The Power of the Queue

Ming Li, * Luc Longpré! and Paul Vitanyi!

1988, Published in final form in STAM J. Computing, 21:4(1992),
697-712.

Abstract

Queues, stacks, and tapes are basic concepts which have direct applica-
tions in compiler design and the general design of algorithms. Whereas stacks
(pushdown store or last-in-first-out storage) have been thoroughly investi-
gated and are well understood, this is much less the case for queues (first-in-
first-out storage). In this paper we present a comprehensive study comparing
queues to stacks and tapes (off-line and with one-way input). The techniques
we use rely on Kolmogorov complexity. In particular, 1 queue and 1 tape (or
stack) are not comparable:

(1) Simulating 1 stack (and hence 1 tape) by 1 queue requires Q(n*/?/logn)
time in both the deterministic and the nondeterministic cases.

(2) Simulating 1 queue by 1 tape requires (n?) time in the deterministic
case, and Q(n*/?/(logn)?/?) in the nondeterministic case;

We further compare the relative power between different numbers of queues:

(3) Nondeterministically simulating 2 queues (or 2 tapes) by 1 queue re-
quires Q(n?/(log® n loglogn)) time and deterministically simulating 2

*Aiken Computation Laboratory Harvard University, Cambridge, MA 02138. Work supported
by the NSF under Grant DCR-8606366 and by the ONR under Grant N00014-85-k-0445.

fCollege of Computer Science, Northeastern University, Boston, MA 02115. Research per-
formed while a visiting faculty member in the Computer Science Department at the University of
Washington.

!Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Nether-
lands. Work performed in part at the Laboratory for Computer Science, Massachusetts Institute
of Technology, and supported in part by the Office of Naval Research under Contract N00014-85-
K-0168, by the U.S. Army Research Office under Contract DAAG29-84-K-0058, by the National
Science Foundation under grant DCR-83-02391, and by the Defence Advanced Research Projects
Agency under contract N0O0014-83-K-0125.



queues (or 2 tapes) by 1 queue requires Q(n?) time. The second bound
is tight. The first is almost tight. We also obtain the upper bounds for
queues. Below, we use “pushdown” and “stack” synonymously.

1 Introduction

It has been known for over twenty years that all multitape Turing machines can be
simulated on-line by 2-tape Turing machines in time O(nlogn) [HS2], and by 1-tape
Turing machines in time O(n?) [HU]. Since then, many other models of computation
have been introduced and compared. (See [Aa, DGPR, HS1, HS2, HU, LS, PSS, Pa,
Vi2].) In addition to different storage mechanisms, real-time, on-line and off-line
machines have been studied. An on-line simulation essentially simulates step-by-step
each move of the simulated machine. In this paper, we consider off-line machines,
where an answer is given only once the whole input has been read. There is no need
to simulate the moves of the machine; it only matters that we give the right answer.
We also use the one-way input convention, where the machine has a one-way input.
As usual, the machines have a finite control and access to some storage.

The relative power of stacks and tapes is more or less well known. For example,
for the nondeterministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks
= k stacks = k tapes, where A < B means that B can simulate A in linear time,
while A cannot simulate B in linear time. In most of the cases, close lower and
upper bounds are known for the simulation [Ma, Lil, Vil, LV, Li2]|.

In this paper, we give a complete characterization of (off-line, one-way input)
queue machines. The main theorems show that one queue machines are not compa-
rable to one stack or one tape machines, both deterministically and nondetermin-
istically. We also compare the relative power of machines having different number
of queues. The current knowledge of upper and lower bounds for the simulation
between queues and tapes is roughly summarized in Figures 1, 2 and 3. Figure 1
contains results that were previously known. The results of Figure 2 are covered in
section 2. Notice that all the bounds in Figure 2 are valid also for simulating one
stack or two stacks. The results of Figure 3 are covered in section 3.

