An Empirical Evaluation of the Convex SPP-1000 Hierarchical Shared Memory
System

Thomas Sterling

Center of Excellence in Space Data

and Information Sciences

Code 930.5 NASA Goddard Space Flight Center

Greenbelt, MD 20771
tron@cesdis.gsfc.nasa.gov

Phillip Merkey
Center of Excellence in Space Data
and Information Sciences

Code 930.5 NASA Goddard Space Flight Center

Greenbelt, MD 20771
merk@cesdis.gsfc.nasa.gov

Abstract

Cache coherency in a scalable parallel computer architec-
ture requires mechanisms beyond the conventional common
bus based snooping approaches which are limited to about
16 processors. The new Convex SPP-1000 achieves cache
coherency across 128 processors through a two-level shared
memory NUMA structure employing directory based and
SCI protocol mechanisms. While hardware support for man-
aging a common global name space minimizes overhead costs
and simplifies programming, latency considerations for re-
mote accesses may still dominate and can under unfavor-
able conditions constrain scalability. This paper provides
the first published evaluation of the SPP-1000 hierarchical
cache coherency mechanisms from the perspective of mea-
sured latency and its impact on basic global flow control
mechanisms, scaling of a parallel science code, and sensi-
tivity of cache miss rates to system scale. It is shown that
global remote access latency is only a factor of seven greater
than that of local cache miss penalty and that scaling of a
challenging scientific application is not severely degraded by
the hierarchical structure for achieving consistency across
the system processor caches.

1 Introduction

The emergence of scalable shared memory parallel archi-
tecture with full cache coherence provides a new and im-
portant operating point for high performance computing.
The hardware assisted guarantee of cache coherence across
all processors of a distributed computer structure provides
the opportunity for improved algorithms, more productive
methods of parallel programming, and more efficient compil-

Daniel Savarese
Department of Computer Science
University of Maryland
College Park, MD 20742
dfs@cs.umd.edu

Kevin Olson
Institute for Computational Science
and Informatics
George Mason University
olson@jeans.gsfc.nasa.gov

ers than possible with fragmented address-space distributed
systems. This capability may also simplify dynamic load
balancing by runtime system software for adaptive resource
management, and ease the development of distributed op-
erating systems. The Convex SPP-1000 is the most recent
entry in the commercial sector of scalable cache coherent
architectures. Its structure is a two-level hierarchy with up
to 16 clusters (hypernodes) of eight processors each. It em-
ploys a directory based cache management scheme at the
lower (intra-hypernode) level and an SCI [11] protocol based
global communication and cache control mechanism at the
higher level. This paper provides an initial examination of
the performance characteristics of the SPP-1000 hierarchical
cache management.

In spite of its potential advantages, support for global
shared memory and cache coherence on systems of wide di-
ameter imposes a greater burden on the cache system itself
for avoiding latency of data access than required of com-
mon bus based snooping mechanisms for small scale mul-
tiprocessors. This is due to the much larger possible miss
penalty incurred from the longer remote access distances.
While hardware mechanisms eliminate most of the overhead
work attributed to managing remote access and data mi-
gration/distribution, the latency and possible consequences
of shared resource contention still remain. This paper ex-
amines the Convex SPP-1000 to evaluate and quantify the
costs incurred in performing critical actions across its two-
level cache coherent structure. These results represent the
first published findings of evaluation of the SPP-1000’s hier-
archical cache coherent architecture employing the SCI pro-
tocol and builds on earlier studies [15] of the performance
properties of the first level of this new system. The findings
presented in this paper are important to both parallel archi-
tecture and compiler designers in determining the feasibil-
ity of achieving effective parallel computation in a scalable
framework for this class of architecture.

Cache coherence is a user transparent policy that main-
tains the appearance of sequential consistency across a phys-
ically distributed multiple access memory system. It en-

sures that read/write order to the memory address space
in a physically distributed multiprocessor is equivalent to
the access patterns of comparable uniprocessor execution.
This includes correct manipulation of memory state for com-
pound atomic operations such as test-and-set or fetch-and-
add. While the semantic equivalence is achieved, time-domain
behavior may be severely aggravated by the latencies intrin-
sic to the distributed nature of the large parallel systems
and the additional work, even if hardware supported, re-
quired for realizing the complex local and global protocols
for cache coherence. Other factors that may impact the
overall performance include contention for shared resources
such as memory banks and communication channels, side-
effects of cache structural properties such as false sharing
and conflict misses, and pollution of cache contents by other
unrelated concurrent tasks.

