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ABSTRACT OF THE DISSERTATION
Wireless Network Multicasting
by

Ching-Chuan Chiang
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1998

Professor Mario Gerla, Chair

Wireless networks provide mobile users with ubiquitous communicating capa-
bility and information access regardless of location. Conventional ground radio
networks are the “last hop” extension of a wireline network, thus supporting
only single hop communications within a “cell”. In this dissertation we address
a novel type of wireless networks called “multihop” networks. As a difference
from “single hop” (i.e., cellular) networks which require fixed base stations inter-
connected by a wired backbone, multihop networks have no fixed based stations
nor a wired backbone. The main application for mobile wireless multihopping
is rapid deployment and dynamic reconfiguration. When the wireline network is
not available, as in battlefield communications and search and rescue operations,
multihop wireless networks provide the only feasible means for ground commu-
nications and information access. Multihopping poses several new challenges in

the design of wireless network protocols. We focus on multicasting in this thesis.

The multicast service is critical in applications characterized by the close
collaboration of teams (e.g., rescue patrol, battalion, scientists, etc.) with au-
dio/video conferencing requirements and sharing of text and images. Multicast-

ing in a multihop wireless network is much more complex than in cellular wireless

xviii



networks where all mobiles in a cell can be reached in a single hop. In fact, one
or more multicast structures (e.g., trees) are maintained in the multihop network
to efficiently deliver packets from sources to destinations in the multicast group.
Multicast solutions similar to those used in mesh wireline networks such as the
Internet might be considered. Yet, these solutions are not directly applicable to
wireless networks because of the mobility of the users and the dynamically chang-
ing topology. In this dissertation we evaluate various popular multicast protocols
via simulations and propose new protocols which are well suitable for multihop

networks.

This dissertation mainly covers five areas: (1) Cluster-Token infrastructure
and cluster routing; (2) Shared tree wireless multicast routing protocols; (3)
Wireless multicast routing without Rendezvous Points; (4) On-demand wireless

multicast; (5) Reliable wireless multicast.
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CHAPTER 1

Introduction

1.1 Motivation

Data transmission between multiple senders and receivers is becoming increas-
ingly important in today’s networks. There are many applications for sending
data from a single source to multiple destinations (e.g., audio/video broadcast-
ing), or from multiple senders to multiple receivers (e.g., teleconference). Multi-
casting reduces the communication costs for applications that send the same data
to multiple recipients. Instead of sending data via multiple unicasts, multicas-
ting minimizes the link bandwidth consumption, sender and router processing,
and delivery delay. In addition, multicasting provides a simple and robust com-
munication mechanism when the receivers’ individual addresses are unknown or
changeable. In wireless networks, it is very important to reduce transmission
overhead and power consumption, due to the limitation of the wireless channel.
Multicasting can improve the utilization of the wireless link when sending mul-
tiple copies of messages, and exploit the inherent broadcast property of wireless
transmission. Each multicast group has a unique multicast identifier. Fach mul-
ticast address identifies a host group [CD85], namely a group of hosts that should
receive a packet sent to that address. Membership management protocols, e.g.,
IGMP [Dee89], provide the membership information for data forwarding. The

multicast group maintenance protocols should be adaptive to the dynamic change



of the group membership. Such management protocols are especially important
and challenging in a mobile environment because group members need to be

traced.

This dissertation covers the topic of multicast, specifically for wireless net-
works. Wireless terrestrial networks provide mobile users with ubiquitous com-
municating capability and information access regardless of the location. Broadly
speaking, we can define two types of wireless networks: (a) cellular networks, and
(b) instant infrastructure, multihop networks. In cellular radio networks [TTA92,
Go090] mobile users communicate in a single hop with a base station, which is
in turn connected to a wired backbone. In multihop wireless networks, in con-
trast, there are no fixed base stations. Transmissions to the intended destination
must travel one or more wireless hops. The main application of wireless multi-
hop networks is rapid deployment in areas where there is no wired infrastructure
(e.g., the battlefield) or where the infrastructure has failed (e.g., earthquake,
fire, flood relief, etc.). Examples of multihop implementations are ad-hoc net-

works [Joh94, PB94] and packet radio networks [CE95, JT87].

Multihopping poses new challenges in wireless network protocol design. For
example, mobile-IP routing protocols developed for cellular-type networks [IDJ91]
cannot be directly applied to the multihop case since there is no fixed home
agent to serve as routing reference. Multicasting, in particular, is very chal-
lenging in a multihop environment. Again, traditional wired network multicast
protocols [BFC93, DCI0] cannot be directly applied to this environment. For
example, in the Internet multicast backbone (MBone) application, the multicast
protocol DVMRP [DC90] uses the reverse path forwarding (RPF) protocol to
deliver multicast packets. In reverse path forwarding, a router forwards a broad-

cast packet originating at source S if and only if it has arrived via the shortest



path to S. If source S moves rapidly, it is possible that its packet arrives from
a direction different than indicated by the the local routing table (which has not
yet been updated). Thus, the router will fail to forward the packet [ABB96].
In addition, periodic full broadcasts in DVMRP introduce costly overhead on
the low bandwidth wireless channel and is not suitable for a sparsely distributed

membership.

Mobility is clearly the main challenge in wireless multicast, posing the fol-
lowing problems: (a) sources move, making source-oriented protocols inefficient;
(b) multicast group members move, thus requiring an easily reconfigurable mul-
ticast tree topology; (c¢) transient loops may form during tree reconfiguration; (d)
channel overhead caused by tree reconfiguration updates tends to increase very

rapidly with mobility, network size and membership size.

1.2 Previous Work

In wired network such as the Internet, there are two popular wired network
multicast schemes: per-source shortest tree and shared tree. The per-source tree
scheme consists of broadcasting the packet from the source to all destinations
along the source tree using “reverse path forwarding”. An arbitrary network node
will accept the packet broadcast by source S as long as the packet is received
from the shortest path emanating from S. This provision is required in order
to avoid endless looping. Examples of per-source tree multicast protocols are
DVMRP [DC90] and PIM dense mode [DEF97]|. Per-source tree multicasting
has many attractive properties. To begin, the shortest tree information from
each source to all destinations generally comes for free since it is embedded in
the routing tables of the most common routing algorithms such as Distance Vector

and Link State. Furthermore, source tree multicast distributes the traffic evenly



in the network (assuming that sources and receivers are evenly distributed); it
requires minimal initialization and maintenance; and it does not rely on a central
control point (e.g., rendezvous point). In mobile networks, however, the per-
source tree approach presents a problem. Suppose a source moves faster than
the routing tables can track it. In this case, some of the nodes have obsolete
routing tables which point in the “wrong direction”. Following the “reverse path
forwarding” principle, multicast packets are dropped at such nodes and may never

reach some of the receivers.

Another popular wired network scheme is shared-tree multicast. In this
scheme, a single tree rooted at a Rendezvous Point (RP) is maintained (instead
of many per-source trees). Examples of shared-tree approach are CBT [BFC93,
CZ95] and PIM sparse mode [DEF96]. The shared tree is less sensitive to source
mobility and can in part overcome the above mentioned fast moving source prob-
lem. Namely, a very fast source will send its packet to the RP in unicast mode.
Packets are correctly delivered to the RP on the shortest paths, irrespective of
the speed of the source. The RP will then multicast the packet on the shared
tree to the intended destinations. This works as long as the shared tree is stable.
If ALL the nodes are moving fast (relative to routing table updates), the shared

tree solution also fails.

Some wireless multicast protocols have been proposed [ABB96, CB95, PR97].
Protocol of [ABB96] modifies IP multicast and is designed for single hop wireless
networks. The scheme proposed in [CB95] is a RP-based multicast combining
resource reservation and admission control. A link level reliable broadcast scheme,
per-source tree based, is studied in [PR97], which is able to provide reliable
broadcast services to all members and is more flexible than spanning tree and

more efficient than flooding.



1.3 Research Overview and Contributions

Most multicast protocols work well with static networks. However, to support an
efficient and adaptive multicasting for a very dynamic network (especially multi-
hop) is very challenging. In this dissertation we work on this “ad-hoc” network
and evaluate various existing multicast schemes. New multicast strategies are
proposed to achieve better performance. Protocol evaluations are performed via
a detailed simulator which provides an flexible way to verify and monitor the

protocol behavior.

1.3.1 Network Infrastructure

The infrastructure proposed in this dissertation is a clustered multihop infras-
tructure [CWL97, GT95]. A number of mobile nodes are grouped into a cluster
according to a distributed clustering algorithm. Clustering provides an efficient
access control for wireless channel and spatial reuse, which increases the capacity
and the utilization of a wireless channel. We propose a clustering scheme (LCC)
which has better stability than previous clustering schemes, and thus provides a
more stable infrastructure for upper layer protocols such as routing and multi-
casting. Within a cluster, the channel access is controlled by a token which is
scheduled by the clusterhead. Nodes are moving based on a three-state Markov
chain probability model. The cluster structure is automatically maintained ac-
cording to the clustering algorithm when nodes move and topology changes. The
clusterhead monitors and schedules the token. A new token is created when the
clusterhead detects a token loss. A 2-level mobility model is used to improve
the scalability of cluster and/or multicast structure in some experiments, where

nodes are subdivided in two classes, slow and fast, at network initialization.



1.3.2 Routing

Most multicast protocols are designed independent of the underlying routing
scheme. Some multicast schemes like DVMRP need routing information to detect
the duplicate packets and to direct packet forwarding. A distance vector type
routing protocol, Destination-Sequenced Distance-Vector (DSDV), is used for
most experiments. DSDV has the same complexity as Bellman-Ford or RIP, but
with better protection against loops. A hierarchical cluster routing protocol has
been proposed to take advantage of the cluster-token infrastructure. On-demand

routing strategies are also exploited for supporting on-demand multicasting.

1.3.3 Multicasting

The major focus of this dissertation is on the multicasting for wireless networks.
Various existing multicast protocols have been studied to explore their problems
in mobile wireless networks. Variants of CBT, DVMRP, and PIM are modified
in order to apply to our infrastructure. Two multicast maintenance schemes,
soft state and hard state, are evaluated for mobile environments. The soft state
scheme is more flexible and efficient than the hard state scheme and adapts well
with mobility, making it very suitable for dynamically changing environments. A
new multicast protocol, FGMP, is proposed for mobile wireless networks. FGMP
takes advantage of inherent wireless transmission property and is very suitable for
dynamic network topologies. The forwarding group concept is adopted in FGMP
which maintains and forwards multicast traffic based on forwarding nodes rather
than on multicast tree links like most multicast schemes. We also propose an
On-Demand multicast which uses on-demand routing to reduce the storage and
channel overhead of routing tables. Without routing table updates, on-demand

multicast is able to scale well with increasing network and multicast member size.



In addition, on-demand multicast achieves better performance at high mobility.
Reliable multicast, which provides a confidential delivery of multicast packets, is
very important for the wireless channel. An application level reliable multicast

strategy, SRM, has been adopted and simulated with FGMP.

1.3.4 Simulation and Performance Evaluation

In order to evaluate the performance of various protocols, a simulator based on
a parallel simulation language, Maisie, has been developed. The Maisie simu-
lation environment has been implemented on a variety of workstation systems
(SunOs, Solaris, and Linux etc.), on distributed memory multiprocessor systems
like IBM/SP2, and on a shared memory system (Sparc 1000). This simulator
provides a fancy graphic interface which is very useful in debugging, verifying,
and refining the protocols. Statistical values for the simulation are collected to
measure the performance. The performance metrics include throughput, dupli-
cate packets, average delay, average hops, loss rate, channel overhead, and storage

overhead.

1.4 Organization of the Dissertation

This dissertation focuses on the multicast protocol design and performance eval-
uation for multihop, mobile wireless networks. In chapter 2, we present the net-
work infrastructure we envision; clustering, MAC scheme, and routing strategies
are described as well. Chapter 3 discusses multicast protocols using Rendezvous
Point(s). Shared tree multicast schemes belong to this category. An adaptive
multicast scheme is proposed for mobile environments. Per-source tree multicast

schemes and multicasting without a Rendezvous Point are studied in chapter 4,



and. FGMP is described and compared with other schemes. Chapter 5 intro-
duces the On-demand multicast and shows the performance results. Chapter 6
addresses the Scalable Reliable Multicast (SRM) [FIM95] and presents the im-
plementation on our simulator. Chapter 7 contains the conclusions and directions

for future research.



CHAPTER 2

Multihop, Mobile Wireless Network

Infrastructure

Wireless networks provide mobile users with ubiquitous communicating capabil-
ity and information access regardless of the location. Cellular networks [TIA92,
Go090] or personal communication services (PCS) [LCN95] provide mobile users
with continuous network connectivity under the coverage of base stations (some-
times called Mobile Support Stations, MSS, or Mobility Support Routers, MSR).
Mobile users communicate directly via wireless channel with base stations which
are interconnected by a wired backbone (single hop). The network architec-
ture under study is a wireless, mobile, multihop architecture. Unlike cellular
or PCS systems, there are no fixed base stations connected by a wireline net-
work. All nodes communicate via wireless channel with possible multihopping
over several mobile stations. The main motivation for mobile wireless multi-
hopping is rapid deployment and dynamic reconfiguration. When the wireline
network is not available, as in battlefield communications and search and rescue
operations, multihop wireless networks provide the only feasible means for ground
communications and information accesses. Examples of such networks are ad-hoc
networks [Joh94, PB94] and packet radio networks [CE95, JT87]. The dynamic
feature in multihop mobile wireless networks leads to the problem of keeping track

of the topology connectivity [PB94]|. The network protocols such as MAC layer



(channel access), routing, multicasting, etc., are more complicated than single
hop wireless networks. There have been various protocols proposed during the
past years [GT95, LG95, Lin96]. This research focuses on multicast in multihop,
mobile wireless networks. The network infrastructure, MAC layer, and routing

strategies are introduced in this chapter.

2.1 Cluster and Token Infrastructure

The aggregation of nodes into clusters under clusterhead control provides a con-
venient framework for the development of efficient protocols both at the MAC
layer (e.g., code separation among clusters, channel access, bandwidth alloca-
tion) and at the network layer (e.g., hierarchical routing) [GT95]. At the MAC
layer, the main objective of clustering is efficient use of the medium, while at
the network layer the hierarchical routing induced by clustering provides scala-
bility and robustness to mobility. In our distributed clustering algorithm, nodes
are elected as clusterheads based on preferential criteria (e.g., lowest ID number,
etc.). All nodes within transmission range of a clusterhead belong to the same
cluster. That is, all nodes in a cluster can communicate directly with a cluster-
head and (possibly) with each other. Nodes belonging to more than one cluster
are called gateways. Gateways support communications between adjacent clus-
ters. Clustering provides an effective way to allocate wireless channels among
different clusters. Across clusters, we enhance spatial reuse by using different
spreading codes (i.e. CDMA [GJ91]). Within a cluster, we use a clusterhead
controlled token protocol (i.e. polling) to allocate the channel among competing
nodes. The token approach allows us to give priority to clusterheads in order to
maximize channel utilization and minimize delay. A clusterhead should get more

chances to transmit because it is in charge of broadcasting within the cluster and
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of forwarding messages between mobile hosts which are not "connected”. The

channel access scheme is as follows:

1: Initially, the clusterhead gets the permission token to access the radio chan-

nel. It transmits any messages it has in its transmission queue.

2: The clusterhead passes the token to one of its neighbors according to a

separately defined scheduling algorithm.

3: The cluster node (regular node?) or gateway returns the token to its clus-

terhead after it has transmitted its message(s) (if any).

4: Repeat 1 to 3.

For each cluster only one node, which gets the permission token, can access the
channel with an assigned code (CDMA). In some cases the permission token may
be lost. Such a case occurs when the node with the permission token moves out-
side the cluster. Another case is when the host is a gateway. The gateway might
be tuned to a different code (i.e. different cluster), thus missing the permission
token which is then lost. To overcome these problems, the clusterhead reissues

the permission token after timeout.

We can use a heuristic token scheduling algorithm (described in section 2.3)
to choose the next neighbor host to get more efficient channel utilization and
message delivery performance. Also we can reserve some channel accesses (more

chances) for real time or multimedia traffics.

Polling was chosen here for several reasons. First, polling is consistent with
the IEEE 802.11 standard (Point Coordination Function) [CWK97]. Secondly,

polling gives priority to the clusterhead, which is desirable since routes are forced

2A regular node is a node which is neither a clusterhead nor a gateway
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to go through clusterheads in the 2-level cluster routing. Third, polling permits
easy support of real time connections (which can be scheduled at periodic intervals
by the clusterhead). Fourth, in our experiments each cluster has on average six
neighbors (which is the optimal value in a uniform multihop architecture [KS78));
thus polling latency is not a critical concern. For larger cluster size the polling
scheme can be replaced by a polling/random access scheme, to reduce latency.
This is accomplished by defining a two phase cycle. In the first phase, the clus-
terhead transmits its packets and polls nodes with real time connections; in the
second phase, backlogged nodes access the channel using the CSMA /CA proto-
col [Kar90]. This latter scheme is also consistent with IEEE 802.11 (Distributed

Coordination Function). In this thesis we only consider polling for simplicity.

2.2 Clustering (Least Clusterhead Change (LCC) Algo-

rithm)

In a mobile network, an important criterion in cluster algorithm design is stability.
Frequent clusterhead changes adversely affect the performance of other protocols
such as scheduling and allocation. In our clustering algorithm (Least Cluster
Change (LCC) clustering algorithm), only two conditions cause the clusterhead
to change. One is when two clusterheads come within range of each other, and
the other is when a node becomes disconnected from any other cluster. This is an
improvement (in stability) over existing algorithms which select the clusterhead

every time the cluster membership changes.

Following is our clustering algorithm specification.

1: At the start we use lowest-id cluster algorithm or highest-connectivity clus-

ter algorithm to create initial clusters.
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Figure 2.1: Cluster changes vs. Transmission Power

2 : When a non-clusterhead node in cluster ¢« move into a cluster j, no cluster-

head in cluster i and j will be changed (only cluster members are changed).

3: When a non-clusterhead node moves out of its cluster(s) and does not
enter into any existing cluster, it becomes a new clusterhead, forming a

new cluster.

4 : When clusterhead C(i) from cluster i moves into the cluster j, it challenges
the corresponding clusterhead C(j). Either C'(i) or C(j) will give up its
clusterhead position according to lowest-id or highest-connectivity (or some

other well defined priority scheme).

5: Nodes which become separated from a cluster will recompute the clustering

according to lowest-id or highest-connectivity.

Figure 2.1 shows that LCC further reduces clusterhead changes with respect
to the existing schemes. We note that using LCC with lowest-id or highest-

connectivity as the underlying mechanism does not make much difference.
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Figure 2.2 shows an example of clustering using LCC with lowest-id among

100 nodes.
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Figure 2.2: Clustering among 100 hosts, Transmission Power=120

One may also introduce the “preferential” condition that clusterheads are
chosen among “slow moving” nodes. This way, the stability of hierarchical routing
(and, consequently, of the forwarding group) is greatly improved. Beside the
clusterhead election, additional procedures are required to manage clusters. For

example, if spreading codes are used, the nodes must agree on a common control
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code for initialization and for reconfiguration [GT95]; and on the selection of

orthogonal codes in adjacent clusters, etc.

Cluster maintenance protocols run continuously in the background in order
to adjust to node movements and dynamically reconfigure the cluster structure
accordingly. Average convergence time of the clusterhead election algorithm is
O(1), that is, it does not depend on network size N and thus scales well [GT95].
In fact, clusters are reconfigured as quickly as links are added/deleted. This
property implies that the convergence of the routing algorithm (which operates

above clustering) is not “slowed down” by the presence of clusters.

