
The Power of the QueueMing Li, � Luc Longpr�ey and Paul Vit�anyiz1988, Published in �nal form in SIAM J. Computing, 21:4(1992),697-712.AbstractQueues, stacks, and tapes are basic concepts which have direct applica-tions in compiler design and the general design of algorithms. Whereas stacks(pushdown store or last-in-�rst-out storage) have been thoroughly investi-gated and are well understood, this is much less the case for queues (�rst-in-�rst-out storage). In this paper we present a comprehensive study comparingqueues to stacks and tapes (o�-line and with one-way input). The techniqueswe use rely on Kolmogorov complexity. In particular, 1 queue and 1 tape (orstack) are not comparable:(1) Simulating 1 stack (and hence 1 tape) by 1 queue requires
(n4=3= log n)time in both the deterministic and the nondeterministic cases.(2) Simulating 1 queue by 1 tape requires
(n2) time in the deterministiccase, and
(n4=3=(log n)2=3) in the nondeterministic case;We further compare the relative power between di�erent numbers of queues:(3) Nondeterministically simulating 2 queues (or 2 tapes) by 1 queue re-quires
(n2=(log2 n log logn)) time and deterministically simulating 2�Aiken Computation Laboratory Harvard University, Cambridge, MA 02138. Work supportedby the NSF under Grant DCR-8606366 and by the ONR under Grant N00014-85-k-0445.yCollege of Computer Science, Northeastern University, Boston, MA 02115. Research per-formed while a visiting faculty member in the Computer Science Department at the University ofWashington.zCentrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Nether-lands. Work performed in part at the Laboratory for Computer Science, Massachusetts Instituteof Technology, and supported in part by the O�ce of Naval Research under Contract N00014-85-K-0168, by the U.S. Army Research O�ce under Contract DAAG29-84-K-0058, by the NationalScience Foundation under grant DCR-83-02391, and by the Defence Advanced Research ProjectsAgency under contract N00014-83-K-0125. 1

queues (or 2 tapes) by 1 queue requires
(n2) time. The second boundis tight. The �rst is almost tight. We also obtain the upper bounds forqueues. Below, we use \pushdown" and \stack" synonymously.1 IntroductionIt has been known for over twenty years that all multitape Turing machines can besimulated on-line by 2-tape Turing machines in time O(n logn) [HS2], and by 1-tapeTuring machines in time O(n2) [HU]. Since then, many other models of computationhave been introduced and compared. (See [Aa, DGPR, HS1, HS2, HU, LS, PSS, Pa,Vi2].) In addition to di�erent storage mechanisms, real-time, on-line and o�-linemachines have been studied. An on-line simulation essentially simulates step-by-stepeach move of the simulated machine. In this paper, we consider o�-line machines,where an answer is given only once the whole input has been read. There is no needto simulate the moves of the machine; it only matters that we give the right answer.We also use the one-way input convention, where the machine has a one-way input.As usual, the machines have a �nite control and access to some storage.The relative power of stacks and tapes is more or less well known. For example,for the nondeterministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks= k stacks = k tapes, where A < B means that B can simulate A in linear time,while A cannot simulate B in linear time. In most of the cases, close lower andupper bounds are known for the simulation [Ma, Li1, Vi1, LV, Li2].In this paper, we give a complete characterization of (o�-line, one-way input)queue machines. The main theorems show that one queue machines are not compa-rable to one stack or one tape machines, both deterministically and nondetermin-istically. We also compare the relative power of machines having di�erent numberof queues. The current knowledge of upper and lower bounds for the simulationbetween queues and tapes is roughly summarized in Figures 1, 2 and 3. Figure 1contains results that were previously known. The results of Figure 2 are covered insection 2. Notice that all the bounds in Figure 2 are valid also for simulating onestack or two stacks. The results of Figure 3 are covered in section 3.deterministic nondeterministicupper bound O(n2)(straightforward) O(n3=2p logn)(in [Li1])lower bound
(n2)(in [LV])
(n4=3= log2=3 n)(in [LV] or [Li3])Figure 1: Simulating one queue by one tape2

deterministic nondeterministicupper bound O(n2) O(n2)lower bound
(n4=3= logn))
(n4=3= logn)Figure 2: Simulating one tape, or one stack, by one queuedeterministic nondeterministicupper bound O(n2) O(n2)lower bound
(n2)
(n2= log2 n log logn))Figure 3: Simulating two queues by one queueWe use Kolmogorov complexity techniques [So, Ko, Ch] to prove the theorems,together with some new techniques to enable us to deal with queues. The Kol-mogorov complexity of a string x, K(x), is the length of the shortest program print-ing the string x. By a simple counting argument, we know that there are stringsx of each length such that K(x) � jxj. These strings are called incompressible orK-random. For completeness we recall the notions of Kolmogorov complexity ofbinary strings and those of self-delimiting descriptions, see e.g. [PSS] or [LV]. Fixan e�ective coding C of all Turing machines as binary strings, such that no code isa pre�x of any other code. Denote the code of Turing machine M by C(M). TheKolmogorov complexity with respect to C, of a binary string x, denoted as KC(x) isthe length of the smallest binary string C(T)y such that T started on input y haltswith output x. The crucial fact one uses is that in between e�ective enumerations Cand D, for all x, jKC(x)�KD(x)j < c, with c a constant depending only on C andD (but not on x). So, up to an additive constant, the Kolmogorov complexity isindependent of the particular e�ective enumeration choosen which allows us to dropthe subscript. With some abuse of notation, in the sequel equalities and inequalitiesinvolving Kolmogorov complexity will always be assumed to hold up to additiveconstant only. To be able to di�erentiate between parts of y such that T is able touse di�erent parts for di�erent purposes (can compute an r-ary function), we needthe notion of self-delimiting descriptions. If a = a1a2:::an is a string of 0's and 1's,then a10a20:::0an1 is a self-delimiting description of twice the original length. Moree�ciently, if b = b1:::bm is the length of a in binary, then the self-delimiting de-scription of b concatenated with a is also a self-delimiting description of a, this timeof length n + 2 logn instead of 2n. For example, 1000011101 is the self-delimitingversion of 1101.
3