Evaluation of the system capabilities and mechanisms
involves revealing the attributes of both the system latency
and cache mechanism overhead. In the previous work, the
single level directory based cache coherence mechanism em-
ployed within a hypernode of eight processors was evaluated.
This paper extends that work to expose the global system
characteristics. T'wo basic mechanisms, synchronization and
task scheduling, are studied. The first, using a non-cached
barrier object, reveals the consequences of system latency
without the cache consistency mechanisms. The measure-
ments of task scheduling exposes the overhead costs to man-
aging parallel resources and concurrent activities in a single
common name-space system.

Of particular interest is the impact of the longer delays
and SCI overhead on scalability across the entire system.
This important factor is investigated through studies of a
complete real-world application. This problem, taken from
the Earth and space sciences community, is a tree-code al-
gorithm for simulating N-body gravitational systems such
as stellar clusters, galaxy formation, and cosmic scale struc-
ture evolution. This problem is peculiar to Earth and space
science and imposes computational demands that are non-
trivial to satisfy by parallel systems. The primary data
structure, an Oct-Tree, is sparse, irregular, and time vary-
ing. The underlying physics requires significant amount of
global access across the data structure and parallel system.
Some runtime load balancing is required over the time frame
of the simulation as the problem state distribution evolves.
The scaling of this problem is studied with respect to scaling
first with high locality (lower number of processors all in one
hypernode) and second with uniform distribution of proces-
sors across hypernodes. It will be shown that the latter case
shows some degradation over the highly local case but that
the dominant scaling factor is the granularity of the work.

Finally, the cache miss rate is examined directly as it
varies with problem size and system configuration scale.
This is crucial to determining the overall effectiveness of
cache consistency to system performance. If the cache miss
rate were to increase for a fixed size workload because sys-
tem size (number of processors) increases, then the value of
this class of architecture would be in question as a means of
enhancing scalability of distributed systems. It will be seen
that cache miss rates do not vary significantly with system
size although are heavily impacted by problem size. This
study also measures the global latency and overhead times
attributed to cache misses involving remote access.

A summary of the principal architectural characteristics
of the Convex SPP-1000 is provided in section 2 of this pa-
per with an emphasis on the system hierarchy and cache

coherence mechanisms. Section 3 presents the results of ex-
periments performed to study synchronization and thread
scheduling costs. In this study, the basic latency and over-
head factors are characterized. The scalability studies of the
gravitational N-body application code are presented in Sec-
tion 4 along with a brief explanation of the science problem
addressed and a description of the parallel algorithm being
applied. The results are provided to reveal the contributions
of both problem size and task distribution. The sensitivity
of cache misses to system and problem size is investigated in
Section 5. Finally, the implications of the findings and the
directions for future work are discussed in Section 6. It is
noted that the researches represented here are of value be-
cause they provide an earliest quantitative examination at
the full structure of this new architecture. But as a conse-
quence, they suffer to a small degree due to the difficulties
always present in the experimental context of any beta-test
environment. Future work by this group in the near term
will be directed to refining and expanding on the initial find-
ings presented here.

2 Architecture

The objective of the Convex SPP-1000 architecture design is
to leverage industry investment in high performance micro-
processor technology, provide a highly scalable structure to
satisfy a broad range of market needs, and support an easy
to program parallel execution environment. The approach
taken incorporates the HP PA-RISC [9] microprocessor in a
hierarchical structure with hardware support for full global
shared memory operation. Most notably, the architecture
provides for full cache coherence, time and space sharing of
system resources, and virtual memory for up to 128 proces-
sors in the current design. This combination of capabilities
makes the SPP-1000 among the most advanced commercial
parallel systems available and an interesting target for eval-
uation. This section briefly describes the SPP-1000 archi-
tecture to establish the context for the experimental results
that follow.

2.1 Concepts
Key concepts embodied in the SPP-1000 architecture are:

e scalable hierarchical structure,

global shared memory,

e hardware supported cache coherence,

e virtual memory across processor subcomplexes, and
e thread based and message based parallel execution.

The hierarchical organization of high performance mi-
croprocessors comprises three stages: functional units, clus-
ters, and global interconnect. Functional units are the basic
building blocks of the system incorporating dual processors
and dual memory banks with interface logic. The cluster
integrates up to four functional units and an I/O subunit
coupled by a 5 port cross-bar switch. The global system
stage interconnects up to sixteen clusters by four parallel
rings using the Scalable Coherent Interface (SCI). The first
generation SPP-1000 system may incorporate as many as
128 microprocessors.

