
An Empirical Evaluation of the Convex SPP-1000 Hierarchical Shared MemorySystemThomas SterlingCenter of Excellence in Space Dataand Information SciencesCode 930.5 NASA Goddard Space Flight CenterGreenbelt, MD 20771tron@cesdis.gsfc.nasa.gov Daniel SavareseDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742dfs@cs.umd.eduPhillip MerkeyCenter of Excellence in Space Dataand Information SciencesCode 930.5 NASA Goddard Space Flight CenterGreenbelt, MD 20771merk@cesdis.gsfc.nasa.gov Kevin OlsonInstitute for Computational Scienceand InformaticsGeorge Mason Universityolson@jeans.gsfc.nasa.govAbstractCache coherency in a scalable parallel computer architec-ture requires mechanisms beyond the conventional commonbus based snooping approaches which are limited to about16 processors. The new Convex SPP-1000 achieves cachecoherency across 128 processors through a two-level sharedmemory NUMA structure employing directory based andSCI protocol mechanisms. While hardware support for man-aging a common global name space minimizes overhead costsand simpli�es programming, latency considerations for re-mote accesses may still dominate and can under unfavor-able conditions constrain scalability. This paper providesthe �rst published evaluation of the SPP-1000 hierarchicalcache coherency mechanisms from the perspective of mea-sured latency and its impact on basic global ow controlmechanisms, scaling of a parallel science code, and sensi-tivity of cache miss rates to system scale. It is shown thatglobal remote access latency is only a factor of seven greaterthan that of local cache miss penalty and that scaling of achallenging scienti�c application is not severely degraded bythe hierarchical structure for achieving consistency acrossthe system processor caches.1 IntroductionThe emergence of scalable shared memory parallel archi-tecture with full cache coherence provides a new and im-portant operating point for high performance computing.The hardware assisted guarantee of cache coherence acrossall processors of a distributed computer structure providesthe opportunity for improved algorithms, more productivemethods of parallel programming, and more e�cient compil-

ers than possible with fragmented address-space distributedsystems. This capability may also simplify dynamic loadbalancing by runtime system software for adaptive resourcemanagement, and ease the development of distributed op-erating systems. The Convex SPP-1000 is the most recententry in the commercial sector of scalable cache coherentarchitectures. Its structure is a two-level hierarchy with upto 16 clusters (hypernodes) of eight processors each. It em-ploys a directory based cache management scheme at thelower (intra-hypernode) level and an SCI [11] protocol basedglobal communication and cache control mechanism at thehigher level. This paper provides an initial examination ofthe performance characteristics of the SPP-1000 hierarchicalcache management.In spite of its potential advantages, support for globalshared memory and cache coherence on systems of wide di-ameter imposes a greater burden on the cache system itselffor avoiding latency of data access than required of com-mon bus based snooping mechanisms for small scale mul-tiprocessors. This is due to the much larger possible misspenalty incurred from the longer remote access distances.While hardware mechanisms eliminate most of the overheadwork attributed to managing remote access and data mi-gration/distribution, the latency and possible consequencesof shared resource contention still remain. This paper ex-amines the Convex SPP-1000 to evaluate and quantify thecosts incurred in performing critical actions across its two-level cache coherent structure. These results represent the�rst published �ndings of evaluation of the SPP-1000's hier-archical cache coherent architecture employing the SCI pro-tocol and builds on earlier studies [15] of the performanceproperties of the �rst level of this new system. The �ndingspresented in this paper are important to both parallel archi-tecture and compiler designers in determining the feasibil-ity of achieving e�ective parallel computation in a scalableframework for this class of architecture.Cache coherence is a user transparent policy that main-tains the appearance of sequential consistency across a phys-ically distributed multiple access memory system. It en-