2 Simulating one tape by one queue2.1 Upper boundOur upper bound is straightforward. However, it is for simulating any �xed numberof stacks. Since two stacks can simulate one tape in real time, our upper boundapplies for tapes as well.Theorem 2.1 For any �xed k, one queue can simulate k stacks in quadratic time,for both deterministic and nondeterministic machines.Proof. Simulate the k stacks by coding them sequentially onto the queue suchthat the top of each stack comes �rst. In front of each stack top, put a marker toindicate the separation between the stacks.Each operation (push or pop on one stack) can be done on O(n) time by justscanning the whole queue and performing the local transformation after the appro-priate marker. The total time is then in O(n2). This simulation can be made fordeterministic or nondeterministic machines. 22.2 Lower boundIn this section, we show that it takes at least
(n4=3= logn) time for a nonde-terministic one queue machine with a one-way input to recognize the languagefw#wR : w 2 f0; 1g�g.Because this language can be recognized in linear time by a deterministic stackautomaton, we can conclude that it takes at least
(n4=3= logn) time for a nonde-terministic one queue machine to simulate a deterministic stack automaton.The intuition behind the proof is that while the queue machine reads w, it hasto store all the information in some sequential way on the queue. It turns out tobe impossible to check the stored form of w for correspondence with wR while thelatter string is read from the input tape, so wR must be stored in some sequentialway as well. Using crossing sequence arguments, we show that whatever way theinformation is stored, the machine will be forced to scan the queue many times.This repeated scanning will then imply the lower bound on simulation time.Let hin be the read-only head on the one-way input tape. We identify the queuewith a tape with two heads hr and hw. The head hr is a read-only, one-way headon the queue. The head hw is a write-only, one-way head on the queue. One stepof the queue consists of all of the following. According to the old state and thecontents of the cells scanned by the reading heads, the machine: (1) reads an emptyor nonempty symbol from the input; (2) pops an empty or nonempty symbol from4

the queue; (3) pushes an empty or nonempty symbol on the queue; and (4) changesstate. This course of events is implemented as follows on the tape reperesentation:(1) if a nonempty symbol is read from the input tape, then hin moves to the rightadjacent cell; (2) if a nonempty symbol is written (pushed) on the queue, then hwwrites the symbol in the currently scanned cell and moves to the right adjacentcell; (3) if a nonempty symbol is read (popped) from the queue, then hr moves tothe right adjacent cell; and (4) the change of state is the same. Without loss ofgenerality, we assume that the machine uses binary alphabets on the queue andaccepts by empty queue. Let hk(t) denote the position of head k 2 fin; r; wg attime t on its respective tape. Let c1; c2; : : : ; cn be the individual cells on the inputtape. Let d1; d2; : : : be the individual cells on the queue.The contents of the tape from hr(t) through hw(t) � 1 inclusive, is called theactual queue at time t, or Queue(t). The length of Queue(t), denoted as jQueue(t)j,is hw(t) � hr(t). We say that two cells di and dj are contiguous on Queue(t) ifhr(t) < j < hw(t) and j = i + 1, or if i+ 1 = hw(t) and j = hr(t) (the cells at bothends of the queue are also considered contiguous).Theorem 2.2 A nondeterministic one queue machine with a one-way input tapetakes time
(n4=3= logn) to accept the language fw#wR : w 2 f0; 1g�g. 1Remark. This holds both for the worst-case time and the average time.Proof. Toward a contradiction, assume there is a queue Q that accepts L intime T (n) not in
(n4=3= logn).Fix n large enough, such that the formulas below and the intended contradictionshold. Let 2`+1 = n and let x be an incompressible string of length `. We separate xinto blocks: x = x0x1x2:::xm. Let jx0j = `=2. Each block xi for 1 � i � m containsp symbols. For the proof of the theorem, we take m = `1=3=4 and p = 2`2=3. Welook at any �xed accepting computation of the machine on input x#xR. Let tj bethe time step when hin enters the block xj. Let t0j be the time step when hin entersthe block xjR. If z is a substring of x, then z0 denotes the corresponding substringof xR (= x0).Claim 2.3 If t1 � t � t00, then the length of Queue(t) is at least `=2� O(log `).Proof. For any t1 � t � t00, x can be reconstructed using the following informa-tion: a description of this discussion and of Q in O(1) bits, the string Queue(t) of1Here we use the stronger version of
 where T (n) 2
(f(n)) if there are constants c andn0 such that for all n � n0, T (n) � cf(n). Notice that there is no string of even length in thelanguage. To be strict, we show that the time is in
(n4=3= logn : n is odd). With a slightlymodi�ed language: fx#xRg [fx##xRg, we could prove it for all n.5

