A New Library for Parallel Algebraic Computation™

Wolfgang Schreiner! Hoon Hong!

February 3, 1993

Abstract

We give an overview on PAcLIB, a library for parallel algebraic computation on
shared memory multiprocessors. PACLIB is essentially a package of C functions that
provide the basic objects and methods of computer algebra in a parallel context. The
PacriB programming model supports concurrency, shared memory communication,
non-determinism and speculative parallelism. The system is based on a heap mana-
gement kernel with parallelized garbage collection that is portable among most UNTX
machines. We present the successful application of PACLIB for the parallelization of
several algebraic algorithms and discuss the achieved results.

1 Introduction

Scientific computing is a rich source of challenging problems such as the solution of
systems of partial differential equations. Classical numerical methods operate with efficient
finite-precision (floating point) arithmetic and thus quickly yield approximative solutions.
However, often one is also interested in certain qualitative aspects like stability properties
or the singularities of given systems [5]. Tn these cases, it is important to compute the ezact
solutions of the given problem, because numerical methods may (by the accumulation of
approximation errors) yield qualitatively wrong answers.

Computer algebra is that branch of computer science that aims to provide exact
solutions of scientific problems. Research results of this area are e.g. algorithms for
symbolic integration, polynomial factorization or the exact solution of algebraic equations
and inequalities [3]. All these algorithms have to operate with arbitrary precision
arithmetic; they are therefore much more expensive with respect to time and space than the
corresponding numerical methods. The parallelization of computer algebra algorithms is
therefore of utmost importance in order to extend their application area and to contribute
to the further development of scientific computing.

Thus the parallel computation group at RISC-Linz has started a project that pursues
the development of PACTLIB, a library of parallel algorithms based on the computer algebra
library SAcrIB [2]. PacrniB has been implemented in the C language on top of a runtime
kernel that supports an efficient and high-level parallel programming model [7]. The PacriB
kernel [8] has been implemented on a 20 processor Sequent Symmetry, a MIMTD computer
with shared memory, but is in principle portable to any UNIX machine.

In this paper, we give an overview on the application of the PacruiB library. First, we
sketch the design of its runtime kernel and describe the PAcLIB programming model in
short. The main section is dedicated to the demonstration of how an algebraic algorithm
has been parallelized in PactiB. An outlook on our further work concludes the paper.

*Funded by the FWF grant S5302-PHY “Parallel Symbolic Computation”.
TResearch Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.

1

2 SCHREINER, HONG

PACTIB/SACLIB
Applications

PacriB PacriB
Task Heap

Management | Management,

uSystem

UNTX

Shared Memory Multiprocessor

Fia. 1. The PactiB Design

2 The System Structure

PacriB has emerged from a combination and extension of freely available software
packages (see Figure 1):

e SACLIB [2]is alibrary of C functions that are based on a heap management kernel with
automatic garbage collection. Tt provides all the fundamental objects and methods
of computer algebra: arbitrary precision integer and rational arithmetic, polynomial
arithmetic, linear algebra, polynomial ged and resultant computation, polynomial
factorization, real root calculation and algebraic number arithmetic.

e The uSysTEM [4] is a library of C functions that supports concurrency on shared
memory multiprocessors and UNIX workstations. The central concept of the uSysTEm
is the task i.e. a light-weight parallel process that may communicate with other tasks
via shared memory. The pSYSTEM task management is very efficient and allows the
utilization of rather fine-grained parallelism.

The Pacrip library is built around a runtime kernel that provides the same heap
interface as the SacriB kernel i.e. any sequential SAcLIB application will also run when
compiled with the PacriB kernel. However, the internal structure of the PactiB kernel is
far more complicated and consists of the following components (see Figure 2):

e The Heap that serves as the communication medium between PacriB tasks.
e The Global Available List gavail that contains all free heap cells.

e The Ready Queue that holds all active tasks ready for execution.

e The Virtual Processors that execute PAcLIB tasks.

e The Local Available Lists lavail from where a task can allocate new heap space.

