alphabei. Elements of 3 are called lefters, and sequences of
letters are called words, in particular, the empty word, which is denoted by
1, is the sequence of length zero. The set of all words (all nonempty words,
resp.) is denoted by 3* (X*F, resp.). Tt is a monoid (semigroup, resp.) under
the operation of concatenation or product of words. Moreover, obviously each
word has the unique representation as products of letters, so that X* and
Xt are free, referred to as the free monoid and semigroup generated by X.

Although we may assume for our purposes that 3 is finite we sometimes
consider infinite words as well as finite ones: a one-way infinite word, or briefly
an infinite word, can be identified with a mapping IN — X and is normally
represented as w = aqay ... with a; € Y. Accordingly, two-way infinite, or
bi-infinite, words over X are mappings Z — Y. We denote the sets of all such
words by X% and “X¥ | respectively, and set X = 3 U X%, The notions
7 and IN are used to denote the sets of integers and nonnegative integers,
respectively.

Let u be a word in % say u = ay ...a, with a; € ¥. We define u(i) to
denote the ith letter of u, i.e., u(i) = a;. We say that n is the length of u, in
symbols |u|, and note that it can be computed by the morphism | | : 2* — IN
defined as |a| = 1 € IN, for @ € X. The sets of all words over X of length k,
or at most k are denoted by % and X<F respectively. By |ul,, for a € ¥,
we denote the total number of the letter a in u. The commutative image w(u)
of a word u, often referred to as its Parikh image, 18 given by the formula
m(u) = ([ulay, -, [1lays, ), where [[X]| denotes the cardinality of X' and X' is
assimed to be ordered. The reverse of u is the word ™ = a,, .. .a1, and u is
called a palindrome if it coincides with its reverse. For the empty word 1 we
pose 17 = 1. By alph(w) we mean the minimal alphabet where w is defined.

Finally a factorization of u is any sequence uq, ..., u; of words such that
u = uy...up. If words u; are taken from a set X, then the above sequence
is called an X-factorization of u. A related notion of an X-interpretation of
1 18 any sequence of words uq, ..., u; from X satisfying auf = wuy ... us for
some words « and 3, with |a| < |uy| and |B] < |us]. These notions can be
illustrated as in Figure 2.1.

%1 U2 L. Ut %1 U2 L. Ut
| |
I 1 I k 1
a B
7 7

Figure 2.1. An X-factorization and an X-interpretation of u

For a pair (u, v) of words we define four relations:

u 18 a prefir of v, if there exists a word z such that v = uz;
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u s a suffir of v, if there exists a word z such that v = zu;

uis a factor of v, if there exist words z and 2’ such that v = zuz’;

u is a subword of v, if v as a sequence of letters contains u as a
subsequence, i.e., there exist words z1,..., 2z and yq, ...,y such that
u=z1...2e and v = Yoz Y1 . .- 21 Yz

Sometimes factors are called subwords, and then subwords are called sparse
subwords. We, however, prefer the above terminology. Each of the above re-
lations holds if w = 1 or v = v. When these trivial cases are excluded the
relations are called proper. A factor v of a word u can occur in w in different
positions each of those being uniquely determined by the length of the prefix
of u preceding v. For example, ab occurs in abbaabab in positions 0, 4 and 6.

If v = uz we write u = vz~

or z = u~'n, and say that u is the right
quotient of v by z, and that z i1s the left quotient of v by u. Consequently, the
operations of right and left quotients define partial mappings X* x X% — 3*.
Note that the above terminology is motivated by the fact that the free monoid
2* is naturally embedded into the free group generated by 3. We also write
u < v (u < v, resp.) meaning that u is a prefix (a proper prefix, resp.) of
v. Further by pref,(v) and sufg(v), for k € IN, we denote the prefix and the
suffix of v of length k. Finally, we denote by pref(a), suf(2), F(x) and SW(x)
the sets of all prefixes, suffixes, factors and subwords of ., respectively.