length < `, the string x1 : : : xm of length `=2, the state q(t) of the machine in O(1)bits, and hin(t) in � log ` + 2 bits. Apart from x1 : : : xm, all items are encoded asself-delimiting strings, so that the total number of bits required is< s+`=2+O(log `).To reconstruct x from this information, run the machine with all possible candi-date strings y substituted for x0. Single out the strings y for which there is a timestep for which Queue(t), hin(t) and q(t) correspond. Among those y, the machineshould accept only if y = x0, otherwise it would accept the string x0x1 : : : xm#xRm : : : xR1 ywhich is not in the language.Because x is incompressible, we know that K(x) � `, so it must be that ourprogram reconstructing x has size � `. So, we have s + `=2 + O(log `) � `, fromwhich the claim follows. 2The machine needs to remember what it reads on the input and code it in someway on the queue. What is written on the queue is determined by the input and therear of the queue. We say that a cell dj is directly in
uenced by a cell ci if hin(t) = iat the time t when hw writes on dj. (That is, hw(t) = j and hw(t + 1) = j + 1.)Similarly, a cell dj is directly in
uenced by a cell di if hr(t) = i at the time t whenhw writes on dj.The in
uence relation is the transitive closure of the direct in
uence relation.We say that ci (or di) in
uences dj if there is a chain of direct in
uences from cito dj. A block of cells in
uences a cell if and only if at least one of the cells in theblock in
uences it. A block of cells is in
uenced by a block of cells, if at least onecell of the �rst block is in
uenced by the second block. The in
uence relation willallow us to talk about where the information can be stored on the queue.In the following, we need the notion of cycles. A cycle c(t) = [t; t̂) is a half openinterval (of time) such that hr(t̂) = hw(t). Given a time t1, we will be interestedin non overlapping contiguous cycles c1(t1); c2(t2); ::: starting at time t1, such thatc1(t1) = [t1; t2), c2(t2) = [t2; t3), and so on. In what follows, whenever we countcycles, the start time t1 will be either speci�ed or clear from context and we countthe successive non overlapping contiguous cycles, as induced by the computation ofQ. Let ~x be the string x1:::xm.Claim 2.4 If t is fewer than s cycles away from t1, then each cell in Queue(t) isin
uenced by at most s input cells in ~x#~xR.Proof. Let the chain of cycles starting from t1 be c1(t1), c2(t2) ,.... The proof isby induction on the indices s. At time t1, no cell in Queue(t) is in
uenced by anyinput cell in ~x#~xR. During c1, each cell written can be in
uenced by at most oneof those input cells. Suppose the claim is true for cycles c1 through cs�1. Duringthe cycle cs(ts), each cell written is in
uenced by one new input cell (possibly) and6

by each input cell that in
uences the cell scanned by hr. This adds up to at mosts input cells. 2For each i, we say that xi is a valid block if Queue(t00) contains a cell which is notin
uenced by xi nor by xi0. (ti � 10 is the time when hin leaves xi0.) The followingclaims show that valid blocks exist. (We only need the existence of one valid block,but in fact, the majority of blocks are valid.)Claim 2.5 For each cell d on Queue(t00), there is a block xi such that d is in
uencedby neither xi nor by xiR.Proof. Suppose there is a cell d on Queue(t00) such that for all i, d is in
uencedby either xi or xiR. It means that d is in
uenced by at least m di�erent cells.By claim 2.3, we know that then the machine makes at least m � 1 cycles fromt1 to t00. By claim 2.2, the queue has length at least `=2 � O(log `) for each cycle,so the algorithm will take at least (m � 1)(`=2 � O(log `)) �
(n4=3), which is acontradiction. 2Claim 2.6 If at some time t there is a cell on Queue(t) not in
uenced by a blocky, then for all t̂ � t, there is a cell on Queue(t̂) not in
uenced by y.Proof. If at some time all the cells on the actual queue are in
uenced by y,then no new cell can be written without being in
uenced by y. 2From the last two claims it follows that there is always a valid block in thecomputation. The following two facts explain why a valid block is a part of theinput that has been coded sequentially on the queue. The facts can be derivedalmost directly from the de�nition of the in
uence relation and the observation thata valid block is read within one cycle.Fact 2.7 For each valid block xj, each cell in xj in
uences a disjoint set of cells onthe queue. Moreover, cells in x0j also in
uence a disjoint set of cells on the queue.However, some cells on the queue can be in
uenced by both a cell of xj and a cell ofx0j.Fact 2.8 For any time t, t00 > t > tj+1, the regions in
uenced by the sequence ofcells of a valid block xj form a contiguous ordered sequence on Queue(t). (The samestatement holds for x0j.)2 A partial con�guration of the machine at some time t is the state of the machineand the position of all the heads on their respective tape.7