sures that read/write order to the memory address spacein a physically distributed multiprocessor is equivalent tothe access patterns of comparable uniprocessor execution.This includes correct manipulation of memory state for com-pound atomic operations such as test-and-set or fetch-and-add. While the semantic equivalence is achieved, time-domainbehavior may be severely aggravated by the latencies intrin-sic to the distributed nature of the large parallel systemsand the additional work, even if hardware supported, re-quired for realizing the complex local and global protocolsfor cache coherence. Other factors that may impact theoverall performance include contention for shared resourcessuch as memory banks and communication channels, side-e�ects of cache structural properties such as false sharingand conict misses, and pollution of cache contents by otherunrelated concurrent tasks.Evaluation of the system capabilities and mechanismsinvolves revealing the attributes of both the system latencyand cache mechanism overhead. In the previous work, thesingle level directory based cache coherence mechanism em-ployed within a hypernode of eight processors was evaluated.This paper extends that work to expose the global systemcharacteristics. Two basic mechanisms, synchronization andtask scheduling, are studied. The �rst, using a non-cachedbarrier object, reveals the consequences of system latencywithout the cache consistency mechanisms. The measure-ments of task scheduling exposes the overhead costs to man-aging parallel resources and concurrent activities in a singlecommon name-space system.Of particular interest is the impact of the longer delaysand SCI overhead on scalability across the entire system.This important factor is investigated through studies of acomplete real-world application. This problem, taken fromthe Earth and space sciences community, is a tree-code al-gorithm for simulating N-body gravitational systems suchas stellar clusters, galaxy formation, and cosmic scale struc-ture evolution. This problem is peculiar to Earth and spacescience and imposes computational demands that are non-trivial to satisfy by parallel systems. The primary datastructure, an Oct-Tree, is sparse, irregular, and time vary-ing. The underlying physics requires signi�cant amount ofglobal access across the data structure and parallel system.Some runtime load balancing is required over the time frameof the simulation as the problem state distribution evolves.The scaling of this problem is studied with respect to scaling�rst with high locality (lower number of processors all in onehypernode) and second with uniform distribution of proces-sors across hypernodes. It will be shown that the latter caseshows some degradation over the highly local case but thatthe dominant scaling factor is the granularity of the work.Finally, the cache miss rate is examined directly as itvaries with problem size and system con�guration scale.This is crucial to determining the overall e�ectiveness ofcache consistency to system performance. If the cache missrate were to increase for a �xed size workload because sys-tem size (number of processors) increases, then the value ofthis class of architecture would be in question as a means ofenhancing scalability of distributed systems. It will be seenthat cache miss rates do not vary signi�cantly with systemsize although are heavily impacted by problem size. Thisstudy also measures the global latency and overhead timesattributed to cache misses involving remote access.A summary of the principal architectural characteristicsof the Convex SPP-1000 is provided in section 2 of this pa-per with an emphasis on the system hierarchy and cache

coherence mechanisms. Section 3 presents the results of ex-periments performed to study synchronization and threadscheduling costs. In this study, the basic latency and over-head factors are characterized. The scalability studies of thegravitational N-body application code are presented in Sec-tion 4 along with a brief explanation of the science problemaddressed and a description of the parallel algorithm beingapplied. The results are provided to reveal the contributionsof both problem size and task distribution. The sensitivityof cache misses to system and problem size is investigated inSection 5. Finally, the implications of the �ndings and thedirections for future work are discussed in Section 6. It isnoted that the researches represented here are of value be-cause they provide an earliest quantitative examination atthe full structure of this new architecture. But as a conse-quence, they su�er to a small degree due to the di�cultiesalways present in the experimental context of any beta-testenvironment. Future work by this group in the near termwill be directed to re�ning and expanding on the initial �nd-ings presented here.2 ArchitectureThe objective of the Convex SPP-1000 architecture design isto leverage industry investment in high performance micro-processor technology, provide a highly scalable structure tosatisfy a broad range of market needs, and support an easyto program parallel execution environment. The approachtaken incorporates the HP PA-RISC [9] microprocessor in ahierarchical structure with hardware support for full globalshared memory operation. Most notably, the architectureprovides for full cache coherence, time and space sharing ofsystem resources, and virtual memory for up to 128 proces-sors in the current design. This combination of capabilitiesmakes the SPP-1000 among the most advanced commercialparallel systems available and an interesting target for eval-uation. This section briey describes