Tt follows immediately that 3™ satisfies, for all words w, v, 2,y € X* the
condition

(Y ww=2y=>HeX: u=2 and tv=y, or x=ul and v =1y.

Similarly, as we already noted, the length function of X* 1s a morphism into
the additive monoid IN:

(2) h:X* —IN with h'(0)=1.

Conditions (1) and (2) are used to characterize the freeness of a monoid, cf.
[Lev]. Consequently, 3* is indeed free as a monoid.

For two words v and v neither of these needs to be a prefix of another.
However, they always have a unique mazimal common prefir denoted by uAwv.
Similarly, they always have among their common factors longest ones. Let us
denote their lengths by I(u, v). These notions allow us to define a metric on
the sets X* and Y. For example, by defining distance functions as

d(u,v) = |uv| — 2l(u,v) for u,v e X*,
and
doo (1, v) = 27 1r L for e IV

(X*,d) and (E¥,d.) become metric spaces.

As we shall see later the above four relations on words are partial or-
derings. The most natural total orderings of X* are the lexicographic and
alphabetic orderings, in symbols <; and <, defined as follows. Assume that
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the alphabet X 1s totally ordered by the ordering <. This is extended to X*
in the following ways:

u<p v iff w v e Xt or pref,((uAv)"'u) < pref, ((u Av)'v)

and
u < v iff Jul < o] or |u|=|v] and u < v.

Consequently, u is lexicographically smaller than v if, and only if, either u
is a proper prefix of v, or the first symbol after the maximal common prefix
u A v is smaller in u than 1 v. Tt follows that the orderings <, and <
coincide on words of equal length. ITn some respects they, however, behave
quite differently: each word u 1s preceded only by finitely many words in <,
while for <; this holds only for words composed on the smallest letter of 3.

Tt follows directly from the definition that the alphabetic ordering <, 1s
compatible with the product on two sides: for all words u, v, 2,2 € X* we
have

u =g v ff zuz’ <, zvz’.

For the lexicographic ordering <; the situation is slightly more complicated.
As is straightforward to see we have for all u, v, z, 2" € ¥*,

u =< v iff zu < 20,

and
w=<;v and u ¢ pref(v) implies that uz <; vz’

2.2 Periods in words

We continue by defining some further notions of words, in particular those
connected to periodicity.

We say that words uw and v are conjugates, if they are obtainable from
each other by the cyclic permutation ¢ : 3* — 3* defined as

e(ly = 1,
e(u) = pref,(u)"upref (u) for u e I+

Consequently, u and » are conjugates if, and only if, there exists a k such that
v = c*(u). Tt follows that the conjugacy is an equivalence relation, each class
consisting of words of the same length. Tt also follows that the equivalence

class [u] is included in F(uu), or even in F(pref,(u)™ " uu).
Next we associate periods to each word v € Xt Tet u = a, ...a, with

a; € 3). A period of u is an integer p such that
(n apps = a; for i=1,...,n—p.

The smallest p satisfying (1) is called the period of u, and it is denoted by
p(u). Tt follows that any ¢ > |u| is a period of u, and that
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u € pref(pref,,(u))* and u g F(v*) forany v € F<plm)=t

Tt also follows that the conjugates have the same periods. The words in the
conjugacy class [prefp(“)(u)] are called cyclic roois of u. Note that not all
cyclic roots of u need to be factors of u, but at least one, namely the prefix
of u of length p(u), is so.

We say that a word v € X is pramitive, if it is not a proper integer power
of any of its cyclic roots. We claim that this 18 equivalent to the following
condition (often used as the definition of the primitiveness):

(2) Vze X" :u=2" implies n =1 (and hence u = z).

Clearly, (2) implies the primitiveness. To see the reverse we assume that
1 1s primitive and v = z” with n > 2. Then denoting r = prefp(“)(u) we have
the situation depicted as

u

Y
S
h.

