
A New Library for Parallel Algebraic Computation�Wolfgang Schreinery Hoon HongyFebruary 3, 1993AbstractWe give an overview on Paclib, a library for parallel algebraic computation onshared memory multiprocessors. Paclib is essentially a package of C functions thatprovide the basic objects and methods of computer algebra in a parallel context. ThePaclib programming model supports concurrency, shared memory communication,non-determinism and speculative parallelism. The system is based on a heap mana-gement kernel with parallelized garbage collection that is portable among most Unixmachines. We present the successful application of paclib for the parallelization ofseveral algebraic algorithms and discuss the achieved results.1 IntroductionScienti�c computing is a rich source of challenging problems such as the solution ofsystems of partial di�erential equations. Classical numerical methods operate with e�cient�nite-precision (oating point) arithmetic and thus quickly yield approximative solutions.However, often one is also interested in certain qualitative aspects like stability propertiesor the singularities of given systems [5]. In these cases, it is important to compute the exactsolutions of the given problem, because numerical methods may (by the accumulation ofapproximation errors) yield qualitatively wrong answers.Computer algebra is that branch of computer science that aims to provide exactsolutions of scienti�c problems. Research results of this area are e.g. algorithms forsymbolic integration, polynomial factorization or the exact solution of algebraic equationsand inequalities [3]. All these algorithms have to operate with arbitrary precisionarithmetic; they are therefore much more expensive with respect to time and space than thecorresponding numerical methods. The parallelization of computer algebra algorithms istherefore of utmost importance in order to extend their application area and to contributeto the further development of scienti�c computing.Thus the parallel computation group at RISC-Linz has started a project that pursuesthe development of Paclib, a library of parallel algorithms based on the computer algebralibrary Saclib [2]. Paclib has been implemented in the C language on top of a runtimekernel that supports an e�cient and high-level parallel programming model [7]. The Paclibkernel [8] has been implemented on a 20 processor Sequent Symmetry, a MIMD computerwith shared memory, but is in principle portable to any UNIX machine.In this paper, we give an overview on the application of the Paclib library. First, wesketch the design of its runtime kernel and describe the Paclib programming model inshort. The main section is dedicated to the demonstration of how an algebraic algorithmhas been parallelized in Paclib. An outlook on our further work concludes the paper.�Funded by the FWF grant S5302-PHY \Parallel Symbolic Computation".yResearch Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.1

2 Schreiner, Hong
Shared Memory MultiprocessorUnixPaclib/SaclibApplications�SystemPaclibTaskManagement PaclibHeapManagementFig. 1. The Paclib Design2 The System StructurePaclib has emerged from a combination and extension of freely available softwarepackages (see Figure 1):� Saclib [2] is a library of C functions that are based on a heap management kernel withautomatic garbage collection. It provides all the fundamental objects and methodsof computer algebra: arbitrary precision integer and rational arithmetic, polynomialarithmetic, linear algebra, polynomial gcd and resultant computation, polynomialfactorization, real root calculation and algebraic number arithmetic.� The �System [4] is a library of C functions that supports concurrency on sharedmemory multiprocessors andUnix workstations. The central concept of the �Systemis the task i.e. a light-weight parallel process that may communicate with other tasksvia shared memory. The �System task management is very e�cient and allows theutilization of rather �ne-grained parallelism.The Paclib library is built around a runtime kernel that provides the same heapinterface as the Saclib kernel i.e. any sequential Saclib application will also run whencompiled with the Paclib kernel. However, the internal structure of the Paclib kernel isfar more complicated and consists of the following components (see Figure 2):� The Heap that serves as the communication medium between Paclib tasks.� The Global Available List gavail that contains all free heap cells.� The Ready Queue that holds all active tasks ready for execution.� The Virtual Processors that execute Paclib tasks.� The Local Available Lists lavail from where a task can allocate new heap space.When a task calls the Saclib function comp to construct a new list cell, a free cellis allocated from the local available list lavail of that processor that currently executesthis task. If lavail runs out of free cells, the processor picks the �rst list in gavailas its new lavail. If gavail becomes empty, all processors perform in parallel a globalgarbage collection using a mark and sweep scheme: in the \mark" phase, all task stacks areconcurrently scanned for accessible heap cells; in the \sweep" phase, di�erent heap portionsare concurrently scanned for unused cells and gavail is reconstructed.

