Assessment of the agreement between wedge hepatic vein pressure and portal vein pressure in cirrhotic patients

U. Thalheimer a,b, G. Leandro a, D.N. Samonakis a, C.K. Triantos a, D. Patch a, A.K. Burroughs a,*

a Liver Transplantation and Hepatobiliary Medicine Unit, Royal Free Hospital, Pond Street, NW3 2QG London, UK
b Internal Medicine Dept., Policlinico G.B. Rossi, Piazzale L.A. Scarsi, Verona, Italy

Received 11 November 2004; accepted 2 February 2005
Available online 23 May 2005

Abstract

Background. Measuring wedged hepatic venous pressure and hepatic venous pressure gradient as indices of portal pressure is being increasingly used in assessing the prognosis and response to pharmacological treatment for portal hypertension in cirrhotic patients.

Aim. To re-evaluate the agreement and correlation between wedge hepatic pressures and directly measured portal pressures.

Methods. Medline search for studies comparing direct portal with wedged hepatic pressure measurement and assessment of correlation and agreement of the pooled data.

Results. Eleven suitable studies included 320 patients. Coefficient of determination (r²) was 0.87 in all patients, 0.87 in 102 patients with alcoholic liver disease, 0.83 in 88 patients with non-alcoholic liver disease and 0.75 in 53 patients with hepatitis C-related liver disease. Coefficient of determination was 0.85 in the 194 patients in whom a wedge catheter and 0.90 in the 113 patients in whom a balloon catheter was used. Agreement according to the method of Bland and Altman was also found to be good, with only 4–8% of the measurements outside 2 standard deviations.

Conclusions. Wedged hepatic pressure measurement correlates well with direct portal pressure measurement and the agreement is sufficiently good to use this as a surrogate measurement.

© 2005 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

Keywords: Portal hypertension; Portal pressure measurement

1. Introduction

The measurement of the portal pressure gradient (PPG) provides prognostic information in the management of patients with cirrhosis [1,2] and we believe it should be more widely used, given that it has independent prognostic significance over and above scores of the severity of liver disease [1]. For many years, measuring hepatic venous pressures, both the free pressure (FHVP) and the wedged pressure (WHVP), either with a wedge catheter or a balloon catheter [3], has been the standard approach for estimating portal venous pressure (PVP) [1,4–6].

Several studies have compared WHVP with portal pressure in cirrhotic patients but with relatively small cohorts and using different techniques for assessing portal pressure (Table 1). Some of them found good correlation between the two measurements, especially in patients with alcoholic cirrhosis [6–12] and hepatitis B virus (HBV) cirrhosis [13]; other studies reported less good correlations between the two techniques, especially in patients with non-alcoholic cirrhosis [7,9,14–16]. In hepatitis C virus (HCV) cirrhotic patients in particular, the data is conflicting [8,14].

Recently, the precision in measuring WHVP per se has been questioned [17]. In this study, 61% of the hepatic ve-
Nous pressure gradient (HVPG) measurements in two separate hepatic veins differed by as much as 4–34 mmHg. If confirmed, this finding would raise serious doubts about the validity of WHVP measurement as a reliable way of estimating PVP.

Thus, our aim was to evaluate the agreement between HVPG and PPG by systematically reassessing all the published data comparing these two measurement techniques. In particular, as the use of correlation for comparing two measurement techniques has been criticised as inappropriate (since it only describes a linear correlation between variables, but not necessarily an agreement), we decided to also apply an alternative approach which has been advocated for this purpose [18].