the SPP-1000 archi-tecture to establish the context for the experimental resultsthat follow.2.1 ConceptsKey concepts embodied in the SPP-1000 architecture are:� scalable hierarchical structure,� global shared memory,� hardware supported cache coherence,� virtual memory across processor subcomplexes, and� thread based and message based parallel execution.The hierarchical organization of high performance mi-croprocessors comprises three stages: functional units, clus-ters, and global interconnect. Functional units are the basicbuilding blocks of the system incorporating dual processorsand dual memory banks with interface logic. The clusterintegrates up to four functional units and an I/O subunitcoupled by a 5 port cross-bar switch. The global systemstage interconnects up to sixteen clusters by four parallelrings using the Scalable Coherent Interface (SCI). The �rstgeneration SPP-1000 system may incorporate as many as128 microprocessors.Part of the memory in each functional unit is designatedas global shared memory and is potentially accessible by any



Figure 1: Convex SPP-1000 Functional Blockprocessor in the system. Therefore data movement betweenfunctional units in a cluster or between clusters is achievedby means of direct hardware support for load and store com-mands, independent of relative location of processor and thememory word being accessed. This distinguishes the mem-ory system of the SPP-1000 from the distributed memoryof the TMC CM-5 [14] or the Intel Paragon [10] with theirfragmented address spaces. The CRI T3D [7] also has aglobal shared memory.The primary means of ameliorating potential performancedegradation due to access latency is through the use ofcaches which hold copies of data elements in fast bu�ermemory and rely on temporal and spatial locality for highhit rates. When a variable is shared by two or more proces-sors at the same time, copies of the same variable in inde-pendent processors' respective caches can become corruptedsuch that di�erent values for the same variable reside inthe separate caches. To maintain consistency across caches,either special hardware is normally required (software tech-niques have been explored) or shared variables are expresslyprecluded from being stored in cache with the potential per-formance penalty this implies. The SPP-1000 employs atwo-tier cache coherence scheme that is unique in the indus-try. It combines a directory based cache coherence mech-anism within the cluster with the SCI protocol using an\interconnect cache" across clusters [5].A true virtual memory system is supported. A paral-lel process with many concurrent sub-processes will have asingle virtual address space. The virtual pages are mappedacross the memory blocks of the functional units within acluster to reduce the likelihood of bank conicts and acrossclusters to distribute data objects more evenly among pro-cessors. Processors and physical memory pages may be or-ganized in sub-complexes, a logical ensemble of processorsfrom across the system that work together on a single prob-lem. The virtual address space of a process running on thesubcomplex is not limited to physical memory dedicated tothat subcomplex. More than one parallel process may time-share a given subcomplex.The shared memory and cache coherence mechanismsenable a parallel thread model of execution to be directlysupported along with the more common message passingmodel. The shared memory model facilitates implementa-tion of a broad range of applications. Where memory ac-cesses are global, dynamic, and non-uniform, parallel pro-grams may run more e�ciently than their message passing

counterparts. Such primitive control ow operatives as bar-rier synchronization, fork-join task scheduling, and messagepassing are easily supported on a shared memory system.The rest of this section examines the physical elements ofthe SPP-1000 architecture in greater detail.2.2 Cluster structureA block diagram of the Functional Unit is shown in Figure1 and presents the major elements of the SPP-1000 cluster.Each of two processors has its own separate 1 Mbyte dataand instruction caches. The processor is the HP PA-RISC7100 with a clock rate of 100 MHz. Two banks of mem-ory are included, each of 64 Mbytes which may be increasedto 256 Mbytes at a later time. The memory may be par-titioned to serve as local storage for the cluster and globalstorage for subcomplexes spanning many clusters across thesystem. The Convex Coherent Memory Controller (CCMC)manages the interaction of the Functional Unit memory withthe remaining system. Access requests can come from anyprocessor within the cluster via the cross-bar switch inter-face or from other clusters via the SCI. Even access fromprocessors within the same Functional Unit come throughthe cross-bar switch which provides arbitration. The CCMCalso manages the directory based cache coherence protocolfor the processor caches. The Processor Agent provides theinterface between the processors and the rest of the system.