2.3 MAUC layer (Token Scheduling Channel Access Scheme)

In this clusterhead-token infrastructure, we can use various token schedule schemes
to improve the routing efficiency. One way to do this is to give higher priority
to neighbors from which a packet was recently received. The clusterhead gives
the permission token to the upstream neighbor (gateway) in such a way that the
packets will be sent with the least delay. Here is a simple way to implement

priority-token-scheduling (PTS).

e Initially every neighbor of a clusterhead has the same priority to receive

the token from the clusterhead.

e When a data packet is transmitted by node 7, the clusterhead increases the

priority of node 1.

e When the token returns from an empty queue at neighbor j, the clusterhead

decreases the priority of node j.
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More generally, priority token scheduling allows us to forward high priority traf-
fics with the least delay. Moreover, dynamic scheduling permits us to reserve a
portion of the channel by offering more transmission opportunities to real time

and multimedia sources.

Previous cluster oriented schemes, such as cluster TDMA [GT95] and cluster
token [LG95], did not take full advantage of clusterheads. In our clusterhead
oriented token scheme, the clusterhead plays an important role both in clustering
and in dynamic channel scheduling. As a result, LCC clustering is more stable
than previous clustering schemes, and token scheduling is more flexible. It is easy
for a clusterhead to forward (broadcast) packets to downstream nodes, since a
clusterhead has more chances to transmit, and all its neighbors can receive the

packets if their codes are selected correctly.

2.4 Gateway Code Scheduling (GCS)

On the other hand, we can use some heuristic code scheduling schemes for gate-
ways to improve packets delivery from clusterheads to gateways. One better way
to improve the forwarding is to use a more heuristic code scheduling rather than
random scheduling. In this experiment, we give more priority to upstream clus-
terhead of a gateway after this gateway transmits a packet to its downstream
clusterhead. The principle is that the gateway must switch its code to hear the
upstream clusterhead in order to receive a packet after it sends out a packet to
its downstream clusterhead. In the same way, the gateway will switch its code to
the downstream clusterhead in order to receive the permission token to forward

the packet after it receives a packet from its upstream clusterhead.

Current radio interface technology can’t switch code at will. Multiple radio
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interfaces provide another possible way to improve the gateways’ performance.
With multiple radio interfaces, a gateway can access multiple clusters simultane-
ously by using different codes. Figure 2.3 shows the simulation result of multiple
radio interfaces. For the best cost/performance tradeoff, two radio interfaces is

the best choice.

2.5 Routing Protocols

Routing is a critical component in any multihop wireless network. It is also a
key element of multicasting. Thus, particular attention was given to routing in
our research. One important requirement in mobile networks is the avoidance
of loops which are caused by stale routing tables. Several adaptive, loop free
routing schemes have been recently proposed specifically for wireless, mobile net-
works [PB94, Gar89]. In our proposed scheme we use as a basis the Destination

Sequenced Distance Vector (DSDV) routing scheme [PB94] which was recently
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Figure 2.4: Routing examples (from node 1 to node 11)

implemented in cluster TDMA [GT95] and cluster token [LG95] schemes. DSDV
stamps increasing sequence numbers on routing updates relative to a given des-

tination. This way, stale updates can be easily detected and loops avoided.

In our project, we modify the DSDV scheme by exploiting the clusterheads.
Namely, we use hierarchical routing to route packets. Each node maintains a
cluster member table which records the destination clusterhead for each node,
and broadcasts it periodically. A node will update its cluster member table when
it receives a new one from its neighbor. Here again we use destination sequence
numbers as in DSDV to avoid stale tables. There are two tables for each node to
route packets. One is the cluster member table which is used to map destination
address to the destination clusterhead address, and the other is the routing table
which is used to select the next node to reach the destination cluster. We call

this cluster (hierarchical) routing scheme DSCR.

There are ways to improve the efficiency of DSCR by optimizing the inter-
action between routing and MAC layer. The first strategy we consider consists

of routing packets alternatively through clusterheads and gateways. That is, a
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packet will be routed via C, G1,C5,G5,C3,G5.., where C; are clusterheads and G;
are gateways. We call this routing strategy Clusterhead-Gateway Switch Rout-
ing (CGSR). Figure 2.4 shows routing examples for DSDV, DSCR, and CGSR.
Node 1 is the source and node 11 is the destination. The main difference with
respect to the previous schemes is that the packet is forced to pass through the
clusterhead, avoiding gateway to getaway shortcuts as from node 5 to node 7
in figure 2.4. At first glance, this may seem to be a drawback rather than an
advantage since it increases path length. However, recalling that clusterheads
have more chances to transmit than other nodes, and that a gateway-to-gateway
transmission requires that both gateways rendezvous on the same code, we realize
that the presence of a clusterhead between two gateways is well worth the cost

of the extra hop. Experiments verify this conjecture.

We can further reduce packet delay by combining CGSR with priority token
scheduling (CGSR+PTS), as discussed in section 2. We can go one step further
and also add gateway code scheduling (CGSR4+PTS+GCS). In the two latter
cases, the delay improvement is due to MAC layer features, rather than routing
features. In both case, the improvement is obtained by exploiting the knowledge
that steady traffic exists on certain paths in the network, and by assuming that
this traffic will persist in the future. However, in a mobile situation, the paths
change continuously, nullifying the advantage of traffic pattern driven schedules
and priorities. To keep the traffic pattern more stable, we may attempt to reserve
the path for a connection (in a virtual circuit fashion) until it becomes discon-
nected, instead of selecting the new shortest path after each move. Once the first
packet selects the path, all the subsequent packets will follow this path until it
breaks. We call this path reservation scheme CGSR+PTS+GCS+PR.
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Figure 2.5: Mobility Model

2.6 MAC and Routing Experiments

The MAC and routing strategies described in the previous section have been eval-
uated via simulation. To this end, a multihop, mobile wireless network simulator
was developed using an existing process-oriented, parallel simulation language
called Maisie [BL94, CWL97]. This simulator provides an efficient and flexi-
ble solution for verifying and measuring multicast protocols. In this section we
describe the detailed simulation structure which is used throughout the whole

thesis.

2.6.1 Mobility Model

Instead of using random mobility model, we explore a probability model which

provides a more stable node movement. The probability model is controlled by
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a three-state Markov chain. Figure 2.5 shows the state-transition diagrams of
X-direction and Y-direction. Initially, both X-direction and Y-direction are on

state (0). The transition probability matrix P used in our simulator is

0 05 0.5
P=103 07 0
03 0 0.7

The node move behavior is affected by the P and is able to be adjusted by
changing P. The node velocity is simulated by triggering the movement every
moving period which is specified at each run. Each move unit is one pixel which

represents one meter. The moving period, for example, of velocity 30 km/hr is

120 ms.

2.6.2 Simulation Parameters

The simulation environment consists of 100 mobile hosts roaming uniformly in a
1000x1000 meter square. Fach node moves randomly at a preset average speed.
Radio transmission range is 120 meter. A free space propagation channel is
assumed unless otherwise specified. Data rate is 2 Mb/s. Packet length is 10
kb for data, 2 kbit for routing tables and 500 bits for control packets (MAC,
polling, etc.). Channel overhead (e.g., code acquisition time, preamble etc) is
factored in packet length. Thus, data packet transmission time is 5 ms, 1 ms
for routing table, and 0.25 ms for control packet. Routing tables and control
messages have higher priority over data. Routing tables are updated every second.
This low update rate is consistent with typical wired network operation and is
adequate for a static network. As node mobility increases, however, the topology
starts changing rather rapidly. In order to maintain accurate routing information,

changes in local link status and new routing tables from neighbors trigger new
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Number of nodes, N 100

Area of movement, A 1000x1000 meter square
Initial inter-node distance, D | Uniform € [30m,95m]
Velocity, V variable

Mobility Model figure 2.5

Radio transmission range 120 meters

Channel bandwidth 2 Mb/sec

Routing table size 2K bits

Data packet size 10K bits

Control packet size 500 bits

Simulation clock 1 tick = 50 us

Table 2.1: Simulation Topology and Parameters

updates. Table 2.1 lists the simulation parameters which are used as default

values unless otherwise specified.

2.6.3 Performance Evaluation

The experiment consists of transmitting a file of 100 packets from one source to
one destination (using a free-wheeling protocol such as UDP), and measuring the
effective throughput (i.e. bits transmitted /total transfer time) for various routing
and MAC layer options, with mobility ranging from 0 to 72 km/hr. Figure 2.6
reports the results. It is clear that the combination of cluster (hierarchical) rout-
ing, clusterhead /gateway alternation, traffic pattern driven token scheduling and
gateway code scheduling (i.e., CGSR+PTS+GCS) yields a remarkable through-

put improvement (typically, between 3 and 4-fold) with respect to the “flat”
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routing scheme (DSDV), for a broad range of node speeds. Path Reservation, on
the other hand, does not appear to improve performance in a consistent man-
ner. Furthermore, path reservation is not easy to implement, since it requires
saving the “state” of each connection. For these reasons, in the sequel we use
CGSR+PTS+GCS (referred to as CGSR for brevity) as the basic routing algo-
rithm. Figure 2.6 also permits us to assess the throughput degradation caused
by mobility. For zero mobility, the CGSR throughput is 450 kbps (i.e., less than
one fourth of the maximal channel speed, 2 Mbps). Here, the degradation is at-
tributed to single transmitting/receiving radio multihop, token overhead and code
switching overhead. At 72 km/hr, CGSR throughput has dropped to 60 kbps.
At high mobility, additional throughput loss is caused by delays and link level
retransmissions due to path changes. Average end to end delays were also moni-
tored. The delay results are correlated with throughput results (high throughput
— low delay). In particular, for the CGSR+PTS+GCS case we observed 0.229 s
delay for zero mobility. Since the average number of hops was 13 in this case, the
average delay per hop is 17.6 ms, which accounts for transmission delay, token
latency and code switching. At 20 m/s, the average end to end delay was 2.7 s.

The main delay contribution in this case is link retransmission delay.

In summary, the results show that the proposed CGSR routing scheme im-
proves the efficiency of packet delivery and is better applicable to the clusterhead-
token infrastructure which is used as the basic network structure in the following

simulations.

While the multicast strategies are independent of the particular wireless in-
frastructure (i.e., routing, MAC and cluster layers) in use, they have been de-
veloped on top of a novel wireless, multihop infrastructure for the purpose of

evaluating its performance. The underlying infrastructure itself is innovative and
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in many aspects improves upon existing architectures. In particular, the LLC
clustering algorithm was proven to be more robust to mobility than existing
schemes. The clusterhead controlled token MAC layer allows flexible priorities
and powerful heuristics. The hierarchical routing scheme provides a solution with

low overhead and potential for scalability to very large networks.
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CHAPTER 3

Multicasting with RP

Various multicast schemes have been proposed by researchers. Some of the
schemes use one or multiple Rendezvous Points (RP) to maintain multicast struc-
tures. In this chapter we explore RP-based multicast schemes and propose an
“adaptive” multicast protocol which is able to adapt to the changing environment.
Two tree maintenance schemes, namely soft state and hard state, are evaluated
via simulations for the RP-rooted multicast trees. RP relocation mechanisms
and 2-level mobility models are proposed to improve the performance. Multicast

schemes without using any RPs are studied in the next chapter.

3.1 Core Based Tree Multicast

The multicast protocol is inspired by the Core Based Tree (CBT) scheme [BFC93].
Each multicast group has a unique multicast identifier (Mid). Each multicast
address identifies a host group, the group of hosts that should receive a packet
sent to that address. Each multicast group is initialized and maintained by a
multicast server (MS) which becomes the core of the CBT for this multicast
group. Initially the multicast server broadcasts the Mid and its own node id
(MSid) using a flooding algorithm. When a node receives this information, it
records the pair Mid and MSid into its multicast database which can be used to

join or quit this multicast group. Alternatively to avoid flooding, the multicast
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server registers the Mid on a directory server. Any node which wants to join a

particular multicast group can query the directory server.

3.1.1 Multicast Tree graft and prune

The construction and maintenance of the core-based tree is receiver-oriented.
When node ¢ wants to join a multicast group G, it first gets the corresponding
Mid and MSid either from its database or from the directory server. Then, it
sends a JOIN_REQUEST to MSid. The JOIN_REQUEST will be routed to MSid
(core), using CGSR, until it reaches any node j which is already a member of the
host group of G. Node j terminates the JOIN process by sending a JOIN_ACK
back to node i. A node joins the multicast group and grafts a branch to the
multicast tree (core-based tree) upon being traversed by JOIN_ACK. Since CGSR
routing is used, the internal nodes of the multicast tree are all clusterheads and

gateways. Regular nodes can be found only at the leaves of the tree.

When internal node n (a clusterhead or gateway) is traversed by JOIN_ACK,
it records the upstream and downstream node of JOIN_ACK. This information
will be used to reconstruct the tree when the links in the tree break due to
mobility or crash. The clusterhead of node ¢ will record node 7 as a member of

G after it forwards JOIN_ACK to node i.

When a leaf node wants to quit the group G, it sends a QUIT_REQUEST
to its clusterhead. The clusterhead will update its membership information and
then acknowledge this request with a QUIT_ACK. A leaf clusterhead leaves G and
sends a QUIT_REQUEST to its upstream member when all of its downstream

members have quit G. A non-leaf node cannot quit until it becomes a leaf.

The above scheme is somewhat different from the CBT scheme proposed

in [BFC93], where JOIN_ACK must follow the same path as JOIN.REQUEST.
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Figure 3.1: Performance comparison of ACK tree and REQ tree

We allow JOIN_ACK to follow a different path (from JOIN_REQUEST), if so
provided by routing tables; and use JOIN_ACK to graft links into the tree. The
JOIN_ACK strategy is more adaptive to a higher mobile situation where routes
may change between REQ and ACK. In this case, we want to choose the most
current route. Figure 3.1 compares the performance of the two schemes. The tree
created by ACK messages achieves higher throughput performance (throughput
is the number of packets received by members) under high mobility. The im-
provement is relatively small, however, since the mobility is not high enough to

cause significant route changes during the REQ-ACK round trip.

3.1.2 Multicast Tree reconfiguration

The core-based tree is not static since the core and the host group may move.
The multicast tree will be reconfigured in the following cases: (1) The member

of a host group moves and changes node type. (2) Tree links break and transient
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loops are created.

3.1.2.1 Member migration

It is necessary to reconfigure the multicast tree when its group members move or
change node-type. A group member can detect the change of its multicast tree by
monitoring its connectivity to upstream and downstream members. A member
node reconnects to the tree by sending a JOIN_ REQUEST to its multicast server
(core) when its upstream member moves out of range or changes node type. For
example a clusterhead member will send a JOIN_.REQUEST to the MSid in order
to reconstruct the tree, if its upstream member (a gateway) changes to a regular
node, or becomes disconnected. When a regular node member (a leaf) moves
out of a cluster C; and enters into a cluster Cj, the clusterhead of C; will drop
it from its descendant list. The regular node will send a JOIN_REQUEST to its
new clusterhead of C;. The clusterhead of C; will send a QUIT_.REQUEST to

its upstream member if it has become itself a leaf.

3.1.2.2 Loops

When a node ¢ wants to join a multicast tree G, it sends a JOIN_REQUEST
to the core. The JOIN_.REQUEST will be acknowledged by the first member
in G, which sends back a JOIN_ACK to node i. If node i has moved in the
interim, the JOIN_ACK may trace a different path than the JOIN_REQUEST.
Thus a loop may be formed. Figure 3.2 shows an example of loop caused by
the move of node i. Node 7, before the move, sends the JOIN.REQUEST to
the core on the path a, b, and ¢. Node ¢, the first member in GG on the path to
the core, returns the JOIN_ACK to node i. However, since node 7 has moved,

the new path m, k, o, and p is traced, thus forming the loop ¢, d, e, f, g, h, k,
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Figure 3.2: Loop example

and m. To avoid loops, it is required that an established group member, upon
receiving a JOIN_ACK, return a QUIT_REQUEST to the node which sent this
JOIN_ACK while forwarding the JOIN_ACK on the new path. In figure 3.2,
for example, node k£ will send a QUIT_REQUEST to node m after it receives
a JOIN_ACK. At the same time node k will forward JOIN_ACK to node o on
the new path creating a loop-free branch to node i. We can generalize this loop
avoidance method as follows: a group member already connected to the multicast
tree will acknowledge a JOIN_ACK with a QUIT_REQUEST, if this JOIN_ACK
does not come from its upstream member. Since each group member in a tree
can only have one upstream member, a necessary and sufficient condition for loop

avoidance is to allow only one upstream member.

3.1.3 Simulation & Performance Evaluation

We have implemented the multicast protocol in our wireless simulator in order to
evaluate its performance in terms of : (a) control packet overhead; (b) robustness
to mobility; (c¢) scaling properties with respect to multicast group membership,
and; (d) response time (i.e., JOIN latency). The environment consists of 100

mobile hosts roaming in a 1000x1000 meter square (as described in section 2.6).
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The wireless network operates using the LCC clustering algorithm and the cluster

token access protocol. As for routing, CGSR is used, unless otherwise specified.

© group members

core

Figure 3.3: Initial multicast tree

Figure 3.3 shows the initial multicast tree layout, with 7 members plus core.
The core is hand-picked. Based on CGSR and clustering properties, the core is
a clusterhead and never gives up this role. That is, the core will not change to
a non-clusterhead node. Unless otherwise specified, we assume that membership

is fixed. As members move, they leave one branch of the multicast tree and join
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another. Furthermore, as nodes move, the routes change, thus causing a dynamic
reconfiguration of the tree topology. It is thus important to measure the control
packet overhead caused by these reconfigurations as a function of node speed.
In these experiments, the main focus is on algorithm response time and control
packet overhead. Thus, the network does not carry any user traffic (only control

traffic) to avoid interference between user packets and control packets.

Figure 3.4 shows total number of tree reconfigurations during the experiment
lifetime as a function of node speed (up to 30 km/hr). We note that the number
of reconfigurations (i.e., changes in the tree) grows about linearly with speed. In
figure 3.4 we also report the number of JOIN, ACK and QUIT packets. While the
first two grow almost linearly with speed, the third is not very speed sensitive.
Also, the QUIT event is much less frequent than JOIN/ACK. The reason is that
QUIT is issued by a clusterhead or a gateway only when it has no members below
it.

Figure 3.5 shows the number of temporary loops detected and removed. This
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number grows with speed, but in an erratic fashion due to the very small sample
size. In any event, loop detection and recovery does not cause significant over-
head. Figure 3.6 reports the reconfiguration and control packet measurements as
a function of membership size. Node speed is assumed fixed at 18 km/hr. Con-
trol traffic grows with membership size, as expected, but less than linearly, since
the tree route reconfiguration is independent of membership size. Furthermore,
the number of JOIN/ACK packets generated when a member moves from one
cluster to another decreases when size increases since there are more members in
the tree and the JOIN packet must traverse fewer hops up the tree. On the other
hand, the number of moves from one cluster to another increases linearly with
the number of members. In balance, we have slightly increasing control packet
(ACK/JOIN) traffic for membership ranging from 7 to 80. The number of QUIT
packets decreases with membership size, since, when almost all nodes participate
in the multicast, no clusterhead or gateway will ever become childless and thus

be forced to quit. In summary, the control packet overhead required to maintain
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the multicast tree does not increase significantly with member group size.

Figure 3.7 shows packets O/H growth with node speed. Packet overhead is
computed using the formula (T'x NP)/(ST x NC'), where NP = number of con-
trol packet transmission (ACK, JOIN, QUIT); T = control packet transmission
time (5ms); NC' = average number of clusters (=~ 27), and; ST = total simulated
time (62.5s for our experiments). Thus, the overhead represents the fraction of
bandwidth used up by control packets. We note that the growth is less than
linear, consistent with figure 3.4 results. Furthermore, the overhead is only a few

percent, even at top speed.

The responsiveness of a multicast scheme with dynamic join can be measured
by the latency of a JOIN operation, i.e. the time between the issue of a JOIN
request by a new member and the receipt of an ACK. Intuition suggests that
latency should increase with speed. The results in figure 3.8, however, seem to
indicate that latency is rather insensitive to speed, at least for the range of speeds

considered in our study. For example, using the CGSR routing scheme, JOIN
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latency is less than 600 ms for the entire range of speeds. Figure 3.8 also reports
latency under the conventional DSDV routing scheme. It is interesting to notice
that CGSR performs considerably better than DSDV. The latency reduction in

CGSR can be attributed to the clever token and code scheduling heuristics.