Part of the memory in each functional unit is designated
as global shared memory and is potentially accessible by any

| D | D
cache cache cache cache

v 3 v o

Processor

Memory

Processor

o 4+—» CCMC L Agem.j
Intertace :

xbar port

Figure 1: Convex SPP-1000 Functional Block

processor in the system. Therefore data movement between
functional units in a cluster or between clusters is achieved
by means of direct hardware support for load and store com-
mands, independent of relative location of processor and the
memory word being accessed. This distinguishes the mem-
ory system of the SPP-1000 from the distributed memory
of the TMC CM-5 [14] or the Intel Paragon [10] with their
fragmented address spaces. The CRI T3D [7] also has a
global shared memory.

The primary means of ameliorating potential performance
degradation due to access latency is through the use of
caches which hold copies of data elements in fast buffer
memory and rely on temporal and spatial locality for high
hit rates. When a variable is shared by two or more proces-
sors at the same time, copies of the same variable in inde-
pendent processors’ respective caches can become corrupted
such that different values for the same variable reside in
the separate caches. To maintain consistency across caches,
either special hardware is normally required (software tech-
niques have been explored) or shared variables are expressly
precluded from being stored in cache with the potential per-
formance penalty this implies. The SPP-1000 employs a
two-tier cache coherence scheme that is unique in the indus-
try. It combines a directory based cache coherence mech-
anism within the cluster with the SCI protocol using an
“Interconnect cache” across clusters [5].

A true virtual memory system is supported. A paral-
lel process with many concurrent sub-processes will have a
single virtual address space. The virtual pages are mapped
across the memory blocks of the functional units within a
cluster to reduce the likelihood of bank conflicts and across
clusters to distribute data objects more evenly among pro-
cessors. Processors and physical memory pages may be or-
ganized in sub-complexes, a logical ensemble of processors
from across the system that work together on a single prob-
lem. The virtual address space of a process running on the
subcomplex is not limited to physical memory dedicated to
that subcomplex. More than one parallel process may time-
share a given subcomplex.

The shared memory and cache coherence mechanisms
enable a parallel thread model of execution to be directly
supported along with the more common message passing
model. The shared memory model facilitates implementa-
tion of a broad range of applications. Where memory ac-
cesses are global, dynamic, and non-uniform, parallel pro-
grams may run more efficiently than their message passing

counterparts. Such primitive control flow operatives as bar-
rier synchronization, fork-join task scheduling, and message
passing are easily supported on a shared memory system.
The rest of this section examines the physical elements of
the SPP-1000 architecture in greater detail.

2.2 Cluster structure

A block diagram of the Functional Unit is shown in Figure
1 and presents the major elements of the SPP-1000 cluster.
Each of two processors has its own separate 1 Mbyte data
and instruction caches. The processor is the HP PA-RISC
7100 with a clock rate of 100 MHz. Two banks of mem-
ory are included, each of 64 Mbytes which may be increased
to 256 Mbytes at a later time. The memory may be par-
titioned to serve as local storage for the cluster and global
storage for subcomplexes spanning many clusters across the
system. The Convex Coherent Memory Controller (CCMC)
manages the interaction of the Functional Unit memory with
the remaining system. Access requests can come from any
processor within the cluster via the cross-bar switch inter-
face or from other clusters via the SCI. Even access from
processors within the same Functional Unit come through
the cross-bar switch which provides arbitration. The CCMC
also manages the directory based cache coherence protocol
for the processor caches. The Processor Agent provides the
interface between the processors and the rest of the system.

7.6}
> Interface

Figure 2: Convex SPP-1000 Cluster

The SPP-1000 cluster is depicted in Figure 2 showing
the principal subsystems making up the cluster and their
relationship to each other. Four Functional Units provide
the processing and memory. The cluster processors access
the cluster memory by means of the 5 port cross-bar switch.
The remaining fifth port is used to access the I/O Interface
which connects the cluster to external devices. The I/O
Interface supports Ethernet, FDDI, SCSI, and other inter-
face standards. A SPP-1000 cluster is self sufficient and can
stand alone as a full and operational computing system.