When a task calls the SActiB function comp to construct a new list cell, a free cell
is allocated from the local available list lavail of that processor that currently executes
this task. 1If lavail runs out of free cells, the processor picks the first list in gavail
as its new lavail. If gavail becomes empty, all processors perform in parallel a global
garbage collection using a mark and sweep scheme: in the “mark” phase, all task stacks are
concurrently scanned for accessible heap cells; in the “sweep” phase, different heap portions
are concurrently scanned for unused cells and gavail is reconstructed.

A NEwW LIBRARY FOR PARALLEL ALGEBRATC COMPUTATION 3

| | gavail

P 7

Tavail

/
/

heap

Frg. 2. The PacrniB Kernel

On the one hand, this two-level management scheme allows tasks to allocate cells
without synchronization overhead (since the cells are taken from lavail). On the other
hand, it ensures that no heap space is wasted (since new free lists are taken from gavail
on demand). The PacriB kernel has been implemented on a Sequent Symmetry computer
with 20 processors but is portable to all shared memory multiprocessors supported by the
uSYSTEM package (including most UNTX workstations).

3 The Programming Model

The PacriB programming model is basically a functional one; each user function can be
executed as a concurrent task. Communication and synchronization are mainly based on
task results and their availability, respectively. In the following, we give the (abstract)
syntax of some of the most important PAcrLiB constructs. The function

task = pacStart(fun, args)

creates a new task executing fun(args)in parallel with the current task. The arguments
args are references to SACLIB objects in the shared heap. The new task terminates and
deallocates its resources as soon as the fun call returns with a result r. task is a reference
to the new task that may be used by other tasks for retrieving r. For instance,

result = pacWait (tptr, tasks)

non-deterministically delivers the result r; of one of the denoted tasks. The reference of
the delivering task #; is stored at the location tpir and r; is returned as result. If all tasks
are still running, pacWait temporarily blocks the current task.

A typical task management scheme that applies the non-deterministic features of
pacWait looks as follows:

while (exists(work))
w, work = split(work)
t = pacStart(worker, w)
tasks = comp(t, tasks)
while ('isnil(tasks))
r = pacWaitList(&t, tasks)
result = combine(r, result)
tasks = remove(t, tasks)
return(result)

4 SCHREINER, HONG

The first loop iteratively splits off some part w from the total work. It starts a new task
t executing worker(w) and stores t in tlist. When no more work is left, the second loop
iteratively waits for the result r of any task and combines r to the total result. The order
in which results are delivered is not fixed in advance; the receiving loop is only blocked if
all remaining tasks are still executing. By this mechanism, a significant amount of time
can be saved if the combination process is costly and the runtimes of the tasks vary very
much (which is often the case in algebraic algorithms).

However, in some applications, by the result of some task the result of all the remaining
tasks may have become irrelevant. In this case, the function

pacStop(fasks)

can be applied that prematurely aborts the execution of all denoted tasks. 1In
combination with the non-deterministic pacWait, this function can be used to express
speculative parallelism.

Tasks may also communicate via streams i.e. buffered (and potentially unbounded)
communication channels. FExactly one writer task may use pacPut to put values into the
stream while a set of reader tasks may use pacGet to retrieve these values from there.
Streams are a functional concept similar to linked lists: each reader has the same view of
the stream and will receive the same sequence of values independently of the other readers.
Buffer interfaces allow a more general access to streams.

Due to lack of space, we cannot describe the PACLIB programming model in more detail.
There are many variations of the above functions that facilitate the most frequent forms of
application. For a complete definition of all constructs and their concrete syntax, see [7].

The current implementation of the PAacrLiB programming model is based on shared
memory: all task arguments are references to objects in the shared heap, i.e. data structures
are not duplicated even if they are passed as arguments to new tasks. Provided that no
PacriB task destructively updates its input arguments (almost all SAcriB functions stick
to this convention), this is a safe and very efficient scheme. However, the programming
model itself is totally independent of the underlying architecture and can be realized on
distributed memory architectures, too.

