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The Laplacian Pyramid as a Compact | mage Code

PETER J. BURT, MmewmBEeR, iEee, AND EDWARD H. ADEL SON

Abstract—We describe a technique for image encoding in which
local operators of many scales but identical shape serve as the bass
functions. The representation differs from established techniques in
that the code elements are localized in spatial frequency as well as in
space.

Pixel-to-pixel correlations are first removed by subtracting a low-
pass filtered copy of theimage from the image itself. Theresult is a net
data compression since the difference, or error, image has low
variance and entropy, and the low-pass filtered image may represented
at reduced sample density. Further data compression is achieved by
quantizing the difference image. These steps are then repeated to
compress the low-pass image. Iteration of the process at appropriately
expanded scales generates a pyramid data structure.

The encoding process is equivalent to sampling the image with
Laplacian operators of many scales. Thus, the code tends to enhance
salient image features. A further advantage of the present code is that
it is well suited for many image analysis tasks as well as for image
compression. Fast algorithms are described for coding and decoding.

INTRODUCTION

COMMON characteristic of images is thatighboring

pixels are highly correlated. To represent thamage
directly in terms of the pixel values is therefoneefficient:
most of the encoded information is redundant. The first
task in designing an efficient, compresseate is to find a
representation which, ieffect, decorrelates the imagsxels.
This has been achieved through predictared through trans-
form techniques (cf. [9], [10] for recent reviews).

In predictive coding, pixelsare encodedequentially in a
raster format. However, prior to encoding eaikel, its value
is predicted frompreviously coded pixels in the same and
preceding rastelines. The predictedpixel value, which repre-

does not permit simple sequenti@oding. Noncausal ap-
proaches to image codirtgpically involve image transforms,
or the solution tolarge sets of simultaneous equatioather
than encoding pixels sequentiallysuch techniques encode
them all at once, or by blocks.

Both predictiveandtransform techniques havadvantages.
The former is relatively simple to implementand is readily
adapted tolocal image characteristics. The latter generally
provides greaterdata compression, but at the expense of
considerably greater computation.

Here weshall describe aewtechnique forremoving image
correlation which combinedeatures of predictiveand trans-
form methods.The technique is noncausal, yetomputations
are relatively simple and local.

The predicted value for eachixel is computed as docal
weighted average, using a unimodal Gaussian-like (or related
trimodal) weighting functioncentered on theixel itself. The
predicted values for abixels arefirst obtained byconvolving
this weighting function with the imagerlhe result is alow-
pass filtered image which is then subtracted from the original.

Let g,(ij) be theoriginal image,and g,(ij) be the result of
applying an appropriate low-paditer to g,. The prediction
error L(ij) is then given by

Lo(ii) = Go(ij) — 9u(ij)

Rather than encodg, we encodelL, and g,. This results
in a netdatacompressionbecause a), is largly decorrelated,
and so may be representpikel by pixel with manyfewer bits
than g,, and b)g, is low-pass filteredand somay be encoded

sents redundantinformation, is subtracted from the actual at a reduced sample rate.

pixel value, and only the difference, or prediction error, is

encoded. Sinceonly previously encodedpixels are used in
predicting eachpixel's value, this process &id to becausal.
Restriction tocausalprediction facilitates decoding: tdecode

a given pixel, itspredicted value is recomputed from alreadywo-dimensional arrays,, L,, L,

decodedneighboring pixels,and added tothe stored predic-
tion error.

Noncausalprediction, based on a symmetrineighborhood
centered at eachixel, should yield more accuratprediction

Further datecompression isachieved byiterating this pro-
cess.The reducedimage g, is itself low-pass filtered tgield
g, and asecond error image isbtained: L,(ij)=g,(ij)—a.(ij).
By repeating these steps several times we obtaegaence of
.., L. In our implemen-
tation each is smaller than its predecessor by a scale factor of
1/2 due to reducedsample density. If wenow imagine these
arrays stacked one abowanother, theresult is atapering
pyramid datastructure.The value at each node in thayramid

and, hence, greater data compression. However, this approgghresents thalifference between two Gaussian-like or related
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functions convolved with theoriginal image. The difference

between these twdunctions is similar to the"Laplacian”

operators commonlyused inimage enhancement [13]Thus,

we refer tothe proposed compressed imagmresentation as
the Laplacian-pyramid code.