Since |r| is the period necessarily |z| > |r|. Moreover, by the primitiveness
z ¢ r*. Consequently, comparing the prefixes of length |r| in the first two
occurrences of z we can write

(3) r=ps=sp with p,s#1.

The identity (3) is the most basic on combinatorics of words, and implies
after a few line proof, ¢f. Corollary 4.1 that p and s are powers of a nonempty
word. Therefore 1 would have a smaller period than |r|, a contradiction.

We derive directly from the above argumentation the following represen-
tation result of words.

Theorem 2.1. Fach word v € X7 can be uniquely represented in the form
u=p(u)”, withn > 1 and p(u) primitive. O

The word p(u) in Theorem 2.1 is called the primitive root of the word w.

There exist two particularly interesting subcases of primitive words: un-
bordered and Lyndon words. A word u € X7 is said to be unbordered, if none
of its proper prefix is one of its suffixes. Tn terms of the period p(u) this can
be stated as

u € U1 isunbordered if, and only if, p(u) = |u].

Tt follows that unbordered words are primitive. Moreover, unbordered words
have the following important property: different occurrences of an unbordered
factor u in a word w never overlap, i.e., they are separate:
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Uu Uu Uu

On the other hand, if u € Xt is not unbordered, i.e., is bordered, then it
contains an overlap:

Uu

(4) @t )

Uu

Consequently, bordered words are sometimes called overlapping.

As we noted the situation depicted in (4) is impossible for unbordered
words. Tf u is only primitive, then a variant of (4) is as follows: no primitive
word u can be an inside factor of uu, i.e., whenever uu = pus, then necessarily
p=1or s = 1. Being an inside factor can, of course, be illustrated as

Uu Uu

Uu

This, indeed, is impossible for primitive words by the argument used in (3).

We note that this simple lemma of primitive words is extremely useful
in many concrete considerations. As a general example fast algorithms for
testing the primitiveness can be based on that. Tndeed, use any (linear time)
pattern matching algorithm, cf. [CR], to test whether the pattern u is a factor
in uu in a nontrivial way, and if “no” the primitiveness of u has been verified.

Now, we go to the second important subcase of the primitive words. A
Lyndon word u € X1 is a word which is primitive and the smallest one in its
conjugacy class [u] with respect to the lexicographic ordering.

Tt is easy to see that a T.yndon word is unbordered. This follows since
of the words vuv, vou and uvv, with u,v € X1 and vuv primitive, the first
one 18 never the smallest one. Indeed, by the primitiveness of vuv, we can
use the argumentation of (3) to conclude that vuwv ¢ pref(v*). Consequently,
vuv deviates from v before its end, and so uvv does it earlier and vou later,
if ever, than vuv. Therefore if vuv <; v, then wvv <; vuv, and otherwise
VOU <] VUD.

Let £ denote the set of all Lyndon words. A fundamental property of
these words is the following representation result:

Proposition 2.1. Fach word v € Xt admits the unique factorization as a
product of nomincreasing Lyndon words, 1.e., in the form

u=1n_...1,, with ;e and [, <;l,_=<;...<11;.
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The proof of Proposition 2.1 can be found in [Lo], which studies exten-
sively Lyndon words and their applications to factorizations of free monoids.
Algorithmic aspects of Lyndon words can be found in [Du2] and [BePo].

2.3 Repetitions in words

One of the most intensively studied topics of combinatorics of words is that
of repetitions in words initiated already by Thue in [T1] and [T2]. This differs
from the above periodicity considerations in the sense that the focus is on
factors of words instead of words themselves. We state the basic definitions
here to be used later in Section 8.

A nonprimitive word 1s a proper power of another, and hence contains a
repetition of order at least 2. More generally, a word u is said to contain a
repetition of order k, with a rational k& > 1, 1f it contains a factor of the form

z € pref(r*), with % =k.
In particular, if |z| = 2|r| and u = zy7rze, with 21,29 € X* u contains a
repetition of order 2, 1.e., a square as a factor.