2.3 Global Organization

Scalability for the SPP-1000 is achieved through a scheme
that combines data consistency with global communications.
In a manner reminiscent of the KSR-1 [12], the clusters are
interconnected using rings. However, unlike its predecessor,
the SPP-1000 connects all 16 clusters using four parallel
rings. All 16 clusters are connected to all four rings. This is

achieved through the SCI interfaces to the Functional Units
within each cluster. Every Functional Unit of a cluster is
connected to one of the four global ring interconnects. The
effect is that every memory bank is connected to the proces-
sors within its cluster by the 5 port cross-bar switch and to
the other clusters by the specific ring to which the memory
block’s host Functional Unit is connected. Processor request
to global memory goes first to the local cross-bar switch, the
switch connects it to the Functional Unit in the same cluster
that is in turn associated with the global ring interconnect
to which the remote Functional Unit holding the target data
is also connected. The request is then forwarded along the
SCI ring interconnect to the remote cluster in which the des-
tination memory resides. This structure is shown in Figure
3 which presents the global interconnect for the SPP-1000
system. The second level of cache coherence is provided by
part of the memory in each Functional Unit reserved as in-
terconnect cache and is managed by the CCMC. Data which
is accessed from a remote cluster is copied into the intercon-
nect cache and from there sent to the cache of the requesting
Processor.

Funetion Function Funetion Furiction | custerd
Block Hock Block Block
- . -
i [[aman (i
Inter-
4-port crossbar switch o =
. | |
I | | "
| = | | [
| | | | SCI Rings
[| | |
(- | | |
Funciion Fiinction Function Function Uster 15
Block Block: Block Bilock
- -* . o
. b i ¢ e
inter-
S-port crosshar switch -y o

Figure 3: Convex SPP-1000 System Organization

3 Global Control Mechanisms

The scalabilty of parallel programs can be greatly affected
by the cost of the overhead for managing concurrency. Pro-
grams requiring fine grain parallelism demand efficient im-
plementations of parallel control mechanisms, while those
with coarser requirements are not significantly impacted by
more costly implementations. The scaling and temporal
costs of basic control constructs on a single hypernode were
presented in [15]. This section presents the results of some of
the same kinds of measurements on a two hypernode system
with global shared memory. The experiments expose the
limits on the degree of granularity of parallelism achievable
on the system, and provide some insight as to its scalability.

A set of synthetic codes were written to measure the
temporal cost of specific parallel control constructs. These
measurements were conducted across both hypernodes, first
scaling with high locality (first 8 threads are on one hyper-
node) and next with uniform distribution (each hypernode
has an equal number of threads running on it). The ac-
curacy of the measurements were limited by the resolution
of the timing mechanisms available and the intrusion re-
sulting from their use. The multitasking nature of resource

scheduling also proved to be a source of error, prompting
the execution of many experimental runs to expose the true
system behavior. Depending on the measurement of inter-
est, either averages of the combined measurements or the
minimum values observed were used.

3.1 Fork-Join Mechanism

For a program to achieve parallelism, it must be able to
divide its work and distribute it among multiple proces-
sors. This is done by spawning execution threads that share
the same virtual memory space. The fork-join mechanism
performs all actions required to generate a set of paral-
lel threads, synchronize their termination, and create the
follow-on actions. The utility of parallelizing a portion of
a program is diminished as the time required to spawn and
join the threads approaches the same order as the execution
time of the part of the program under consideration.

To evaluate the efficiency of the fork-join primitive on
the SPP-1000, a set of experiments were conducted across
a range of 1 to 16 threads being executed on 1 to 16 pro-
cessors. This was done by distributing the threads with
high locality and also by distributing them uniformly across
the two hypernodes. The threads were spawned using the
vendor’s Compiler Parallel Support (CPS) library function
cps_ppcall (). The time of the actual thread length and the
intrusive cost of timing were subtracted from the total time
to yield a good estimate of the overhead time to execute the
fork-join primitive.

Figure 4 shows the fork-join time in microseconds as
a function of the number of threads spawned. The graph
shows two plots that highlight the increased cost of a fork-
join across two hypernodes. The high locality plot demon-
strates the cost of the fork-join where the first 8 threads are
spawned on the same hypernode and subsequent threads are
spawned on the remaining hypernode. The uniform distri-
bution plot shows the cost of the fork-join where an equal
number of threads are spawned on each hypernode (except
in the 1 thread case).

The principal observations to be garnered from Figure 4
are:

e The fork-join time is proportional to the number of
threads spawned with high locality across a single hy-
pernode. Moving from 2 to 8 processors each addi-
tional pair of threads costs approximately 10 microsec-
onds.

o The fork-join time is roughly proportional to the num-
ber of threads spawned with uniform distribution be-
tween hypernodes. Moving from 2 to 16 processors
each additional pair of threads costs approximately 20
microseconds.

e A significant overhead, on the order of 50 microsec-
onds, is incurred once threads start to be spawned on
two hypernodes.