In summary, the result show that the proposed multicast scheme meets the
target performance goals. Namely, it is robust to mobility (latency is insensitive
to speed; overhead increases less than linearly with speed); it has low overhead
(less than a few percent at top speed); it scales well with member group size,

and; it has very low latency (less than 1 s).

3.2 Hard State versus Soft State Tree Maintenance

In shared tree multicast protocols, the tree maintenance protocol must keep track
of downstream and upstream links at each node, for each multicast group. When

a node in the tree receives the multicast packet, it will forward it only to down-
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stream links, if any (except, of course, the link the packet came from). Thus each
intermediate node must keep the state of its downstream members. Efficient
updating of link states has a critical impact on the performance of multicast-
ing. For graft-based multicast [BFC93], nodes wishing to join the group send a
JOIN_REQUEST message to the RP. All nodes traversed by the JOIN_REQUEST
will save the join state to maintain the downstream links. There are two major
schemes to maintain the shared tree. One is “hard state”, and the other is “soft

state”.

3.2.1 Hard State Protocol

In the hard state protocols, when a node wants to join a multicast group, it must
send an explicit JOIN_REQUEST and wait until it is acknowledged to become
a member. A member will keep its membership until it intends to quit or the
connection is broken. Namely, the upstream node in the multicast tree keeps a

link in "downstream” state until it receives an explicit QUIT_REQUEST from
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the downstream node or when the downstream link is disconnected. The hard
state protocol relies on the underlying MAC protocol to provide the link connec-
tivity information. Only if the MAC layer provides reliable, periodic link state
information, can the hard state protocol adjust to connectivity change (i.e., it
can efficiently prune broken links and establish new connections to the tree). For
example, in the mobile wireless networks, when a downstream member of node 7
moves out of the transmission range of node 7, it will send a new JOIN_REQUEST

to setup a new link to the tree. The original downstream link is disconnected.

Since hierarchical routing is used, the internal nodes of the multicast tree are
all clusterhead or gateway types. A regular node type (i.e., neither gateway or
clusterhead) can be found only at the leaves of the tree. In this cluster infras-
tructure, the multicast tree structure in hard state will be reconfigured only in
the following cases: (1) The member of a host group moves and changes node

type. (2) Tree links break (potentially creating loops).

3.2.1.1 Member migration

It is necessary to reconfigure the multicast tree any time a group member moves or
changes node-type. A group member can detect changes in the multicast tree by
monitoring its connectivity to upstream and downstream members (as mentioned
before, this must be done by MAC layer). A member node reconnects to the
tree by sending a JOIN_REQUEST to the RP when its upstream path becomes
disconnected (e.g., the upstream node moves out of range or changes node type
from clusterhead/gateway to regular node). For example, a clusterhead member
will send a JOIN_REQUEST to the RP in order to reconstruct the tree, if its
upstream member (a gateway) becomes a regular node, or becomes disconnected.

When a regular node member (a leaf) moves from cluster C; to cluster C;, the
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clusterhead of C; will drop it from its descendant list. The regular node will send
a JOIN_LREQUEST to its new clusterhead in C;. The clusterhead of C; will send
a QUIT_REQUEST to its upstream node if it has itself become a leaf.

3.2.1.2 Multicast Tree Recovery

In the multicast tree, an internal node has one parent and one or more children.
If the parent link is disconnected, the internal node can recover either by re-
sending JOIN_REQUEST message to connect to the tree via a new parent, or
by sending FLUSH_TREE message to its children. The FLUSH_TREE message
propagates to the entire subtree, forcing all downstream leaf-members to rejoin
the tree individually. A rejoin by the internal node will be quicker than by leaf-
members, but it may occasionally create a temporary loop (rejoin to its own
downstream node). In a mobile environment, we prefer to use the flush scheme

to avoid temporary loops.

3.2.2 Soft State Protocol

In the soft state protocol, a node which wants to remain in a multicast group must
periodically send a JOIN_REQUEST to the RP. No ACK is required. The node
receiving a JOIN_REQUEST from its neighbor will store a state for this neighbor
as a downstream member and will attach a time stamp to it. The upstream node
will update the state timer when it receives another join request (state-driven
refresh). The downstream node is automatically expelled from membership when
its timer expires. There is no need to keep track of the upstream node. Every node
receiving the JOIN_REQUEST just forwards it to the RP using the underlying
routing scheme. This is different from Hard State, where the state of the upstream

node must also be kept. Soft state provides a fail-safe method for a dynamically
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changing environment and relaxes the link connectivity dependency on MAC

layer.

Note that reliable link connectivity maintained at the MAC layer is also re-
quired for cluster and route maintenance. However, there are nodes (e.g., low
power or high mobility) which would never be used as clusterheads or gateways
in the hierarchical routing scheme. Thus, the connectivity of these nodes will be
updated only sporadically (to save power for example). The sporadic MAC layer
connectivity maintenance of low power nodes, say, causes potential problems for

Hard State, but, is compensated by the periodic refresh in Soft State.

The time periods for refresh (T, fresn) and timeout (Zyimeont) must be carefully
chosen taking into account mobility and channel access overhead. In a highly
mobile network, a short refresh period is desirable, but it will increase the channel
overhead. If the timeout period is long, there will be stale links and wasted
duplicate transmissions on such links. If the timeout period is short, branches are
prematurely cut off and data may be lost. In order to achieve low overhead and yet
maintain connectivity, it is very important to judiciously (possibly, dynamically)
select the time period for refresh and timeout. These tradeoffs are explored in

the experiments described in the following sections.

3.2.3 Simulation & Performance Evaluation

Simulation environments described in section 2.6 are used to evaluate the perfor-
mance of hard state and soft state schemes. The RP is hand-picked and does not
change throughout the experiment. Dynamic relocation of the RP could improve
the efficiency of the tree algorithm. This option, however, is not considered in
our study since it would not affect the Hard State vs. Soft State tradeoffs. Mem-

bers are randomly selected to join and quit the multicast group. On average,
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seven members are part of the group. Figure 3.3 shows a typical multicast tree
configuration. There is a single source of multicast traffic, placed at the RP.
Traffic input rate is high enough to fully load the network. Nodes have a finite
buffer. Packets are dropped when buffers overflow, or when there is no route
to the intended destination, because the topology is disconnected or the routing

tables have not yet been updated.

For the sake of simplicity we also assume that nodes (and in particular gate-
ways) can receive on multiple codes simultaneously (e.g., using multiple receivers).
This property does not enhance communications within a cluster, since all wire-
less nodes are tuned to the same code anyway. It does, however, permit conflict
free communications with the gateways, and in particular conflict free multicast
from clusterhead to gateways. Without the multiple code reception, the gateway
must tune on different codes (of the adjacent clusters) and can receive correctly
only if it is tuned to the transmitting clusterhead code. For example, in [LG97]
we assume that each gateway takes turns in tuning to the codes of the adjacent
clusters for a fraction of time dependent on the traffic pattern. For the purpose of
this study, however, the overhead penalty of any of the above remedies will affect
equally the multicast schemes we are comparing without changing the ranking.

Thus, for simplicity, we have opted for the multiple code reception.

Total simulation time for each experiment is 2x10°% simulation ticks. One
simulation tick corresponds to 10 ps. Thus, each run represents 20 seconds of

simulated time.

In this section, we first evaluate the soft state scheme and select the values
Trefresh and Tiipeone which optimize its performance (for the given systems pa-
rameters). Then, using these values, we compare the performance of hard state

and soft state using as criteria throughput, join latency, and control overhead.
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Figure 3.9: Soft State: impact of T} fesn and mobility
3.2.3.1 Soft State Parameter Optimization

The performance of the soft state scheme depends critically on the selection of
refresh and timeout intervals. We will evaluate the effect of T}.cfresn and Tyimeous
for various parameter settings. To this end, we first define total throughput
performance as the total traffic received by members. Some of the received pack-
ets however may be duplicates, as described in section 3.2.2. Thus, we define

throughput as (total received packets) - (duplicate traffic).

Mobility vs. Tiefresn @ First we study the relationship between T, ¢ycsn and
mobility. Recognizing that for stability the timeout must be larger than the
refresh period, we set Tyimeour = 10 * Thefresn. We then evaluate throughput and
duplicates for various values of 1.5, and mobility. From figure 3.9 we note
that high mobility causes more duplicates and lower throughput. To improve
higher throughput at high mobility, 7;.fresn must be reduced so as to adapt to
the rapidly changing topology. However, as Ty¢fresn 1s Teduced, Tijmeon: 1s also
becoming smaller, eventually causing throughput degradation due to frequent

timeout and tree disconnects. When T, ¢4, is large, Tiimeonr tends to become too
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Figure 3.11: T} fresn @ mobility = 0.45 km/hr

long, thus increasing the duplicate overhead. The system is particular sensitive

t0 Trefresn at high speed.

Trefresh VSe Tiimeour : Next, we vary Tefresn and Tiipeon: simultaneously to find
the best combination. Starting with low mobility, figure 3.10 shows throughput
and duplicates with mobility = 0.45 km/hr and 7. ;5= 400 ms. The throughput
is not affected by large timeout since the topology does not change too rapidly and
thus few duplicates are created anyway. In figure 3.11 we fix the timeout interval
to 1600 ms and vary Tcfresn. Again, we note that throughput and duplicates are

not very sensitive to refresh interval.

Next we study the high mobility case (72 km/hr). Now, throughput and

duplicates are much more sensitive to Ty presn and Tiimeour (see figure 3.12 and

3.13).
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Figure 3.13: Tycfresn @ mobility = 72 km/hr

From the above results it is clear that both T, fyesn and Tijpeonr must be mod-
ified as mobility varies, in order to optimize throughput. Table 3.2.3.1 presents
the optimal results for various mobility values obtained via repeated simulations.
We note that the optimal value of T} yes is inversely proportional to speed. For
example, a 100 fold reduction of speed (from 72 km/hr to 0.9 km/hr) requires an
increase of Ty fresn from 25 ms to 2000 ms. This was expected since the higher
the speed, the lower the refresh period to track the changes in topology. The
timeout also must decrease as speed increases. However, it should not decrease
so rapidly as Tycfresn, in order to avoid unnecessary tree disconnects. We use
the parameters in table 3.2.3.1 for soft state scheme to compare the performance

evaluation with hard state.
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Mobility (km/hr) | Trepresn(ms) | Thimeout
72 25 250
36 50 300
18 100 450
7.2 250 600
3.6 500 850
1.8 1000 1100
0.9 2000 2100
0.45 4000 4100

Table 3.1: parameters of higher throughput

3.2.3.2 Join Latency

Next, we evaluate the join latency, namely, the time required for a new mem-
ber to join. For soft state, there is no explicit JOIN_ACK like in the hard
state protocol. Thus, we measure the join latency as the delay time between
the first JOIN_REQUEST and the first multicast data arrival. For hard state,
we define two measures for join latency, namely: ACK delay (time between
JOIN_REQUEST and JOIN_ACK) and data delay (time between JOIN.REQUEST
and first multicast data arrival). Figure 3.14 shows the average join latency for
various mobility values. As expected, the join latency of soft state is lower than
the data delay of hard state. This is because the hard state protocol requires
the issue of JOIN_ACK before data is sent. Conversely, soft state join latency is
higher than hard state ACK delay because the ACK packet is much shorter than

the data packet.
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Figure 3.14: Join Latency

3.2.3.3 Control Packet Overhead

In hard state, the control messages required to maintain the multicast tree are:
JOIN_REQUEST, JOIN_ACK, QUIT, and CLEAR messages. For soft state pro-
tocol, only JOIN_.REQUEST is required. Figure 3.15(a) shows the individual
control traffic components of hard state, and figure 3.15(b) compares the total
control traffic of hard state and soft state. The control traffic of hard state in-
creases with node mobility, because higher mobility causes more tree disconnects
and therefore triggers more join requests. For soft state, control traffic is indepen-
dent of mobility as long as T}..fresn is a constant. The explicit control messages in
hard state are much fewer than in soft state, but the hard state protocol requires

the underlying MAC layer protocol to continuously probe link connectivity.
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Figure 3.15: Control Messages
3.2.3.4 Throughput Comparison

Figure 3.16 compares the throughput of hard state and soft state. The soft
state experiment uses the best choice of refresh and timeout timers found in our
simulations. Soft state performs better than hard state at high mobility This
is mainly due to two reasons: (a) in soft state, the join delay is lower than in
hard state, thus, fewer packets are dropped during disconnect. (b) when the
tree becomes disconnected, hard state suffers the additional delay of flushing the

subtree, before the members have the chance to create a new subtree.

3.3 RP Tree Multicast Strategies

Tree multicast is a well established concept in wired networks. Two versions,
per-source tree multicast (e.g., DVMRP) and shared tree multicast (e.g., Core
Based Tree), account for the majority of the wireline implementations. In this
paper, we extend the tree multicast concept to wireless, mobile, multihop net-
works for applications ranging from ad hoc networking to disaster recovery and
battlefield. The main challenge in wireless, mobile networks is the rapidly chang-

ing environment. We address this issue in our design by: (a) using “soft state”;
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Figure 3.16: Throughput

(b) assigning different roles to nodes depending on their mobility (2-level mobility
model); (c¢) proposing an adaptive scheme which combines shared tree and per-
source tree benefits, and; (d) dynamically relocating the shared tree Rendezvous
Point (RP).

A detailed wireless simulation model is used to evaluate various multicast
schemes. The results show that per-source trees perform better in heavy loads
because of the more efficient traffic distribution; while shared trees are more
robust to mobility and are more scalable to large network sizes. The adaptive
tree multicast scheme, a hybrid between shared tree and per-source tree, combines
the advantages of both and performs consistently well across all load and mobility

scenarios.

The multicast service is critical in ad hoc network scenarios characterized by
the close collaboration of teams (e.g., rescue patrol, battalion, scientists, etc.)
because of the audio/video conferencing requirements and the sharing of text

and images. Multicasting in a mobile, multihop wireless network is much more
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complex than in wired networks because of node mobility, broadcast radio chan-
nel and hidden terminal effects. There are many different ways to attack this
problem. In this paper we approach the problem by transferring and adapting
to the wireless environment the multicast solutions used in wireline networks
such as the Internet. We modify and extend these solutions to account for mo-
bility, dynamically changing topology and radio channel characteristics. To set
the stage, we review in the sequel two popular wired network multicast schemes,
namely, per-source shortest tree and shared tree. We identify their limitations

when applied to a wireless, mobile environment, and preview possible solutions.

The per-source tree scheme consists of broadcasting the packet from the source
to all destinations along the source tree using “reverse path forwarding”. An
arbitrary network node will accept the packet broadcast by source S as long as
the packet is received from the shortest path emanating from S. This provision
is required in order to avoid endless looping. Examples of per-source tree are
DVMRP [DC90] and PIM dense mode [DEF97]|. Per-source tree multicasting
has many attractive properties. To begin, the shortest tree from each source
to all destinations generally comes for free since it is embedded in the routing
tables of the most common routing algorithms such as Distance Vector and Link
State. Furthermore, source tree multicast distributes the traffic evenly in the
network (assuming that sources and receivers are evenly distributed); it requires
minimal initialization and maintenance; and it does not rely on a central control
point (e.g., rendezvous point). In mobile networks, however, the per-source tree
approach presents a problem. Suppose a source moves faster than the routing
tables can track it. In this case, some of the nodes have obsolete routing tables
which point in the “wrong direction”. Following the “reverse path forwarding”
principle, multicast packets are dropped at such nodes and may never reach some

of the receivers.
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Another popular wired network scheme is shared-tree multicast. In this
scheme, a single tree rooted at a Rendezvous Point (RP) is maintained (instead
of many per-source trees). Examples of shared-tree approach are CBT [BFC93,
CZ95] and PIM sparse mode [DEF96]. The shared tree is less sensitive to source
mobility and can in part overcome the above mentioned fast moving source prob-
lem. Namely, a very fast source will send its packet to the RP in unicast mode.
Packets are correctly delivered to the RP on shortest paths, irrespective of the
speed of the source. The RP will then multicast the packet on the shared tree
to the intended destinations. This works as long as the shared tree is stable. If
ALL the nodes are moving fast (relative to routing table updates), the shared
tree solution also fails. In many practical applications however it turns out that
only a fraction of the nodes is fast moving, while the remaining nodes are static
or relatively slow moving. This 2-level mobility model, further elaborated in sec-
tion 3.3.5.1, allows us to define a stable routing scheme and therefore a shared

tree which is robust to mobility.

The shared tree approach has some drawbacks of its own with respect to the
per-source scheme. First, paths are non optimal and traffic is concentrated on
the backbone tree, rather than evenly distributed across the network. This leads
to lower throughput efficiency. To reduce path costs and distribute traffic more
evenly in the network we allow a receiver to request, under certain conditions,
that a source deliver the multicast messages to it on the shortest path rather than
on the shared tree path. This feature, inspired by the PIM protocol [DEF96] and
referred to as “adaptive tree multicast”, is described in section 3.3.2. Secondly,
as the entire network moves and the membership changes dynamically, the RP
may be “off center”, thus further aggravating the non optimality of the paths. To

overcome this problem, a dynamic relocation strategy is proposed in section 3.3.4.
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Related research on multicasting for ad hoc wireless networks has been re-
ported in [CB95]. In particular, the Reservation Based Multicast scheme [CB95]
also uses the notion of Rendezvous Point and the concept of combining distributed
routes and shared tree. However, the main emphasis there is on resource reser-
vation and allocation in a large wireless network rather than on throughput ef-
ficiency in the presence of mobility. The interaction of network protocols with
lower layer protocols and the effect of control traffic have not been modeled in

detail.

3.3.1 Shared Tree Multicast

As previously discussed, the shared tree scheme is of interest in wireless, mo-
bile networks for its potential of low overhead and adequate stability even in the
presence of fast moving sources. The shared tree scheme supports many-to-many
casting, with several senders and receivers. In each multicast group, packets sent
by sender members will be delivered to all receiver members. The shared tree
approach is based on the notion of a rendezvous point (RP) [DEF96, CB95].
Sender members send multicast packets towards the RP, and receiver members
send join requests to RP. Multicast packets will be forwarded to receiver mem-

bers along the multicast forwarding tree.

The RP-rooted tree is created by receiver members which periodically send
join requests to RP. The join request contains the forward list which is initially
set to “all senders {x}”. This makes the scheme very scalable to large number of
senders. All internal nodes traversed by the join request are enpowered to forward
the multicast packets (from RP) to the receivers as specified by the forward list
instructions. Active members periodically refresh the forwarding list. We use

a soft state approach in which branches are deleted if not refreshed within a
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sender mode sender mode

timeout. An alternate approach is to maintain ”hard state” forwarding lists and
to require explicit leave requests in case members leave or relocate. A previous
study has shown that the soft state tree maintenance scheme performs better
than the hard state one for a mobile environment in which the shared tree must

be continuously reconfigured [CGIT].

Within the general shared tree protocol framework, there are several variants
which can be implemented. In this paper, we examine and compare two different

schemes as discussed below.

Unicast sender mode: A sender does not know (nor does it need to know)
all the receiver addresses. It only knows the RP address and the multicast
address. The simplest way for it to send a packet to the group is encapsulating
it and unicasting it to RP. Then, RP will forward the packet to all receive

members.

The internal nodes along the path to the RP cannot intercept the packet
and forward it in multicast mode since the multicast address is hidden, i.e.,
encapsulated within the unicast address to RP. Figure 3.17 shows the shared
tree maintained by the join requests. Packets sent by sender S1 will be unicast

to RP (unicast sender mode) and then forwarded to receivers R1 and R2. The
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detailed protocol for unicast sender mode is shown in appendix A.1.