A New Library for Parallel Algebraic Computation 3P1���lavailtask P2���lavailtask P3���lavailtask Pn���lavailtask: : :���task ���task ���task ���task? ? - - -?- - -ready queue -gavail-
heapAAAAAU �������� �������Fig. 2. The Paclib KernelOn the one hand, this two-level management scheme allows tasks to allocate cellswithout synchronization overhead (since the cells are taken from lavail). On the otherhand, it ensures that no heap space is wasted (since new free lists are taken from gavailon demand). The Paclib kernel has been implemented on a Sequent Symmetry computerwith 20 processors but is portable to all shared memory multiprocessors supported by the�System package (including most Unix workstations).3 The Programming ModelThe Paclib programming model is basically a functional one; each user function can beexecuted as a concurrent task. Communication and synchronization are mainly based ontask results and their availability, respectively. In the following, we give the (abstract)syntax of some of the most important Paclib constructs. The functiontask = pacStart(fun, args)creates a new task executing fun(args) in parallel with the current task. The argumentsargs are references to Saclib objects in the shared heap. The new task terminates anddeallocates its resources as soon as the fun call returns with a result r. task is a referenceto the new task that may be used by other tasks for retrieving r. For instance,result = pacWait(tptr, tasks)non-deterministically delivers the result ri of one of the denoted tasks . The reference ofthe delivering task ti is stored at the location tptr and ri is returned as result . If all tasksare still running, pacWait temporarily blocks the current task.A typical task management scheme that applies the non-deterministic features ofpacWait looks as follows:while (exists(work))w, work = split(work)t = pacStart(worker, w)tasks = comp(t, tasks)while (!isnil(tasks))r = pacWaitList(&t, tasks)result = combine(r, result)tasks = remove(t, tasks)return(result)

4 Schreiner, HongThe �rst loop iteratively splits o� some part w from the total work. It starts a new taskt executing worker(w) and stores t in tlist. When no more work is left, the second loopiteratively waits for the result r of any task and combines r to the total result. The orderin which results are delivered is not �xed in advance; the receiving loop is only blocked ifall remaining tasks are still executing. By this mechanism, a signi�cant amount of timecan be saved if the combination process is costly and the runtimes of the tasks vary verymuch (which is often the case in algebraic algorithms).However, in some applications, by the result of some task the result of all the remainingtasks may have become irrelevant. In this case, the functionpacStop(tasks)can be applied that prematurely aborts the execution of all denoted tasks . Incombination with the non-deterministic pacWait, this function can be used to expressspeculative parallelism.Tasks may also communicate via streams i.e. bu�ered (and potentially unbounded)communication channels. Exactly one writer task may use pacPut to put values into thestream while a set of reader tasks may use pacGet to retrieve these values from there.Streams are a functional concept similar to linked lists: each reader has the same view ofthe stream and will receive the same sequence of values independently of the other readers.Bu�er interfaces allow a more general access to streams.Due to lack of space, we cannot describe the Paclib programming model in more detail.There are many variations of the above functions that facilitate the most frequent forms ofapplication. For a complete de�nition of all constructs and their concrete syntax, see [7].The current implementation of the Paclib programming model is based on sharedmemory: all task arguments are references to objects in the shared heap, i.e. data structuresare not duplicated even if they are passed as arguments to new tasks. Provided that noPaclib task destructively updates its input arguments (almost all Saclib functions stickto this convention), this is a safe and very e�cient scheme. However, the programmingmodel itself is totally independent of the underlying architecture and can be realized ondistributed memory architectures, too.4 An Application ExampleAs an example for the application of Paclib, we describe in some more detail the design ofa parallel algorithm for the exact solution of linear equation systems with arbitrarily largeinteger coe�cients. This is one of the basic problems in computer algebra, its solution ise.g. required for the manipulation of multi-variate polynomials. Handling such polynomialsis of importance in several practical applications such as geometric modelling [6].The problem can be formalized as follows. Let A be a regular n� n matrix over Zandb a vector of length n over Z. We want to �nd the vector x of length n over Q such thatA � x = b:Please note that A and b contain arbitrary integer numbers whose size is not limitedby the word length of any computer; these numbers therefore have to be represented bysequences of computer words. Furthermore, the result vector x shall consist of rationalnumbers that are the exact solutions of the system; each rational therefore has to berepresented by a pair of integers (the nominator and the denominator, respectively).Since we have to perform exact arithmetic, the size of the involved integers steadilyincreases during the computation and arithmetic becomes more and more time consuming.