Special emphasis has been put to study repetition-free words. We define
three different variants of this notion as follows. L.et & > 1 be a real number.
We say that v € X is

k-free, if it does not contain as a factor a repetition of order at least k;
kt-free, if, for any k' > k, it is k'-free;
k™ -free, if it is k-free, but not k'-free for any k¥’ < k.

Tt follows that the &~ -freeness 1implies the k-freeness, which, in turn, implies
the kt-freeness. The reverse implications are not true in general, cf. Example
8.1 and Theorem 8.1. There exist commonly used special terms for a few most
frequently studied cases: 2-free, 2¥-free and 3-free words are often called
square-free, overlap-free and cube-free words, respectively.

In order to illustrate further the above notions we note that in the case
k = 2, the 2-freeness means that u does not contain as a factor any square, the
2% -freeness means that it does not contain any factor of the form vwvwo,
with v,w € X1, and the 27 freeness means that it does not contain any
square, but does contain repetitions of order 2 — ¢, for any ¢ > 0. As an
example, for the word u = babaabaabb the highest order of repetitions 1s 2%,

since 1t contains the factor (aba)Q% = abaabaab. Note that although u does

not contain a factor of the form o2

it is not Q%fﬁee, since it contains a
repetition of order 2% > 2%

The above notions were generalized in [BEM], and independently in [Z],
to arbitrary patterns as follows. Let = be another alphabet, and P a word
over = so-called pattern. We say that u € X awvoids the pattern P # 1 in

X, if u does not contain a factor of the form h(p), where h is a morphism
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h 5% — X with h(2) # 1 for all 2 in =. Further a pattern P is called
avordable in X if there exists an infinite word u € X% avoiding P.

For example, the pattern xzx is avoidable in Y if there exists an infinite
square-free word over Y, and as we already indicated, the pattern xyxryx
is avoidable in X if there exists an infinite 2% -free word over X. Tt is worth
noting here that the existence of a factor of the form vwwvww, with v,w € X1,
n v i1s equivalent to the existence of an overlapping factor in u, i.e., of two
occurrences of a factor overlapping in u. This explains the term of overlap-
free.

Natural commutative variants of the above notions can be defined, when
k € IN and only the k-freeness is considered: we say that v € X°° is abelian
k-free, if it does not contain a factor of the form wuy ... up with 7(u;) = w(uy),
fora,7=1,... k.

In order to motivate the use of infinite words in connection with avoidable
words we note the following simple equivalence: for each pattern P there exist
mfinitely many words in 3 avoiding P if, and only if, there exists an infinite
word in ¥ avoiding P. This follows directly from the finiteness of X Indeed,
in one direction the implication is trivial. ITn the other direction it follows
since, by the above reason, from any infinite set 1. of words, each of which
contains a prefix v, we can choose an infinite subset, 1./ and a letter ¢ € X
such that each element of I/ contains va, as a prefix.

We conclude this subsection by listing all the cases when the number of
k-free or abelian k-free words, for an integer k, is finite. Tt is an exhaustive
search argument which shows that this is the case for the 2-freeness in the
binary alphabet, as well as the abelian 3-freeness in the binary and the abelian
2-freeness in the ternary alphabets. Figure 2.2 describes the corresponding
trees Th 5, ATy 3 and ATj o, respectively. All the words of the required types
(up to symmetry) are found from the paths of these trees starting at the
roots.

As we shall see in Section 8, in all the other cases there exists an infinite
word avoiding corresponding k-repetitions or abelian k-repetitions. By these
trees all binary words of length at least 4 contain a square, and all binary
words of length at least 10 contain an abelian cube. Finally, all ternary words
of length at least 8 contain an abelian square.

2.4 Morphisms

As we shall see, or in fact have already seen, morphisms play an important role
in combinatorics of words. Morphisms are mappings h : X* — A* satisfying

h(uv) = h(u)h(v) for all u,v € T*.