The coding scheme outlined above will be practical only if
requiredfiltering computationscan be performed with an ef-
ficient algorithm. A suitablefast algorithm has recentlpeen
developed [2] and will be described in the next section.
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THE GAUSSIAN PYRAMID

Thefirst step in Laplacian pyramid coding is tow-pass
filter the original imageg, to obtain imagey,. We say thai,
is a "reducedVersion ofg, in that both resolutiorand sample
density are decreased. In similar way we form g, as a re-
ducedversion ofg,, and soon. Filtering is performed by a
procedure equivalent teonvolution with one of a family of

local, symmetric weighting functions. An important member

of this family resembles the Gaussiprobability distribution,
so the sequence @hagesg,, d,, ..., 0, is called theGaussian
pyramid?

A fast algorithm for generating the Gaussian pyramid is

given in the nextsubsection. Inthe following subsection we
show how the samalgorithm can beused to "expand" an
image array byinterpolating values between samplpoints.

This device is used here to help visualize tlomtents oflevels

in the Gaussian pyrami@nd inthe next section talefine the

Laplacian pyramid.

Gaussian Pyramid Generation

Suppose the image is representadially by the arrayg,
which contains C columns and R rows of pixels. Each pixel
represents the light intensity #ite corresponding imaggoint
by an integerl between Gand K — 1.This image becomes the

GAUSSIAN PYRAMID

P

9o = IMAGE
g, = REDUCE [g,]

Fig 1. A one-dimensional graphic representation of the proeesieh
generates a Gaussian pyramid Each rowdais represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. Vdlae
of each node in #&igh level is the weighte@verage ofhode values
in the next lower level. Note that node spacing doubles flewel
to level, while the same weighting pattern or “generating kernel" is
used to generate all levels.

The Generating Kernel

Note that the same 5-by-5 pattern of weightsis used to
generate each pyramid array from its predecessor. Whight-
ing pattern,called thegenerating kernel, is chosen subject to
certain constraints [2]. For simpticity we make separable:

w(m, 0 = w(m) w(n).

bottom orzero level of the Gaussian pyramid. Pyramid level 1

containsimageg,, which is areduced orlow-pass filteredver-
sion ofg,. Each value within level 1 is computed asveighted
average of values in level 0 within a 5-by-5 winddgachvalue
within level 2, representing g is then obtained fronvalues
within level 1 by applying the same pattern oWeights. A
graphical representation of this processoime dimension is

The one-dimensional, length 5, functiar is normalized

2
w(m=1

m=-2

and symmetric

given in Fig. 1. The size of the weighting function is not critical

[2]. We have selected the 5-by-5 pattern becauserdvides
adequate filtering at low computational cost.

The level-to-level averaging process fgerformed by the
function REDUCE.

g =REDUCE¢,_,)

which means, for levels 0 k< N andnodesi, j, 0 < i < G,
0<j<R,

2 2
a9, )= Z w(m, n)g, ., (2i + m, 2 +n).

m=-2 n=-2

Here N refers to the number of levels in the pyramighile
C andR arethe dimensions of thdéth level: Note in Fig. 1
that the density of nodes ieduced byhalf in one dimension,
or by a fourth in twodimensionsfrom level to level. The di-
mensions ofthe original image are appropriate for pyramid
construction if integersM., M, and N exist such thatC =
M2" + 1 andR =M, 2V + 1. (For example, if M. and M,
areboth 3andN is 5, then imagesneasure 97 by 9pixels.)
The dimensions ofy areC =M. 2""'+1 andR =M, 2" "'+
1.

twe will refer to this set of low-pass filtered images as the Gaussian (i) =

pyramid, even though in sonoases iwill be generatedwith a trimodal
rather than unimodal weighting function.