The crossing sequence associated with a cell di is the partial con�guration whenhr goes from cell di to cell di+1 (hr(t � 1) = di and hr(t) = di+1). Because for usthe queue is in fact a one-way tape, the crossing sequence associated with a cell willhave exactly one entry. Each entry contains the position of 3 heads and a machinestate. Since writing using more than n2 tape cells would take too much time, wemay assume that each head position can be described in O(logn) bits.The crossing sequence around a region di : : : dj is the crossing sequence associatedwith di�1 concatenated with the one associated with dj.The crossing sequence around a list of regions is the concatenation of the crossingsequences around each of the regions.Any substring y of the input in
uences a series of regions on the tape, one foreach cycle of the queue. The rest of this paragraph addresses degenerate cases andthe reader who is not interested in verifying the details may proceed to the nextparagraph. The situation can degenerate in two di�erent cases. It could happenthat at some time t, y in
uences (1) all of Queue(t) or (2) no cell on Queue(t). Eachof those two situations is irreversible, i.e. the situation will remain for all t̂ � t. Wewant to have one di�erent region for each cycle of the queue even in the degeneratecases. In the case when no cell on Queue(t) is in
uenced by y, we can still talkabout the region in
uenced by y on Queue(t) as an empty region that has a speci�cposition. In particular, if, while hr is reading the cells in
uenced by y, hw does notwrite anything, then the region in
uenced by y is an empty region between hw(t)�1and hw(t) (between the cell written into before accessing y and the cell written intoafter accessing y). Also, if, at time t, hr goes from cell di to cell di+1 while there isan empty region between di and di+1, then there is also an empty region betweenhw(t) and the previous cell. For the second degenerate case, the regions in
uencedby y also form a series of regions, one for each cycle. In this case, the regions areside by side, with empty gaps between them having a precise position de�ned an asimilar fashion as in degenerate case (1).At this point, we assumed that there is a valid block xi. For this block, bothxi and xi0 have been coded sequentially on the queue. Now we have to show thatit takes a lot of time to check xi0 = xiR. Intuitively, we can check only a constantnumber of bits of xi0 at each cycle. Each cycle takes as much time as the size of thequeue at that time.Claim 2.9 The crossing sequence around the list of regions in
uenced by a substringof the input from time t1 up to time t00 has at most `1=3 entries.Proof. Each addition to the crossing sequence corresponds to one cycle. ByClaim 2.2, each cycle takes at least `=2� O(log `) steps. So, the machine will take
(n4=3) time, contradicting the assumption. 28

Claim 2.10 If t > ti�1 is fewer than r cycles away from ti�1, then Queue(t) haslength at least `2=3 � O(n1=3 logn)�O(r logn).Proof. Let xi be a valid block, i > 0. Then, t0i�1 is the time step when hinleaves xiR. Let xi = uv, where u and v are strings of equal size. Select a cell d onQueue(t0i�1) which is not in
uenced by xi nor by xiR. By claim 2.4 and 2.5, sucha cell exists. The cells of Queue(t0i�1) in
uenced by the cells of xi form an orderedsequence of regions. This is also true for the cells of xiR = vRuR.If the region in
uenced by u on Queue(t0i�1) is disjoint from the region in
uencedby uR, then let y = u and y0 = uR. If the region in
uenced by uR is empty, weneed to treat it as a special case. We then consider the region in
uenced by uR as aborder between two cells, and if this border is inside a region in
uenced by u, it isconsidered not to be disjoint. If the regions are not disjoint, it must be the case thatthe regions in
uenced by v and vR are disjoint, because v comes after the regionin
uenced by both u and uR, and vR comes before. In this case, choose y = v andy0 = vR.Let S be the set of cells in
uenced by y. Let �x be the string x where y is deleted,and let t be as in the statement of the claim. We show below that x can be computedfrom �x, t, the position of y in �x and the crossing sequence around S up to time t.Encoding each item self-delimiting, except �x which we give literally, this descriptiontakes `� `2=3 + O(n1=3 log(n)) + O(r log(n)) + jQueue(t)j bits. Because K(x) � n,it then follows that jQueue(t)j � `2=3 �O(n1=3 log(n))�O(r log(n)).We compute y with the information provided in the following way. For all binarystrings z of equal length as y, let xz be the string x where z has been substituted fory. Run Q on all strings xz#xzR until you �nd one that matches the description. Byconstruction, z = y matches the description. Suppose z 6= y matches the descriptionas well. Then, by cutting and pasting the two computations on x#xR and xz#xzR,we can construct a legal computation of Q on xz#xR. Let S be the set of cellsin
uenced by y in the computation on x#xR, and let Sz be the set of cells in
uencedby z in the computation of xz#xzR. Because the crossing sequence includes theposition of all heads, the regions in S and in Sz occupy the same positions on thequeue. Therefore, we can compose an accepting computation that starts out as thecomputation on x#xR, continues with the computation on xz#xzR when a headenters S, switches back to the computation on x#xR when the last head leaves Sagain, and so on. Since the crossing sequences of both computations are the sameup to t, the resulting computation is a legal computation of Q (up to t) on xz#xR.Now we can derive a contradiction. The contents of the intersection of Queue(t) andS is the same for the computation on xz#xzR and for the computation on xz#xRby construction, and for the computation on x#xR and xz#xzR by assumption.The contents of Queue(t)�S is the same for the computation on x#xR and xz#xR9

by construction. Hence Queue(t) is the same for Q's computation on x#xR andxz#xR. By assumption and construction the head positions and state of Q at timet are identical as well. Therefore, we can continue the computation on xz#xR by Qand accept this string since x#xR is accepted. So Q accepts a string that is not inthe language, which is a contradiction. 2Claim 2.11 The machine makes
(n2=3= logn) cycles after t0i�1.Proof. Let T be the time Q accepts. Then, Queue(T) is of length 0, and by theprevious claim, r has to be
(n2=3= logn). 2Now, for at least 1=2 of the cycles in claim 2.10, Queue(t) will have size in
(n2=3)(by claim 2.9). Therefore, the machine makes
(n4=3 logn) steps, contradiction ourassumption. The proof of theorem 2.1 is �nished. 23 More queues versus fewer queuesIn this section we study the power of queue machines with di�erent number ofqueues. We �rst provide some easy upper bounds: Two queues are as good as kqueues in the nondeterministic case. This motivates our research focussing on smallnumbers of queues; One queue can simulate k queues in quadratic time, determinis-tically or nondeterministically. We then provide tight, or almost tight, lower boundsfor our simulations mentioned above.3.1 Upper boundsTheorem 3.1 Two stacks can simulate one queue in linear time, for both deter-ministic and nondeterministic machines.Proof. We design a machine P with 2 stacks pd1, pd2. To simulate a queue,every time a symbol is pushed into the queue, P pushes the same symbol into pd1.If a symbol is taken from the queue, then P pops a (the same) symbol from pd2 ifpd2 is not empty. If pd2 is empty then P �rst unloads the entire contents of pd1 intopd2 and then pops the top symbol from pd2. At the end of the input, P accepts i�the 1 queue machine accepts. 2Theorem 3.2 Two queues can nondeterministically simulate k queues for any �xedk in linear time.
10