Multicast sender mode: Bandwidth efficiency is improved if the packet can
be forwarded directly to the members on the tree without looping back through
the RP. If the packets are not encapsulated (i.e., use multicast address), the
internal node Nj in figure 3.17 can forward the packets directly to R1. To enable
the "multicast” sender mode, the RP after receiving the first packet from sender
Sy, automatically registers Sy and periodically sends a join message to Sy (soft
state). As a results, all nodes traversed by the join message will now include
Sy in the multicast address list. Thus, they will be able to forward packets
from Sy in multicast mode. After receiving the join message, Sy broadcasts
unencapsulated multicast packets. Figure 3.18 illustrates the multicast sender
mode. Appendix A.2 describes the detailed protocol. In general, multicast sender
mode improves performance, as shown in section 3.3.5.3 results. Note however
that as source S; moves, the RP must continuously refresh the path to Sy with
join requests. If S moves too fast for RP to keep track of it, some of the
receivers will miss the packets. To overcome this problem, a “fast source” feature
as discussed in section 3.3.5.1 forces a fast source to use unicast sender mode.
Another limitation of this scheme is scalability, since intermediate nodes now

must keep track of senders.

3.3.2 Adaptive Tree Multicast

The multicast sender mode previously described allows senders to broadcast pack-
ets directly using the multicast group address instead of encapsulating them in
a unicast address. This is a major improvement with respect to unicast ad-
dressing. There is still a potential inefficiency, however. There may be packets

traveling from source s, to receiver r; on paths which are much longer than the
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shortest path between s; and r;. It would be desirable for a receive member to
receive packets directly from a sender without being forced to travel on the RP
tree, especially if the sender is nearby [DEF96]. Another important incentive to
switchover to the per-source tree is to reduce the load at the root of the shared
tree. More generally, it would be desirable to switch between RP-rooted shared
tree and per-source tree dynamically on a receiver/sender pair basis, using rela-
tive path-length/link-load tradeoffs as criteria. Selective per-source multicasting
improves throughput and reduces delay and multicast cost (in terms of total link
transmissions), the latter depending on the amount of sharing on RP tree vs.

per-source tree.

In the proposed adaptive tree multicast scheme, receiver r; can elect to receive
packets sent by sender s either from the RP-rooted shared tree or from the per-
source tree based on path length comparison. Note that the path from s to r;
on the RP rooted tree is shared among many receivers. Thus, the incremental
savings may be lower than the cost of establishing and using a separate shortest
path. Likewise, RP bottleneck load is relieved only if there is a decrease in
the number of RP neighbors charged with forwarding s, packets. If the set of
receivers is dense, this may require several receivers to switchover to the per-
source tree simultaneously. Clearly, it is difficult to capture all of these tradeoffs
in a single link metric and path length comparison. With simplicity in mind, we

propose the following heuristic.

First, the receiver checks if the hop count carried in the header of the packet
from s is larger (by a given margin) than the distance (as per routing table)
from r; to s;. Then, it checks if the distance from r; to s is shorter (by another
margin) than the distance from r; to RP. This check gives an approximate

measure of the link cost savings after switchover: if the distance to s, is much
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(a) switch (b) no switch

Figure 3.19: Examples of adaptive tree multicast

larger than the distance to RP, there is little incentive in creating a new, largely
non shared path. If both checks are satisfied (within margins which are adjusted
for the specific application), r; can switch from the RP rooted tree to sg-rooted
tree (per-source tree). To accomplish this, the receiver issues a join request with
forwarding list F'.L; = {sx} to s to establish a forward path from s; to r;, and

suppresses sy in the join requests to RP, i.e., FL; = {x — s;}.

Soft state eliminates stale branches in the shared tree (timeout timer). After
timeout, the forwarding of packets from s on the RP rooted tree to r; will cease.
If nodes move and path lengths change, 7; may switch back to the RP rooted
tree. To do this, r; stops sending join requests to s; and adds s; in the join
requests to RP. By measuring path length, receiver members can adaptively
switch between RP rooted tree and per-source tree. Note that the Adaptive
Tree Scheme requires intermediate nodes to keep track of the sources elected for

per-source tree delivery. This impacts the scalability to large number of sources.

Figure 3.19 illustrates the switchover process. Let P = hop count and D =
distance (assume the margin to be zero). In figure 3.19(a) P;; > D;; and D, <
Dj rp. Rj; will switch from RP rooted tree to per-source tree for receiving data
from Sy. In figure 3.19(b), Pjx > D, but D;; > D; gp. R; will not switch since

receiving from RP is more efficient and avoids an increase in control overhead.
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(a) multicast sender mode (b) Per-Source Trees

Figure 3.20: Examples of per-source tree multicast

Appendix A.3 shows the detailed protocol for adaptive tree multicasting.

3.3.3 Per-Source Tree Multicast

To evaluate the performance of adaptive tree multicast, a per-source tree mech-
anism is formed by always switching over to per-source mode in the switchover
process of adaptive tree scheme. Namely, when receiver r; receives packets sent
by si from the RP-rooted shared tree, it issues a join request to s; to establish
the path from s, to r; and suppresses the traffic of s, from RP by removing s
from the forwarding list /'L; in the join request to RFP. There is no switch back
to RP in all situations. Figure 3.20 shows an example of per-source trees after
switcher. Note that although all receivers switchover to per-source mode, senders
still need to send packets to RP because the RP needs to maintain the up-to-
date information of senders in order to serve any new joining members. Without
updated information, senders would be removed from RP’s member list after
timeout and then new joining members cannot get any packets. This per-source
tree scheme, which is assisted by the RP, is different from DVMRP which uses

flooding and prune/graft messages to maintain the per-source trees.

o4



3.3.4 RP Dynamic Relocation

In the shared tree scheme, a fixed RP location can be a problem when the
membership changes dynamically. Consider first a wired, wide area network. In
a particular multicast workgroup application, the RP is initially placed in New
Jersey since most of the members in the early hours of the morning are on the
East Coast. At the end of the day, the members are all on the West Coast, and
yet are supported by an RP thousands of miles away! An off center RP causes
two types of inefficiencies: (a) extra traffic overhead, since multicast messages
are delivered to the RP (and in some cases must loop back around the RP), and;
(b) poor routing (and therefore higher delays) since the messages must travel on
a tree rooted at a far off RP. In wireless, mobile networks, the RP off center

problem is even more likely to occur since user nodes and RP may move.

Prior research on RP relocation is reported in [WE95] and in [CZ95], where,
the relationship between RP choices and performance is addressed. In [CZ95] the
static RP location optimization problem is addressed. Namely, for a broad range
of topologies and applications, and under various performance criteria (band-
width, delay and traffic concentration) three RP selections strategies are defined:
random, topology based and membership group based. The strategies are com-
pared among each other and to the per-source multicast tree solution. The main
conclusion is that from the bandwidth cost point of view the topology based and
membership based RP solutions perform as well as (and in some cases surpass)
the per-source rooted solution. From the delay point of view, the per-source
rooted solution is still superior, as expected. Another important observation is
that the performance is rather insensitive to RP specific location, as long as the

RP is reasonably centered.

The above studies have addressed a static topology and multicast member-
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ship. In our case, both topology and membership change dynamically. As a
consequence, we must implement a “dynamic” RP relocation strategy. Two
types of strategies can be pursued: (a) centralized, where a network control
center constantly monitors the global network status (using for example a Link
State type topology monitoring and routing scheme) and periodically evaluates
all RP candidates, or; (b) distributed, where each RP candidate independently
computes its effectiveness as RP and competes with the neighbors for the RP
role. In this paper, we follow the second approach, which is more compatible with

the distributed nature of wireless multihop architectures and routing schemes.

Before introducing the actual distributed RP relocation algorithm, we must
define the performance measure to be optimized. A key concept in these defi-
nitions is the shortest path tree from the RP to the multicast group members,
henceforth referred to as RP shortest tree. Four performance measures can be
defined for this tree [CZ95]: (a) average hop distance from the RP to all members
(this measure is minimized by selecting the center of mass); (b) height of the RP
shortest tree (i.e., max hop distance from RP to any member, which is propor-
tional to max end to end delay); (c¢) total number of links in the RP shortest tree,
proportional to bandwidth overhead since each multicast message must traverse
all the links of the tree; (Note: the number of links varies from tree to tree since
the number of internal nodes varies); and (d) traffic concentration i.e., number
of messages per link. Traffic concentration is proportional to traffic congestion
and therefore queueing delay on each link. Different objective functions will lead
generally to different RP locations. In the sequel, we will present optimization

schemes for different measures.

First, we introduce the algorithm for measures (a) and (b), which are the

easiest to implement with typical Routing Table setups. We assume (without
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loss of generality) that cluster routing is used and that only clusterheads are RP

candidates.

RP relocation algorithm

1. Current RP evaluates its own cost. Either (a) or (b) measure can be directly
computed from routing tables and from member list. Note: RP knows

source and receiver IDs because of periodic refresh.

2. Current RP distributes the current member list to the neighbor cluster-

heads.

3. Neighbor clusterheads compute their own costs (from their routing tables)

and return such costs to the RP.

4. Current RP delegates RP role to lowest cost clusterhead, if such cost is

lower than its own. (within a threshold, to avoid oscillations)

5. Newly elected RP refreshes the paths to all sources and triggers a refresh

(to itself) from all receivers.

This procedure is carried out periodically, in a background mode. Note that
this procedure can also be used to recover from RP failure. The “runner up” in
the last election can take charge if the current RP has been silent beyond a given

timeout.

Generally, a downhill procedure like the above will lead to a local minimum.
However, for measures (a) and (b) we have shown that for regular topologies
(e.g., rectangular grid with cross links, circular grid. with rings and spokes)
the function is convex over the discrete set of candidates [GC98]. Thus, a local
minimum is also a global minimum. This property is hard to prove for general

topologies. However, we have examined the behavior of the above measures
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for several randomly generated topologies, and have experimentally verified that
there is only one local minimum, which is also the global minimum (see figures A.2

and A.3 for examples).

As for measure (c¢), i.e., number of links in the RP shortest tree, the prob-
lem is a bit more complex since such information cannot be directly extracted
from the routing tables (it could, however, be easily computed from the global
topology information maintained by a Link State routing algorithm). With a
Distance Vector type algorithm, this goal can still be achieved using a “parent
tree” data structure which is constructed in a distributed fashion in parallel with
the routing vector [HS90, GKAS83]. The parent tree representation of a tree is an
N dimensional vector (N = number of nodes) where the i-th entry is the parent
of node i. Parent tree vectors are exchanged between neighbors at the same time
as routing vectors. Using the parent vectors and routing vectors received from
the neighbors, each node constructs the parent vector of the shortest tree with
itself as the root by merging the parent trees from the neighbors. Each RP can-
didate can compute the number of links as required in (c¢) by “walking” up the
parent tree from each group member. Details are found in [GC98]. Note that
this scheme introduces extra O/H in the network. In fact the routing overhead

is practically doubled.

The RP relocation algorithm for measure (c) is identical to the one reported
above for (a) and (b), except for the new objective function. As for the global
optimum property, this is hard to prove even in regular topologies. The reason
is that regular topologies (e.g., rectangular grid) offer many alternate shortest
paths between each node pair. To minimize link cost, one must select these
paths so that they overlap as much as possible. This is in itself a combinatorial

problem. Nevertheless, we were able to show global optimality for the circular
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grid topology [GC98]. Moreover, we have verified global optimality in several

randomly generated topologies (see figure A.4 for an example).

As for measure (d), traffic concentration, the “parent tree” data structure
proposed for measure(c) can again be used for this computation, by tracing the
paths from the sources and counting the flows on each link. Alternatively, the
routing tables received from the neighbors can be used to identify the loads

incoming from the neighboring clusters.

In summary, RP dynamic relocation is feasible and practical in wireless net-
works. As a side benefit, it provides automatic RP failure recovery. The com-
plexity of the relocation strategy depends on the objective function used. In the
following we will evaluate the performance improvement yielded by RP relocation

and the cost effectiveness of different objective criteria.

3.3.5 Simulation & Performance Evaluation

Performance of above schemes has been evaluated via the simulation. We mea-
sure the performance of RP-based multicast using unicast sender mode, multicast
sender mode, adaptive tree scheme, and per-source trees for different mobility
models and traffic loads. A distributed RP relocation mechanism has been im-

plemented into the simulator to measure its efficiency.

3.3.5.1 Mobility : Models and Countermeasures

To understand the limits of our proposed multicast solutions with respect to
mobility, it is important to develop a realistic and yet manageable mobility model.
By examining various fast deployable, wireless multihop environments such as ad

hoc networking, disaster recovery and battlefield, we observe that while some
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nodes are moving very fast (e.g., helicopters, aircraft, ambulances, etc.), others
are static or relatively slow moving (e.g., command posts, observation vehicles,
etc.). This suggests the establishment of a 2-level mobility model: some
nodes are stationary or move at speed below routing maintenance threshold,
and other nodes move too fast to maintain accurate routes to them and to be
relied upon for store and forward routing. Let us assume that the “slow node”
population is dense enough to form a connected topology spanning the entire
area. Furthermore, fast nodes are in radio contact with one or more slow nodes
at all times. In this case, some of the previous protocols can be “customized”
so that the impact of mobility is minimized. To this end, we assume that each

mobile node can measure its velocity and determine its status (slow or fast).

To begin, the 2-level mobility model can be easily matched with the 2-level
routing algorithm based on clusters and clusterhead routing as defined in 3.3.5.1
[GT95]. Clusterheads and gateways are fixed or slow moving nodes. The assump-
tion of dense population of slow nodes guarantees the existence of a connected
solution. Only clusterheads (and gateways between clusters) support the high
level routing and store and forwarding. This provides a fairly stable backbone
supported by slow nodes through which peripheral nodes (including fast nodes)
can be reached. The mobility model is exploited also in the multicast protocol de-
sign. In the shared tree scheme, the fast source uses the “unicast sender” option
beyond a certain speed (say, 30 km/hr) to avoid routing table misdirections as
mentioned in section 3.3.1. In the adaptive tree scheme, the fast source informs
all receivers of its status (by stamping a “fast” bit in the header, for example).

The receivers will not switch to the per-source tree if the source is fast.
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3.3.5.2 Simulation Environment

The simulator described in section 2.6 is used and A 2-level mobility model is
involved in some of the experiments, where nodes are subdivided in two classes,
slow and fast, at network initialization. In the 2-level mobility model, fast nodes
move at speed up to 90 km/hr. Slow nodes move at walking speed (1.4 km/hr).
Node buffer size is 10 packets. Multicast members are randomly selected to join
and quit the multicast group. In heavy load experiments, traffic input rate is
high enough to fully load the network. Total simulation time for each experiment
is 4x10° simulation ticks. One simulation tick corresponds to 50 us. Thus, each

run represents 200 seconds of simulated time.

3.3.5.3 Performance Evaluation

Throughput is probably the most comprehensive and meaningful measure for
comparing different schemes. In our experiments, throughput is measured by
counting the total number of received packets (excluding duplicates) during the
entire simulation time. Since simulation times may vary from experiment to
experiment, only relative throughput are meaningful for comparison. Throughput
is affected by many factors. First, we recall that in our simulation model we have
not implemented reliable multicast (i.e., retransmission of dropped packets) nor
congestion control. Thus, packets may be dropped and are not retransmitted.
Packet drop reduces throughput. Packets may be dropped for several reasons.
First, since nodes move randomly in the 1000x1000 meter square, it is possible
that the topology becomes temporarily disconnected; thus, there is no physical
path from some sources to some destinations, causing packet loss. This packet
drop rate is independent of load and speed. It affects all multicast schemes

identically. In our experiments this loss is rather small given the density of the
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nodes and the transmission range. A second cause of packet drop is mobility. As
nodes move, it becomes difficult to maintain correct, stable routes from sources
to destinations. Thus, packets are lost because the correct route is not available
(although a physical path may exist from source to destination). This packet
drop rate depends on speed and on the specific multicast scheme. It is rather
insensitive to load. A third cause of packet drop is due to buffer overflow. This
drop rate goes up as the load increases. It is clearly dependent on the ability of
the multicast scheme to evenly distribute the load over many paths. Thus, it will
affect shared tree more than per-source trees. Channel load, and therefore buffer
overflow, is also impacted by the control overhead introduced by the different

multicast schemes.

In comparison, in light load (i.e., no buffer overflow), packets are dropped
mostly because of mobility (i.e., the routing and multicast infrastructure cannot
keep up with fast moving nodes). Thus, throughput in light load is a measure of
the ability to withstand mobility. In heavy load, on the other hand, packets are
dropped mostly because of buffer overflow at bottlenecks. Thus, throughput in
heavy load is a measure of the ability of the multicast scheme to evenly distribute
the traffic across the network. In our study, we carry out both light and heavy

load experiments.

Throughput is measured by counting the number of packets received by the
members. Duplicate packets are excluded from the count. Beside throughput,
we also measure average number of hops, average end to end delay (sum of trans-
mission and queueing delays along the path) and total number of joint request

messages transmitted on the links for various multicast schemes.
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Figure 3.21: Heavy load experiments; uniform mobility

90

Heavy Load The first set of experiments was carried out in heavy offered

load (see figure 3.21). Uniform mobility is assumed, from 0 up to 90 km/hr.

As expected, per-source shortest path scheme performs best in this environment

since it can spread out the load evenly, and will use the minimal number of hops,

thus economizing resources. In comparing shortest path with adaptive scheme,

we note that adaptive approaches the performance of per-source which is optimal

in our experiment since it has the shortest path (only some packets go to the

RP before the switchover). In the shared tree case, the multicast sender scheme

outperforms the unicast sender scheme under any measure and for any speed, as

expected, because of the reduction in average path length and the reduction of

traffic load on the RP.
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Mobility affects performance, as expected. Note that uniform mobility is as-
sumed here. As speed increases, throughput decreases rapidly for all schemes, due
to failure of the routing and multicast protocols to keep up with node movements.
Thus, packets cannot be delivered and must be dropped. Average hop number
and delay decrease with mobility simply because the packets directed to distant
destinations are more likely to be dropped. Of interest to note is the increase
in number of join requests with mobility for adaptive and shortest path cases.
The overhead is much higher than for the other schemes. It is due to the need
to continuously adjust the multicast forwarding tables (i.e., join requests) from
receivers to fast moving sources. The higher the mobility, the higher the refresh
rate. For the shared tree based schemes, the scope of the refresh is limited to the
nodes on the shared tree. Thus, the overhead is much lower, making shared trees

more attractive in this respect.

Light Load The next set of experiments reports the behavior in light load.
In this case, there is no buffer overflow and therefore the main cause of packet
drop (and thus throughput reduction) is the failure of routing and multicasting
because of mobility. Here we assume uniform mobility. In figure 3.22, examining
the throughput curves, we note that all schemes deliver the same throughput at
zero mobility (i.e., no packet loss) as expected. As speed increases, the per-source
shortest path and adaptive schemes still outperform the shared tree schemes. This
is because in presence of uniform mobility the maintenance of the shared tree is
still more problematic then that of routing tables and per-source shortest trees.
The other measures (hops, delays, control request O/H) show the same trends as

in figure 3.21 (heavy load).
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Figure 3.22: Light load; uniform mobility

2-level Mobility In the next set of experiments we assume 2-level mobility.
The slow nodes move at 1.41 km/hr while the remaining nodes move at a higher
speed, which varies with each experiment. The first set of experiments in fig-
ure 3.23 assumes heavy load. In this case 50% of the nodes are slow (including
senders and receivers). If we compare these results with the results in figure 3.21
(heavy load, but uniform mobility), we note the same general behavior in the
sense that the per-source, shortest path scheme still dominates the shared tree
schemes. In other words, the per-source tree advantage of distributing flows in
heavy load cannot be offset by the degradation caused by source mobility. How-
ever, we also note that, as speed increases, the performance of the shared tree

schemes (in particular, unicast scheme) degrades much less with 2-level mobility

65



w

% 160000 Roo T | | I I ' ' !

S RS per-source mcast+-- |
s 140000 {F} Adaptive mcast-¢-- -

© 120000k R mcast sendersx-- -
= Kex. “x *&::-.. . ucast sendersA--
100000 - D
c_u B \~§K— ----- -
g 80000 HK-—o L ¥eomm A}
= 0 A E
= 60000 By a N

5 40000 | B
S 20000 ]
= I I l l l l L L

O 10 20 30 40 50 60 70 80 90
Fast node Mobility (km/hr)

Figure 3.23: Heavy load; 2-level mobility

than with uniform mobility. 2-level mobility provides a much more stable shared
tree backbone. The adaptive tree scheme performs as well as per-source tree, as

expected.