Tn particular, necessarily h(1) = 1, and the morphism h is completely deter-
mined by the words h(a), with a € X. Therefore, as a finite set h(X) of words
a morphism is a very natural combinatorial object.
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a/ | (N a/\b a/\b |a | b| /\( |a |bc| a| b/\ |
a/\b (1| b| |(1 |(1 a| |b |c b| c| |a
(1| (1| |b (/\(7

oo AR AT,

ATy s

Figure 2.2. Trees TQQ, ATgyg and AT'&Q

We shall need different kinds of special morphisms in our later consider-
ations. We say that a morphism A : X% — A* is

binary, if || ]| = 2;

periodic, if there exists a z such that A(X) C z*;

1-free or nonerasing, if h(a) # 1 for each a € X,

uniform, if |h(a)| = |h(b)| for all a,b € X

prolongable, if there exists an a € Z such that h(a) € aX+;

a prefir, if none of the words of h(X) is a prefix of anot‘her7

a suffiz, if none of the words of h(X) is a suffix of another;

a code, 1f 1t 18 injective;

of bounded delay p, ifforeach a,b € X, u,v € I* we have: h(au) <
with v € X7 = a = b;

simplifiable, if there exist, morphisms f : X — ' and ¢ : ™" — A*,
with [|T[| < ||Z|], such that h = go f;

elementary, if it 1s not simplifiable.

h(bv)

In many cases the alphabets ¥ and A coincide. In the case of equations
or patterns we consider morphisms h : =% — 3* ie., the set of unknowns
is denoted by =. For a uniform morphism h we define its size as the number
|h(a)|, with a € X. Sometimes periodic morphisms are called cyclic. Finally,
as an example of a morphism with an unbounded delay we give the morphism
defined as h(xz) = a, h(y) = ab and h(z) = bb. Then, indeed, the word ab®
can be factorized as h(y)h(z)” or h(x)h(2)* in {h(2), h(y), ( ).

2.5 Finite sets of words

In this last subsection we turn our attention to sets of finite words, i.e., to
languages. Indeed, our main interest will be, on one hand, in words includ-
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ing the infinite ones, and on the other hand, on finite, or at most finitely
generated, languages.

Many of the operations defined above for words extend, in a natural way,
to languages. Consequently, we may talk about, for instance, a commutative
image of a language, or quotients of a language by another one. As an exam-
ple, let us remind that the set of all factors of words in a language X can be
expressed as F(X) = S X X% We define the size s(X) of a finite set X

by the identity s(X) = >_ . x |z|.
Tet X C X* and uq,...,u; € X. We already said that such a sequence
w1, ..., up 18 an X-factorization of w if w = uy ... wuy. Exactly as X was ex-

tended to X* or X1, we can extend the set X to a monoid or semigroup it
generates by considering all X-factorizations:

X*=duy.oug [ 120, u; € X},

and
Xt ={uy. o oug | t>1,u; € X}

Algebraically, such semigroups are subsemigroups of a finitely generated free
semigroup LT, and are called F-semigroups. Note that 1 € X+ if and only if,
1 € X. For convenience we concentrate to the semigroup case, and normally
assume that 1 & X.

Contrary to X7 the semigroup X+ need not be free in the sense that
each u € Xt would have only one X-factorization. However, what is true is
that X+ (as a set) has the unique minimal generating sel, namely the set ¥

defined by
V= (Xt —{1}) = (Xt — {112, orsimply Y = Xt — X+ if 1¢X.

Indeed, any set 7 generating X1, i.e., satisfying 7+ = X T, must contain V.
On the other hand, any element of X T, i.e., a product of elements of X, can
be expressed as a product of elements of Y, so that YV generates X1,

If each word of XT has exactly one Y-factorization then the semigroup
X7 is free, and its minimal generating set Y is a code, cf. [BePe].