Proof. This theorem follows from the method used by Book and Greibach [BG]in order to nondeterministically simulate k tapes by 2 tapes in linear time. Forthe sake of completeness, we will describe the idea. The 2 queue machine guessesthe computation of the k-queue machine and puts this guess on 1 queue in theform: ID1; ID2; :::, where IDi contains the state of the k queue machine and thek + 1 queue symbols scanned by the k queue heads and the input head, at step i.First check that the state in each ID is consistent with the previous ID and checkthe correctness of the guessed input symbol in each IDi by scanning the ID's andmoving the input head when necessary. Then, scan the ID's again k times, eachtime simulating one of the k queues of the simulated machine on the other queue.This simulation takes O((k + 1)n) = O(n) time. 2Theorem 3.3 3 stacks can nondeterministically simulate k queues in linear time.Proof. Combine the ideas from the above 2 theorems. I.e., guess the compu-tation of the k queue machine as before, and put the guess into one stack. Savethis guess also to another stack (but put a marker on the top). Then simulate aqueue and check the correctness of the guess. (The simulation needs 2 stacks, oneof the stacks has the guessed computation saved in the bottom.) After simulatingone queue, retrieve the guessed contents and again put it into 2 stacks. Repeat thisprocess for each queue. 2Remark: It is a folklore fact, and easily veri�ed, that 1 queue machines acceptprecisely the r:e: languages. In contrast, 1 stack machines accept only CFL's. Hence,1 queue is better than 1 stack. However, when we have more stacks, more stacksseem to be better than queues because they are more e�cient. It was proved in[HM] that 4 stacks can simulate a queue in real time.Theorem 3.4 One queue can simulate k queues in quadratic time, both determin-istically and nondeterministically.Proof. This is similar to the simulation of k tapes by 1 tape by Hartmanis andStearns [HS1]. See [HU, page 292]. 2This also relates to a interesting problem of whether \2 heads (on one tape)are better than 2 tapes (each with one single head)". Vit�anyi [Vi3] showed that2 tapes cannot simulate a queue in real time if at least one of the tape-heads iswithin o(n) cells from the start cell at all times. We saw that 2 stacks can simulatea queue in linear time and 4 stacks can do this in real time. It would be interestingto know whether 2 or 3 stacks can do this in real time. The question of how todeterministically simulate k queues by 2 queues in o(n2) time, like the Hennie-Stearns simulation in the tape case [HS2], remains open.11

3.2 Lower boundsWe now prove optimal lower bounds for the above simulations. Let L be the follow-ing language.L = f a & b10b11 : : : b1k#b20b30b21b22b31b23 : : : b22ib3i b22i+1 : : : b2k�1b3(k�1)=2b2kb40b3(k+1)=2b41b42b3(k+3)=2b43 : : : b42imod(k+1)b3i b4(2i+1)mod(k+1) : : : b4k�1b3kb4k& a :b1i = b2i = b3i = b4i for i = 0; : : : ; kand all bji have format x where x 2 f0; 1g�k is odd, and a 2 f0; 1g�; gWhen we prove the lower bound, all the bji will have the same length. Thestring between the �rst & and second & can be obtained by copying b0b1 : : : bk threetimes: b0b1 : : : bk #b0b1 : : : bk b0b1 : : : bk, and then adding one more copy of b0b1 : : : bkby inserting block bi after 2i blocks, starting from #b0 in above. The superscriptson the bi's are used only to facilitate later discussions. L can be considered as amodi�ed version of a language used in [Ma]. We have added a string a on bothends. The purpose of a is to prevent the queue from shrinking, since if we choosea to be a long K-random string, then before the second a is read the size of thequeue has to be at least about jaj. We have to prevent the queue from shrinkingbecause otherwise the crossing sequence argument would not work. In addition tothe techniques in [Ma, LV], we will need the techniques introduced in this paper totreat queues.An alternate way to describe the language L is as follows. Let y and z be se-quences of blocks, each block is of form u where u 2 f0; 1g�. De�ne intermingle(y) =z if (1) the blocks of z in positions i � 2 (mod 3) form the string y (z2z5z8::: =y1y2y3:::), and (2) the remaining blocks of z form the string yy.Then, L = fa&y#intermingle(y)&a : y contains an even number of blocksg.Theorem 3.5 Simulating a deterministic two queue machine with a 1-way inputtape by a nondeterministic one queue machine with a 1-way input tape requires
(n2=log2n log logn) time.Proof. We will show below that L de�ned above requires
(n2=log2n log logn)time on a nondeterministic one-queue machine. Since L can be trivially acceptedby a deterministic two-queue machine in linear time, the theorem will follow.12