Figure 2: Convex SPP-1000 ClusterThe SPP-1000 cluster is depicted in Figure 2 showingthe principal subsystems making up the cluster and theirrelationship to each other. Four Functional Units providethe processing and memory. The cluster processors accessthe cluster memory by means of the 5 port cross-bar switch.The remaining �fth port is used to access the I/O Interfacewhich connects the cluster to external devices. The I/OInterface supports Ethernet, FDDI, SCSI, and other inter-face standards. A SPP-1000 cluster is self su�cient and canstand alone as a full and operational computing system.2.3 Global OrganizationScalability for the SPP-1000 is achieved through a schemethat combines data consistency with global communications.In a manner reminiscent of the KSR-1 [12], the clusters areinterconnected using rings. However, unlike its predecessor,the SPP-1000 connects all 16 clusters using four parallelrings. All 16 clusters are connected to all four rings. This is



achieved through the SCI interfaces to the Functional Unitswithin each cluster. Every Functional Unit of a cluster isconnected to one of the four global ring interconnects. Thee�ect is that every memory bank is connected to the proces-sors within its cluster by the 5 port cross-bar switch and tothe other clusters by the speci�c ring to which the memoryblock's host Functional Unit is connected. Processor requestto global memory goes �rst to the local cross-bar switch, theswitch connects it to the Functional Unit in the same clusterthat is in turn associated with the global ring interconnectto which the remote Functional Unit holding the target datais also connected. The request is then forwarded along theSCI ring interconnect to the remote cluster in which the des-tination memory resides. This structure is shown in Figure3 which presents the global interconnect for the SPP-1000system. The second level of cache coherence is provided bypart of the memory in each Functional Unit reserved as in-terconnect cache and is managed by the CCMC. Data whichis accessed from a remote cluster is copied into the intercon-nect cache and from there sent to the cache of the requestingprocessor.
Figure 3: Convex SPP-1000 System Organization3 Global Control MechanismsThe scalabilty of parallel programs can be greatly a�ectedby the cost of the overhead for managing concurrency. Pro-grams requiring �ne grain parallelism demand e�cient im-plementations of parallel control mechanisms, while thosewith coarser requirements are not signi�cantly impacted bymore costly implementations. The scaling and temporalcosts of basic control constructs on a single hypernode werepresented in [15]. This section presents the results of some ofthe same kinds of measurements on a two hypernode systemwith global shared memory. The experiments expose thelimits on the degree of granularity of parallelism achievableon the system, and provide some insight as to its scalability.A set of synthetic codes were written to measure thetemporal cost of speci�c parallel control constructs. Thesemeasurements were conducted across both hypernodes, �rstscaling with high locality (�rst 8 threads are on one hyper-node) and next with uniform distribution (each hypernodehas an equal number of threads running on it). The ac-curacy of the measurements were limited by the resolutionof the timing mechanisms available and the intrusion re-sulting from their use. The multitasking nature of resource

scheduling also proved to be a source of error, promptingthe execution of many experimental runs to expose the truesystem behavior. Depending on the measurement of inter-est, either averages of the combined measurements or theminimum values observed were used.3.1 Fork-Join MechanismFor a program to achieve parallelism, it must be able todivide its work and distribute it among multiple proces-sors. This is done by spawning execution threads that sharethe same virtual memory space. The fork-join mechanismperforms all actions required to generate a set of paral-lel threads, synchronize their termination, and create thefollow-on actions. The utility of parallelizing a portion ofa program is diminished as the time required to spawn andjoin the threads approaches the same order as the executiontime of the part of the program under consideration.To evaluate the e�ciency of the fork-join primitive onthe SPP-1000, a set of experiments were conducted acrossa range of 1 to 16 threads being executed on 1 to 16 pro-cessors. This was done by distributing the threads withhigh locality and also by distributing them uniformly acrossthe two hypernodes. The threads were spawned using thevendor's Compiler Parallel Support (CPS) library functioncps ppcall(). The time of the actual thread length and theintrusive cost of timing were subtracted from the total timeto yield a good estimate of the overhead time to execute thefork-join primitive.Figure 4 shows the fork-join time in microseconds asa function of the number of threads spawned. The graphshows two plots that highlight the increased cost of a fork-join across two hypernodes. The high locality plot demon-strates the cost of the fork-join where the �rst 8 threads arespawned on the same hypernode and subsequent threads arespawned on the remaining hypernode. The uniform distri-bution plot shows the cost of the fork-join where an equalnumber of threads are spawned on each hypernode (exceptin the 1 thread case).The principal observations to be garnered from Figure 4are:� The fork-join time is proportional to the number ofthreads spawned with high locality across a single hy-pernode. Moving from 2 to 8 processors each addi-tional pair of threads costs approximately 10 microsec-onds.� The fork-join time is roughly proportional to the num-ber of threads spawned with uniform distribution be-tween hypernodes. Moving from 2 to 16 processorseach additional pair of threads costs approximately 20microseconds.� A signi�cant overhead, on the order of 50 microsec-onds, is incurred once threads start to be spawned ontwo hypernodes.As will be seen in the next subsection, the cost of a simplebarrier is signi�cantly cheaper than the fork-join. This canbe attributed to the additional functionality required for thefork-join to create and maintain intra-thread contexts whileretaining the shared context of the parent thread.