As will be seen in the next subsection, the cost of a simple
barrier is significantly cheaper than the fork-join. This can
be attributed to the additional functionality required for the
fork-join to create and maintain intra-thread contexts while
retaining the shared context of the parent thread.

200 k +« High Locality

L o Uniform Distribution

Fork/Join time (microseconds)
o o
S o
\ \

oy
o
T

Number of threads spawned

Figure 4: Cost of Fork-Join

3.2 Barrier Synchronization

Among the most basic of parallel control constructs is the
barrier, a method for synchronizing the continuation of mul-
tiple activities. It is closely related to the semaphore, used
to achieve exclusive access to shared mutable data objects
and for realizing critical sections in data parallel code. The
temporal cost of performing a barrier determines the mini-
mum granularity of threads that can be effectively used to
spread out the work among processors in order to achieve a
performance gain through parallelism.

The temporal cost of the barrier synchronization prim-
itive on the SPP-1000 was measured across a range of 1
to 16 threads using from 1 to 16 processors. As with the
fork-join experiment, measurements were taken where the
threads were distributed with high locality and also where
they were distributed uniformly across the two hypernodes.
The barrier synchronization was performed using the ven-
dor’s CPS library function cps_barrier().

Figure 5 reports two metrics for both the high locality
and uniform distribution cases:

Last In - First Out: the minimum time measured from
when the last thread enters the barrier to when the
first thread afterward continues.

Last In - Last Out: the minimum time measured from when

the last thread enters the barrier to when the last
thread continues.

The results from our earlier study of only one hypernode
of the SPP-1000 [15] are also shown. Both the previous

and current study used the same experimental method. A
time-stamp was taken before each thread entered the barrier
and after each thread exited the barrier. From this data an
approximation of the barrier costs could be derived. All
timing data have been corrected for the overhead involved
in performing the measurements.

Figure 5 shows that the minimum time for a barrier (last
in - first out) involving more than one thread is approx-
imately 3.5 microseconds on a single hypernode, incurring
an additional cost of 1 microsecond once threads on a second
hypernode become involved. The release time of the barrier,
the total time to continue all suspended threads, possesses a
more complex behavior. In the high locality case on just one
hypernode, the barrier appears to cost roughly 2 microsec-
onds per thread beyond the second thread involved. Once
threads on a second hypernode become involved, there is an
additional penalty, as evidenced by both the high locality
and uniform distribution cases.

This behavior may be caused by the implementation of
the barrier primitive, which has each thread decrement an
uncached counting semaphore [3] and then enter a while
loop, waiting for a shared variable to be set to a partic-
ular value. The last thread to enter the barrier sets the
shared variable to the expected value, thus releasing the
other threads from their spin waiting. Because this shared
variable is cached by all of the threads, coherency mecha-
nisms are invoked when the final thread alters its value. This
incurs a variable temporal cost depending on the status of
the system reference tree. Figure 5 would seem to reflect
the increased cost of maintaining coherency and updating
the reference tree as a greater number of processors become

30 : : : : :

Il _— High Locality

. Uniform Distribution
L __ Earlier Study

« Last In—First—0Out
L o Last In—Last Out

N
o
T

(@}
T

Barrier Synchronization Time (microseconds)

Number of Threads Spawned

Figure 5: Cost of Barrier Synchronization

involved. The behavior of the uniformly distributed case
is accounted for by the parallel updates of internal system
data structures of the two hypernodes.

It is of particular note that the barrier synchronization
time has increased under the multi-cluster global shared
memory operating system. This is a reflection of the ad-
ditional system management necessary to provide parallel
support across multiple hypernodes. The difference between
the high locality and uniform distribution graphs demon-
strates another aspect of this overhead. The difference in
the last in-last out costs of these cases from 2 to 8 threads
ranges from 5 to 10 microseconds. Even though their be-
havior is not linear, if one were to approximate it as such,
the average cost per additional thread for the high local-
ity case starting with 2 threads is about 1.5 microseconds
and 1.3 microseconds for the uniform case. The single hy-
pernode study [15] showed an average additional cost of 1
microsecond per thread.