Now, aiming at a contradiction, assume that a one-queue machine M accepts Lin time T (n) which is not in
(n2=log2n log logn). Without loss of generality, weassume that M has a binary queue alphabet and that M accepts with a �nal stateand an empty queue. We use the same notation and de�nitions as in the previoussection such as Queue, jQueue(t)j, hin; hr; hw, cycles and crossing sequence.Choose a large n and a large enough C, such that C >> jM j + c and all thesubsequent formulas make sense, where jM j is the number of bits needed to describeM and c is a constant given in Claim 3.9 below. Choose an incompressible stringX 2 f0; 1g2n, K(X) � jXj. Let X = X 0X 00 where jX 0j = jX 00j = n. Equally divideX 00 into k + 1 = n=(C log logn) parts, X 00 = x0x1:::xk, where each xi is C log lognlong. Consider a word w 2 L where a = X 0 and bji = xi for 1 � j � 4 and0 � i � k. Fix a shortest accepting path, P , of M on w. We will show that Mtakes
(n2=log2n log logn) time on P . Since n is linearly related to the size of theinput, this will provide the lower bound in the theorem2.Consider only the path P . Let t& be the time when hin reaches the �rst &, t0&be the time hin reaches the second &, and t# be the time when hin reaches #.Claim 3.6 jQueue(t)j � n�O(logn), for every t& � t � t0&.Proof. The proof of this claim is same to that of Claim 2.3. We will only sketchthe idea. Assume the claim is false, i.e., jQueue(t)j � n � g(n), with g(n) notO(logn). Then we can conclude that K(X) < jXj as follows. For every Y suchthat jY j = jX 0j, replace the second a (a = X 0) after the second & sign in w by Y toform w0. Using the description of the queue, start to simulate M on w0 from timet&. By a standard argument, Y = X 0 (= a) i� M accepts. The information used inthis simulation is self-delimiting descriptions of jM j, t&, hin(t&), Queue(t&), and aliteral description of X 00 of size n. Therefore K(X) < jXj, a contradiction. 2Claim 3.7 The number of cycles from time t& to t0& is less than n=C5log2n log logn.Proof. This follows directly from the previous claim. Each cycle is of length
(n) and hence takes
(n) time. If M requires at least n=C5log2n log logn cyclesfrom t& to t0&, then M used
(n2=log2n log logn) time, contradiction. 2For each time t, we say that a substring s of the input w is mapped into (onto)a set Q of cells on Queue(t) if all the cells in
uenced by s on Queue(t) are (exactlythose) in Q. Notice that Q is a contiguous region on Queue(t).2Here, like in the previous section, the language does not have a string of each length. Theproof provides an input which causes the machine to take a long time for each length that has atleast one string in the language. If we want a hard string for each length, just add a �nite paddingin the de�nition of the language, for example allowing markers to repeat up to 4 or 5 times13

Claim 3.8 Let k0 = k=2 � n=C5log2n log logn. At time t#, Queue(t#) can bepartitioned into two segments, S1(t#) and S2(t#), such that k0 b1i 's, say b1i1 ; :::; b1ik0 ,are mapped into S1(t#), and k0 other b1i 's, say b1j1 ; :::; b1jk0 , are mapped into S2(t#).Proof. Consider any cell c0 on the Queue(t#). By the nature of the queue andClaim 3.7, at most m = nC5log2n log logn b1i 's can in
uence c0 at t# because M madeno more than m cycles on the queue from t& to t#. Hence for any partition ofQueue(t#) into two parts, S1(t#) and S2(t#), there can be at most m b1i blockseach in
uencing both S1(t#) and S2(t#). Each of the rest of k + 1 � m b1i blockseither in
uences only S1(t#) or in
uences only S2(t#). It is now trivial to makejS1(t#)j � jS2(t#)j � m to satisfy the claim. 2Look at the regions onQueue(t&) that in
uence S1(t#) and S2(t#). These regionsform two disjoint regions but these region may not form a partition of Queue(t&).Partition Queue(t&) into two regions S1(t&) and S2(t&), each exactly in
uencingS1(t#) and S2(t#) respectively. From now on, for t& � t � t#, we will alwaysconsider Queue(t) to be partitioned as S1(t) and S2(t), where S1(t) is the region onQueue(t) in
uenced by S1(t&) and S2(t) the one in
uenced by S2(t&).When there is no ambiguity, we simply write S1 and S2 for S1(t) and S2(t). Noticethat the sizes of S1(t) and S2(t) may change with t, but S1(t) and S2(t) will remaina partition of Queue(t).The next claim is a simple generalization of a theorem proved by Maass in [Ma](Theorem 3.1). The proof of the claim is a simple reworking of the Maass' proofand hence omitted.Claim 3.9 Let S be a sequence of numbers from 0; :::; k, where k = 2l for some l.Assume that every number b 2 f0; :::; kg is somewhere in S adjacent to the numbers2b (mod k+1) and 2b (mod k+1)+1. Then for every partition of f0; :::; kg intotwo sets G and R such that jGj; jRj > k=4, there are at least k=(c log k) (for some�xed c) elements of G that occur somewhere in S adjacent to a number from R. 2A k=plog k upper bound corresponding to the lower bound in this lemma iscontained in [Li3]. A more general, but weaker, upper bound can be found in [Kl].Remark 3.1 For each word w 2 L, the sequence of the subscripts of the substrings(in the order they appear) in w between the # sign and the second & satis�es therequirements in Claim 3.9. For example, given k, such a sequence is formed byinserting i after 2ith number, i = 0; 1; :::; k, in the following sequence,0; 1; 2; :::k; 0; 1; 2; :::; k.So each number i is adjacent to 2i (mod k+ 1), and 2i+ 1 (mod k+1). In whatfollows we will also say that a pair of bi blocks are adjacent if their subscripts areadjacent in above sequence. 14