A New Library for Parallel Algebraic Computation 5HHj ��	? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ?? ? ? ?? ? ? ? ? ?? ? ? ? ? ??det det det det det detred red red redmap map map map map map�� ��� ��� � �� ��� �cra y cra y cra y cra y cra dx1 x2 x3 xn� � �� � �yi d� � �(A; b)(Aj; bj)(dj; yji) Fig. 3. The Modular AlgorithmThus the complexity of the standard Gaussian Elimination algorithm is O(n5l2) where l isthe maximum length of the entries in A and b [13].The most e�cient sequential approach for solving the equation system is illustratedin Figure 3: We apply Cramer's Theorem which says that the solutions can be computedby xi = yi=d where d = det(A) and yi = det(Ai) (Ai is A with the i-th column replacedby b). Thus we transform the problem of solving an equation system into a problem ofdeterminant computation that can be e�ciently solved using modular arithmetic:We take k prime numbers1 pj and map the given system (A; b) over Zinto k systems(Aj ; bj) over the �nite �elds Zpj . Provided that the pj �t into single computer words,arithmetic can in these �elds performed in constant time (since all elements are boundedby pj). Then we compute the determinants dj = det(Aj) and yji = det(Aji).Since the systems (Aj ; bj) are homomorphic images of (A; b) with respect to determinantcomputation, we can apply the Chinese remaindering algorithm [1] to determine the originaldeterminants yi and d. Finally, we compute xi = yi=d and reduce the result to normal formapplying the Euclidean algorithm for the computation of the greatest common divisor. Thetotal complexity of the algorithm is then O(n3l2 + n4l).The basic idea for the parallelization of this algorithms is as follows;� Mapping: The images (Aj ; bj) can be computed in parallel.� Determinants: The determinants dj and yji can be computed in parallel.� Chinese Remaindering: n+ 1 tasks may compute d and each yi in parallel.� Reduction: The n reductions xi = yi=d can be performed in parallel.In the Paclib implementation of the algorithm, there are actually the following tasks:� A set of det tasks that perform the mapping and the determinant computation.� One cra d task that computes d from the dj .� n cra y tasks that compute the yi from the yji and �nally perform the reduction yi=d.1A lower bound for k can be determined from the entries of (A; b).