deterministic nondeterministic
O(n?) O(n3%/logn)
upper bound | o htforward) (in [Li1])
Q(n?) Q(n*?/10g*3 n)
lower bound (in [LV]) (in [LV] or [Li3])

Figure 1: Simulating one queue by one tape



deterministic | nondeterministic
upper bound O(n?) O(n?)
lower bound | Q(n*3/logn)) | Q(n?/3/logn)

Figure 2: Simulating one tape, or one stack, by one queue

deterministic nondeterministic
upper bound O(n?) O(n?)
lower bound Q(n?) Q(n?/log” nloglogn))

Figure 3: Simulating two queues by one queue

We use Kolmogorov complexity techniques [So, Ko, Ch] to prove the theorems,
together with some new techniques to enable us to deal with queues. The Kol-
mogorov complexity of a string z, K(x), is the length of the shortest program print-
ing the string x. By a simple counting argument, we know that there are strings
x of each length such that K(x) > |z|. These strings are called incompressible or
K-random. For completeness we recall the notions of Kolmogorov complexity of
binary strings and those of self-delimiting descriptions, see e.g. [PSS| or [LV]. Fix
an effective coding C' of all Turing machines as binary strings, such that no code is
a prefix of any other code. Denote the code of Turing machine M by C(M). The
Kolmogorov complexity with respect to C, of a binary string x, denoted as K¢ () is
the length of the smallest binary string C'(7")y such that T started on input y halts
with output z. The crucial fact one uses is that in between effective enumerations C'
and D, for all z, |K¢(z) — Kp(z)| < ¢, with ¢ a constant depending only on C' and
D (but not on x). So, up to an additive constant, the Kolmogorov complexity is
independent of the particular effective enumeration choosen which allows us to drop
the subscript. With some abuse of notation, in the sequel equalities and inequalities
involving Kolmogorov complexity will always be assumed to hold up to additive
constant only. To be able to differentiate between parts of y such that T is able to
use different parts for different purposes (can compute an r-ary function), we need
the notion of self-delimiting descriptions. If a = ayas...a, is a string of 0’s and 1’s,
then a;0a50...0a,1 is a self-delimiting description of twice the original length. More
efficiently, if b = by...b,, is the length of a in binary, then the self-delimiting de-
scription of b concatenated with a is also a self-delimiting description of a, this time
of length n + 2logn instead of 2n. For example, 1000011101 is the self-delimiting
version of 1101.



2 Simulating one tape by one queue

2.1 Upper bound

Our upper bound is straightforward. However, it is for simulating any fixed number
of stacks. Since two stacks can simulate one tape in real time, our upper bound
applies for tapes as well.

Theorem 2.1 For any fized k, one queue can simulate k stacks in quadratic time,
for both deterministic and nondeterministic machines.

Proof. Simulate the k stacks by coding them sequentially onto the queue such
that the top of each stack comes first. In front of each stack top, put a marker to
indicate the separation between the stacks.

Each operation (push or pop on one stack) can be done on O(n) time by just
scanning the whole queue and performing the local transformation after the appro-
priate marker. The total time is then in O(n?). This simulation can be made for
deterministic or nondeterministic machines. O

2.2 Lower bound

In this section, we show that it takes at least Q(n*/3/logn) time for a nonde-
terministic one queue machine with a one-way input to recognize the language
{wH#w? :w e {0,1}*}.

Because this language can be recognized in linear time by a deterministic stack
automaton, we can conclude that it takes at least Q(n*/3/logn) time for a nonde-
terministic one queue machine to simulate a deterministic stack automaton.

The intuition behind the proof is that while the queue machine reads w, it has
to store all the information in some sequential way on the queue. It turns out to
be impossible to check the stored form of w for correspondence with w’* while the
latter string is read from the input tape, so w must be stored in some sequential
way as well. Using crossing sequence arguments, we show that whatever way the
information is stored, the machine will be forced to scan the queue many times.
This repeated scanning will then imply the lower bound on simulation time.