Claim 3.10 At time t0&, the bi's between # and the second & are mapped intoQueue(t0&) in the following way: either1. a set, �S1, of k=(3c log k) bj's, which belong to fb1j1 ; :::; b1jk0g, are mapped intoS1(t0&); or2. a set, �S2, of k=(3c log k) bi's, which belong to fb1i1 ; :::; b1ik0g, are mapped intoS2(t0&),where c << C is the small constant in Claim 3.9.Proof. By Claim 3.7, from time t# to time t0&, M makes fewer than nC5log2n log log ncycles. Hence, hw can alternate between S1 and S2 fewer than 2nC5log2n log log n times.Each time hw alternates between S1 and S2, hw can map at most one adjacent pairof bji blocks into both S1(t0&) and S2(t0&). All other pairs are each mapped totallyinto S1(t0&) or totally into S2(t0&). There are �(k) such pairs in L.Combining Claims 3.8 and 3.9 and Remark 3.1 we know that there are atleast k=c log k � nC5log2n log log n pairs of bji 's such that each of these pairs containsa component belongs to G = fb1i1 ; :::; b1ik0g and another component belongs to R =fb1j1 ; :::; b1jk0g. Most of these pairs, except nC5log2n log log n of them by the previous para-graph, are mapped either totally into S1(t0&) or totally into S2(t0&). Hence one of(1) or (2) must be true. 2Without loss of generality, assume that (1) of claim 3.10 is true.Claim 3.11 Let tend be the time M accepts. jQueue(tend)j = 0. Then there existsa time t0& � t0 � tend such that jQueue(t0)j � nC5 log n and from t0& to t0 M madefewer than nC5 log n log log n cycles.Proof. Otherwise M spends
(n2log2n log log n) time, a contradiction. 2By Claim 3.7 the number of cyclesM made from t& to t0& is less than nC5log2n log log n .And by above claim,M made at most nC5 logn log log n cycles from time t0& to t0. Hencethe length of the crossing sequence at the boundary of S1 and S2 from t& to t0 isshorter than n=C4 logn log logn. For every j, if a bkj 2 �S1 for some k, then b1j ismapped into S2 by Claim 3.10.Now we describe a program that reconstructs X with less than jXj information.Consider every Y such that jY j = jXj and Y = a y0:::yk for some y0:::yk.1. Check if Y is the same as X at positions other than those places occupied bybkj 2 �S1. 15

2. If (1) is true, then construct the input, wY , the same way w was constructedexcept with xi replaced by yi for i = 0; 1; :::; k.3. Record the crossing sequences between S1 and S2 from t& to t0 of length lessthan n=C4 logn log logn. Also record the contents of S2 at time t0, whichis shorter than nC5 log n by Claim 3.11. Simulate M from the beginning to t&normally. Then simulate M from t& to t0 such that hr never goes into S2.Whenever hr reaches the border of S2 it compares the current ID with thecorresponding one in the crossing sequence. If they match, then M jumps overS2 and, using the next ID on the other side of S2 to start from, M continuesuntil time t0. At time t0, if above simulation is consistent, i:e: M 's statusmatches the crossing sequence every time M reaches the boundary of S1, weput the (short) contents of S2 recorded beforehand back to the position of S2and simulate M from t0 to the end in the normal way.4. By the end M has an accepting path i� Y = X.The information we used in this program is only the following.1. X � �S1, plus the information to describe the relative locations of bkj 2 �S1 inX. This would require at mostjXj � j �S1jjbkj j+O(j �S1j log(k=j �S1j))� 2n� j �S1jC log logn +O(j �S1j(log logn+ 2 logC))� 2n� (j �S1jC log logn)=2� 2n� n=C2 logn;where in the �rst line the second term is for the bj's in �S1, the third term isfor the information to describe the relative positions of bj 2 �S1: To representj �S1j elements of f0; 1; :::; kg, sort the elements, determine the sequence of theirdi�erences, and use a self-delimiting encoding of the natural numbers to writeeach di�erence. The �nal encoding has approximately O(j �S1j log(k=j �S1j)) bits.(See for example [LV,Lo,El]).2. Description of the crossing sequence, of length less than nC4 log n log log n , aroundS2. Again by the above e�cient encoding method, this requires at most nC3 log nbits. The detail of this encoding can be found in [LV]. The idea is as follows:Each item in the c.s. is (state of M , hin's position). Trivial encoding ofnC4 log n log logn long c.s. needs nC4 log log n bits. But we can use the above methodand encode only the di�erences of hin's positions, thus use less than nC3 log nbits. 16