Next, we show light load results in figure 3.24, for the 50/50, 2-level mobility
model (50% of the nodes are slow). First, by comparing figure 3.24 with fig-
ure 3.22 (uniform mobility) we note that 2-level mobility improves performance

dramatically across the board, for high mobility.

The adaptive scheme performs best as expected. Note that in figure 3.24
the vertical scale is offset, so that the relative difference in performance among
all schemes is only about 1%. In practice, all schemes perform very well under
the 2-level mobility model. Even the per-source tree performs well, and in fact
surpasses the shared tree schemes, in part for the relative stability of routes in
the 2-level mobility model, and in part because of the improvements introduced

in the per-source tree scheme, as described in section 3.3.3.
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Another reason why the per-source tree does not show major degradation
with speed in the above light load experiments is the fact that even 90 km/hr
is not fast enough to trigger the “fast source” problem discussed in section 3.3.
Recall that when the source moves faster than routing can track it, then the
per-source join requests will not permit the receivers to refresh the paths to the
source. Consequently, the packets issued by the source are dropped since the
new neighbors do not recognize the multicast address and source ID, and thus
cannot forward them. In order to estimate the critical speed which triggers the
“fast source” problem, consider the fact that a node must move about 100 m to
join a new cluster, and that routing is updated every second. If speed is above
100 m/s, i.e. 360 km/hr, we can easily see that the node moves faster than the

routing tables can track it.

Based on the above observation, we have carried out another light load ex-

periment with a carefully selected 2-level mobility model in order to isolate and
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Figure 3.25: Light load; 2-level mobility (only senders move)

amplify the effect of source mobility. Namely: only sources move, while all other
nodes are static. Furthermore, speed now grows up to 400 km/hr. The through-
put results in figure 3.25 clearly show the collapse of the per-source shortest tree
scheme for speeds between 150 and 250 km /hr. This is exactly what we predicted.
The unicast shared tree performs extremely well, as expected: packets from the
fast moving source are reliably delivered to the RP via the static tree almost
irrespective of speed. The multicast sender shared tree shows higher degrada-
tion than unicast because the multicast tables become unstable when the source
moves too fast. Yet, even in this case, performance is nearly optimal up to con-
siderable speeds (250 km/hr). The adaptive tree performs best, and maintains

good performance up to 400 km /hr.

RP Dynamic Relocation Two sets of measurements are reported, without
RP relocation (figure 3.26(a)) and with RP relocation (figure 3.26(b)). In the
experiments in figure 3.26(a), the RP is “off center”. In figure 3.26(b), the RP

has been kept “centered” by the RP relocation algorithm. In both cases, heavy
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load and uniform mobility are assumed. First, we compare figure 3.26(a) and
figure 3.26(b) to evaluate the efficacy of the RP relocation algorithm (based on
average path length from RP to members). We note that the unicast server
model stands to gain the most (with respect to all measures) from RP reloca-
tion: throughput is almost doubled over the entire speed range from 10 to 90
km/hr. This is due to the fact that with an off center RP a single link (the one
in and out of the RP) must carry almost all the m-cast traffic. With a centered
RP, the unicast sender load is distributed over several tributary links, thus de-
creasing the load and accounting for the increase in throughput. As expected,
the adaptive per-source tree scheme does not benefit (with respect to throughput
or delay) from RP relocation. This is because with the fixed “off center” RP,
receivers systematically switch to the per-source multicast trees. When the RP
relocation algorithm is on, the RP is optimally positioned, and the conditions for
switchover are rarely met (in part because of the thresholds). Thus, the adaptive
scheme is not as aggressive as with the off centered RP, and behaves almost like
the multicast sender scheme, missing the load spreading benefits offered by per
source trees. This explanation is consistent with the join request overhead. With
RP relocation, only relatively few per-source reroutings are pursued, reducing the
number of join requests to the same order as the other schemes. With fixed RP on
the other hand, the number of join requests is much higher. Figure 3.26(a) reports
also the results for the per-source, shortest path multicast scheme. In compar-
ing shortest path with adaptive scheme, we note that performance is practically
identical for the two schemes. This confirms our observation that the adaptive
scheme aggressively uses shortest paths almost everywhere when the RP is off
center. Figure A.2 shows the location of the RP following the optimization. Note
that the RP path length value is minimum over all other nodes. Furthermore,

there are no other local minima, confirming convexity of the solution.
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CHAPTER 4

Multicasting without RP

RP-based multicast is efficient if the location of RP is optimal and fixed. For a
moving environment, RP mobility may affect multicast efficiency. Some schemes
use sets of RPs [CE95] to direct multicast routing and resource reservation. To
maintain good performance and reliability, R P selection or relocation mechanisms
are required to work with. The mobile RPs tend to increase the overhead of RP
selection and thus reduce multicast efficiency. We explore multicast schemes
without RPs in this chapter. Flooding and DVMRP [DC90] are studied first.
Modified variants for our network infrastructure are evaluated for comparison. A
new wireless multicast protocol, FGMP, is proposed to take advantage of wireless
transmissions and to adapt to mobile environments. Various performance metrics

are measured from the simulator.

4.1 Flooding

The simplest way to multicast packets to all receiver members without RP assis-
tance is to flood the packets. The scope of flooding can be specified by the value
of TTL (Time To Live). However, the channel overhead is large and increases
with the number of senders, and thus limits the scalability to large multicast
member size. The multicast packets is forwarded to the network boundary (leaf

nodes) or until hop count reaches TTL. The packet is forwarded by an internal
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node if it is not a duplicate and there are more than one neighbors. The inher-
ent broadcast property of wireless transmission makes flooding more efficient in
wireless networks than in wireline networks. Unlike other multicast schemes such
as CBT, PIM, DVMRP etc., there is no storage and control channel overhead
for flooding. Another advantage of flooding is the less sensitivity to mobility (see
figure 4.6). In the case of very high mobility, flooding might be the only solution
for multicast. Flooding can achieve good performance if multicast membership
is very dense. For sparse mode member group, many transmissions are useless
and the multicast efficiency ! is low (see figure 4.7). The redundant transmissions
incur many duplicates which must be detected and discarded to avoid further de-
terioration. Here we explore two schemes to detect duplicate multicast packets.
One is using Reverse Path Forwarding (RPF) algorithm [DC90] and the other is

to detect the duplicates by checking the packet ID numbers.

4.1.1 Reverse Path Forwarding (RPF)

According to RPF algorithm, a packet is forwarded only if it comes from the
shortest path to the sender. The shortest path information is provided by the
underlying routing protocol. Multicast packet header contains the sender ID and
multicast address which are examined by the eligible nodes to decide the for-
warding. Flooding using RPF to forward the packets does not need any buffers
to detect duplicates. However, the shortest path routing information is required.
Furthermore, RPF cannot completely avoid duplicates when the network topol-

ogy changes.

'Multicast Efficiency is defined in section 4.5.1
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4.1.2 Packet ID duplicate detection

When a source moves faster than the routing tables can track it, the routing tables
may point in the “wrong direction”. In this case, Reverse Path Forwarding (RPF)
does not work well as a technique to detect duplicate. A better technique is to
use packet ID numbers (e.g. sender ID and sequence number). The first packet
delivered by flooding is accepted and forwarded to neighbors. A large number of
buffers, storing the multicast addresses, sender IDs, and sequence numbers, are
required in order to detect the duplicates. Without depending on any routing
information, packet ID duplicate detection is less sensitive to mobility and thus
is more suitable for mobile networks. Any routing schemes can be used without
affecting the forwarding. For example, on-demand routings which do not track
every node cannot be used for RPF flooding. In the sequel we use packet 1D

detection for multicast flooding.

4.2 Per-Source Multicast: Wireless extension of DVMRP

In DVMRP, each sender selectively “floods” multicast packets to all nodes within
a specified range (defined by TTL) using the reverse shortest path forwarding
scheme [DC90]. Periodically, non-member leaf nodes and nodes without any
downstream members send prune messages upstream to prune off branches to
non-member nodes. After timeout, pruned branches become alive and get flooded
again. A new receiver member can also send a graft message to upstream nodes

in order to speed up the connect process.

There are some problems in the use of DVMRP in mobile wireless networks.
One problem is the leaf node detection. In a wireless network, all nodes can

function as routers. Thus, there is no explicit subnet. IGMP is not suitable for
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this environment. In section 4.2.1, we explore two alternative schemes to detect
the leaf nodes in a wireless network and compare their performance via simula-
tion. The second problem is the data flooding overhead. Since upstream nodes
may change or be disconnected due to mobility, each source must periodically
reflood and explore pruned branches in order to reestablish the upstream con-
nection, reconnect lost members, or allow new members to join. This periodic
reflooding causes considerable transmission overhead for the low bandwidth wire-
less channel. In section 4.2.2 we describe an adaptive grafting/pruning scheme
which alleviates the problem. The third problem is Reverse Path Forwarding
(RPF). Since DVMRP uses the RPF mechanism, packets are accepted only from
the shortest path. If the shortest path changes and no multicast packets arrive
on the new path, the node becomes disconnected from the tree (since it will not
accept packets from the old path). Section 4.2.3 presents an alternative to RPF
which improves performance in high mobility. Finally, a problem with per-source
tree is scalability to large number of senders. Each internal tree node stores the
list of sources and associated timers. Storage and processing overhead grows

linear with |S|. The shared tree eliminates this problem.

4.2.1 Leaf Node Detection

In DVMRP, leaf routers are responsible for sending prune messages to upstream
routers when multicast packets arrive and there is no member on the leaf subnet.
For the wireline network, each router has explicit link information to decide which
links are child links for a given source. Multicast packets are forwarded only to
child links. For a wireless node, it is not trivial to decide if it is a leaf node.
Namely, each node is a router and there is no explicit link interface information

to determine the leaf status. Here we propose two schemes for detecting the leaf
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nodes for a source. One is using ACK to detect the leaf node. When a node N
receives a multicast packet from source S via the “reverse path”, it broadcasts
the packet and all neighbors will hear it. Neighbors which are on the reverse
shortest path via N to S will accept the packet and send ACK to N. Node
N is a leaf node if there is no ACK coming back (from its neighbors) after a
timeout interval T. T is large enough to accommodate the round-trip delay for
all neighbors. The main cost of this scheme is extra ACK traffic. Another scheme
is to use neighbors’ routing tables. Node N is able to find out if there exists any
downstream neighbor for source S by checking its neighbors’ routing tables (which
are periodically exchanged). A neighbor is the downstream node if it has longer
distance to S via N or if it advertises N as the next node to destination S. Node
N is a leaf node if there is no downstream neighbor. Prune messages can be sent
upstream with lower delay than with the ACK scheme. However, the overhead of
this scheme is the space required to store all neighbors’ routing tables. We will

use the neighbor routing table scheme in the sequel.

4.2.2 Dynamic Grafting/Pruning

DVMRP routers set a timer for each pruned-off downstream and upstream link.
Multicast packets are reflooded to pruned-off downstreams when the timer ex-
pires. Reflooding is necessary for the following reasons : (1) to pick up new
members who do not have source information, (2) to update per-source tree in-
formation, and (3) to refresh source status. A router sends a prune message to
its upstream if it is the leaf router and all its downstreams are pruned off. When
a node receives a multicast packet from source S, it stores (or updates) the up-
stream link and the timer for S. If a node not on the tree wants to join this group,

it can send graft messages directed to the senders of this group. In a mobile en-
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(a) (b)

Figure 4.1: Example of upstream change

vironment, it is frequent to find nodes without upstreams (new entering nodes,
disconnected nodes, etc.). Reflooding is necessary to pick up new members. For
a node on the tree, it is possible that the multicast traffic stops due to upstream
link changes. For example, in figure 4.1(a) the multicast tree from source S to
receiver member R is S — n — m — 7 — ¢ — R. When the topology changes
from 4.1(a) to 4.1(b), node 7 will not accept packets from j but from k (new
shortest path). However, there is no traffic coming from & because [ and k are
not forwarding any packets from S (they are pruned off branches). Reflooding
will correct this situation by establishing the new path S - | - k -1 —- R
(even if node k deletes its pruned states due to a change in topology, node k still
cannot recover because node [ has no knowledge about the topology change).
Thus, in the mobile environment frequent reflooding is needed to reconfigure
the multicast trees. At the same time, reducing the reflooding overhead is very
important for the bandwidth-limited wireless channel. We propose a variant of
DVMRP called “dynamic” DVMRP, which reduces the reflooding frequency yet

maintaining accuracy. Dynamic DVMRP monitors the routing information. If
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Figure 4.2: Throughput of adaptive vs. non-adaptive DVMRP

the shortest path to the source changes, the node sends a graft message to the new
upstream node and a prune message to the old upstream node. For the example
in figure 4.1(b) node i detects the change and sends a graft message to k and a
prune message to j. This reduces the need of reflooding for topology adjustment.
We still need reflooding however to pick up new members. In addition, status of
the senders (live or expired) must be refreshed via reflooding. A scheme similar to
“dynamic” DVMRP has been proposed in [Dee91], but it provides only dynamic
grafting, not pruning. Figure 4.2 shows the improvement of dynamic DVMRP.
The dynamic version will be used in all subsequent experiments, unless otherwise

specified.

4.2.3 RPF vs. Packet ID duplicate detection

As explained in section 4.1.1, RPF is not very efficient for a mobile environment.
Packet ID duplicate detection is also explored for DVMRP. The first packet de-

livered by flooding is accepted and the corresponding transmitter is marked as
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the upstream node. Figure 4.3 compares the throughput of the two schemes in
a light load (100 nodes) experiment. ID number checking is superior to RPF for

medium and high mobility. It will thus be used in all the subsequent experiments.

Table 4.1: Reflooding period

Mobility | Reflooding period (ms)
(km/hr) | non-Adaptive | Adaptive
0.02 20000 2000
0.70 4000 2000
1.41 2000 2000
2.81 1000 2000
5.62 800 2000
11.25 700 2000
22.50 600 2000
30.00 500 2000
45.00 400 2000
60.00 300 2000
90.00 200 2000

4.2.4 Protocol Overhead

To compare with our new protocol, we address the overhead of DVMRP in mo-
bile wireless networks. There are two types of overhead: channel and storage.
The channel overhead comes from redundant flooding. The frequency of flooding
is dependent on the timers of pruned off branches. For each pruned off branch,
there is a timer associated with it and multicast packets will be forwarded after

the timeout. The channel overhead is worse for wireless networks than wireline
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Figure 4.3: Throughput of DVMRP

networks since one branch’s timeout will cause packet flooding. The storage over-
head corresponds to the storage space for tree status. For each sender source,
each node needs to store information of upstream, downstreams, and some main-
tenance status. The information includes timers and status flags. If there are
S senders for a group and D downstreams on average, the storage overhead of
a node is S x (D + 1) * N bytes, where N is number of bytes for each link. In

section 4.5.3.2 we evaluate the storage overhead in our simulation.

4.3 Forwarding Group Multicast Protocol (FGMP)

In a wireless broadcast channel, there is no notion of explicit link interface like in
a wired point to point channel. Multicast forwarding is based on nodes (routers)
which are going to accept multicast packets rather than on outgoing links on
which multicast packets are forwarded. Traditional multicast protocols are based

on upstream and downstream links (e.g., CBT [BFC93, CZ95], PIM [DEF96],
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Forwarding rode

Multicast link

Figure 4.4: An example of FGMP

DVMRP [DC90]). These links form one or more multicast trees. Links and tree
based multicasting is not very efficient here because upstream and downstream

link maintenance in a wireless mobile network is costly and imprecise.

The proposed multicast protocol keeps track not of links but of groups of
nodes which participate in multicast packets forwarding. Each multicast group
G is associated with a forwarding group, F'G. Any node in FG is in charge of
forwarding (broadcast) multicast packets of G. That is, when a forwarding node
(a node in F'G) receives a multicast packet, it will broadcast this packet if it is
not a duplicate. All neighbors can hear it, but only neighbors that are in F'G will
first determine if it is a duplicate and then broadcast it in turn. Figure 4.4 shows
an example of a multicast group containing three senders and three receivers.
Three forwarding nodes take the responsibility to forward multicast packets. This
scheme can be viewed as “limited scope” flooding. That is, flooding is contained
within a properly selected forwarding set. It is interesting to note that with
proper selection of the forwarding group, the F'G scheme can emulate any of the
conventional multicast schemes. For example, to produce global flooding, the
F'G must include all nodes in the network. For CBT, the F'G is restricted to the
nodes on the shared tree except the leaf nodes. In DVMRP and PIM dense mode,

the F'G for a particular source includes all the non-leaf nodes on the source tree.
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Only one flag and a timer are needed for each forwarding node. When the
forwarding flag is set (as described in following subsections), each node in FG
forwards data packets belonging to G until the timer expires. Regardless of
member group size, one forwarding flag is enough to guarantee efficient delivery
of multicast packets. Storage overhead, a major problem in traditional multicast
protocols, is minimal, thus improving the scalability. The timer is refreshed by
the forwarding group updating protocol. Stale forwarding nodes are deleted from

F@G after timeout.

The major problem in FGMP is how to elect and maintain the set F'G of
forwarding nodes. The size of F'G should be as small as possible to reduce wireless
channel overhead, and the forwarding path from senders to receivers should be

as short as possible to achieve high throughput.

The key to efficient multicasting is a mechanism which allows the network to
forward packets efficiently from senders to receivers without resorting to global
flooding. Unless the senders have full membership information, some limited
flooding is required to discover the members. For example, in DVMRP each
source periodically floods multicast packets to update the multicast information
(upstream, downstreams, and source information). However periodic flooding
of packets is not cost-efficient especially for wireless channel. We use a new
scheme which has lower overhead (both in channel and storage) than DVMRP,
thus improving the performance. To reduce the overhead, we propose to flood
explicit sender or receiver membership (rather than data packets as in DVMRP).
Namely, instead of flooding data packets like DVMRP, we only flood small size
control messages and with less frequency. In DVMRP, flooding from the sender
is needed to refresh senders’ status and re-establish multicast states (upstream

and downstream). To adapt to the changing environment (mobility), the flood-
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Mcast Group id | Receiver Id | Sequence # | TTL

Table 4.2: Format of join request packet

ing frequency must be increased as mobility increases. Thus, high mobility needs
high frequency flooding to maintain and reestablish the multicast status, but
this will increase the channel overhead and degrade the performance. Our pro-
posed membership advertising scheme only refreshes the membership. Channel
overhead is much lower than DVMRP, making this scheme effective in a mobile

wireless environment.

In the proposed scheme, the decision to forward multicast packets depends on
a forwarding flag. The forwarding flag is associated with a timer (“soft state”).
When a node in FG learns of a receiver member (described in detail in the
following sections), it resets its forwarding timer. A node with enabled forwarding
flag (i.e., timer has not expired) is responsible for forwarding the multicast packets
for that group. Due to the inherent broadcast property of wireless transmission,
it is not necessary to store the downstream link status as in DVMRP. When
a node with an enable flag receives a multicast packet, it just broadcasts it to
its neighbors. Only neighbors with an enabled forwarding flag will accept the
packet. In DVMRP, every node needs to store the upstream and downstream
link information for each sender, thus reducing the scalability. Here, instead of
storing all downstream links (live or pruned) as in DVMRP, only the forwarding
flag and timer are stored, thus reducing the storage overhead and increasing the

flexibility and performance.
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Mcast Group id

Refresh Timer

receiver member id | timer

Table 4.3: Format of member table at the sender

4.3.1 FG Maintenance via Receiver Advertising (FGMP-RA)

One way to advertise the membership is to let each receiver periodically and
globally flood its member information formatted as in table 4.2. Each sender
maintains a member table as shown in table 4.3. When a sender receives the join
request from receiver members, it updates its member table. Expired receiver
entries will be deleted from the member table. Non-sender nodes simply forward
the request packet. The sender will broadcast multicast data packets only if the
member table is not empty. After updating the member table, the sender creates
from it the forwarding table F'W shown in table 4.4. The next hop on the shortest
path to the receiver is obtained from pre-existing routing tables. The forwarding
table FW is broadcast by the sender to all neighbors; only neighbors listed in
the next hop list (next hop neighbors) accept this forwarding table (although all
neighbors can hear it). Each neighbor in the next hop list creates its forwarding
table by extracting the entries where it is the next hop neighbor and again using
the pre-existing routing table to find the next hops, etc. After the FW table is
built, it is then broadcast again to neighbors and so on, until all receivers are
reached. The forwarding table F'W propagation mechanism essentially activates
all the nodes on the source tree which is rooted at the sender. These nodes become

part of the F'G. At each step, after receiving the forwarding table, nodes on the
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next hop neighbor list enable the forwarding flag and refresh the forwarding timer.
Soft state dynamic reconfiguration provides the ability to adapt to a changing

topology.