4 Application: The Gravitational N-body Problem

The solution of the gravitational N-body problem in Astro-
physics 1s of general interest for a large number of problems
ranging from the breakup of comet Shoemaker/Levy 9 to
galaxy dynamics to the large scale structure of the universe.
This problem is defined by the following relation where the
gravitational force on particle ¢ in a system of N gravita-

tionally interacting particles is given by,

N
= Gmim;r7;
i N W

j=1

where G is the universal gravitational constant, m; and m;
are the masses the particles ¢ and j, r7; is the vector separat-
ing them, and ¢ is a smoothing length which can be nonzero
and serves to eliminate diverging values in f, when r; is
small. This parameter also serves to define a resolution limit
to the problem. This equation also shows that the problem
scales as N? and modeling systems with particle numbers
larger than several thousand is infeasible.

Tree codes are a collection of algorithms which approxi-
mate the solution to equation 1[2, 8, 13]. In these algorithms
the particles are sorted into a spatial hierarchy which forms
a tree data structure. Each node in the tree then represents
a grouping of particles and data which represents average
quantities of these particles (e.g. total mass, center of mass,
and high order moments of the mass distribution) are com-
puted and stored at the nodes of the tree. The forces are
then computed by having each particle search the tree and
pruning subtrees from the search when the average data
stored at that node can be used to compute a force on the
searching particle below a user supplied accuracy limit. For
a fixed level of accuracy this algorithm scales as Nlog(N)
although O(N) algorithms are also possible. Since the tree
search for any one particle is not known a prior: and the tree
is unstructured, frequent use is made of indirect addressing.
Further, the tree data is updated during a simulation as the

o 32K Particles
14 | « 256K Particles
o 2M Particles
12 | _ _ Ideal
___High Locality

__ Uniform Distribution

Number of Processors

Figure 6: N-Body Performance Scaling

particles move through space. Therefore, this algorithm is
not only of interest for its scientific application, but is also of
computational interest due to its unstructured and dynamic
nature.

4.1 Experimental Results

We have ported a FORTRAN 90 version of a tree code to
the Convex SPP which was initially developed for the Mas-
par MP-2 and implemented using the algorithm described
in Olson and Dorband [13]. The changes to the original
code were straightforward and the compiler directives and
the shared memory programming model facilitated a very
simple minded approach to be taken. The main alterations
to the MasPar code were to distribute all the particle calcu-
lations evenly among the processors and make all interme-
diate variables in the force calculation thread-private. Each
processor then calculates the forces of its subset of particles
in a serial manner. All indirect accesses are made by each
thread of execution into the tree data stored in global shared
memory. Further, these indirect addresses are made in the
innermost loop of the tree search algorithm, thus relying
on the ability to utilize rapid, fine grained memory accesses
allowed by the shared memory programming model. This
scheme also allows for more efficient use of the data cache
on subsequent floating point operations.

The program was run on three problem sizes (32K, 256K
and 2M particles), applying from 1 to 16 processors in two
configurations of the processors. The first configuration ran
1,2,4 and 8 processors on a single hypernode and the second
ran 2,4,8 and 16 processors across two hypernodes. Figure

6 shows the parallel speedup for each of the cases measured
relative to the single processor rate of 27.5 Mflop/s. We see
that the performance degradation incurred across multiple
hypernodes is small; it is between 2 and 7 percent. It is also
clear that the performance at 16 processors is affected by the
problem size. The task granularity changes linearly with the
problem size as do the overall memory requirements. How-
ever, the balance between local and global memory accesses
varies non-linearly; it is determined by the proportion of in-
formation at each level of the tree and by the proportion
of the depths searched by the algorithm. To determine the
effect of multiple hypernodes on the scaling of this applica-
tion, tests should be run on a system with more than two
hypernodes. From this initial data it is not possible to pre-
dict how speedup will change as additional hypernodes are
added. Finally, the 16 processor 384 Mflop/s result com-
pares favorably to a highly vectorized, public domain tree
code [8] which achieves 120 Mflop/s on one head of a C90.

5 Cache Consistency Behavior

The Convex SPP-1000 cache coherency mechanism operates
at two levels: the directory based mechanism within a given
hypernode and the SCI method that maintains consistency
across hypernodes. The Tree code used in the scaling stud-
ies of the previous section is employed again to expose cache
miss dependencies upon system and problem size scaling.
Hardware instrumentation has been incorporated as part of
the SPP-1000 design to measure the number of cache misses
encountered and the duration of the misses. The allocation

~
T

__High Locality Local Misses

L ___Uniform Distribution Local Misses

Log(Number of Cache Misses)

N

L « 256K Particles

o 32K Particles

_ _Uniform Distribution Remote Misses

Number of Processors

Figure 7: N-Body Cache Misses

of the tree structure for the application is distributed ap-
proximately equally between the two hypernodes. The force
calculation for each simulated gravitational body on one hy-
pernode requires mass data about the bodies on the other
hypernode. But because this distribution also reflects sim-
ulated distance, not all the information on one node needs
to be copied to the other hypernode. Rather, only higher
levels of the tree are required.