Figure 4: Cost of Fork-Join3.2 Barrier SynchronizationAmong the most basic of parallel control constructs is thebarrier, a method for synchronizing the continuation of mul-tiple activities. It is closely related to the semaphore, usedto achieve exclusive access to shared mutable data objectsand for realizing critical sections in data parallel code. Thetemporal cost of performing a barrier determines the mini-mum granularity of threads that can be e�ectively used tospread out the work among processors in order to achieve aperformance gain through parallelism.The temporal cost of the barrier synchronization prim-itive on the SPP-1000 was measured across a range of 1to 16 threads using from 1 to 16 processors. As with thefork-join experiment, measurements were taken where thethreads were distributed with high locality and also wherethey were distributed uniformly across the two hypernodes.The barrier synchronization was performed using the ven-dor's CPS library function cps barrier().Figure 5 reports two metrics for both the high localityand uniform distribution cases:Last In - First Out: the minimum time measured fromwhen the last thread enters the barrier to when the�rst thread afterward continues.Last In - Last Out: the minimum time measured from whenthe last thread enters the barrier to when the lastthread continues.The results from our earlier study of only one hypernodeof the SPP-1000 [15] are also shown. Both the previous
and current study used the same experimental method. Atime-stamp was taken before each thread entered the barrierand after each thread exited the barrier. From this data anapproximation of the barrier costs could be derived. Alltiming data have been corrected for the overhead involvedin performing the measurements.Figure 5 shows that the minimum time for a barrier (lastin - �rst out) involving more than one thread is approx-imately 3.5 microseconds on a single hypernode, incurringan additional cost of 1 microsecond once threads on a secondhypernode become involved. The release time of the barrier,the total time to continue all suspended threads, possesses amore complex behavior. In the high locality case on just onehypernode, the barrier appears to cost roughly 2 microsec-onds per thread beyond the second thread involved. Oncethreads on a second hypernode become involved, there is anadditional penalty, as evidenced by both the high localityand uniform distribution cases.This behavior may be caused by the implementation ofthe barrier primitive, which has each thread decrement anuncached counting semaphore [3] and then enter a whileloop, waiting for a shared variable to be set to a partic-ular value. The last thread to enter the barrier sets theshared variable to the expected value, thus releasing theother threads from their spin waiting. Because this sharedvariable is cached by all of the threads, coherency mecha-nisms are invoked when the �nal thread alters its value. Thisincurs a variable temporal cost depending on the status ofthe system reference tree. Figure 5 would seem to reectthe increased cost of maintaining coherency and updatingthe reference tree as a greater number of processors become



Figure 5: Cost of Barrier Synchronizationinvolved. The behavior of the uniformly distributed caseis accounted for by the parallel updates of internal systemdata structures of the two hypernodes.It is of particular note that the barrier synchronizationtime has increased under the multi-cluster global sharedmemory operating system. This is a reection of the ad-ditional system management necessary to provide parallelsupport across multiple hypernodes. The di�erence betweenthe high locality and uniform distribution graphs demon-strates another aspect of this overhead. The di�erence inthe last in-last out costs of these cases from 2 to 8 threadsranges from 5 to 10 microseconds. Even though their be-havior is not linear, if one were to approximate it as such,the average cost per additional thread for the high local-ity case starting with 2 threads is about 1.5 microsecondsand 1.3 microseconds for the uniform case. The single hy-pernode study [15] showed an average additional cost of 1microsecond per thread.4 Application: The Gravitational N-body ProblemThe solution of the gravitational N-body problem in Astro-physics is of general interest for a large number of problemsranging from the breakup of comet Shoemaker/Levy 9 togalaxy dynamics to the large scale structure of the universe.This problem is de�ned by the following relation where thegravitational force on particle i in a system of N gravita-