2. Materials and methods

We conducted a full Medline search in all languages for studies comparing WHVP with portal pressure, using the keywords ‘cirrhosis’, ‘wedge hepatic venous pressure’, ‘WHVP’, ‘hepatic venous pressure gradient’, ‘HVPG’, ‘portal pressure’ both alone and in combination between each other. We also searched the bibliographies of all relevant papers. In this way, we identified 17 studies, which had individual patient measurements, comparing WHVP with PVP [6–16, 19–24]. We could only include 11 of these in our study; in five of them the measurements were reported as individual numerical values [6, 12, 15, 16, 22], in the remaining six we were able to extract the values from the graphs [7, 8, 10, 11, 13, 14]. We excluded six studies from our evaluation, because in two it was not possible to determine which measurements had been taken in patients with liver disease [23, 24], in one because only pressure changes after vasoactive drug therapy were reported [21], in one because it was not possible to extract the data from the graph [9], in one because the two different measurements were taken at a long interval of time from each other [20] and lastly in one because it only considered patients with spontaneous portosystemic encephalopathy who were very likely to have a significant portosystemic shunt [19].

We pooled all the data from the published studies and recalculated the determination coefficient (r^2) with linear regression determined by using GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com). The r^2 gives the fraction of variability in one variable explained by the other variable, in this case the prediction of portal venous pressure by measuring WHVP and PPG by measuring HVPG. Thus, the r^2, as compared to the more commonly used r (regression coefficient), which was used in the individual articles correlating portal pressure to WHVP and HVPG, is the most appropriate expression of the correlation we wished to test.

We evaluated the agreement between the two measurements using the method described by Bland and Altman [18], i.e. by plotting the difference between the two measurements against their mean. As this method does not allow a quantification of the degree of agreement, we evaluated it by describing the absolute number and percentage of values outside 1.96S.D. (i.e. commonly referred to as 2S.D.). We considered less than 10% of the values being outside 1.96S.D. as a good agreement.

We also evaluated the difference between the two methods in relation to basal PVP in order to assess if there was an increasing error dependent on the degree of PVP.

3. Results

We identified a total of 320 comparative measurements of WHVP and PVP and 75 comparative measurements of HVPG and PPG. 102 comparative measurements of WHVP and portal pressure were performed in patients with alcoholic liver disease and 88 in patients with non-alcoholic liver disease. In the latter group, 53 had HCV-related liver disease (an additional 14 had both alcoholic liver disease and HCV-related liver disease), other aetiologies included in this group were HBV-related liver disease, primary biliary cirrhosis (PBC).
Fig. 1. Data of measurements in all patients. (A) Correlation between WHVP and PVP (n = 320); (B) corresponding agreement between WHVP and PVP according to Altman and Bland; (C) correlation between HVPG and PPG (n = 75); (D) corresponding agreement between HVPG and PPG according to Altman and Bland. Dotted lines: 1.96S.D.

3.1. All patients

Evaluating the 320 measurements comparing WHVP and PVP, WHVP was greater than PVP in 113 measurements and PVP was greater in 138 measurements. The range of difference between WHVP and PVP was from −22.1 to 10 mmHg (mean −0.48 ± 3.23 mmHg, median 0 mmHg). We found a coefficient of determination (r²) of 0.87. From the graph (Fig. 1A), it can be seen that two cases, both from the same author [15], are outliers. By excluding these two cases as outliers the r² is 0.90 and the range of difference was from −10.5 to 10 mmHg. The agreement according to Bland and Altman is good (Fig. 1B), with only 16 cases (5%) lying outside 1.96S.D.

If only the 101 measurements for which individual numerical values were available (predominantly earlier studies) are considered, the r² is 0.68 (0.70 excluding the outliers) and the agreement is still good with only three cases (3%) lying outside 1.96S.D. Considering only the 219 measurements for which values were extracted from graphs (predominantly later studies), the r² was 0.91 and the agreement was good with 19 cases (8.7%) outside 1.96S.D.

Evaluating the 75 measurements comparing HVPG and PPG [6,10,12,22], HVPG was greater than PPG in 21 measurements and PPG was greater in 23 measurements. The range of difference between WHVP and PVP was from −4 to 8.5 mmHg (mean −0.05 ± 1.73 mmHg, median 0 mmHg). The r² was 0.90; the agreement is good with only five values (7%) outside 1.96S.D. (Fig. 1C and D).