Mcast Group id

receiver member id | next hop

Table 4.4: Format of forwarding table FFW

Appendix B.1 describes the detailed protocol and figure 4.5 shows an example
of multicasting the forwarding tables. Node 12 is the sender. Five nodes are
forwarding nodes, FFG = {4,12,16, 22,25}, because they are in the next hop
list. Only the sender and the internal nodes, in our case 12 and node 22, need
to create a forwarding table (figure 4.5(a),(b)) and broadcast it. Forwarding
nodes 4, 16, and 25 do not need to create their forwarding tables since they
are “leaves”, i.e., all receiver members are immediate neighbors. It is critical to
note that the forwarding tables are NOT STORED like routing tables. They are
created and broadcast to the neighbors only when new forwarding tables arrive.
When forwarding nodes receive new forwarding tables, their forwarding timers
are refreshed; in absence of refreshes, the forwarding flag will automatically time

out and the forwarding node is deleted from FG.

4.3.2 FG Maintenance via Sender Advertising (FGMP-SA)

Another way to advertise the membership is to let senders flood sender informa-
tion. Sender advertising is more efficient than receiver advertising if the number

of senders is less than the number of receivers. Most multicast applications be-
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Figure 4.5: Example of Forwarding tables (FGMP-RA)

long to this category. Like in receiver advertising, senders periodically flood
the sender information. Receivers will collect senders’ status, then periodically
broadcast “joining tables” to create and maintain the forwarding group F'G. The
“joining table” has the same format as the “forwarding table” except that the
joining table contains the sender IDs while the forwarding table contains receiver
IDs. The forwarding flag and timer are set when a node receives the joining
table. The forwarding group is maintained (soft state refresh) by the senders
in the receiver advertising scheme and by the receivers in the sender advertising
scheme. Both schemes achieve higher performance than DVMRP (due to the

lower flooding overhead) and result in low storage overhead.

4.3.3 Protocol Overhead

The membership flooding overhead is much smaller than DVMRP because of the

smaller size of control messages and longer flooding intervals as we explained
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in section 3. The storage overhead of membership advertising schemes is also
greatly reduced. For example in DVMRP, if there are S senders, R receivers, and
D downstream links on average for a group, every node needs S (D+1)x B bytes
to store both upstream and downstreams status, where B is number of bytes for
each link. However, for FGMP, each forwarding node (not all nodes) only needs
one flag and one timer for a group. In the sender advertising scheme, a receiver
needs an additional storage of S x B’ bytes for membership table, where B’ is

number of bytes for each entry in the joining table.

4.4 Simulation Environment & Performance Evaluation

The FG multicast protocol presented so far requires the availability of routing
tables, but is otherwise independent of lower layer protocols. The overall perfor-
mance does, however, depend on the protocol infrastructure. As in section 3.2.3,
the network infrastructure and simulation environments described in chapter 2

have been opted.

4.4.1 Simulation Environment

Two multicast membership configurations are evaluated. Type 1 configuration
consists of one sender and 9 receiver members. Type 2 configuration has 10
members and each of them is both sender and receiver. The type 1 traffic pattern
may correspond to a broadcast service such as video on demand, while the type 2
may correspond to audio/video conferencing or computer collaboration. Packet
interarrival times are exponentially distributed with mean 1/A. Table 4.4.1 shows
the traffic load used for type 1 and type 2. In addition to multicast, there is a

light background uniform unicast load originating from each node at the rate of
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Member Configuration Traffic Load 1/X | Total packets

Load-A (heavy load) | 25 ms unlimited

Type-1
Load-B (light load) | 50 ms 400
Type-2 Load-C 250 ms unlimited
Table 4.5: Multicast Traffic Load
1/X\ = bsec.

4.5 Performance Evaluation

Performance of multicast protocols without RP are evaluated in this section,
including flooding, DVMRP, and FGMP. Adaptive DVMRP and sender/receiver
advertising FGMP are also involved for comparison. Metrics of evaluation are
multicast throughput and efficiency, forwarding group size, and overhead of the

channel and the storage.

4.5.1 Throughput & Efficiency

To evaluate multicast performance, we measure the “throughput” at the receivers.
The “throughput” is defined as total multicast packets received at all receiver
members excluding duplicated packets. As previously explained, not all packets
will be delivered because of buffer overflow and dropping. Throughput perfor-
mance is affected by two factors: (a) the temporary loss of a multicast route
because of mobility, and; (b) the line O/H caused by control messages. Line O/H
indirectly causes congestion and buffer overflow. Thus, net throughput is a good

cumulative measure of multicast performance.

In a wireless channel, the multicast protocol can take advantage of MAC layer

87



broadcast/multicast. For example, in our proposed scheme, a packet transmit-
ted by a clusterhead is simultaneously received (and accepted) over the wireless
channel by several gateways. The efficient wireless multicast scheme makes good
use of the MAC layer broadcast facility. It is thus appropriate to evaluate and
compare multicast schemes using the performance measure “Multicast Efficiency”

defined as:

total number of multicast receptions (along the path as well as at destinations)

ME =

total number of multicast transmissions (at each node)

To measure the multicast efficiency, we accumulate the hop count of every

H

multicast packet at each destination (i.e., receiver member). Then, M E = TR

where H is the total number of hops accumulated by multicast packets, and
MTX is the total number of packet transmissions. For multicast transmissions,
typically ME > 1. If ME < 1, that means some multicast transmissions are
redundant like in the global flooding case. Unicast transmissions with possible

retransmissions will yield a “Transmission Efficiency” less than or equal to 1.

Figure 4.6 compares the throughput of FGMP, DVMRP and flooding. We
note that for zero mobility (static network) FGMP and DVMRP achieve the
same throughput. Flooding yields lower throughput because of redundant trans-
missions. As mobility increases, DVMRP performance drops very fast, even below
flooding. FGMP and adaptive DVMRP performs quite well. Flooding is almost
insensitive to mobility, as expected. Figure 4.7 shows the “Multicast Efficiency”
of the various schemes. Global flooding is the least efficient because of the large
number of redundant transmissions. FGMP makes the best use of MAC broad-
casting. In all, FGMP shows the best performance among all schemes under

study. There is little difference between the sender and the receiver version of

FGMP.
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Figure 4.6: Throughput
4.5.2 Forwarding Group Size

The size of the forwarding group F'G should be kept small to minimize the channel
overhead. Large F'G size will also degrade throughput efficiency as well, due to
increased wireless channel competition. Figure 4.8 shows the average size of
forwarding group for various protocols. The size is measured every 20 ms and
averaged over the entire experiment. Flooding has largest F'G size since all
clusterheads and gateways are included in F'G. FGMP has the smallest F'G
size because of better “scoped” flooding. F'G size of DVMRP increases during
reflooding and returns back to normal after pruning, thus ranging between FGMP

and Flooding.

4.5.3 Channel & Storage Overhead

Low overhead for wireless channel is very important since the available bandwidth

is scarce and high overhead affects the efficiency of channel access. Economical
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Figure 4.7: Performance of Flooding, DVMRP, and FGMP (Type 1, Load A)

storage is necessary for mobile nodes which are equipped with limited resources.

For these reasons, we measure the overhead for channel and storage utilization.

4.5.3.1 Channel Overhead

Two types of channel overhead are evaluated. One is the redundant transmission
of multicast data; the other is the transmission of multicast control messages.
Redundant transmissions include unnecessary flooding and duplicates. Multicast
efficiency, M E, defined in section 4.5.1 is the appropriate measure for channel
overhead caused by redundant transmissions. The more redundancy, the smaller
MFE is. The results in figure 4.7 confirm that Flooding and DVMRP have a high

percentage of redundant data transmission.

To compute control message overhead, we measure the total number of mul-
ticast control bits MCp g transmitted during the experiment and divide it by

the “network” transmission capacity T'C' (expressed in bits). In our simulation

90



100 | | | |

N Flooding -

& 80 Pa DVMRP-Adaptive —+-- .
5 A FGMP-Receiver-tt--

< B A A AFEGMP-Sender>¢~ - —. A
i) 60 - 7
()

=

g 40 | i}
©

(]

N

n

0O 10 20 30 40 50 60 70 80 90
Mobility (km/hr)
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environment, total transmission capacity TC' = B « C' x T bits, where B is chan-
nel bandwidth, C' is average number of clusters, and T' is total simulation time.

For example, in our runs, 7'C' is 8000 Mbit (B = 2 Mbps, C = 20, T' = 200).

MCO/H
e

Figure 4.9 shows , i.e., percentage capacity used for multicast control mes-
sages. Only FGMP and DVMRP are reported. Flooding has no control over-
head. We note that the FGMP sender (SA) version outperforms the receiver
(RA) version in Type 1 application (video broadcast, one sender, nine receivers)
as expected. The two versions show identical O/H in the video conference ap-
plication. Control overhead is rather insensitive to speed. Also it increases with

the number of senders (Type 2). In all, the O/H percentage is less than 4% for

FGMP and as a result it is quite manageable.

4.5.3.2 Storage Overhead

To evaluate the storage overhead, we count the storage required for multicast

control (upstream, downstream, flag, and timers) excluding the buffers for data.

91



S g
N I I I I " DVMRP o— g 7 T T T T T T T T
o 350 DVMRP-Adaptive +-- s DVMRP ——
8 3k FGMP-Receiver &~ | 2 6  DVMRP-Adaptive +-- 4
b [ FGMP-Sender-x- b FGMP-Receiver-&-- T
5 ‘ 5 S FGMP-Sender-- .=~ A
g =] IS 4% '_k/’/ﬂu T
© + o 3 e e S = T
] 3 o -
o > 3
g ES 2
< S Y §
g 05 4 T : 1
(o] 1 1 1 1 1 1 1 1
%0 10 20 30 40 50 60 70 80 90 5 ottt
A o
Mobility (km/hr) 0 10 20 3%' ob‘illgy (ksn?/hr)so 70 80 90
(a) Type 1 with Load A (b) Type 2 with Load C

Figure 4.9: Control Channel Overhead

The measure is performed every 20 ms and averaged over the experiment dura-
tion. For FGMP, the average size of forwarding group, |F'G|, is measured, and
therefore the average storage overhead SO/Hpgpyp is given by |FG| * Braup,
where Brgpgp is the storage in bytes needed for forwarding flag and timer. For
DVMRP, for each sender S;, there is a sender-rooted tree. Average number of
leaf nodes, Leaf;, and non-leaf nodes, NonLeaf; is counted. Average number
of downstream nodes (pruned and live), Down;, is also measured for a non-leaf

node. The average storage overhead is given by:

SO/Hpyyrp = (Z(Leafi + NonLeaf; x (Down; +1))) * Bpymgrp

)

where Bpyyrp is the storage in bytes required to store the multicast link status

SO/H
N

(timer, state, etc.). Figure 4.10 shows the storage O/H per node , where
N = 100, and Bprgyp = Bpyvumre = 2. Flooding protocol is not shown in
figure 4.10 since it incurs no storage overhead. The storage economy of FGMP

is evident here.

4.5.4 Light Load Traffic Performance

Figure 4.11 shows the performance of various multicast schemes for the Type 1

configuration in light load (Load B). In light load, packets are dropped when
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a route is not available, i.e., the multicast infrastructure (e.g., FG or multicast
tree) has not kept up with node movements. The best performance is offered
by global flooding, which in light load does not suffer throughput degradation
because of redundant packets, and at the same time will reach all members which
are connected to the network. In global flooding, packet loss is caused exclusively
by the temporary topology disconnection of some of the members. This problem
is emphasized by mobility. We note that FGMP performance is very close to
flooding. This indicates that in FGMP, most of the packet loss at high mobility
is due to topology disconnections; only a small fraction of the loss is due to
the fact that the forwarding group does not keep up with member movements.

DVMRP performance is again much inferior to FGMP.
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CHAPTER 5

On-Demand Multicast

In this paper we propose an “On-Demand” multicast protocol for multihop, mo-
bile wireless networks. The on-demand multicast does not need any unicast
routing information, and thus it provides a very suitable and efficient way for
environments in which maintaining unicast routing is not efficient due to the dy-
namic changing topology. Traditional distance vector routing schemes keep an
entry for each destination router in the routing table and maintain the routing in-
formation by periodically exchanging the routing table. The overhead of storage
(large size routing tables) and channel (routing table updates) limits the scala-
bility for multihop, mobile networks in which each mobile node is a router. By
maintaining only active entries (without routing table updates) on-demand mul-
ticast reduces the channel and storage overhead, thus improving the performance

and scalability.

5.1 DMotivation

Distance vector routing protocols maintain up to date routing information by
exchanging routing tables (RT) with neighbors. In order to adapt to changing
topology such as mobile networks, the update of routing tables needs to be per-
formed frequently. For example, in addition to periodical updates (i.e. fixed

update period), the routing tables need to be updated if there is any change in
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the link of neighbors. That is the higher the mobility, the more frequent updates.
These frequent updates, however, increase the wireless channel overhead. Fur-
thermore, the size of routing table limits the scalability for large networks. For
wireless networks, it is important to use the channel efficiently. To understand
the channel usage for distance vector routings in mobile wireless networks, we
build a simulation (described in section5.4) in which only traffic of routing table
updates is involved (i.e. no data traffic), and the channel utilization of routing
table update (RTU) (percentage of total channel capacity) is evaluated. For each
node the routing table is updated every one second. Neighboring changes trigger
the update as well. The RTU consists of entries for each reachable destination.
Figure 5.1 shows the channel utilization of RTU and figure 5.2 presents the total
number of RTU for varying mobility. We note that more than half of bandwidth
is used by RTU at high mobility, making distance vector routing schemes not

efficient for wireless mobile networks.

Most multicast protocols work independently of underlying unicast proto-
cols. They still need, however, unicast routing information (e.g. checking reverse
shortest path, sending join/prune messages etc.) to construct the tree, for ex-
ample. The channel overhead of routing table updates apparently will affect the

performance of data traffic.

In this paper we propose a multicast protocol which uses on-demand routing
without any routing table updates, thus avoiding the channel overhead used by
the update of routing tables and increasing the scalability. Multicast routing
information is created and maintained based on the requests of multicast mem-
bers. This On-Demand Multicast protocol does not need any unicast routing,
thus making it very applicable for any on-demand routing applications. In ad-

dition to using on-demand routing, our multicast protocol exploits the inherent
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Figure 5.1: Channel Usage by RTU Figure 5.2: Total number of transmis-
sions of RTU

broadcast property of the wireless medium. Instead of using tree infrastructures
like traditional multicast protocols, our protocol uses “Forwarding Group”, a
number of nodes which are responsible for forwarding multicast data, to deliver
multicast traffic. The Forwarding Group infrastructure reduces lots of storage
overhead which is required in the traditional multicast protocols to maintain the
multicast trees, and provides a more flexible connectivity among multicast mem-
bers (node connectivity rather than link connectivity). The reduction of channel
and storage overhead and the enhancement of connectivity make this protocol

more scalable for large networks and very efficient for mobile wireless networks.

5.2 On-Demand Routings

Distance vector routing protocols [PB94] need to update routing information by
periodically exchanging the routing table with neighbors. When the size of rout-
ing table is very large and the network topology is not static, the overhead of
exchanging routing tables reduces the efficiency of these routing protocols. This

situation occurs in the multihop, mobile wireless networks (ad hoc networks).
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Because of the mobility and no static subnets, each node in the ad hoc network
functions as a router and needs routing information in the routing table. That
means that the size of a routing table is N entries if there are /N mobile nodes in
the network. When the network size is large and the mobility is high, distance
vector routing becomes inefficient. Several routing protocols have been recently
proposed for ad hoc networks [CE95, PB94, JM96]. Any of these schemes will
be adequate to support on-demand multicast. In our study we have used the
on-demand routing proposed by [Per97]. The basic principle of on-demand rout-
ing is to keep only routing information for active source/destination pairs. When
a source S wants to send data to a destination D and does not find D in its
routing table, it broadcasts a REQUEST for route to D. REQUEST messages
are flooded until nodes are reached which have the routing information to D. A
REPLY message is sent back to S by each node which has routing information
to D in its routing table. Routes are computed using the well known “backward
learning” principle, which has been applied, among others, in LAN interconnec-
tion via spanning tree bridges. Namely, REQUEST messages create reverse path
routing entries to S. REPLY messages create forward path routing entries from S
to D. After one or more routes to the destination are established, the source can
send data by selecting an appropriate route. There is no RTU traffic. For each
node, the routing entries in the routing table are created solely by the REQUEST
and REPLY messages which are small and fixed in size. The major difference
between distance vector and on-demand routing is that on-demand routing tables
are dynamically created and updated according to the traffic demand instead of
topology changes, and thus reduces the storage overhead for the routing table
in sparse traffic situations. This storage economy is very important for mobile
nodes and makes it more scalable for large networks. Each entry is associated

with a timer which is refreshed by data traffic. A stale entry is deleted after
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timeout. This soft state maintenance scheme is essential in a dynamically chang-
ing environment [CGZ97|. The redundant reverse and forward paths created by
the REQUEST and REPLY messages are timeout and removed from the routing
tables. Only active paths refreshed by the data traffic are kept. Figure 5.3 shows
an example of on-demand routing: (b) displays the reverse paths from all nodes
to source S after flooding the REQUESTS; (c) presents the forward path from S
to destination D (in this example, only D knows the route to itself, and therefore
can return the REPLY, and; (d) shows the final situation when stale paths are

removed.

To compare with on-demand routing, the distance vector routing protocol

used in this chapter is Bellman-Ford routing [BG92| scheme.
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5.3 On-Demand FGMP

In previous section, FGMP uses forwarding/joining table to maintain forwarding
group. The forwarding/joining table needs the information of the next hop to
the members. The next hop information in the routing table can be created
and maintained in the way of on-demand routing rather than using periodical
updates of the routing table in order to reduce the channel overhead and improve
the delivery efficiency. The format the routing table entry of on-demand routing
is presented in table 5.1. Different from Bellman-Ford, there is an additional
field called “Timer”. Entries with an expired timer are removed from the routing
table, thus saving the storage requirement for mobile nodes. There are two phases
to establish the next hop information for on-demand FGMP. One is ”Request
phase” which is issued by multicast members to create the routing information
(next hop) for forwarding/joining table. The other is ”Recovery phase” which is
used to request the next hop information if it is not available while the forwarding

node is sending the forwarding/joining table.

5.3.1 On-Demand Request phase

Without periodical updates of routing tables, we need to find out a way to estab-
lish the routing information required for FGMP. Fortunately, FGMP only needs
routing information in finding the next hops for the forwarding/joining table.
There is no unicast control message in FGMP. Furthermore, the next hop in-
formation can be easily created like on-demand routing by using the advertising
messages. For FGMP-RA, the advertising messages (join requests) issued by
receiver members can be used to create the path information from senders to
receivers. To this end, some attributes need to be carried on the join request in

order to setup the path information. Table 5.2 shows the format of on-demand

100



join request. “Sending ID” is the node ID which is currently sending the re-
quest; “Hops” is the hop count traversed by the request message. When a node
n receives a join request message, which contains receiver member ID R;, from
neighbor m, node n examines its routing table. If there is no routing entry for
R;, a new entry containing fields < R;(destination), m(next hop), hops, sequence
number, timer> is added into the routing table. Otherwise, the entry for R; is
refreshed if the request is newer. A newer request means either a larger sequence
number or a smaller hop count and same sequence number. The refresh causes
the updates of next hop, hop count, sequence number, and timer. Appendix B.2
describes the update of on-demand routing table in detail. The join requests
are flooded to the network scoped by TTL. By the time the sender members
receive the join requests, path information from senders to receiver members has
been created/updated and thus the forwarding table can be readily delivered to
update the forwarding group. Note that senders do not need to send back any
reply message to receiver members since the path information from receiver mem-
bers to senders is not used in FGMP-RA. Without the overhead of RTU as in
Bellman-Ford, on-demand join requests can arrive to senders with smaller delay,

thus improving multicasting performance.