Let h;, be the read-only head on the one-way input tape. We identify the queue
with a tape with two heads h, and h,. The head h, is a read-only, one-way head
on the queue. The head h,, is a write-only, one-way head on the queue. One step
of the queue consists of all of the following. According to the old state and the
contents of the cells scanned by the reading heads, the machine: (1) reads an empty
or nonempty symbol from the input; (2) pops an empty or nonempty symbol from



the queue; (3) pushes an empty or nonempty symbol on the queue; and (4) changes
state. This course of events is implemented as follows on the tape reperesentation:
(1) if a nonempty symbol is read from the input tape, then h;, moves to the right
adjacent cell; (2) if a nonempty symbol is written (pushed) on the queue, then h,,
writes the symbol in the currently scanned cell and moves to the right adjacent
cell; (3) if a nonempty symbol is read (popped) from the queue, then A, moves to
the right adjacent cell; and (4) the change of state is the same. Without loss of
generality, we assume that the machine uses binary alphabets on the queue and
accepts by empty queue. Let hy(t) denote the position of head k € {in,r,w} at
time ¢ on its respective tape. Let ¢q,ca,.... ¢, be the individual cells on the input
tape. Let di,ds, ... be the individual cells on the queue.

The contents of the tape from h,(t) through h,(t) — 1 inclusive, is called the
actual queue at time t, or Queue(t). The length of Queue(t), denoted as | Queue(t)],
is h,(t) — h.(t). We say that two cells d; and d; are contiguous on Queue(t) if
h(t) < j < hy(t) and j =i+ 1, orif i +1 = hy(t) and j = h,(t) (the cells at both
ends of the queue are also considered contiguous).

Theorem 2.2 A nondeterministic one queue machine with a one-way input tape
takes time Q(n*/3 /logn) to accept the language {w#w™ : w € {0,1}*}. !

Remark. This holds both for the worst-case time and the average time.

Proof. Toward a contradiction, assume there is a queue () that accepts L in
time 7'(n) not in Q(n*/3/logn).

Fix n large enough, such that the formulas below and the intended contradictions
hold. Let 241 = n and let « be an incompressible string of length ¢. We separate x
into blocks: x = xgx129...2,,. Let |zq| = £/2. Each block z; for 1 < i < m contains
p symbols. For the proof of the theorem, we take m = ¢'/3/4 and p = 2(2/3. We
look at any fixed accepting computation of the machine on input z#z%. Let t; be
the time step when h;, enters the block z;. Let t;- be the time step when h;, enters

the block x;®. If z is a substring of z, then 2’ denotes the corresponding substring
of % (= a').

Claim 2.3 Ift; <t <ty, then the length of Queue(t) is at least /2 — O(log/).

Proof. For any t; <t < t), x can be reconstructed using the following informa-
tion: a description of this discussion and of @ in O(1) bits, the string Queue(t) of

"Here we use the stronger version of 2 where T'(n) € Q(f(n)) if there are constants ¢ and
ng such that for all n > ny, T'(n) > cf(n). Notice that there is no string of even length in the
language. To be strict, we show that the time is in Q(n*/?/logn : n is odd). With a slightly
modified language: {z#x} U {z#4#2%}, we could prove it for all n.



length < /¢, the string z; ...z, of length ¢/2, the state ¢(t) of the machine in O(1)
bits, and h;,(t) in < log? + 2 bits. Apart from z; ...z,,, all items are encoded as
self-delimiting strings, so that the total number of bits required is < s+£/2+O(log ).

To reconstruct z from this information, run the machine with all possible candi-
date strings y substituted for xy. Single out the strings y for which there is a time
step for which Queue(t), h;,(t) and ¢(t) correspond. Among those y, the machine
should accept only if y = z¢, otherwise it would accept the string zoz; . .. 2, #al ... alfty
which is not in the language.