3.2. Alcoholic liver disease

Evaluating the 102 measurements [7,8,10–12,16] comparing WHVP and PVP, WHVP was greater than PVP in 33 measurements and PVP was greater in 45 measurements. The range of difference between WHVP and PVP was from −8 to 9 mmHg (mean −0.4 ± 2.67 mmHg, median 0 mmHg). There was a r² of 0.93; the agreement is good with seven values (7%) outside 1.96S.D. (Fig. 2A and B).

Amongst the 13 measurements [10,12] comparing HVPG and PPG, the r² is 0.84; the agreement is good with no values outside 1.96S.D. (Fig. 2C and D).
3.3. Non-alcoholic liver disease

Amongst the 88 measurements [7,8,11,13,14] comparing WHVP and PVP, WHVP was greater than PVP in 38 measurements and PVP was greater in 41 measurements. The range of difference between WHVP and PVP was from -10.5 to 10 mmHg (mean -0.39 ± 3.29 mmHg, median 0 mmHg). The r^2 is 0.83; the agreement is good with six values (7%) outside 1.96S.D. (Fig. 3 A and B).

In particular, in the 53 measurements [8,14] comparing WHVP and PVP in patients with HCV-related liver disease, WHVP was greater than PVP in 23 measurements and PVP was greater in 22 measurements. The difference between WHVP and PVP ranged from -10.5 to 10 mmHg (mean -0.08 ± 3.77 mmHg, median 0 mmHg). The r^2 is 0.75; the agreement is good with four values (8%) outside 1.96S.D. (Fig. 3 C and D).

No measurements comparing HVPG and PPG were available in this subgroup.

3.4. Wedge catheter measurement

Evaluating the 194 measurements [6,7,10–12,16,22], WHVP was greater than PVP in 59 measurements and PVP was greater in 82 measurements. The range of difference between WHVP and PVP was from -9 to 8.5 mmHg (mean -0.55 ± 2.44 mmHg, median 0 mmHg). The r^2 is 0.85; the agreement is good with 11 values (6%) outside 1.96S.D. (Fig. 4 A and B).

As all the measurements comparing HVPG and PPG were performed using a wedge catheter, the results are the same as reported for the whole series.

3.5. Balloon catheter measurement

Amongst the 113 measurements [8,13,14], WHVP was greater than PVP in 49 measurements and PVP was greater in 41 measurements. The range of difference between WHVP and PVP was from -10.5 to 10 mmHg (mean -0.19 ± 3.15 mmHg, median 0 mmHg). The r^2 is 0.90; the agreement is good with five values (4%) outside 1.96S.D. (Fig. 4 C and D).

3.6. Assessment of the variability between direct and indirect portal pressure measurement according to basal portal pressure

The assessment of the absolute difference between the two types of measurement, in all measurements and in those per-
Fig. 3. (A) Correlation between WHVP and PVP in patients with non-alcoholic liver disease ($n = 88$); (B) corresponding agreement between WHVP and PVP according to Altman and Bland in patients with non-alcoholic liver disease; (C) correlation between WHVP and PVP in patients with HCV-related liver disease ($n = 53$); (D) corresponding agreement between WHVP and PVP according to Altman and Bland in patients with HCV-related liver disease. Dotted lines: 1.96SD.

formed with a balloon catheter, plotted against the basal PVP showed that the variability was constant for a range of PVP from 1 to 45 mmHg (Fig. 5A and C). A similar distribution was seen for measurements performed with a wedge catheter and in separate subgroups of patients with and without alcoholic liver disease.

The difference between the two measurements, as a change in percentage from WHVP measurement, plotted against the PVP, showed a tendentially greater change in percentage for lower PVP pressures (<20 mmHg) (Fig. 5B), but this was not observed when only the measurements performed with a balloon catheter were considered (Fig. 5D).