tionally interacting particles is given by,~Fi = NXj=1 Gmimj ~rij(r2ij + �2)3=2 (1)where G is the universal gravitational constant, mi and mjare the masses the particles i and j, ~rij is the vector separat-ing them, and � is a smoothing length which can be nonzeroand serves to eliminate diverging values in ~Fi when ~rij issmall. This parameter also serves to de�ne a resolution limitto the problem. This equation also shows that the problemscales as N2 and modeling systems with particle numberslarger than several thousand is infeasible.Tree codes are a collection of algorithms which approxi-mate the solution to equation 1 [2, 8, 13]. In these algorithmsthe particles are sorted into a spatial hierarchy which formsa tree data structure. Each node in the tree then representsa grouping of particles and data which represents averagequantities of these particles (e.g. total mass, center of mass,and high order moments of the mass distribution) are com-puted and stored at the nodes of the tree. The forces arethen computed by having each particle search the tree andpruning subtrees from the search when the average datastored at that node can be used to compute a force on thesearching particle below a user supplied accuracy limit. Fora �xed level of accuracy this algorithm scales as Nlog(N)although O(N) algorithms are also possible. Since the treesearch for any one particle is not known a priori and the treeis unstructured, frequent use is made of indirect addressing.Further, the tree data is updated during a simulation as the



Figure 6: N-Body Performance Scalingparticles move through space. Therefore, this algorithm isnot only of interest for its scienti�c application, but is also ofcomputational interest due to its unstructured and dynamicnature.4.1 Experimental ResultsWe have ported a FORTRAN 90 version of a tree code tothe Convex SPP which was initially developed for the Mas-par MP-2 and implemented using the algorithm describedin Olson and Dorband [13]. The changes to the originalcode were straightforward and the compiler directives andthe shared memory programming model facilitated a verysimple minded approach to be taken. The main alterationsto the MasPar code were to distribute all the particle calcu-lations evenly among the processors and make all interme-diate variables in the force calculation thread-private. Eachprocessor then calculates the forces of its subset of particlesin a serial manner. All indirect accesses are made by eachthread of execution into the tree data stored in global sharedmemory. Further, these indirect addresses are made in theinnermost loop of the tree search algorithm, thus relyingon the ability to utilize rapid, �ne grained memory accessesallowed by the shared memory programming model. Thisscheme also allows for more e�cient use of the data cacheon subsequent oating point operations.The program was run on three problem sizes (32K, 256Kand 2M particles), applying from 1 to 16 processors in twocon�gurations of the processors. The �rst con�guration ran1,2,4 and 8 processors on a single hypernode and the secondran 2,4,8 and 16 processors across two hypernodes. Figure
6 shows the parallel speedup for each of the cases measuredrelative to the single processor rate of 27.5 Mop/s. We seethat the performance degradation incurred across multiplehypernodes is small; it is between 2 and 7 percent. It is alsoclear that the performance at 16 processors is a�ected by theproblem size. The task granularity changes linearly with theproblem size as do the overall memory requirements. How-ever, the balance between local and global memory accessesvaries non-linearly; it is determined by the proportion of in-formation at each level of the tree and by the proportionof the depths searched by the algorithm. To determine thee�ect of multiple hypernodes on the scaling of this applica-tion, tests should be run on a system with more than twohypernodes. From this initial data it is not possible to pre-dict how speedup will change as additional hypernodes areadded. Finally, the 16 processor 384 Mop/s result com-pares favorably to a highly vectorized, public domain treecode [8] which achieves 120 Mop/s on one head of a C90.5 Cache Consistency BehaviorThe Convex SPP-1000 cache coherency mechanism operatesat two levels: the directory based mechanism within a givenhypernode and the SCI method that maintains consistencyacross hypernodes. The Tree code used in the scaling stud-ies of the previous section is employed again to expose cachemiss dependencies upon system and problem size scaling.Hardware instrumentation has been incorporated as part ofthe SPP-1000 design to measure the number of cache missesencountered and the duration of the misses. The allocation