Because x is incompressible, we know that K(z) > ¢, so it must be that our
program reconstructing = has size > ¢. So, we have s + £/2 + O(log/t) > ¢, from
which the claim follows. O

The machine needs to remember what it reads on the input and code it in some
way on the queue. What is written on the queue is determined by the input and the
rear of the queue. We say that a cell d; is directly influenced by a cell ¢; if h;, (t) =i
at the time ¢ when h,, writes on d;. (That is, h,(t) = j and h,(t +1) = j + 1.)
Similarly, a cell d; is directly influenced by a cell d; if h,(t) = ¢ at the time ¢ when
h., writes on d;.

The influence relation is the transitive closure of the direct influence relation.
We say that ¢; (or d;) influences d; if there is a chain of direct influences from ¢;
to d;. A block of cells influences a cell if and only if at least one of the cells in the
block influences it. A block of cells is influenced by a block of cells, if at least one
cell of the first block is influenced by the second block. The influence relation will
allow us to talk about where the information can be stored on the queue.

In the following, we need the notion of cycles. A cycle c(t) = [t, 1) is a half open
interval (of time) such that h,(f) = h,(t). Given a time t;, we will be interested
in non overlapping contiguous cycles ¢i(t1), ca(ty), ... starting at time ¢;, such that
ci(t1) = [t1,t2), ca(ty) = [ta,t3), and so on. In what follows, whenever we count
cycles, the start time ¢; will be either specified or clear from context and we count
the successive non overlapping contiguous cycles, as induced by the computation of
Q.

Let x be the string x;...x,,.

Claim 2.4 If t is fewer than s cycles away from ty, then each cell in Queue(t) is
influenced by at most s input cells in T#Hz".

Proof. Let the chain of cycles starting from t; be ¢;(¢1), ¢2(ts) ,.... The proof is
by induction on the indices s. At time ¢;, no cell in Queue(t) is influenced by any
input cell in 7#2%. During ¢, each cell written can be influenced by at most one
of those input cells. Suppose the claim is true for cycles ¢; through ¢, ;. During
the cycle c4(ts), each cell written is influenced by one new input cell (possibly) and

6



by each input cell that influences the cell scanned by h,. This adds up to at most
s input cells. O

For each i, we say that x; is a valid block if Queue(t,) contains a cell which is not
influenced by x; nor by x;". (¢; — 1" is the time when h;n leaves z,’.) The following
claims show that valid blocks exist. (We only need the existence of one valid block,
but in fact, the majority of blocks are valid.)

Claim 2.5 For each cell d on Queue(ty), there is a block x; such that d is influenced
R

by neither x; nor by x;".

Proof. Suppose there is a cell d on Queue(t],) such that for all 4, d is influenced
by either z; or x;%. It means that d is influenced by at least m different cells.
By claim 2.3, we know that then the machine makes at least m — 1 cycles from
t1 to ty. By claim 2.2, the queue has length at least £/2 — O(log /) for each cycle,
so the algorithm will take at least (m — 1)(£/2 — O(log)) > Q(n*/?), which is a

contradiction. O

Claim 2.6 If at some time t there is a cell on Queue(t) not influenced by a block
y, then for all t < t, there is a cell on Queue(t) not influenced by y.

Proof. If at some time all the cells on the actual queue are influenced by y,
then no new cell can be written without being influenced by y. O

From the last two claims it follows that there is always a valid block in the
computation. The following two facts explain why a valid block is a part of the
input that has been coded sequentially on the queue. The facts can be derived
almost directly from the definition of the influence relation and the observation that
a valid block is read within one cycle.

Fact 2.7 For each valid block x;, each cell in x; influences a disjoint set of cells on

the queue. Moreover, cells in x; also influence a disjoint set of cells on the queue.

However, some cells on the queue can be influenced by both a cell of x; and a cell of
!

l‘j-

Fact 2.8 For any time t, 1y’ > t > t;41, the regions influenced by the sequence of

cells of a valid block x; form a contiguous ordered sequence on Queue(t). (The same

statement holds for x’;.)