4 An Application Example

As an example for the application of PACLIB, we describe in some more detail the design of
a parallel algorithm for the exact solution of linear equation systems with arbitrarily large
integer coefficients. This is one of the basic problems in computer algebra, its solution is
e.g. required for the manipulation of multi-variate polynomials. Handling such polynomials
is of importance in several practical applications such as geometric modelling [6].

The problem can be formalized as follows. Let A be a regular n X n matrix over 7 and
b a vector of length n over 7. We want to find the vector x of length n over Q@ such that

Axz =0.

Please note that A and b contain arbitrary integer numbers whose size is not limited
by the word length of any computer; these numbers therefore have to be represented by
sequences of computer words. Furthermore, the result vector # shall consist of rational
numbers that are the exact solutions of the system: each rational therefore has to be
represented by a pair of integers (the nominator and the denominator, respectively).

Since we have to perform exact arithmetic, the size of the involved integers steadily
increases during the computation and arithmetic becomes more and more time consuming.

A NEwW LIBRARY FOR PARALLEL ALGEBRATC COMPUTATION 5

(A,6)
|
' ! ! ! ! }

map map map map map map
(AT V) ¥ v Y v v v
det det det det det |[---| det

@)

H
) @))
d
’

! ! !
red red red S red
! ! ! !
T T2 T3 Tn

Fiag. 3. The Modular Algorithm

Thus the complexity of the standard Gaussian Elimination algorithm is O(n?I?) where [is
the maximum length of the entries in A and b [13].

The most efficient sequential approach for solving the equation system is illustrated
in Figure 3: We apply Cramer’s Theorem which says that the solutions can be computed
by #; = y;/d where d = det(A) and y; = det(A;) (A; is A with the i-th column replaced
by b). Thus we transform the problem of solving an equation system into a problem of
determinant computation that can be efficiently solved using modular arithmetic:

We take k prime numbers!
(Aj,bj) over the finite fields 7, . Provided that the p; fit into single computer words,
arithmetic can in these fields performed in constant time (since all elements are bounded
by p;). Then we compute the determinants @/ = det(A7) and y! = det(A?).

Since the systems (A7, b7) are homomorphic images of (A, b) with respect to determinant

p; and map the given system (A, b) over 7 into k systems

computation, we can apply the Chinese remaindering algorithm [1] to determine the original
determinants y; and d. Finally, we compute z; = y;/d and reduce the result to normal form
applying the Fuclidean algorithm for the computation of the greatest common divisor. The
total complexity of the algorithm is then O(n?I? 4 n*l).

The basic idea for the parallelization of this algorithms is as follows;

e Mapping: The images (A7,b7) can be computed in parallel.
e Determinants: The determinants d7 and yj can be computed in parallel.
e Chinese Remaindering: »n + 1 tasks may compute d and each y; in parallel.

e Reduction: The n reductions 2; = y;/d can be performed in parallel.
In the PAcriB implementation of the algorithm, there are actually the following tasks:

e A set of det tasks that perform the mapping and the determinant computation.
e One cra_d task that computes d from the d7.

e n cra_y tasks that compute the y; from the yj and finally perform the reduction y;/d.

' A lower bound for k can be determined from the entries of (A,b).

6 SCHREINER, HONG

IT] I'I I

S G R Y S G

O=NWARTIDHNPLO= W R ITIIH~N0

Utilization: 0.87 13541 ms

The PacrLIB program first creates the required number of det tasks and stores their
handles in a variable tasks. Then the single cra_d task is started that takes tasks as
argument and computes d from the results of the det tasks. In the meanwhile, also n cra_y
tasks have been started with tasks and the handle of the cra_d task as arguments. The
cra_y tasks compute the various y; from the results of the det tasks, receive d from the
cra_d task and perform the final reduction vy;/d.