A similar process is applicable to FGMP-SA, in which case sender members
flood sender information to create/update paths from receiver members to sender

members and the joining table is delivered to the sender members along the paths.

5.3.2 Next hop Recovery phase

On-demand multicast uses member advertising messages to create/update rout-
ing path information. However, the main purpose of advertising messages is

to update membership status rather than to maintain the routing status. In
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Table 5.1: Format On-Demand routing table entry

Destination | Next hop | Hop Count | Sequence # | Timer

Table 5.2: Format of on-demand join_request/sender_info packet

Mcast Group ID | Receiver/Sendey Sequence # | TTL | Sending node ID | Hops

member ID

Bellman-Ford+FGMP, every node just forwards the advertising messages (flood-
ing) without marking any trace since routing information is maintained by RTU.
In the on-demand case, in addition to forwarding the advertising messages, each
node updates its routing table based on the content of the received message.
On-demand routing does not increase the frequency of advertising, thus without
incurring channel overhead (although the message size is increased, it has only
two more fields and a much smaller routing table). The only routing information
needed for FGMP is the next hop information to create the forwarding/joining
table which is used to maintain the forwarding group (FG). The path informa-
tion created /updated by the advertising messages may not be able to track high
mobility. That is, when a forwarding node receives a forwarding/joining table
and wants to create a new forwarding/joining table to forward according to its
routing table, it may discover that it does not have the next hop information for
some destinations. To overcome this problem, when the next hop to member m,
is not existent, a path request, which is an on-demand unicast request, is issued
to open a new path to member my. This path request need not be flooded to the
entire network like a typical on-demand unicast request. Since path information

to my, has already been created in the network via my’s advertising messages, two
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or three hops probes (TTL = 2 or 3) would be enough to reach nodes which have
routing information for my, thus without increasing much the latency. After re-
plys come back, the next hop information is restored and the forwarding/joining

table is delivered to the new path and new forwarding nodes are exploited.

5.3.3 Refresh Strategy

The performance of soft state maintenance schemes is affected by refresh inter-
val (how frequently to refresh status) and timeout period (how long the status
stays) [CGZ97]. On-demand multicast uses soft state for both on-demand rout-
ing and multicast maintenance. The refresh and timeout intervals are defined as

follows:

RTE timeout : timeout interval of routing table entries (RTE).
MEM _refresh : refresh interval of member advertising messages.
M E M _timeout : timeout interval of membership status.

FT refresh : refresh interval of forwarding/joining tables.

FG _timeout : timeout interval of forwarding nodes.

Member advertising messages are issued by sender/receiver members accord-
ing to M EM _refresh; Stale members in member tables maintained at
receiver/sender are removed based on the M EM timeout. The routing entries in
the on-demand routing tables are deleted if their lives exceed the RT'E_timeout.
Forwarding/joining tables are issued periodically by sender/receiver members
according to the FT _refresh. Any update of member tables triggers the for-
warding/joining tables as well. Forwarding nodes are refreshed by the forward-
ing/joining tables and demoted to non-forwarding nodes after timeout (life ex-

ceeds FG_timeout). To adapt to changing topology, these parameters should be
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tuned to adequate values. Section 5.4 presents these parameter values in our

simulation models.

5.3.4 Optimal next hops

The major idea of FGMP is to select a group of nodes for forwarding multicast
packets. The forwarding group (FG) should be as small as possible to reduce
unnecessary transmissions. On the other hand, the FG should provide redundant
connectivity for dynamic environment in order to reduce the impact of topology
changes. An optimal FGMP should allow all moving nodes get multicast traffic
wherever they reside with minimal overhead. Flooding can provide the best
connectivity but is not efficient due to unnecessary transmissions. Multicast
tree protocols reduce the transmission waste by forcing multicast traffic to be
forwarded on the trees. However, tree structures do not perform well in dynamic
networks where topology changes incur heavy reconfiguration overhead. The
goal of FGMP is to provide a richer and more flexible connectivity with the
least overhead for dynamic networks. The flexible and adaptive connectivity
is achieved by exploiting the soft state updates of the forwarding group. The
wasteful transmission is avoided by removing stale forwarding nodes. It can be
reduced further via a optimal selection of next hops for forwarding/joining tables.
Recall that the forwarding/joining table is constructed according to the routing
table. The next hop information provided by the routing table may not be in a
optimal status. For example, in figure 4.5 we assume that the routing information
at node 12 is as table 5.3. If the routing entries for receiver members at node
12 are as in table 5.4, the forwarding group would be formed as figure 5.4 and
the forwarding table of node 12 would be as figure 5.4(a), and thus enlarges the

forwarding group and reduces the efficiency. The selection of an optimal (maximal

104



Table 5.3: Routing table Table 5.4: Routing table Table 5.5: Routing table of

of node 12 for figure 4.5  of node 12 for figure 5.4  node 12 with next hop list

Dest. | Next hop Dest. | Next hop Dest. | Next hop list
3 4 3 7 3 4,711
5 4 5 8 5 4,8,13
15 16 15 16 15 11,16,20
18 22 18 17 18 13,17,22
27 22 27 21 27 20,21,22

common) next hop for a number of members can achieve an optimal FG and thus
improve the efficiency and reduce the overhead. To select an optimal next hop
for forwarding/joining tables, all next hops with the same metric (hop) need to
be stored. Table 5.5 shows an example of routing table with next hop list for
figure 4.5. When a node is constructing its forwarding/joining table, it selects
the maximal common next hop among the next hop list. Table 5.3 is the example

after optimizing the next hops.

5.4 Simulation & Performance Evaluation

Different from the simulation environments in chapter 3 and 4, there is no rout-
ing table updates for on-demand multicast. We compare the performance of
on-demand multicast with FGMP using the Bellman-Ford routing scheme intro-
duced in section 4.3. Table 5.6 lists various parameters used in our experiments.
Two multicast membership configurations are evaluated. One-to-many multicast
consists of one sender and 9 receiver members. Many-to-many configuration has

10 members each of which is both a sender and a receiver. One-to-many traffic
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Figure 5.4: Example of Forwarding tables for FGMP-RA

pattern may correspond to a broadcast service such as video on demand, while
many-to-many configuration may correspond to audio/video conferencing or com-
puter collaboration. Packet interarrival times are exponentially distributed with
mean 1/A, where 1/X e to—many = 25ms and 1/Xyany—to—many = 250ms. In ad-
dition to multicast, there is a light background uniform unicast load (datagram)

originating from each node at the rate of 1/\ = 5sec.

5.4.1 Performance Evaluation

In this section we present the simulation results in which the performance of
on-demand multicast is evaluated and compared with FGMP (Bellman-Ford).
Channel utilization and control messages and storage overhead are first evaluated

to explore efficiency of on-demand routing. Multicast performance is then mea-
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Mobility Soft state parameters (time interval in ms)
(km/hr) Bellman-Ford & On-Demand On-Demand
MEM_refresh | MEM timeout | FT refresh | FG_timeout | RTE_timeout

0.02 400 960 200 260 960
0.70 400 960 200 260 960
1.41 400 960 200 260 960
2.81 400 960 200 260 960
0.62 400 960 200 260 960
11.25 400 960 200 260 960
22.50 400 960 160 480 960
30.00 400 960 120 400 960
45.00 400 960 80 320 960
60.00 400 960 60 280 960
90.00 400 960 40 240 960

sured to prove the efficiency of on-demand multicast. One-to-many configuration
using FGMP-SA is evaluated from section 5.4.2 to section 5.4.6. Section 5.4.6.1

explores other configurations and loads.

Table 5.6: Soft state parameters

5.4.2 Channel Utilization

Total network capacity is defined as C = S % B (bits), where S is the average

number of clusters and B is the wireless bandwidth (bits/sec). The channel

overhead of RTU is then given by:

C URT U —

(Total number of RTU) * (Routing Table Size(bits))

CxT
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where T is the total simulation time. Figure 4.5.3.1 shows the channel utilization
by message type for FGMP-SA using Bellman-Ford routing; Figure 4.5.3.1 shows
the results of FGMP-SA using on-demand routing. Token utilization is the faction
of bandwidth available for data (i.e., token). As expected, on-demand routing
eliminates channel overhead due to routing table updates and increases the to-
ken utilization for multicast traffic. From these results, it is quite obvious that
beyond, say, 10 km/hr, for this particular network configuration the overhead
introduced by the Bellman-Ford updates makes on-demand routing much more

attractive then Bellman-Ford routing.

5.4.2.1 Control Message Overhead

On-demand multicast creates/maintains routing information by using on-demand
requests/replys and hello messages. The on-demand request includes member
advertising messages, next hop requests, and unicast requests. Figure 5.8 shows

the overhead of all control messages for on-demand FGMP-SA. Compared with
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figure 5.7 which is using Bellman-Ford, the overhead of on-demand control mes-
sages is much less than routing table updates (RTU). Note that the RTU message
overhead in figure 5.7 was divided by 40 so as to fit it in the graph. The major
contribution to control message O/H in on-demand is the hello message whose
frequency increases with mobility. The member advertising overhead in Bellman-
Ford case is slightly less than the one of on-demand since in Bellman-Ford each
advertising message is forwarded only once at each node (flooding). The adver-
tising message may be forwarded more than once in on-demand case because the
hop count carried in the message header is examined and routing information is
updated if the hop count is better than the previous one. In our infrastructure,
it is possible to get the first message with longer path than the second duplicate
(due to flooding). In this case, the second duplicate (the same message from the
member) will suppress the first one and be forwarded in order to establish better
path information. The extra transmission of advertising messages will trigger

more joining table updates.
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5.4.3 Storage Overhead

Another benefit of on-demand routing is the reduction of routing table size. This
is very important for scalability to a large size network. In a multihop mobile
network, each node functions as a router. There is no explicit subnet and hi-
erarchical structure. Therefore, it is necessary to keep an entry for each node
when using distance vector routing. This limits the scalability since it increases
channel and storage overhead. To understand the usage of the routing table
for on-demand routing, we measure the average number of routing table entries
(RTE). The number of RTE is measured every 20 ms and averaged over the en-
tire experiment. The average RTE per node is shown in figure 5.12. We note
that on-demand only needs approximately 12 RTEs while Bellman-Ford main-
tains between 95 and 100 RTEs (depending of speed) in our infrastructure (100
nodes). In figure 5.12 we also show the maximal number of RTE used by on-
demand routing during the experiment, which is also much less than 100 used by

Bellman-Ford.

110



5.4.4 Throughput & Efficiency

To evaluate multicast performance, we measure the “throughput” at the receivers.
The “throughput” is defined as total multicast packets received at all receiver
members excluding duplicated packets. As previously explained, not all pack-
ets will be delivered because of buffer overflow and dropping. More precisely,
throughput performance is affected by two factors: (a) the temporary loss of a
multicast route because of mobility, and; (b) the line O/H caused by control
messages. Line O/H indirectly causes congestion and buffer overflow. Thus,
net throughput is a good cumulative measure of multicast performance (i.e., the

ability to withstand mobility and to reduce O/H).

In a wireless channel, the multicast protocol can take advantage of MAC layer
broadcast/multicast. For example, in our proposed scheme, a packet transmit-
ted by a clusterhead is simultaneously received (and accepted) over the wireless
channel by several gateways. The efficient wireless multicast scheme makes good
use of the MAC layer broadcast facility. It is thus appropriate to evaluate and
compare multicast schemes using the performance measure “Multicast Efficiency”

defined as:

total number of multicast receptions (along the path as well as at destinations)

MFE =

total number of multicast transmissions (at each node)

To measure the multicast efficiency, we accumulate the hop count of every

H

multicast packet at each destination (i.e. receiver member). Then, M E = TR

where H is the total number of hops accumulated by multicast packets, and
MTX is the total number of packet transmissions. For multicast transmissions,
typically ME > 1. If ME < 1, that means some multicast transmissions are
redundant like in the global flooding case. Unicast transmission with possible

retransmission will yield a “Transmission Efficiency” less than or equal to 1.
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Figure 5.9 compares the throughput of FGMP (Bellman-Ford) and On-Demand
FGMP. Figure 5.10 shows the “Multicast Efficiency”. At low speed, the per-
formance is comparable. At high speed, on-demand multicast reaches higher
throughput because of the reduction of routing table updates which waste chan-
nel capacity and degrade the throughput (see figure 5.5 and 5.7). The lower
efficiency of on-demand in low mobility means that there are more duplicates for
on-demand due to a larger forwarding group (this is verified in section 5.4.5).
In high mobility the efficiency approaches the same, making on-demand more

suitable for mobile networks.

5.4.5 Forwarding Group Size

The size of the forwarding group F'G should be kept small to minimize the channel
overhead. Large F'G size will also degrade throughput efficiency as well, due to
increased wireless channel competition. Figure 5.11 shows the average size of
forwarding group for Bellman-Ford and on-demand. The size is measured every

20 ms and averaged over the entire experiment. We note that on-demand has a
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larger size group in low mobility and a smaller group in high mobility. Bellman-
Ford provides more stable routing information in low mobility and thus maintains
a better (smaller) forwarding group than on-demand. The economical forwarding
group and less overhead of RTU in low mobility allows Bellman-Ford to have

better efficiency than on-demand routing.

5.4.6 Delay & Hops

Average delay and hop count are evaluated as well. The average delay and hop
count is measured at each receiver member. Each multicast packet carries the
time stamped by the sender and the hop count. Total delay and hop count are
accumulated and averaged over throughput. The delay includes transmission and
queueing delay. Figure 5.13 shows the average delay and figure 5.14 shows the
average hop count. On-demand multicast has much smaller delay at high mo-
bility due to the channel efficiency (without RTU) and token efficiency (without
competition of neighbors). This result is somewhat surprising since usually, on-
demand routing for unicast has longer delay due to the latency of request/reply.

However, in FGMP, most on-demand requests are performed by member adver-

113



80000

100 =g T T T T T T

i S
m 1 [ R G+
T 70000 8 ©
X o
& = 80 [ ]
S 60000 g
3 w Bellman-Ford —+--
2 50000 = On-Demand (Avg.) <—
8 x 60 - On-Demand (Max.) -+-- 7
£ 40000 | . S
[ [3]
£ 30000 | FGMP-SA (On-Demand) <— - € 40 - e N
5 FGMP-RA (On-Demand) -Gt - 2 e
£ 20000 | FGMP-SA (Bellman-Ford) —+-- )
g’ FGMP-RA (Bellman-Ford) -X-- g 20 @oo—o—— =
S 10000 - - >
|‘E <
0 | | | | | | | | 0 | | | | | | | |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Mobility (km/hr) Mobility (km/hr)

Figure 5.15: Throughput [One-to-Many] Figure 5.16: Average number of RTE

[Many-to-Many]

tising message and no replys are required, thus avoiding the latency. On-demand
request /reply is only needed to find the new next hop when it is not available.
This happens only if the topology changes. However, the latency of finding the
next hop is small since the next hop information can be found from nodes two or
three hops away. This is because routing information to the member nodes are
periodically maintained by member advertising messages which will efficiently
maintain routes from all nodes to the member nodes. On the other hand, routing
information maintained by Bellman-Ford is not efficient (longer delay) at high
mobility due to the channel overhead. On-demand does not incur much longer

paths for delivering multicast packets, making it suitable for dynamic networks.

5.4.6.1 Miscellaneous Results

In this section we explore the performance evaluation for various configurations
and traffic loads. Figure 5.15 compares the sender advertising (SA) and the re-
ceiver advertising (RA) schemes for FGMP for one-to-many. As expected, SA

takes advantage of one-to-many configuration and reaches slightly better perfor-
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mance than RA for both Bellman-Ford and on-demand cases.

Figures 5.17, 5.18, and 5.16 present the results for many-to-many configura-

tion and prove that on-demand multicast outperforms multicast using Bellman-

Ford.
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CHAPTER 6

Reliable Multicast

From applications involving human collaboration to critical network services like
autonomous management and security, many target applications envisioned for
multihop wireless networks benefit from a network multicast. However, most net-
work multicast services of today offer some form of ”best-effort” delivery which
lacks any end-to-end recovery mechanisms. While many ad-hoc mechanisms have
been developed over the years for adding end-to-end recovery to unreliable deliv-
ery, multicast poses several unique challenges related to both the size of the net-
work and the number of multicast sessions and session participants; this problem
deserves special attention in wireless networks with relatively scarce transmission
resources. For these reasons, we conducted simulations with one such reliable
multicast mechanism. Specifically, Scalable Reliable Multicast (SRM) [FJM95]
provides a framework for developing applications which both benefit from network
multicast and incorporate end-to-end recovery mechanisms. In this chapter, we
have built upon the the existing multicast simulation infrastructure, which us-
ing FGMP protocol described in chapter 4.3, to better understand the overall

suitability of SRM in wireless environments.
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6.1 The Reliable Multicast Problem

Adding reliability mechanisms to multicast poses several problems. First and
foremost, an effective reliable multicast scheme must handle scaling of control
traffic overhead in the face of one-to-many relationships. In order to support
Internet size sessions, control mechanisms must not adversely scale with the size
of the session. In the case of loss-recovery-based reliability, this design goal ap-
plies applies specially to the number of receivers. Considering TCP illustrates
this idea. In the TCP protocol, receivers send explicit acknowledgments to the
sender for each segment of data received. In the multicast domain, such a scheme
scales poorly with the number of receivers. Sometimes generally referred to as
acknowledgment ”implosion”, sessions with a large number of receivers each send-
ing acknowledgments results in a clog of acknowledgments at the sender. Much
as a data flow diverges in the network subsequent to initial transmission by the
sender, effective reliable multicast which supports a large number of receivers

must aggregate recovery initiated by those receivers.

6.2 Scalable Reliable Multicast (SRM)

SRM, as described in [FIJM95], is a framework for building multicast applications
which incorporate reliability. In recent years, many proposals have emerged for
supporting reliable multicast. The key contribution of SRM lies in its overall
philosophy of supporting a minimal form of reliability. While, like most reliability
mechanisms, SRM’s notion of reliability includes the recovery of data lost during
transit, it does not include guarantees about the ordering of packets commonly
present in other mechanisms. Instead of providing a reliable ordered bit-stream

like TCP, SRM places the requirement for providing unique names and ordering
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for data-units upon the application. In this way, SRM applies the principles for
Application Level Framing (ALF) [CT90] to the reliable multicast.

While SRM differs from TCP in many ways, it remains similar in one re-
spect. Much like TCP, the designers the SRM framework took an end-to-end
approach to control. In other words, recovery from losses occurs somewhere
above the network-level. This allows SRM recovery to operate over a potentially
large internetwork in which intermediate remain ignorant of SRM operations.
This presents a contrast to some other mechanisms, for example, those presented

in [PRI7|, which introduce reliability at or below the network-level.

In addition to its lightweight notion of reliability and end-to-end control, SRM
differs from other reliability mechanisms in several other ways. Typically, relia-
bility schemes include a protocol, i.e. a set of well-defined message formats and
an accompanying state machine describing how to process these messages. Since
SRM applies ALF principles, these don’t explicitly exist in the SRM framework.
Instead, the SRM framework consists of two main components. (1) The notion
of session messages, and (2) the loss recovery algorithm. Subsequent sections

describe both of these.

6.2.1 Session Messages

Each participant in a multicast session periodically transmits session messages
to the entire session. These messages allow the other participants to form a
shared-state describing the session. Some values of interest include the sequence
numbers of ordered data for the purpose of detecting loss as well as the topological
distances used by the loss recovery algorithm described in the next section. How-
ever, the exact nature of the session message will depend upon the requirements

of the application, it’s methods of detecting loss, and it’s method of deriving a
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Figure 6.1: SRM Loss Recovery: upon hearing B’s response to A’s re-

quest, S does not respond.

distance metric to weight the timers of loss recover.