O

A partial configuration of the machine at some time ¢ is the state of the machine
and the position of all the heads on their respective tape.



The crossing sequence associated with a cell d; is the partial configuration when
h, goes from cell d; to cell d;y; (h.(t — 1) = d; and h,(t) = d;11). Because for us
the queue is in fact a one-way tape, the crossing sequence associated with a cell will
have exactly one entry. Each entry contains the position of 3 heads and a machine
state. Since writing using more than n? tape cells would take too much time, we
may assume that each head position can be described in O(logn) bits.

The crossing sequence around a region d; . . . d; is the crossing sequence associated
with d;_; concatenated with the one associated with d;.

The crossing sequence around a list of regions is the concatenation of the crossing
sequences around each of the regions.

Any substring y of the input influences a series of regions on the tape, one for
each cycle of the queue. The rest of this paragraph addresses degenerate cases and
the reader who is not interested in verifying the details may proceed to the next
paragraph. The situation can degenerate in two different cases. It could happen
that at some time ¢, y influences (1) all of Queue(t) or (2) no cell on Queue(t). Each
of those two situations is irreversible, i.e. the situation will remain for all £ > t. We
want to have one different region for each cycle of the queue even in the degenerate
cases. In the case when no cell on Queue(t) is influenced by y, we can still talk
about the region influenced by y on Queue(t) as an empty region that has a specific
position. In particular, if, while h, is reading the cells influenced by y, h,, does not
write anything, then the region influenced by y is an empty region between h,,(t) — 1
and h,(t) (between the cell written into before accessing y and the cell written into
after accessing y). Also, if, at time ¢, h, goes from cell d; to cell d;;; while there is
an empty region between d; and d; ., then there is also an empty region between
hy(t) and the previous cell. For the second degenerate case, the regions influenced
by y also form a series of regions, one for each cycle. In this case, the regions are
side by side, with empty gaps between them having a precise position defined an a
similar fashion as in degenerate case (1).

At this point, we assumed that there is a valid block x;. For this block, both
x; and z;' have been coded sequentially on the queue. Now we have to show that
it takes a lot of time to check x;/ = x;f. Intuitively, we can check only a constant
number of bits of x;" at each cycle. Each cycle takes as much time as the size of the
queue at that time.

Claim 2.9 The crossing sequence around the list of regions influenced by a substring
of the input from time t; up to time t}, has at most {3 entries.

Proof. Each addition to the crossing sequence corresponds to one cycle. By
Claim 2.2, each cycle takes at least £/2 — O(log{) steps. So, the machine will take
Q(n*?) time, contradicting the assumption. O

8



Claim 2.10 Ift > t; 1 is fewer than r cycles away from t; 1, then Queue(t) has
length at least (/3 — O(n'/3logn) — O(rlogn).

Proof. Let z; be a valid block, ¢ > 0. Then, ¢, | is the time step when h;,
leaves ;. Let x; = uv, where u and v are strings of equal size. Select a cell d on
Queue(t:_,) which is not influenced by z; nor by z;®. By claim 2.4 and 2.5, such
a cell exists. The cells of Queue(t, ;) influenced by the cells of z; form an ordered
sequence of regions. This is also true for the cells of z;% = v#uf.

If the region influenced by u on Queue(t; ;) is disjoint from the region influenced
by uf, then let y = w and 3y’ = uf. If the region influenced by uf is empty, we
need to treat it as a special case. We then consider the region influenced by u” as a
border between two cells, and if this border is inside a region influenced by wu, it is
considered not to be disjoint. If the regions are not disjoint, it must be the case that
the regions influenced by v and v are disjoint, because v comes after the region
influenced by both « and u#, and v comes before. In this case, choose y = v and
y' = ol

Let S be the set of cells influenced by y. Let z be the string « where y is deleted,
and let ¢ be as in the statement of the claim. We show below that z can be computed
from z, ¢, the position of y in  and the crossing sequence around S up to time t.
Encoding each item self-delimiting, except z which we give literally, this description
takes £ — £%/3 + O(n'/3log(n)) + O(rlog(n)) + | Queue(t)| bits. Because K(z) > n,
it then follows that | Queue(t)| > ¢*/3 — O(n'/3log(n)) — O(rlog(n)).