3. Description of the contents of S2 at time t0. But jQueue(t0)j � nC5 log n .4. Extra O(logn) bits to describe the program discussed above.The total is less than 2n� nC log n . Therefore K(X) < jXj, a con tradiction. 2Corollary. Simulating two deterministic tapes by one nondeterministic queuerequires
(n2= log2 n log logn).Proof. Since L can also be accepted by a two tape Turing machine in linear time.2Theorem 3.12 To simulate two deterministic queues by one deterministic queuerequires
(n2) time.Proof Idea. De�ne a language L1 as follows. (Below, a; xi; yi 2 f0; 1g�.)L1 = fa & x1$x2$:::$xk#y1$:::$yl#(1i1; 1j1)(1i2 ; 1j2):::(1is ; 1js) & a jxp = yq & (p = i1 + ::: + it; q = j1 + ::: + jt) & 1 � t � sg:L1 can be accepted by a deterministic two queue machine in linear time. Usingthe techniques in the above theorem and in the proof of one deterministic Turingmachine tape requiring square time for this language (See [LV]), it can be shownthat L1 requires
(n2) for a one queue deterministic machine. We omit the proof.2 Acknowledgement. We are grateful to the referee for has careful analysis andextensive comments on the �rst version of this paper.References[Aa] Aanderaa, S.O., \On k-tape versus (k-1)-tape real-time computation, in Com-plexity of Computation, ed. R.M. Karp, SIAM-AMS Proceedings, vol. 7, pp. 75-96,American Math. Society, Providence, R.I., 1974.[BG] Book, R. and S. Greibach, \Quasi real-time languages," Math. SystemTheory, vol. 4, pp. 97-111, 1970.[BGW] Book, R., S. Greibach, and B. Wegbreit, \Time- and tape-bound Turingacceptors and AFL's," J. Computer and System Sciences, vol. 4, pp. 606-621, 1970.17

[Ch] Chaitin, G.J., \Algorithmic Information Theory," IBM J. Res. Dev., vol.21, pp. 350-359, 1977.[DGPR] Duris, P., Z. Galil, W. Paul, and R. Reischuk, \Two nonlinear lowerbounds for on-line computations," Information and Control, vol. 60, pp. 1-11, 1984.[El] Elias, P., \Universal codeword sets and representation of integers," IEEETrans. Information Theory, vol. IT-21, pp. 194-203, 1975.[GKS] Galil, Z., R. Kannan, E. Szemeredi, \On nontrivial separators for k-pagegraphs and simulations by nondeterministic one-tape Turing machines," in Proceed-ings 18th Annual ACM Symposium on Theory of Computing, pp. 39-49, 1986.[HM] Hood, R and R. Melville, \Real-time queue operations in pure LISP," In-formation Processing Letters, vol. 13, pp. 50-54, 1981.[HS1] Hartmanis, J. and R.E. Stearns, \On the computational complexity ofalgorithms," Trans. Amer. Math. Soc., vol. 117, pp. 285-306, 1969.[HS2] Hennie, F.C. and R.E. Stearns, \Two tape simulation of multitape Turingmachines," J. Ass. Comp. Mach., vol. 4, pp. 533-546, 1966.[HU] Hopcroft, J.E. and J.D. Ullman, Formal Languages and their Relations toAutomata, Addison-Wesley, 1969.[Kl] Klawe, M., \Limitations on explicit construction of expanding graphs,"SIAM J. Comp., vol. 13, no. 4, pp. 156-166, 1984.[Ko] Kolmogorov, A.N., \Three approaches to the quantitative de�nition of in-formation, Problems in Information Transmission, vol. 1, no. 1, pp. 1-7, 1965.[Kos] Kosaraju S., \Real time simulation of concatenable double-ended queuesby double-ended queues," 11th Annual ACM Symposium on Theory of Computing,pp. 346-351, 1979.[Li1] Li, M., \Simulating two pushdowns by one tape in O(n**1.5 (log n)**0.5)time," 26th Annual IEEE Symposium on the Foundations of Computer Science, pp.56-64, 1985. 18

[Li2] Li, M., \Lower Bounds in Computational Complexity," Ph.D. Thesis, Re-port TR-85-663, Computer Science Department, Cornell University, march 1985.[Li3] Li, M., \Lower bounds by Kolmogorov-complexity", 12th ICALP, LectureNotes in Computer Science, 194, pp. 383-393, 1985.[LV] Li, M. and P.M.B. Vit�anyi, \Tape versus queue and stacks: The lowerbounds," Information and Computation Vol. 77, 1988.[L0] Loui, M.C., \The complexity of sorting on distributed systems," Informa-tion and Control Vol. 60, pp. 70-85, 1984.[LS] Leong, B.L. and J.I. Seiferas, \New real-time simulations of multihead tapeunits," J. Ass. Comp. Mach., vol. 28, pp. 166-180, 1981.[Ma] Maass, W., \Combinatorial lower bound arguments for deterministic andnondeterministic Turing machines," Trans. Amer. Math. Soc., 292,2, pp. 675-693,1985.[MSZ] Maass, W., G. Schnitger, and E.Szemeredi, \Two tapes are better thanone for o�-line Turing machines," Proceedings 19th ACM Symposium on Theory ofComputing, pp. 94-100, 1987.)[PSS] Paul, W.J., J.I. Seiferas, and J. Simon, \An information theoretic ap-proach to time bounds for on-line computation, J. Computer and System Sciences,vol. 23, pp. 108-126, 1981.[Pa] Paul, W.J., \On-line simulation of k+1 tapes by k tapes requires nonlineartime," Information and Control, pp. 1-8, 1982.[So] Solomono�, R., \A formal theory of inductive inference, Part 1 and Part 2,"Information and Control, vol. 7, pp. 1-22,224-254, 1964.[Vi1] Vit�anyi, P.M.B., \One queue or two pushdown stores take square time ona one-head tape unit," Computer Science Technical Report CS-R8406, CWI, Ams-terdam, March 1984.[Vi2] Vit�anyi, P.M.B., \An N**1.618 lower bound on the time to simulate onequeue or two pushdown stores by one tape," Information Processing Letters, vol.19

21, pp. 147-152, 1985.[Vi3] Vit�anyi, P.M.B., \On two-tape real-time computation and queues," J.Computer and System Sciences, vol. 29, pp. 303-311, 1984.

20