The first set of experiments is performed to determine
how the cache miss rate varies for a fixed size problem as
the number of processors is increased. Measurements were
taken of both misses local to the hypernodes and misses
across the SCI based interconnect. The experiments were
run in two ways as was the case with the scaling tests. In
one set of tests, the first 1 to 8 processors run were all in a
single hypernode. This is the high locality test. Only the 16
processor run included processors from both hypernodes. In
another set of tests, processors are taken evenly from both
hypernodes; when 6 processors were running, 3 were from
one hypernode while 3 more were from the other hypern-
ode. This series is the uniform tests. Finally, the tests were
performed for two problem sizes: 32K particles and 256K
particles.

The results of these experiments are shown in Figure
7. This semi-log plot shows the number of misses (log scale)
with respect to the number of processors used to perform the
computation. There are six curves there, all almost straight
lines and two pairs almost completely overlapping. It is
immediately clear that the miss rate is highly insensitive
to the number of processors employed for the computation.
All curves are essentially straight and horizontal. There is a

gradual rise of within a few percent, but this is well within
the range of measurement error.

A more detailed examination reveals additional behavior.
Not only are the local miss rates insensitive to the number
of processors used, but they are also insensitive to the lo-
cality of the processors. The number of local misses, those
occurring only within the hypernodes, is the same whether
all the processors (for 8 or less) are in a single cluster or
shared between the two hypernodes used. This is poorly
demonstrated by the overlap of the solid and double-dashed
lines near the top of the figure. Where the uniform tests
are performed employing processors from both hypernodes,
we find that the number of misses is there too insensitive
to the number of processors. As might be expected, the
number of cache misses is sensitive to the problem size, in
this case represented by the number of particles simulated.
Local misses are almost two orders of magnitude more for
the 256K particle simulation than the 32K particle simu-
lation while that difference for remote misses is less than
one order-of-magnitude. It is also seen that the local misses
are almost a thousand times more frequent than the remote
misses for the 256K particle case and more than a factor of
10 for the 32K particle problem.

The findings show that for a given problem size, the scal-
ing characteristics of the cache misses with respect to system
size are very favorable. For this application, cache misses
do not increase as the system grows, at least within the ex-
perimental context and constraints. Also, most by far of
the cache misses are local with only a small fraction of the
total misses being the more costly remote inter-hypernode
accesses. This too is a favorable outcome with the system

exhibiting good scaling properties. The cache miss scal-
ing properties with respect to problem size is less favorable.
The remote misses grow roughly proportionally with prob-
lem size while local misses may scale O(n2) with problem
size n. This is explainable by the nature of the application
where nearby bodies tend to require O(n2) computations
while distant force calculations converge on O(n) in the limit
or O(nlog(n)) in general. For the range of values considered,
these are approximately the same. Using available measure-
ment resources, some estimates of the local and remote cache
miss latencies are possible. These differed somewhat across
the range of processors and to a great degree between lo-
cal and global misses. The average local cache miss latency
is 0.54 microseconds and the average remote cache miss la-
tency is 3.7 microseconds. For only a single processor, the
cache miss penalty is about 20% less at 0.46 microseconds.
While small changes in remote latency times were observed,
no discernible correlation between number of processors and
average remote latency time was identified. However, the
experimental system employed only two hypernodes. It is
expected that the nature of the SCI implementation may
cause a sensitivity of remote access latency time to number
of hypernodes used. Further study is required here.

6 Discussion and Conclusions

This paper has presented the first published results of an
evaluation of the Convex SPP-1000 global communication
and cache consistency mechanisms. The Convex SPP-1000

multiprocessor incorporates hardware supported runtime mech-

anisms to achieve full cache coherency across 128 processors
organized in a two level hierarchy of 8 processor hypernodes.
Directory based cache consistency mechanisms are employed
within the cluster while consistency across hypernodes is
managed by an implementation of the SCI protocol. A two
hypernode system was employed in a series of experiments
to evaluate the performance properties of the global shared
memory management system. These experiments examined
the operating characteristics of the system performing ba-
sic global control operations including barrier synchroniza-
tion and thread scheduling. System scalability properties
were evaluated using a full Earth and space science appli-
cation program, the N-body gravitation simulation with a
tree code algorithm. A detailed study of the scaling of cache
misses was performed for both levels of the cache consistency
structure and measurements of cache miss penalty were con-
ducted for both local and global cache misses.