6.2.2 Loss Recovery Algorithm

SRM’s loss recovery works in the following way. Upon detecting a loss, a receiving
participant in the session schedules a request for repair (patch request) by setting
a timer over a uniform interval weighted by the perceived distance to the source.
This distance could be measured in a number of ways, but the white-board ap-
plication described in [FJM95] uses a synchronized time space maintained by
the session messages. Upon sending the request, the receiver resets and mul-
tiplicatively increases this request-timer. The patch request is flooded to the
network so that other participants in the session can receive it. Upon hearing
this request, a participant in the multicast session who previously received the
requested data schedules a response by setting a timer over a uniform interval
weighted by the distance to the requesting receiver. By weighting the response

in this way, participants closer to the requesting receiver will generally respond
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before those farther away, keeping the repair localized about the source of the
request. If a responding participant does not hear a response from anyone else
by the time its timer expires, it transmits its repair (patch) to the entire session
(flooding). On the other hand, if a responding participant hears a repair from
some other participant while waiting to transmit its response, as in figure 6.1, it
cancels its own response and does not send any repairs for the loss. Finally, if
the receiver originally requesting a repair fails to recover by the time its request
timer expires, it sends another request and again sets its request timer with a

multiplicative back-off.

6.3 FGMP + SRM

To explore the reliable multicast and analyze SRM, we implement SRM into
FGMP described in section 4.3. Each multicast packet is marked with a sequence
number and the sender ID so that receivers can detect the loss. A end-of-session
message, which contains the sequence number of the last packet, needs to be
sent to all receivers in order to recover lost packets due to the loss of the last
packet. For the FGMP-RA scheme, the sender can send a reliable unicast end-of-
session message to all receiver members since the receiver membership is stored
in the sender’s member table. For FGMP-SA, the end-of-session message can be
piggyback on multicast packets or can be sent to all receivers by flooding. Packet
loss is detected by the receiver and a timer is set for a patch request for the lost
packet. Instead of using a gap which may consist of variable number of packets,
we use a packet by packet recovery scheme. That is, each lost packet is set with
a timer for the patch request and will be recovered by a patch. Patch requests
and patches are flooded with TTL specified to the entire network. Rather than

recovering the whole gap a packet based recovery is to reduce the dominance and
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unfairness of wireless channel usage. Patch recovery timers are set according to

the perceived delay which can be measured from the patch request.

6.4 Unicast patching for FGMP-RA

The SRM uses flooding algorithm for patch request and patches. This is nec-
essary when the receiver does not have other members’ information. However,
flooding creates much overhead (especially for patches) and thus increases the
latency of recovery. For FGMP-RA, the receiver advertises its information and
this advertising message can be used to track multicast membership. Namely,
each receiver keeps other members’ information such as member IDs, distance,
and delay. These information can be used to improve loss recovery. For ex-
ample, based on the distance to members, a receiver can issue a patch request
with proper TTL in order to avoid a large scope of flooding. Another poten-
tial is unicasting the patch requests and patches. We use the unicast patching
here to improve the performance. The advantages of using unicast patching are:
(a) unicast patching reduces the channel overhead incurred by flooding; and (b)
upon receiving the patch request, the member which has received the requested
packet can respond to the request immediately (without setting a timer since
there is no possibility that other members might respond as well and need sup-
pressions to avoid duplicate responses), thus reducing the patch delay. The patch
request is sent to a candidate member which is elected on the distance metric.
If the candidate member cannot repair the request, it forwards the request to
another member. The patch request carries a list of traversed members to avoid

oscillation. Performance results are reported in the following section.
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6.5 Simulation & Performance Evaluation

The simulator described in section 2.6 is used to evaluate SRM. The multicast
protocol is FGMP-RA. The multicast membership configuration is one to many
multicast (Type-1 configuration in section 4.4.1). The sender S sends 400 multi-
cast packets at the rate of 1/A = 100ms. The end-of-session message containing
the end of sequence number (400) is sent to all receivers by the way of reliable
unicast. The timer for a patch request and a patch has a uniform distribution in
an interval based on RTT (Round Trip Time). The patch has the same packet
size as data packet (10k bits) while the message size of the patch request is equal
to the control message size(500 bits). Two sets of experiments are simulated:
FGMP and FGMP+SRM. Performance measures are based on throughput, aver-
age delay, average hop, and maximal buffer. The patch overhead and performance
are evaluated as well to explore the efficiency of SRM. Sets of experiments using
unicast patching are developed as well to compare the performance with SRM.
A 2-level mobility model is also used to evaluate the performance under more

stable environments.

6.5.1 Performance Evaluation

The information carried in the packet header includes sender 1D, sequence num-
ber, hop count, and origin time stamp. The hop count is increased by one when
the packet is forwarded. Upon receiving multicast packets, the receiver members
compute the throughput (received packets excluding duplicates), hop count, and
delay. Accumulated results are collected to analyze the average values (hop count

and delay). Figure 6.2 compares the results of FGMP and FGMP+SRM.
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Figure 6.2: Performance Evaluation of SRM

Throughput: The throughput after recovering the loss is 3600 since there are
nine receiver members (Type-1) and 400 packets sent by the sender. As expected,
SRM is able to recover all packet losses since the patch requests are flooded to
all multicast members and any of members can send the requested patches by
flooding (if it is not cancelled by other patches). Without SRM, packet loss is
increased with mobility. Since the multicast traffic load is very light and there
is no packet dropping due to the buffer overflow. Packets are lost because the
forwarding group cannot catch up the moving nodes and thus some packets are

not forwarded correctly.

Average Delay : The packet delay is measured at receiver members by sub-

tracting the origin time, which is carried in the packet header, from the reception
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time. For SRM, the patch carries the origin time from the multicast sender rather
than from the node which originates the patch. From figure 6.2 we note that the
average delay of SRM is much higher. This is due to the delay (timer) of issuing
the patch requests and the patches and the channel competition for flooding the

patches.

Average Hops : Like the average delay, the hop count is computed from
the multicast packet rather than counting from the patch source. Thus, the hop
count of a patch, which is originated from member P and is received at receiver
R, is the path length from multicast sender S to receiver R via member P. As

expected, the average hops increase after including the patches.

Maximal Buffer: The maximal buffer size required is measured during the
experiment. We assume that there are unlimited buffers available and the maxi-
mal buffer size is recorded. SRM needs larger buffers at higher mobility to store

the patches flooded from multicast members in order to recover the packet loss.
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Figure 6.4: Performance Measure of Patch

6.5.1.1 Patch analysis

To understand the SRM messages (patch and patch request), we further explore
the patch behavior. Figure 6.3 shows the total number of patches and patch
requests transmitted during the experiment. The patches and patch requests,
which are identified by the sender 1D and sequence number, are suppressed if
they are duplicates. The number of patches are smaller than the one of patch
requests but the patch size is larger than the request size, and thus the patch has
much larger overhead than the patch request. Figure 6.4 compares the multicast

packets with the patch packets. Average delay and hop count is larger for patch

packets than for multicast packets.

6.5.1.2 Performance of Unicast Patches

SRM repairs packet losses by sending patch requests to all members which re-
spond the requests if the requested packets have been received. Timers are set in
order to avoid duplicate requests and responses. The patch requests and responses
are flooded to the networks in order to reach the member and to suppress the

duplicates. However, flooding increases the channel overhead and thus reduces
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Figure 6.5: Patch Comparison of SRM vs. Unicast Patching

the efficiency. From figure 6.3 we note that the patch overhead is very large at
high mobility. Figure 6.5 shows the results of unicast patching. In general, with-
out flooding patches, unicast patching reduces much of the patch overhead and
gains better response. The delay spike in the middle of the mobility spectrum
occurs for both schemes and is worse for unicast patching. This is due to the
temporary disconnection of network topology. When the receiver is disconnected
from other members, unicast patching has a longer recovery period than flooding.
To measure the performance under a more stable environment, A 2-level mobil-
ity model described in chapter 3 are involved, where the clusterheads are slow
nodes and move at 1.41 km/hr, thus providing a highly connective clustering.

Figure 6.6 shows the average delay of patches and non-lost multicast packets.

Unicast patching achieves less delay as expected.
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CHAPTER 7

Conclusions and Future Work

Wireless communication provides an efficient and economical means for frequent
roamers to communicate. The benefits of wireless networks are mobility, easy
and rapid installation, and ubiquitous transmissions. The Multihop infrastruc-
ture allows rapid deployment and dynamic reconfiguration; it provides the feasible
networking solution for a very dynamic environment such as battlefield commu-
nications and disaster recovery operations. Multicasting is very important in
wireless networks because it reduces the channel overhead incurred by redundant

and duplicate transmissions.

In this dissertation we study various multicast protocols and explore the mul-
ticast problems in multihop, mobile wireless networks. Performance evaluations
are reported via a detailed simulation. Modifications are implemented onto the
existing protocols to improve the efficiency for dynamically changing environ-
ments. New multicast protocols have been proposed to take advantage of wireless
transmissions and to adapt efficiently to mobile networks. On-demand multicast
is proposed to reduce overhead of routing table updates and thus is very scalable
to large network size. The Scalable Reliable Multicast (SRM), which is based on
application level framing, has been implemented into our protocols and infras-
tructure, thus providing a reliable solution for wireless multicasting. Future work

is in many directions:
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7.1 On-demand and Hierarchical Multicast

On-demand and hierarchical routing strategies improve the scalability by reduc-
ing the storage overhead of routing tables and the channel overhead of routing
table updates. Since most applications provide services for a large number of
group members, scalability is a very important issue for multicast. Conventional
multicast protocols are not suitable for the large size networks either due to
the poor scalability (e.g., DVMRP) or due to the inefficiency for large members
(e.g., traffic concentration in CBT). On-demand and hierarchical multicast is a

potential solution for large ad-hoc networks.

7.2 Quality of Service (QoS) and RSVP

QoS information is important for real time multicast applications such as video
and audio programs. RSVP provides a feasible solution for QoS on multicasting.
Future work will implement RSVP on FGMP and evaluate the performance of

real time multicasting.

7.3 Wireless Multicast Flow Control

It is very challenging to efficiently control the multicast flow in mobile wireless
networks, mainly due to the diverse properties of wireless channel. Congestion
control is a solution for mobile nodes because it alleviates the limitation of scarce
buffer space. The automatic acknowledge ability in wireless transmission provides
a feasible way for multicast flow control. Flow control can also be used with QoS

and reliable multicast to improve the quality of multimedia applications.
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7.4 Reliable Multicast

SRM satisfies the reliable requirement on the application level. Some link level
(hop by hop) reliable multicast protocols have been proposed [PR97] for ad-hoc
networks. Future work will implement link level reliable multicast and compare

it with SRM.
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APPENDIX A

RP Trees Multicast Protocols

This chapter presents the detailed protocols described in chapter 3.3.1. The terms

used in these protocols are defined as follows:

RP' : Rendezvous Point of group i.

R : set of receiver members of group i.

S : set of sender members of group i..

F': set of internal forwarding nodes of group i, that is, nodes on the tree between
RP' and R'.

FLj : forwarding list of group 7 for node j.

DL; : downstream list of group ¢ for internal node j.

SL%p : senders list of group 7 at RP.

FL;tok : forwarding list of group 7 at node j sent to node k.

SL! : senders list of group i at node j.

P : path length recorded on packets from sender s}, received at receiver 7.
DI"" . distance from node n to node m at routing table of node j.

TH s : threshold value from shared tree to per-source tree.

THYp,,s: threshold value from shared tree to per-source tree.

THY, rp : threshold value from per-source tree to shared tree.
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A.1 Shared Tree Multicast : Unicast Sender Mode

Receiver member 1} € R':
r periodically sends join requests with FIL; = {x} to RP’ to create the RP-

rooted tree which is adaptive to nodes mobility (soft state).

Sender member s§ € St

s’ sends packets to RP" by encapsulating the packet and unicasting it to RP’.

F', FLi:

When a node k receives the join requests from receiver r;'-, r; is added into DL}
associated with timer, and node k is added into F*. The F L% includes all senders,
FLi = {x}, that means node k will forward multicast packets from all sender
members in group ¢. The downstream and forwarding status will be deleted after

timeout. When the node k receives a multicast packet (forwarded via RP), it

broadcasts the packet if the sender is in F'L%.

RP:
RP" maintains DL%p and F L%, when it receives the join requests from receiver
7"; When RP? receives packets from sender members, it decapsulates the packets

and sends them by using multicast address (broadcast) to all neighbors.
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A.2 Shared Tree Multicast : Multicast Sender Mode

Receiver member r} € R':
r periodically sends join requests with F'L; = {x} to RP’ to create the RP-

rooted tree which is adaptive to nodes mobility (soft state).

Sender member s} € S*:
Initially, s’ sends packets to RP’ by encapsulating the packet and unicasting it to

RP?. After receiving join message from RP;, s§ broadcasts decapsulated packets.

F', FLi:

When node k receives the join requests from receiver r;, 7“3- is added into DL}
associated with a timer. The FL! is set to include all senders, FL: = {x}, that
means node k will forward multicast packets from all sender members in group .

i

When node h receives the join message with source RP" and destination s},

RP" is added into DLj associated with a timer, and s is included into FLj,

FLj = FL, U {s}.

The downstream and forwarding status will be deleted after timeout. When the
node k receives a multicast packet (forwarded via RP'), it broadcasts the packet

if the sender is in FL:.

RP:
RP' sets DLyp and FLyp when it receives the join requests from receiver r?.

When receiving register packets (encapsulated packets) from 53, RP" adds (or

updates) S; into SL%p, and decapsulates the packets and sends by using multicast
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address (broadcast) to all neighbors (only neighbors on the tree will accept and
forward the packets). There is a timer associated with the sender in SLY ..
Periodically (soft state), RP’ sends join messages with F'LY, = {s’}to registered

i

' € SLip. RP' will update the timers of members in SLyp when it

senders s
receives packets (with multicast group address) from the sender members. Stale

sender members will be deleted after timeout.

A.3 Adaptive Tree multicast

Receiver member 7“;- € R":
Initially F L%, pp = {*}.
7"3- periodically sends join requests with FL;tORP to RP" and join requests with
FLjg 1 € SL; in order to create the RP-rooted tree and per-source trees which
are adaptive to nodes mobility (soft state).
When receiving a packet from si:
if Pjy — DI* > THp,,s and DI — DI < THE,, o
SLi = SLiU {si}
FL;tok = {si}
FL§toRP = FL§toRP - {Sﬁc}
if Py — DI > THgpopp,
SLi = SLi — {si}
SLi = SLi — {si}
FLétoRP = FLétoRP U {si}

Sender member s} € S*:
Initially, s? sends packets to RP' by encapsulating the packet and unicasting it

to RP. After receiving join message from RP;, 5§- broadcasts unencapsulated
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packets.

Fi', FLi:

i

When node k receives the join requests with forwarding list FL; from receiver 7,

7";- is added into DL associated with a timer. The F'L: is set to FL;, that means
node k will forward multicast packets from sender members in F'Li. When node
k receives the join message with source RP" and destination s}, RP" is added into
DL}, associated with a timer, and s is included into FL}, FLj = FLj U{s’}.

The downstream and forwarding status will be deleted after timeout. When the
node k receives a multicast packet (forwarded via RP?), it broadcasts the packet

if the sender is in F'LL.

RP":

RP" sets DL%p and FLY, when it receives the join requests from receiver r;
When receiving register packets (encapsulated packets) from 9;, RP" adds (or
updates) s§ into SLY,,, and decapsulates the packets and sends by using multicast
address (broadcast) to all neighbors (only neighbors on the tree will accept and
forward the packets). There is a timer associated with the sender in SLY ..
Periodically (soft state), RP' sends join messages to registered senders s§ €
SL% . RP' will update the timers of members in SL%,, when it receives packets

(with multicast group address) from the sender members. Stale sender members

will be deleted after timeout.

Figure A.1 shows the examples of different modes.
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-» joinrequests
(sent by R)
------ > join messages
(sent by RP)
- multicast data

(¢) adaptive multicast

join requests
(from Rto RP)

multi cast data

encapsulated
unicast date

-» joinrequests
(fromRtoRP)

----- > join messages
(fromRPto S)

= multicast data

-» joinrequests
(sent by R)

----- > join messages
(sent by RP)

= multicast data

(d)adaptive multicast (nodes move)

Figure A.1: Examples of multicast protocols

A.4 Examples of RP Dynamic Relocation

Figures A.2, A.3 and A.4 shows examples or RP locations for total path length,

maximal height and total link cost, respectively. The numbers on the clusterheads

represent the values of the measure under consideration if a node were selected

as RP (recall that only clusterheads are candidate RPs in our experiment). We

note that in this example the three RP solutions are all neighbors of each other

(in clusterhead sense). Also, we note that in each one of the three cases the

property that only the local minimum is also the global minimum is verified.
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APPENDIX B

FGMP Protocols

This chapter describes the FGMP protocols in detail. Two protocols are pre-
sented: FGMP-RA and FGMP-SA. The terms used in these protocols are defined

as follows:

G' : multicast group i.

R : set of receiver members of G°.

St : set of sender members of G°.

FG" : set of forwarding nodes of G* (table 4.4).

FW; . forwarding table of node j for G

FWfla,g; . forwarding flag of node j for G*.

FWtimer;- : forwarding timer of node j for G°.
NextHop(FW;): next hop list of FW/.

RMT} : receiver member table of sender j for G* (table 4.3).
REQ: : join request of receiver k for G* (table 4.2).

B.1 FGMP-RA

Receiver member r € R':
Node r periodically floods join request REQ:. = (i, r, seq+ +, TTL), and accepts

packets with multicast address of G?.
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Sender member s € S*:

After receiving REQ", node s updates (adds new or refreshes old members)
RMT?. Stale receiver members are deleted from RMT!. Once RMT! is up-
dated or when the refresh timer of RMT! is reached, node s forms the FW/ by
checking RMT? (to get receiver members) and routing table (to get next hop),
and broadcasts FW! to all neighbors. FW flag: and FWtimer® are reset and
FG' = FG' U {s} if FW! is not empty. FW flag® is disabled if FWtimer! ex-

pires. Multicast packets in queue will be sent (broadcast) if FW flag! is enabled.

Node k receiving FW;

When node k receives the FW} and k € NextHop(FW}), it creates FW) by ex-
tracting receiver members from FW]2 and checking routing table to get next hop
information. Only receiver members in FW;, which have k£ as the next hop and
are not neighbors of k, will be added into FW}. If FW} is not empty, it is broad-
casts to all neighbors, F'W flagt and FWtimer! are reset, and FG* = FG'U{k}.

Forwarding node f € FG"
When node f receives a multicast packet of G, it broadcasts the packet to all

neighbor. If FWtimerjc expires, FWfla,g} is disabled and FG' = FG' — {f}.

B.2 On-Demand FGMP: Join Request

RT; : routing table of node 1.

RT! : routing entry for destination j at node 7 (table 5.1).

)
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RT/ NextHop : next hop in RT/

RT/ Hops : hop count in RT)

RT? Seq : sequence number in RTY
RT! Timer : timer in RT/

RECQ : join request received (table 5.2).
REQ.rid : receiver member id in REQ.
REQ.hops : hop count in REQ).
REQ).seq : sequence number in REQ.
REQ.nid : sending node id in REQ.

When node ¢ receives a join request REQ:
if (no RT/™9" exists in RT} ){
dest = REQ.rid;
nexthop = REQ.nid,;
hops = REQ.hops + 1;
seq = REQ).seq;
timer = current time;
RTiREQ'”d = ( dest,nexthop,hops,seq,timer );
add RT/*"9"" into RT;;
}
else {
if ( REQ.seq > RT/™9"™ Seq or
(REQ.seq == RT*?"" Seq and REQ.hop+1 < RT/ 9" Hops) ) {
RTMEQT NegtHop = REQ.seq;
RT*EQT Seq = REQ.seq;
RTEQT Fops = REQ.hops + 1;
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REQ.rid - :
RT:; @il Pimer = current time;
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