We compute y with the information provided in the following way. For all binary
strings z of equal length as y, let ., be the string x where 2z has been substituted for
y. Run Q on all strings x,#x, until you find one that matches the description. By
construction, z = y matches the description. Suppose z # y matches the description
as well. Then, by cutting and pasting the two computations on z#a® and z,#xz,%,
we can construct a legal computation of @ on z,#zf. Let S be the set of cells
influenced by y in the computation on z#z, and let S, be the set of cells influenced
by z in the computation of x,#x,%. Because the crossing sequence includes the
position of all heads, the regions in S and in S, occupy the same positions on the
queue. Therefore, we can compose an accepting computation that starts out as the
computation on z#zf. continues with the computation on z,#x,% when a head
enters S, switches back to the computation on z#z" when the last head leaves S
again, and so on. Since the crossing sequences of both computations are the same
up to ¢, the resulting computation is a legal computation of @ (up to t) on z,#x".
Now we can derive a contradiction. The contents of the intersection of Queue(t) and
S is the same for the computation on z,#x,% and for the computation on z,#a
by construction, and for the computation on z#2% and z,#z." by assumption.
The contents of Queue(t) — S is the same for the computation on x#z® and z,#x"

9



by construction. Hence Queue(t) is the same for Q’s computation on z#z® and
x,#2%. By assumption and construction the head positions and state of Q at time
t are identical as well. Therefore, we can continue the computation on z,#z% by Q
and accept this string since x#x is accepted. So @ accepts a string that is not in
the language, which is a contradiction. O

Claim 2.11 The machine makes Q(n*?/logn) cycles after t,_,.

Proof. Let T be the time @ accepts. Then, Queue(T) is of length 0, and by the
previous claim, r has to be Q(n%*?/logn). O

Now, for at least 1/2 of the cycles in claim 2.10, Queue(t) will have size in Q(n?/3)
(by claim 2.9). Therefore, the machine makes Q(n*/?logn) steps, contradiction our
assumption. The proof of theorem 2.1 is finished. O

3 More queues versus fewer queues

In this section we study the power of queue machines with different number of
queues. We first provide some easy upper bounds: Two queues are as good as k
queues in the nondeterministic case. This motivates our research focussing on small
numbers of queues; One queue can simulate k£ queues in quadratic time, determinis-
tically or nondeterministically. We then provide tight, or almost tight, lower bounds
for our simulations mentioned above.

3.1 Upper bounds

Theorem 3.1 Two stacks can simulate one queue in linear time, for both deter-
ministic and nondeterministic machines.

Proof. We design a machine P with 2 stacks pdl, pd2. To simulate a queue,
every time a symbol is pushed into the queue, P pushes the same symbol into pd1.
If a symbol is taken from the queue, then P pops a (the same) symbol from pd2 if
pd2 is not empty. If pd2 is empty then P first unloads the entire contents of pdl into
pd2 and then pops the top symbol from pd2. At the end of the input, P accepts iff
the 1 queue machine accepts. O

Theorem 3.2 Two queues can nondeterministically simulate k queues for any fired
k in linear time.