Figure 7: N-Body Cache Missesof the tree structure for the application is distributed ap-proximately equally between the two hypernodes. The forcecalculation for each simulated gravitational body on one hy-pernode requires mass data about the bodies on the otherhypernode. But because this distribution also reects sim-ulated distance, not all the information on one node needsto be copied to the other hypernode. Rather, only higherlevels of the tree are required.The �rst set of experiments is performed to determinehow the cache miss rate varies for a �xed size problem asthe number of processors is increased. Measurements weretaken of both misses local to the hypernodes and missesacross the SCI based interconnect. The experiments wererun in two ways as was the case with the scaling tests. Inone set of tests, the �rst 1 to 8 processors run were all in asingle hypernode. This is the high locality test. Only the 16processor run included processors from both hypernodes. Inanother set of tests, processors are taken evenly from bothhypernodes; when 6 processors were running, 3 were fromone hypernode while 3 more were from the other hypern-ode. This series is the uniform tests. Finally, the tests wereperformed for two problem sizes: 32K particles and 256Kparticles.The results of these experiments are shown in Figure7. This semi-log plot shows the number of misses (log scale)with respect to the number of processors used to perform thecomputation. There are six curves there, all almost straightlines and two pairs almost completely overlapping. It isimmediately clear that the miss rate is highly insensitiveto the number of processors employed for the computation.All curves are essentially straight and horizontal. There is a
gradual rise of within a few percent, but this is well withinthe range of measurement error.A more detailed examination reveals additional behavior.Not only are the local miss rates insensitive to the numberof processors used, but they are also insensitive to the lo-cality of the processors. The number of local misses, thoseoccurring only within the hypernodes, is the same whetherall the processors (for 8 or less) are in a single cluster orshared between the two hypernodes used. This is poorlydemonstrated by the overlap of the solid and double-dashedlines near the top of the �gure. Where the uniform testsare performed employing processors from both hypernodes,we �nd that the number of misses is there too insensitiveto the number of processors. As might be expected, thenumber of cache misses is sensitive to the problem size, inthis case represented by the number of particles simulated.Local misses are almost two orders of magnitude more forthe 256K particle simulation than the 32K particle simu-lation while that di�erence for remote misses is less thanone order-of-magnitude. It is also seen that the local missesare almost a thousand times more frequent than the remotemisses for the 256K particle case and more than a factor of10 for the 32K particle problem.The �ndings show that for a given problem size, the scal-ing characteristics of the cache misses with respect to systemsize are very favorable. For this application, cache missesdo not increase as the system grows, at least within the ex-perimental context and constraints. Also, most by far ofthe cache misses are local with only a small fraction of thetotal misses being the more costly remote inter-hypernodeaccesses. This too is a favorable outcome with the system



exhibiting good scaling properties. The cache miss scal-ing properties with respect to problem size is less favorable.The remote misses grow roughly proportionally with prob-lem size while local misses may scale O(n2) with problemsize n. This is explainable by the nature of the applicationwhere nearby bodies tend to require O(n2) computationswhile distant force calculations converge on O(n) in the limitor O(n log(n)) in general. For the range of values considered,these are approximately the same. Using available measure-ment resources, some estimates of the local and remote cachemiss latencies are possible. These di�ered somewhat acrossthe range of processors and to a great degree between lo-cal and global misses. The average local cache miss latencyis 0.54 microseconds and the average remote cache miss la-tency is 3.7 microseconds. For only a single processor, thecache miss penalty is about 20% less at 0.46 microseconds.While small changes in remote latency times were observed,no discernible correlation between number of processors andaverage remote latency time was identi�ed. However, theexperimental system employed only two hypernodes. It isexpected that the nature of the SCI implementation maycause a sensitivity of remote access latency time to numberof hypernodes used. Further study is required here.6 Discussion and ConclusionsThis paper has presented the �rst published results of anevaluation of the Convex SPP-1000 global communicationand cache consistency mechanisms. The Convex SPP-1000multiprocessor incorporates hardware supported runtime mech-anisms to achieve full cache coherency across 128 processorsorganized in a two level hierarchy of 8 processor hypernodes.Directory based cache consistency mechanisms are employedwithin the cluster while consistency across hypernodes ismanaged by an implementation of the SCI protocol. A twohypernode system was employed in a series of experimentsto evaluate the performance properties of the global sharedmemory management system. These experiments examinedthe operating characteristics of the system performing ba-sic global control operations including barrier