Figure 4 displays the behavior of the algorithm for an equation system of dimension 40
using 18 processors. The left picture was created by the tool pacgraph that visualizes the
profiling data that were generated during the run of a PAcrLiB program. Each horizontal
line represents one task and shows in the horizontal extension the times during which the
task was scheduled for execution. The right picture was made by the program pacutil
and shows the utilization of the processors during the program run.

These pictures show that the program performed quite well for the given equation
system. During most of the time, all processors were satisfied with work. There was
only one essential synchronization point, when the cra_y tasks had to wait for the result
of some gauss task. Figure 5 shows the speedups that could be achieved (compared to
the sequential SACLIB implementation of the modular method) for three different equation
systems of dimension 5, 10 and 40, respectively.

It turns out that the maximum speedup is almost 16 for the large system but bounded
by the dimension n of the smaller systems (due to the fact that there are only n cra_y
processes). For handling these cases, we have developed more efficient variants of the
algorithm whose description is beyond the scope of this paper. Furthermore, there are
several technical details that are essential for an efficient implementation. For a detailed
discussion of these issues, see [10] and [12].

5 Contents of the Library
Among its algorithms, the PACLIB library currently contains parallel methods for

e Grobner Bases Computation: Buchberger’s Grobner Bases Algorithm is one of
the most fundamental and most powerful problem solving methods in computer
algebra. An important application of this algorithm is e.g. the exact solution
of systems of multivariate polynomial equations. The PAcTIB implementation of
this algorithm uses a bidirectional pipeline of tasks connected by streams through
which polynomials “flow” in both directions [11]. With this implementation (which
essentially relies on the PAcLIB support of non-determinism), a maximum speedup of
10 could be achieved on our machine.

A NEwW LIBRARY FOR PARALLEL ALGEBRATC COMPUTATION 7

speedup

18 efficiency
164 05/900 ©—
19110/300 ~— !
194 40/030 88—
104 linear — i
8_
6_
4-)
?_ 1T T T T 1T T°1 g;_ 05/900 <
! “7110/300 <—
0246 81012141618 0.1
processors 0 4?/930| El_l —
0246 81012141618
processors

FiGg. b. Speedup and Ffficiency

e Resultant Computation: The resultant of two polynomials is the determinant of
a matrix that is in a certain way constructed from the coefficients of the polynomials.
Resultants are used for solving non-linear systems of polynomial equations and
inequalities. The PACLIB implementation of the algorithm computes resultants of
multivariate integer polynomials using a modular approach: The resultants are
concurrently computed in several homomorphic images. The computation in each
image is also parallelized in a divide and conquer fashion by reducing the computation
of a resultant of degree n to the computation of several resultants of degree n — 1. A
maximum speedup of 10 could be achieved.

e Polynomial Factorization: The classic method for polynomial factorization is
Berlekamp’s algorithm. This method computes the complete factorization of a
polynomial by computing the greatest common divisors of certain other polynomials.
The basic idea for parallelization is to compute these greatest common divisors in
parallel. In PacuiB, a variant of the algorithm for the factorization of univariate
polynomials over finite prime fields has been implemented. A maximum speedup of
12 could be achieved for certain examples.

e P-adic Arithmetic: p-adic arithmetic can be used for the efficient evaluation of
arithmetic expressions over big rational numbers. Instead of a direct evaluation, the
expression is mapped into several simple domains. In these domains, the required
computations can be efficiently solved using some sort of “truncated” arithmetic.
The result in the original domain is then constructed from the results in the simple
domains. The PaAcLIiB implementation of p-adic arithmetic achieves a speedup of 3

for medium-sized examples.

A more detailed description of most of these methods can be found in [3]. Currently,
the library is constantly extended by new algorithms.

6 Conclusions and Further Work

We presented a new library PacriB for parallel algebraic computation on shared-memory
multiprocessors. PacriB is based on an efficient runtime kernel for heap and task
management that allows to utilize rather fine-grained parallelism. A high-level parallel
programming model is used toimplement parallel algorithms on the basis of the C language.