WwW(i) = w(-) fori =0, 1, 2.

An additional constraint iscalled equal contribution. This
stipulates that all nodes at a given lewelst contribute the
sametotal weight (=1/4) to nodes at the next higher level. Let

(MW (0) =a, W (-1)= W (1) =b, and W(=2) = W(2) = cin this

caseequalcontribution requiresthat a + 2c = 2b. Thesethree
constraints are satisfied when

w(0)=a
wW(-1) =w(1)= 1/4
W(-2)= W(2) = 1/4 —a/2.

Equivalent Weighting Functions

Iterative pyramid generation igj@valent to onvolving the
imageg, with aset of “equivalent weighting functionls

g=h 0O g
or

M M

2

m=-M n=-M

h(mn)g,(i2 + mej2' +n).
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Fig. 2. The equivalent weighting functiohgx) for nodes in leveld, 2, 3,
and infinity of the Gaussian pyramid. Note that axis scales haea
adjusted by factors of 2 to aid comparison Herepaemetera of the
generating kernel

The size M, of the equivalent weighting functiomloubles
from one level to thenext, as does the distancebetween
samples.

Equivalent weighting function$or Gaussian-pyramidevels
1, 2, and 3 are shown in Fig. 2. In thiasea = 0.4. The shape
of the equivalent function converges rapidly talzaracteristic
form with successively higher levels of the pyramid, that
only its scale changes. However, this shdpes depend on the
choice ofa in the generating kernel. Characteristghapes
for four choices ofa areshown in Fig. 3. Note that thequiv-
alent weighting functionsare particularly Gaussian-like when
a =0.4 Whena =0.5 the shape is triangular; whem= 0.3 it
is flatter andbroader than a Gaussian. Wih= 0.6 the central
positive mode is sharply peakeahd isflanked bysmall nega-
tive lobes.

Fast Filter

The effect of convolving animage with one of the equiv-
alent weighting function$, is to blur, or low-pass filter, the im-
age. The pyramid algorithm reduceshe filter bandlimit by an

is 0.4, and the resulting equivalent weighting
functions closely resemble the Gaussian probability density functions.
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EQUIVALENT WEIGHTING FUNCTIONS

Fig. 3. The shape of the equivalent weighting function depends on the
choice of parametea. Fora = 0.5, the function is triangular; fa =
0.4 it is Gaussian-like, and far= 0.3 it is broader than Gaussian. For
a = 0.6 the function is trimodal.

Gaussian Pyramid Interpolation

We now define a function EXPAND as the reverse of REDUCE.
Its effect is to expand anM( + 1)-by-N + 1) arrayinto a
(2M + 1)-by-(N + 1) array byinterpolating new node values
between the given values. ThuSXPAND applied to array, of

the Gaussian pyramigvould yield an arrayg, which is the
same size ag,_,.

Let g, be the result of expandirgy n times. Then

9o =0
and
0, = EXPAND @, n—1)

By EXPAND we mean, for levels 0 4 < N and 0< n and

nodesi, j, 0<i<C_, 0<j<R._,

2

2
9.)= 4 w(m,n)
m=-2 nZZ
d-m j-nQ
.gl,n—ID 2 ’ J 2 D (2)

octave from level to level, and reduces the sample interval by the

same factor. This is a very faalgorithm, requiring fewer com-
putational steps to compute a set of filtered images tharegte
ired by the fast Fourier transform to computesiagle filtered
image [2].

Example: Fig. 4 illustrates thecontents of a Gaussian
pyramid generated with a®4. The original image, ornthe far
left, measures 257 b257. This becomes level 0 on tlpyra-

Only terms for which i—m)/2 and {—n)/2 areintegers are
included in this sum.