6 Schreiner, Hong
13541 ms 0123456789101112131415161718 13541 msUtilization: 0.87Fig. 4. Visualization and UtilizationThe Paclib program �rst creates the required number of det tasks and stores theirhandles in a variable tasks. Then the single cra d task is started that takes tasks asargument and computes d from the results of the det tasks. In the meanwhile, also n cra ytasks have been started with tasks and the handle of the cra d task as arguments. Thecra y tasks compute the various yi from the results of the det tasks, receive d from thecra d task and perform the �nal reduction yi=d.Figure 4 displays the behavior of the algorithm for an equation system of dimension 40using 18 processors. The left picture was created by the tool pacgraph that visualizes thepro�ling data that were generated during the run of a Paclib program. Each horizontalline represents one task and shows in the horizontal extension the times during which thetask was scheduled for execution. The right picture was made by the program pacutiland shows the utilization of the processors during the program run.These pictures show that the program performed quite well for the given equationsystem. During most of the time, all processors were satis�ed with work. There wasonly one essential synchronization point, when the cra y tasks had to wait for the resultof some gauss task. Figure 5 shows the speedups that could be achieved (compared tothe sequential Saclib implementation of the modular method) for three di�erent equationsystems of dimension 5, 10 and 40, respectively.It turns out that the maximum speedup is almost 16 for the large system but boundedby the dimension n of the smaller systems (due to the fact that there are only n cra yprocesses). For handling these cases, we have developed more e�cient variants of thealgorithm whose description is beyond the scope of this paper. Furthermore, there areseveral technical details that are essential for an e�cient implementation. For a detaileddiscussion of these issues, see [10] and [12].5 Contents of the LibraryAmong its algorithms, the Paclib library currently contains parallel methods for� Gr�obner Bases Computation: Buchberger's Gr�obner Bases Algorithm is one ofthe most fundamental and most powerful problem solving methods in computeralgebra. An important application of this algorithm is e.g. the exact solutionof systems of multivariate polynomial equations. The Paclib implementation ofthis algorithm uses a bidirectional pipeline of tasks connected by streams throughwhich polynomials \ow" in both directions [11]. With this implementation (whichessentially relies on the Paclib support of non-determinism), a maximum speedup of10 could be achieved on our machine.

A New Library for Parallel Algebraic Computation 7
024681012141618 0 2 4 6 8 1012141618processors

speedup05/900 333 3 3 3 3 3 3 3 310/300 +++ + + + + + + + +40/030 222 2 2 2 2 2 2 2 2linear 00.10.20.30.40.50.60.70.80.91 0 2 4 6 8 1012141618processors
e�ciency05/900 333 3 3 3 3 3 3 3 310/300 +++ + + + + + + + +40/030 222 2 2 2 2 2 2 2 2

Fig. 5. Speedup and E�ciency� Resultant Computation: The resultant of two polynomials is the determinant ofa matrix that is in a certain way constructed from the coe�cients of the polynomials.Resultants are used for solving non-linear systems of polynomial equations andinequalities. The Paclib implementation of the algorithm computes resultants ofmultivariate integer polynomials using a modular approach: The resultants areconcurrently computed in several homomorphic images. The computation in eachimage is also parallelized in a divide and conquer fashion by reducing the computationof a resultant of degree n to the computation of several resultants of degree n� 1. Amaximum speedup of 10 could be achieved.� Polynomial Factorization: The classic method for polynomial factorization isBerlekamp's algorithm. This method computes the complete factorization of apolynomial by computing the greatest common divisors of certain other polynomials.The basic idea for parallelization is to compute these greatest common divisors inparallel. In Paclib, a variant of the algorithm for the factorization of univariatepolynomials over �nite prime �elds has been implemented. A maximum speedup of12 could be achieved for certain examples.� P-adic Arithmetic: p-adic arithmetic can be used for the e�cient evaluation ofarithmetic expressions over big rational numbers. Instead of a direct evaluation, theexpression is mapped into several simple domains. In these domains, the requiredcomputations can be e�ciently solved using some sort of \truncated" arithmetic.The result in the original domain is then constructed from the results in the simpledomains. The Paclib implementation of p-adic arithmetic achieves a speedup of 3for medium-sized examples.A more detailed description of most of these methods can be found in [3]. Currently,the library is constantly extended by new algorithms.6 Conclusions and Further WorkWe presented a new library Paclib for parallel algebraic computation on shared-memorymultiprocessors. Paclib is based on an e�cient runtime kernel for heap and taskmanagement that allows to utilize rather �ne-grained parallelism. A high-level parallelprogramming model is used to implement parallel algorithms on the basis of the C language.