8 SCHREINER, HONG

The dynamic behavior of PACLIB programs can be visualized by various tools for further
optimization. Several important algebraic algorithms have been parallelized in this library
and we will continue our efforts in this direction. Furthermore, we work on a formal
verification of the runtime kernel [9] and on the the introduction of new features such
as task priorities and virtual tasks. A compiler translating a functional programming
language into PACLIB code is currently under development as well as an interactive X11-
based visualization environment.

7 Acknowledgements

PacriB has been developed by the Risc-1.IN7 parallel computation group on an initiative
of its leader H. Hong. W. Schreiner performed the detailed design and the implementation
of the runtime kernel. A. Neubacher, K. Siegl, H.-W. Loidl and T. Jebelean helped in
many discussions to clarify the main concepts. The algorithms described in this paper
were designed and implemented by V. Stahl, W. Schreiner, K. Siegl, C. Limongelli, M.
Encarnacion, M. Minimair and H. Hong. This work was funded by the FWF grant S5302-
PHY “Parallel Symbolic Computation”.

References

[11 A.V.Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] B. Buchberger, G. Collins, M. Encarnation, H. Hong, J. Johnson, W. Krandick, R. Loos, and
A. Neubacher, A SACLIB Primer, Tech. Rep. 92-34, RISC-Linz, Johannes Kepler University,
Tinz, Austria, 1992.

[3] B. BUCHBERGER, G. E. CorrLINs, R. T.oos, AND R. ALBRECHT, eds., Computer Algebra
Symbolic and Algebraic Computation, Springer, Vienna, New York, 1982.

[4] P. A. Buhr and R. A. Stroobosscher, The pSystem: Providing Light-weight Concurrency
on Shared-Memory Multiprocessor Computers Running UNIX, Software Practice and
Experience, 20 (1990), pp. 929 964.

[6] V. G. Ganzha, E. V. Vorozhtsov, and J. A. Hulzen, A New Symbolic-Numeric Approach to
Stability Analysis of Difference Schemes, in ISSAC 92, International Symposium on Symbolic
and Algebraic Computation, Berkeley, California, July 27 29, 1992, ACM Press.

[6] C. M. Hoffman, Implicit Curves and Surfaces in Computer Aided Geometric Design, Tech.
Rep. CER-92-002, Department of Computer Science, Purdue University, 1992.

[7] H. Hong, W. Schreiner, A. Neubacher, K. Siegl, H-W. Toidl, T. Jebelean, and P. Zettler,
PACLIB User Manual, Tech. Rep. 92-32, RISC-Linz, Johannes Kepler University, Linz,
Austria, May 1992. Also: Technical Report 92-9, ACPC Technical Report Series, Austrian
Center for Parallel Computation, July 1992.

[8] W. Schreiner, The Design of the PACLIB Kernel, Tech. Rep. 92-33, RISC-Linz, Johannes
Kepler University, Linz, Austria, 1992.

[9] W. Schreiner, The Correctness of the PACLIB Kernel A Case Study in Parallel Program
Verification by Temporal Logic, tech. rep., RISC-Tanz, Johannes Kepler University, Linz,
Austria, 1993. To appear.

[10] W. Schreiner and V. Stahl, The FEract Solution of Linear Equation Systems on a Shared
Memory Multiprocessor, in Submitted to the PARLE 93, Munich, Germany, June 14 18, 1993.

[11] K. Siegl, Parallelizing Algorithms for Symbolic Computation Using ||M APLE||, in Fourth
ACM STIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego,
California, May 19-21, 1993. To appear.

[12] V.Stahl, Solving a System of Linear Equations with Modular Arithmetic on a MIMD Computer,
Tech. Rep. 92-62, RISC-Linz, Johannes Kepler University, Linz, Austria, 1992.

[13] F. Winkler, Computer Algebra I, Tech. Rep. 88-88, RISC-Linz, Johannes Kepler University,
Tinz, Austria, 1988.