4. Discussion

Our reassessment of the data published to date on comparative measurements of wedged hepatic pressures and portal pressures clearly shows that WHVP reflects PVP in a cohort of patients with alcoholic liver disease, HBV and HCV-related liver disease, PBC and autoimmune hepatitis, irrespective of the use of a wedge or a balloon catheter. However, there was a trend towards greater differences between the wedge technique and PVP at lower PVP pressures but this did not reach statistical significance. In particular, it is important to note that this also holds true for the main aetiologies of liver cirrhosis, alcoholic liver disease and HCV-related liver disease, despite some claims to the opposite [14]. Furthermore, we also confirmed that HVPG correlates significantly with PPG.

These findings are of great importance, as measurement and monitoring of hepatic pressure measurements (HVPG and WHVP) are increasingly recommended in clinical trials and clinical practice regarding the pharmacological prevention of portal hypertension-related bleeding [25–27]. Moreover, a higher HVPG measurement is known to be an independent factor associated with mortality in liver cirrhosis [1] and one study has linked pharmacological reduction in HVPG to a decreased long-term risk of complications related to portal hypertension, such as variceal bleeding, ascites,
spontaneous bacterial peritonitis, hepatorenal syndrome and hepatic encephalopathy [2,28]. A recent report also suggests that changes in HVPG could be considered as an adjunctive end point for the therapeutic evaluation of antiviral therapy in chronic hepatitis C, and HCV-related cirrhosis [29].

Our findings do not confirm a recently reported high variability in HVPG measurements [17], as the correlation with PPG measurements was highly significant, across eight different centres reporting data, given that direct portal pressure measurement has very little variability. The paper by Keiding and Vilkstrup [17] used a wedge catheter technique and did not compare WHVP with PVP. On the whole, WHVP measurement seems to slightly underestimate PVP, but the difference is small (mean -0.48 ± 3.23 mmHg).

We also assessed the agreement between portal pressures and WHVP and HVPG with the method proposed by Bland and Altman [18]. This is important since this method has been suggested to be more appropriate for assessing agreement between two methods of clinical measurements, as the use of correlation coefficients in this setting may be misleading. Even with this evaluation the agreement between WHVP and HVPG, and PVP and PPG, respectively, was shown to be remarkably good, with only 4–8% of measurements outside 2S.D., which confirms the numerical 1:1 correlation of portal pressure with WHVP in cirrhosis.

One possible bias in our evaluation is that studies included were performed over a 44-year time span with consequent variation in equipment and technique of measuring pressure. However, the distinction between studies performed using the wedge technique (1955–1985) and those using the balloon technique (1985–1999) takes into account most of these differences.

Although the comparison of the mean and median pressure values is reassuring, the range of difference between WHVP and PVP measurements was from -10.5 to 10 mmHg. Thus, in some patients these measurements are not accurate. This is true of every biological measurement but the variability of agreement as assessed by the Bland and Altman method is acceptable, but nevertheless must be taken into account.
when interpreting data. Lastly, there is an issue of generalisability. All of these studies were performed in specialised centres, and thus these results may not be reproducible in a routine setting. However, recommendations for an accurate technique have been published recently [30], which could make accurate measurements achievable in every institution.

This analysis, although confirmatory of other studies, each with a small number of patients, does firmly establish the use of WHVP and HVPG measurements as surrogate measurements of PVP and PPG. To our knowledge, this is the first time that an assessment of more than 300 comparative measurements has been performed. The consistent accuracy of WHVP and HVPG as indirect indices of portal pressure confirmed here, should be, we believe, a further stimulus to a more widespread use of these measurements, performed with a correct technique [30] in the setting of chronic liver disease, both for prognostic estimation [1,2] and for researching the role of target reduction of portal pressure during pharmacological therapy of portal hypertension [25–27] and potentially as a surrogate marker of chronicity or fibrosis [29].

Conflict of interest statement
None declared.

List of abbreviations
FHVP, free hepatic venous pressure; HBV, hepatitis B virus; HCV, hepatitis C virus; HVPG, hepatic venous pressure gradient; PBC, primary biliary cirrhosis; PPG, portal pressure gradient; PVP, portal venous pressure; WHVP, wedge hepatic venous pressure.

References