Ome of our goals is to measure the complexity of a finite set X C X+, A
coarse classification 1s obtained by associating X with a number, referred to
as its combinatorial rank or degree, in symbols d(X), defined as

A(X) = min{[|FI| | X € F*).

Consequently, d(X) tells how many words are needed to build up all words
of X. The simplest case corresponds to periodic sets, when all words of X
are powers of a same word. The above notion will be compared to, but must
not be confused with other notions of a rank of a set which will be called in
Section 4 algebraic ranks, cf. [Lo].

Another way of measuring the complexity of X 1s to consider all relations
satisfied by X. In this approach codes, 1.e., those sets which satisfy only trivial
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relations, are the “simplest” ones. We prefer to consider these as the largest
ones, since, indeed, || X™|| assumes the maximal value namely [|X]|”, for all
n>1.

To formalize the above let X = {uy,... u;} C 5% be an ordered set of
words and let = = {z1,...,2:} be an ordered set of unknowns. T.et hx :

jant

=% — X* be a morphism defined as hx (2;) = u;. Then the set
Rx =ker(hx) C =" x =~
defines all the relations in XT. Further the subrelation
min(Rx) = {(y,2) ERx |y, € 5% 1y <y, 2/ < 2= (y,?) € Rx}

corresponds to munimal relations in X . Note that obviously Rx is a sub-
monoid of the product monoid =% x =* and min(Rx) is the minimal gener-
ating set of it, i.e., min(Rx) generates Rx, and no element of min(Rx) is a
nontrivial product of two elements of Rx.

Now we define a partial ordering <, on the set of ordered subsets X C X+
of a fized cardinality as follows:

X <, Y if, and only if, Ry C Rx,

or equivalently if, and only if, min(Ry ) C min(Rx). We notice that <, is a
partial ordering, where codes are maximal elements, i.e., for any n-element
set. X and any n-element code C' we have X <. (. We also note that the
equality under this ordering means the isomorphism of the corresponding F'-
semigroups. We call this ordering a relation ordering, and shall see in Section
7 that is has quite interesting properties.

We conclude this section of preliminaries with an example illustrating the
above definitions.

Frample 2.1. Consider the following four ordered sets

X1 = da,abb, bba,baab, babb,baba},
Xo = Ha,abb, bba,bb, babb, baba},
X3 = da,abb, bba,bb, bbb, baba},

X4 = Ha,abb, bba,bb, bbb, ba}.

Using finite transducers, cf. [Bel], we can compute all words of X" having
two Xy-factorizations, i.e., all nontrivial relations in X{", as explicitly noticed
in [Sp1]. All minimal such relations are computed by a transducer Tx, shown
in Figure 2.3. The idea of the construction of 7x, is obvious: 7x, searches
for minimal double X -factorizations systematically remembering at its states
which of the factorizations is “ahead” and by “how much”. Such a transducer
contains always two isomorphic copies, so that in our illustration we can omit
half of the transducer (the spotted lines in 7x,).
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@ ~_ (a,abb) (abb, a @
~_ /

|
(bba,1)I @ 1, bba)
|
T \
O

Figure 2.3. Transducer 7x,

Let us denote by idx, the identity relation of X{". Then, tx, can be
transformed to compute min(Rx, )—idx, simply by relabelling the transitions
as shown in Figure 2.4. Let us denote this transducer by . Similarly, we can
compute, as shown in Figure 2.5, the transducers 7; defining the relations
min(Rx,) — idx,, for i =2,3,4.

Tt follows that X4 <, X3 <, Xo <, X7 <, Cs, where (s 1s any six
element code. As we shall see in Section 7, the above procedure cannot be
continued for ever, i.e., each proper chain is finite. O

3. Selected examples of problems

In this section we consider three different problems which, we believe, il-
lustrate several important aspects and techniques used in combinatorics of
words. The problems deal with different possibilities of mapping X* into A*)
a characterization of binar