synchroniza-tion and thread scheduling. System scalability propertieswere evaluated using a full Earth and space science appli-cation program, the N-body gravitation simulation with atree code algorithm. A detailed study of the scaling of cachemisses was performed for both levels of the cache consistencystructure and measurements of cache miss penalty were con-ducted for both local and global cache misses.It was found that the system architecture supports globalmechanisms at low enough performance penalty that mediumgrained parallelism can be exploited e�ciently. The globalcache miss penalty was determined to be only a few timesthat of a local cache miss while executing a real-world ap-plication code. Scaling of this code was seen to be goodfor a reasonable problem size. In particular, the remote ac-cess communication and SCI mechanisms were observed tocause only minor performance degradation over purely localhypernode execution. Cache miss rate did not vary signi�-cantly with the number of processors and for this problemthe global cache misses were greatly surpassed by the localmisses.The system tested is still in beta test and the softwaresystem provided is in a state of ux. A number of per-formance characteristics have been altered from the originalstudy carried out on a single hypernode due to changes both

in hardware and software. For example, the performance ofthe barrier synchronization mechanism has been degradedwhile that of the fork-join thread scheduling was seen to im-prove. The overall performance of this application improvedfor a number of reasons including better compiler technol-ogy, enhanced operating system functionality, and modi�ca-tions to the algorithm used. Additional changes are antici-pated in the near future, a�ecting the degree to which these�ndings accurately reect the properties of this system inthe future.While other applications have been ported to the Con-vex SPP-1000, their limited maturity precluded reportingof their performance behavior at this time. Therefore, gen-eralizations about the system operation as a whole mustwait con�rmation from a larger test set. This will be doneshortly. Scaling properties at the global level require accessto systems comprising four or more hypernodes. Such sys-tems are now just being assembled at customer sites anda new set of experiments will be conducted. Cache misseswere discussed without relating them to total number of ac-cess requests providing cache miss ratios. This proves to bedi�cult as there is no hardware support for enumerating to-tal memory accesses. More detailed study of memory readsand writes will have to be made of the application code us-ing estimates of total memory access requests from analysisand simulation trace studies of the application. Only thenwill the true e�ectiveness of caches as a latency avoidancemechanism be determined.References[1] A. Agarwal, D. Chaiken, K. Johnson, et al. \The MITAlewife Machine: A Large-Scale Distributed-MemoryMultiprocessor," M. Dubois and S.S. Thakkar, editors,Scalable Shared Memory Multiprocessors, Kluwer Aca-demic Publishers, 1992, pp. 239-261.[2] J.E. Barnes and P. Hut, \A Hierarchical O(n log n) ForceCalculation Algorithm," Nature, vol. 342, 1986.[3] CONVEXComputer Corporation, \Camelot MACHMi-crokernel Interface Speci�cation: Architecture InterfaceLibrary," Richardson, TX, May 1993.[4] D. Chaiken, J. Kubiatowitz, and A. Agarwal, \Limit-LESS Directories: A Scalable Cache Coherence Scheme,"Proceedings of the Fourth International Conference onArchitectural Support for Programming Languages andOperating Systems (ASPLOS IV), 1991, pp. 224-234.[5] CONVEX Computer Corporation, \Exemplar Architec-ture Manual," Richardson, TX, 1993.[6] CONVEX Computer Corporation, \Exemplar Program-ming Guide," Richardson, TX, 1993.[7] Cray Research, Inc., \CRAY T3D System ArchitectureOverview," Eagan, Minnesota.[8] L. Hernquist, \Vectorization of Tree Traversals," Journalof Computational Physics, vol. 87, 1990.[9] Hewlett Packard Company, \PA-RISC 1.1 Architectureand Instruction Set Reference Manual," Hewlett PackardCompany, 1992.[10] Intel Corporation, \Paragon User's Guide," Beaverton,Oregon 1993.



[11] IEEE Standard for Scalable Coherent Interface, IEEE,1993.[12] Kendall Square Research Corporation, \KSR TechnicalSummary," Waltham, MA, 1992.[13] K. Olson and J. Dorband, \An Implementation of aTree Code on a SIMD Parallel Computer," AstrophysicalJournal Supplement Series, September 1994.[14] Thinking Machines Corporation, \Connection MachineCM-5 Technical Summary," Cambridge, MA, 1992.[15] T. Sterling, D. Savarese, P. Merkey, J. Gardner, \AnInitial Evaluation of the Convex SPP-1000 for Earth andSpace Science Applications," Proceedings of the First In-ternational Symposium on High Performance ComputingArchitecture, January 1995.[16] M.S. Warren and J.K. Salmon, \A Parallel Hashed Oct-tree N-Body Algorithm," Proceedings of Supercomputing'93, Washington: IEEE Computer Society Press, 1993.