If we apply EXPANDI times to image),, we obtaing, , which
is the same size as theriginal image g,, Although full
expansionwill not be used inimage coding, we willuse it to
help visualize thecontents of variousarrays within pyramid
structures. The top row of Fig. 5 shows image, 9, 1, 9, » -

mid. Each higher level array is roughly half as large inobtained by expanding levels of the pyramid in Fig.The low-
each dimension as its predecessor, due to reduced sample dengitys filter effect of the Gaussian pyramid is now shown clearly.
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GAUSSIAN PYRAMID

IE E ] ®
0 1 2 3 4 5

Fig. 4. First six levels of th&aussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixetchnd
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

THE LAPLACIAN PYRAMID LetL,, be the result obxpandingl, n times using (2). Therl,,
is the size of the original image.

The expanded Laplacian pyramid levels for thady” image
of Fig. 4 are shown in the bottom row of Fig. 5. Note tim&ge
features such as edges and bars appear enhanced Liapiaeian
pyramid. Enhanced featur@se segregated by size: findetails
areprominent inL, ,, while progressively coarser features are
prominent in the higher level images.

Recall that our purpose for constructing tieelucedimage g,
is that it may serve as prediction for pixel values in the
original imageg,. To obtain a compressegpresentation, we
encode the error image which remains when an expagdeid
subtracted frong,. This image becomes thmttom level of the
Laplacianpyramid. The next level is generated by encodigg
in the same way. We now give a formdefinition for the

Laplacian pyramid, and examine its properties. Decoding

Laplacian Pyramid Generation It can be shown that theriginal image can be recovered

The Laplacian pyramid is a sequence of error imagels, i);;f;za:ypyfzfnﬁggmg’ then summirgl the levels of the

..., L. Each is the difference between two levels of the Gaussian

pyramid. Thus, for & 1 <N, N
O = Z L. (4)
L =g—-EXPAND@ ., =0
A more efficient procedure is to expahg onceandadd it to
=0— 011 L,_,,then expand this image once and add it }o,, and so on

. . . o until level O isreached andy, is recovered. This procedure
Since there is no imagg,, , to serve as the prediction image forsimply reverses the steps in Laplaciggramid generation.
O, We sayly = Q. From (3) we see that

Equivalent Weighting Functions gy =Ly

The value at each node in the Laplacian pyramid is the
difference between theonvolutions oftwo equivalentweight- and forl=N-1,N-2, ..., 0,
ing functionsh,, h,, with the original image. Again, this is
similar to convolving an appropriately scaled Laplacian
weighting function with the imageThe node value coulchave
been obtained directly bgapplying this operator, although at
considerably greater computational cost. If we assume that the pixel values of an imagpresentation

Just as we may view the Gaussian pyram|d as a s&awef are Statistically independent, then the minimoomber ofbits
pass filtered copies of theriginal image, wemay view the Per pixel required to exactly encode the image is given by the en-
Laplacian pyramid as a set of bandpass filtered copies of tHepy of the pixelvaluedistribution. This optimum may be ap-
image. The scale of the Laplacian operator doubles from level B&ached in practice through techniques such as varlablgth
level of the pyramid, while the center frequency of fessband coding.
is reduced by an octave. The histogram of pixel values for the "Lady" imagestown

In order to illustrate theontents ofthe Laplacianpyramid, in Fig. 6(a). if we let the observeftequency of occurrencd(i)
it is helpful to interpolatebetween sampl@oints. This may be of each gray leveli be an estimate of itprobability of
done within the pyramid structure by Gaussian interpolationccurrence in this and other similar images, then the entropy

g =L +EXPAND@,.,).

Entropy



Fig 5. First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtainedby expanding pyramid arrays (Fig. 4)
through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and next higher levels of the
Gaussian pyramid.
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FIG 6. The distribution of pixel gray level values at various stages of the encoding process. The histogram of the original image (i&)given in
(b)-(e) give histograms for levels 0-3 of the Laplacian pyramid with generating parameter a=0.6. Histograms following quantization at each
level areshown in(f)-(i). Note that pixel values in the Laplacian pyraméde concentrateed near zengermitting datacompression
through shortened and varable length code words. Substantial further reduction is realized through quantization (particularly at low pyramid
levels) and reduced sample density (particularly at high pyramid levels).

is given by generated with this value afthan when generated withsanaller
)55 valye §uch a@.é_t, which yields more Quassian-likequivalent

H= — Z (i) log, (i) weighting functions. Thus, the selecti@~ 0.6 had perceptual
& as well as computational advantages. The fost levels of the

corresponding Laplaciampyramid and their histograms are
shown in Fig. 6(b)-(e). Variancesy and entropy H) are also

shown for eacHevel. These quantitieggenerally are found to
increase from level to level, as in this example.