It was found that the system architecture supports global
mechanisms at low enough performance penalty that medium
grained parallelism can be exploited efficiently. The global
cache miss penalty was determined to be only a few times
that of a local cache miss while executing a real-world ap-
plication code. Scaling of this code was seen to be good
for a reasonable problem size. In particular, the remote ac-
cess communication and SCI mechanisms were observed to
cause only minor performance degradation over purely local
hypernode execution. Cache miss rate did not vary signifi-
cantly with the number of processors and for this problem
the global cache misses were greatly surpassed by the local
misses.

The system tested is still in beta test and the software
system provided is in a state of flux. A number of per-
formance characteristics have been altered from the original
study carried out on a single hypernode due to changes both

in hardware and software. For example, the performance of
the barrier synchronization mechanism has been degraded
while that of the fork-join thread scheduling was seen to im-
prove. The overall performance of this application improved
for a number of reasons including better compiler technol-
ogy, enhanced operating system functionality, and modifica-
tions to the algorithm used. Additional changes are antici-
pated in the near future, affecting the degree to which these
findings accurately reflect the properties of this system in
the future.

While other applications have been ported to the Con-
vex SPP-1000, their limited maturity precluded reporting
of their performance behavior at this time. Therefore, gen-
eralizations about the system operation as a whole must
wait confirmation from a larger test set. This will be done
shortly. Scaling properties at the global level require access
to systems comprising four or more hypernodes. Such sys-
tems are now just being assembled at customer sites and
a new set of experiments will be conducted. Cache misses
were discussed without relating them to total number of ac-
cess requests providing cache miss ratios. This proves to be
difficult as there is no hardware support for enumerating to-
tal memory accesses. More detailed study of memory reads
and writes will have to be made of the application code us-
ing estimates of total memory access requests from analysis
and simulation trace studies of the application. Only then
will the true effectiveness of caches as a latency avoidance
mechanism be determined.

References

[1] A. Agarwal, D. Chaiken, K. Johnson, et al. “The MIT
Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor,” M. Dubois and S.5. Thakkar, editors,
Scalable Shared Memory Multiprocessors, Kluwer Aca-
demic Publishers, 1992, pp. 239-261.

[2] J.E. Barnes and P. Hut, “A Hierarchical O(n log n) Force
Calculation Algorithm,” Nature, vol. 342, 1986.

[3] CONVEX Computer Corporation, “Camelot MACH Mi-
crokernel Interface Specification: Architecture Interface
Library,” Richardson, TX, May 1993.

[4] D. Chaiken, J. Kubiatowitz, and A. Agarwal, “Limit-
LESS Directories: A Scalable Cache Coherence Scheme,”
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS IV), 1991, pp. 224-234.

[5] CONVEX Computer Corporation, “Exemplar Architec-
ture Manual,” Richardson, TX, 1993.

[6] CONVEX Computer Corporation, “Exemplar Program-
ming Guide,” Richardson, TX, 1993.

[7] Cray Research, Inc., “CRAY T3D System Architecture

Overview,” Fagan, Minnesota.

[8] L. Hernquist, “Vectorization of Tree Traversals,” Journal
of Computational Physics, vol. 87, 1990.

[9] Hewlett Packard Company, “PA-RISC 1.1 Architecture
and Instruction Set Reference Manual,” Hewlett Packard
Company, 1992.

[10] Intel Corporation, “Paragon User’s Guide,” Beaverton,
Oregon 1993.

[11] TEEE Standard for Scalable Coherent Interface, IEEE,
1993.

[12] Kendall Square Research Corporation, “KSR Technical
Summary,” Waltham, MA, 1992.

[13] K. Olson and J. Dorband, “An Implementation of a
Tree Code on a SIMD Parallel Computer,” Astrophysical
Journal Supplement Series, September 1994.

[14] Thinking Machines Corporation, “Connection Machine
CM-5 Technical Summary,” Cambridge, MA, 1992.

[15] T. Sterling, D. Savarese, P. Merkey, J. Gardner, “An
Initial Evaluation of the Convex SPP-1000 for Earth and
Space Science Applications,” Proceedings of the First In-
ternational Symposium on High Performance Computing
Architecture, January 1995.

[16] M.S. Warren and J.K. Salmon, “A Parallel Hashed Oct-
tree N-Body Algorithm,” Proceedings of Supercomputing
’93, Washington: TEEE Computer Society Press, 1993.