8 Schreiner, HongThe dynamic behavior of Paclib programs can be visualized by various tools for furtheroptimization. Several important algebraic algorithms have been parallelized in this libraryand we will continue our e�orts in this direction. Furthermore, we work on a formalveri�cation of the runtime kernel [9] and on the the introduction of new features suchas task priorities and virtual tasks. A compiler translating a functional programminglanguage into Paclib code is currently under development as well as an interactive X11-based visualization environment.7 AcknowledgementsPaclib has been developed by the Risc-Linz parallel computation group on an initiativeof its leader H. Hong. W. Schreiner performed the detailed design and the implementationof the runtime kernel. A. Neubacher, K. Siegl, H.-W. Loidl and T. Jebelean helped inmany discussions to clarify the main concepts. The algorithms described in this paperwere designed and implemented by V. Stahl, W. Schreiner, K. Siegl, C. Limongelli, M.Encarnacion, M. Minimair and H. Hong. This work was funded by the FWF grant S5302-PHY \Parallel Symbolic Computation".References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms,Addison-Wesley, 1974.[2] B. Buchberger, G. Collins, M. Encarnation, H. Hong, J. Johnson, W. Krandick, R. Loos, andA. Neubacher, A SACLIB Primer, Tech. Rep. 92-34, RISC-Linz, Johannes Kepler University,Linz, Austria, 1992.[3] B. Buchberger, G. E. Collins, R. Loos, and R. Albrecht, eds., Computer Algebra |Symbolic and Algebraic Computation, Springer, Vienna, New York, 1982.[4] P. A. Buhr and R. A. Stroobosscher, The �System: Providing Light-weight Concurrencyon Shared-Memory Multiprocessor Computers Running UNIX, Software | Practice andExperience, 20 (1990), pp. 929{964.[5] V. G. Ganzha, E. V. Vorozhtsov, and J. A. Hulzen, A New Symbolic-Numeric Approach toStability Analysis of Di�erence Schemes, in ISSAC 92, International Symposium on Symbolicand Algebraic Computation, Berkeley, California, July 27{29, 1992, ACM Press.[6] C. M. Ho�man, Implicit Curves and Surfaces in Computer Aided Geometric Design, Tech.Rep. CER-92-002, Department of Computer Science, Purdue University, 1992.[7] H. Hong, W. Schreiner, A. Neubacher, K. Siegl, H.-W. Loidl, T. Jebelean, and P. Zettler,PACLIB User Manual, Tech. Rep. 92-32, RISC-Linz, Johannes Kepler University, Linz,Austria, May 1992. Also: Technical Report 92-9, ACPC Technical Report Series, AustrianCenter for Parallel Computation, July 1992.[8] W. Schreiner, The Design of the PACLIB Kernel, Tech. Rep. 92-33, RISC-Linz, JohannesKepler University, Linz, Austria, 1992.[9] W. Schreiner, The Correctness of the PACLIB Kernel | A Case Study in Parallel ProgramVeri�cation by Temporal Logic, tech. rep., RISC-Linz, Johannes Kepler University, Linz,Austria, 1993. To appear.[10] W. Schreiner and V. Stahl, The Exact Solution of Linear Equation Systems on a SharedMemory Multiprocessor, in Submitted to the PARLE 93, Munich, Germany, June 14{18, 1993.[11] K. Siegl, Parallelizing Algorithms for Symbolic Computation Using kMAPLEk, in FourthACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego,California, May 19-21, 1993. To appear.[12] V. Stahl, Solving a System of Linear Equations with Modular Arithmetic on a MIMD Computer,Tech. Rep. 92-62, RISC-Linz, Johannes Kepler University, Linz, Austria, 1992.[13] F. Winkler, Computer Algebra I, Tech. Rep. 88-88, RISC-Linz, Johannes Kepler University,Linz, Austria, 1988.