The maximum entropy would be 8 inthis case since the
image isinitially represented at 256 gray levelmd would be
obtained when all gray levelsere equally likely. The actual
entropy estimate for "Lady" is slightly less than this, at 7.57.

The technique ofsubtracting apredicted value fromeach
image pixel, as in the Laplacian pyramid, removasch of the Entropy can besubstantially reduced byquantizing thepixel
pixel-to-pixel correlation. Decorrelation also results in avalues in each level of the Laplacian pyramid. Thigoduces
concentration of pixelvalues aroundzero, and, therefore, in quantization errors, but through the proper choice of the
reduced variance and entropy. The degree towhich these number and distribution of quantization levels. thelegra-
measuresare reduceddepends on the value of thgarameter dation may bemadealmost imperceptible ttiuman observers.
"a" used in pyramid generation(see Fig. 7). Wefound We illustrate this procedure with uniformquantization. The
that the greatest reduction was obtainedder 0.6 inourexam- range of pixel values iglivided into bins of sizen, and
ples. Levels of the Gaussian pyramid appeared "crisper" whge quantized valu€, (i, j) for pixel L, (i, j) is just the middle

QUANTIZATION
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Fig 7. Entropy and variance of pixel values in Laplacian pyramid level 0 as a function of the paraimfetethe “Lady” image.Greatest
reduction is obtained fa [10.6 This estimate of the optimad™was also obtained at other pyramid levels and for other images.

(a) (b)

(c) [(+)]

Fig 8. Examples of image data compression using the Laplacian Pyramid(@pded (c) give the origindLady" and "Walter" images,
while (b) and (d) give their encoded versions of the data rate4.88and 0.73its/pixel for "Lady" and "Walter," respectively. The
corresponding mean square errors were 0.88 percent and 0.43 percent, respectively.

value of the bin which contairls(i, j) relatively insensitive to such perturbations at high spatial
frequencies [3] , [4] , [7] .
C(i,j) =mn if (m—1/2)n <L, j) < (m + 1/2n. (5) This increased observesensitivity along with the increased

datavariance noted above means that more quantizdéeels

The quantized image is reconstructed through the expand dAHSt be used athigh pyramid levels than atow levels.

sum procedure (4) using values in the place a&f values. Fortuna_tely, these plxel§ contribute little tg the overall rhiie

Results of quantizing th&Lady" image are shown in Fig. for the |mage,due.to their Igw sampledensity. The low-level
6(f)-(i). Thebin size for each levelas chosen byincreasing (high-frequency) pixels, which are densely sampled, can be

n until degradationwas just perceptible when viewed from coarsely quantized (cf. [6], [11], [12]).

a distance of approximatelyfive times the image width RESULTS

(pixel-pixel separatiori] 3 min arc). Note that bin siZzeecomes

smaller at higher levels (loweapatial frequencies). Bin size at  The final result of encoding, quantizationand recon-

a given pyramid level reflects theensitivity of the human struction are shown in Fig. 8.The original "Lady" image is
observer to contrast errors within the spatiedquencybands shown in Fig. 8(a); thencodedversion, at 1.58 bits/pixel, is
represented at that levelHumans arefairly sensitive to shown in Fig. 8(b). We assume thadriable-lengthcode words
contrast perturbations at low and medium spatial frequencies, tare used to take advantage of the nonuniform distribution of
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node values, so the bit rate forgaven pyramid level is its
estimated entropy times its sample denségdthe bit rate for

the image is thesum ofthat for all levels. The same procedure
was performed on the “Walteimage; theoriginal is shown in

Fig. 8(c). while the version encoded at 0.Bi#s/pixel isshown

in Fig. 8(d). In both cases, thencodedimages are almost

indistinguishablefrom the originals underviewing conditions

as stated above.

PROGRESSIVE TRANSMISSION

It should also be observed that the Laplacian pyracoik is
particularly well suited foprogressiveimage transmission. In
this type of transmission a coarse rendition of the imagseigt
first to give the receiver an earljnpression ofimage content,
then subsequenttransmission provides image detail of
progressivelyfiner resolution [5].The observer mayterminate
transmission of an image as soon as its contarésecognized,
or as soon as it becomes evident that the image will not be of
interest. To achieve progressivigansmission, the topmost
level of the pyramidcode issent first, and expanded in the
receiving pyramid toform an initial, very coarse image. The
next lower level is then transmitted, expandaddadded to the
first, and so on. At the receiving end, thtial image appears
very blurry, but then comes steadiljnto “focus’ This
progression is illustrated in Fig. 9, from left tight. Note that
while 1.58 bits are requiredfor each pixel of the full
transmission (rightmosimage), about half of these, @.81
bits, are neededior eachpixel for the previous imagé€second
from right, Fig. 9), and 0.31 for the image previous to that (third
from right).

SUMMARY AND CONCLUSION

The Laplacian pyramid is a versatile data structure witmy
attractive features for imagerocessing. It represents amage
as a series of quasi-bandpassed imageach sampled at
successively sparser densitieshe resulting code elements,
which form aself-similar structurearelocalized in bothspace
and spatial frequency. By appropriately choosing the parameters
of the encodingand quantizing scheme, one caubstantially
reducethe entropy in therepresentation,and simultaneously
stay within thedistortion limits imposed byhe sensitivity of
the human visual system.

Fig. 10 summarizes the steps in Laplacian pyranoding.
The first step, shown on thar left, is bottom-upconstruction
of the Gaussian pyramid images, 9, , ..., gy [see (1)]. The
Laplacian pyramid images,, L,, ..., L, are then obtained as the
difference between successive Gaussian levels [see TBgse
are quantized tojield the compressedode represented by the
pyramid of valuesC (ij) [see (5)].Finally, imagereconstruction
follows an expand-and-sum procedure [see (4)] uSingalues in
the place ot values. Here we designate the reconstruateage
byr,.

It should also be observed that the Laplacigyra-
mid encoding schemeequiresrelatively simple computations.
The computations are local and may be performed in parallel, and
the samecomputations are iterated to build eachpyramid
level from its predecessors. We may envision performing Lapla-

Fig. 9. Laplacian pyramid code applied to progressive image transmission. High levels of the pyramid are transmitted first to give the receiver

a quick but very coarse rendition of the image. The receiver’'s image is then progressively refinded by adding successively lower pyramid levels

as these are transmitted. In the example shown here, the leftmost figure shows reconstruction using pyramid levels 4-8, or just 0.03 bits/pixel.

The following four figures show the reconstruction after pyramid levels 3, 2, 1, and 0 have been added. The cumulative data rates are shown

under each figures in bits per pixel.
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Fig. 10. A summary of the steps in Laplacian pyramid coding and deco#ingt, the original imageg, (lower left) is used t@enerate
Gaussian pyramid levets, g,, ... through repeated local averaging. Levels of the Laplacian pyiaglid, ... are then computed as
the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyf@nid code
C,, C,, .... Finally, a reconstructed imaggis generated by summing levels of the code pyramid.

cian coding and decoding in real time using apaycessors and

a pipeline architecture.

An additional benefit, previously noted, is thatdamputing
the Laplacian pyramid, one automatically has access
quasi-bandpass copies of the image. In thépresentation,
image features of various sizese enhancedand aredirectly
available for various imageprocessing (e.g.[1]) and pattern

recognition tasks.
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