10



Proof. This theorem follows from the method used by Book and Greibach [BG]
in order to nondeterministically simulate k tapes by 2 tapes in linear time. For
the sake of completeness, we will describe the idea. The 2 queue machine guesses
the computation of the k-queue machine and puts this guess on 1 queue in the
form: IDy,ID,, ..., where ID; contains the state of the k queue machine and the
k 4+ 1 queue symbols scanned by the k queue heads and the input head, at step 1.
First check that the state in each I D is consistent with the previous /D and check
the correctness of the guessed input symbol in each I D; by scanning the I D’s and
moving the input head when necessary. Then, scan the I D’s again k times, each
time simulating one of the k& queues of the simulated machine on the other queue.
This simulation takes O((k + 1)n) = O(n) time. O

Theorem 3.3 3 stacks can nondeterministically simulate k queues in linear time.

Proof. Combine the ideas from the above 2 theorems. I.e., guess the compu-
tation of the k queue machine as before, and put the guess into one stack. Save
this guess also to another stack (but put a marker on the top). Then simulate a
queue and check the correctness of the guess. (The simulation needs 2 stacks, one
of the stacks has the guessed computation saved in the bottom.) After simulating
one queue, retrieve the guessed contents and again put it into 2 stacks. Repeat this
process for each queue. 0

Remark. It is a folklore fact, and easily verified, that 1 queue machines accept
precisely the r.e. languages. In contrast, 1 stack machines accept only CFL’s. Hence,
1 queue is better than 1 stack. However, when we have more stacks, more stacks
seem to be better than queues because they are more efficient. It was proved in
[HM] that 4 stacks can simulate a queue in real time.

Theorem 3.4 One queue can simulate k queues in quadratic time, both determin-
istically and nondeterministically.

Proof. This is similar to the simulation of k£ tapes by 1 tape by Hartmanis and
Stearns [HS1]. See [HU, page 292]. O

This also relates to a interesting problem of whether “2 heads (on one tape)
are better than 2 tapes (each with one single head)”. Vitdnyi [Vi3] showed that
2 tapes cannot simulate a queue in real time if at least one of the tape-heads is
within o(n) cells from the start cell at all times. We saw that 2 stacks can simulate
a queue in linear time and 4 stacks can do this in real time. It would be interesting
to know whether 2 or 3 stacks can do this in real time. The question of how to
deterministically simulate k queues by 2 queues in o(n?) time, like the Hennie-
Stearns simulation in the tape case [HS2], remains open.

11



3.2 Lower bounds

We now prove optimal lower bounds for the above simulations. Let L be the follow-
ing language.

L= { a&bib .. bi#

bbabibabbs - b3 5y - 1B 120

Bob(ks 1)/2010260k 137285 - - - Baimod (k+1)05 D(2ig 1)mod (k1) - - - Or 1 Ok0%
&La:
by =b =b =bf fori=0,....k
and all b/ have format $2$ where x € {0,1}"
k is odd, and a € {0,1}*, }

When we prove the lower bound, all the b{ will have the same length. The
string between the first & and second & can be obtained by copying bgb; . .. by three
times: boby ... bx #boby ... by boby ... bg, and then adding one more copy of byb; . .. by
by inserting block b; after 2: blocks, starting from #by in above. The superscripts
on the b;’s are used only to facilitate later discussions. L can be considered as a
modified version of a language used in [Ma]. We have added a string a on both
ends. The purpose of a is to prevent the queue from shrinking, since if we choose
a to be a long K-random string, then before the second a is read the size of the
queue has to be at least about |a|. We have to prevent the queue from shrinking
because otherwise the crossing sequence argument would not work. In addition to
the techniques in [Ma, LV], we will need the techniques introduced in this paper to
treat queues.

An alternate way to describe the language L is as follows. Let y and z be se-
quences of blocks, each block is of form $u$ where u € {0, 1}*. Define intermingle(y) =
z if (1) the blocks of z in positions i = 2 (mod 3) form the string y (292525... =
Y1Y2Y3...), and (2) the remaining blocks of z form the string yy.

Then, L = {a&y#intermingle(y)&a : y contains an even number of blocks}.

Theorem 3.5 Simulating a deterministic two queue machine with a 1-way input
tape by a nondeterministic one queue machine with a 1-way input tape requires
Q(n?/log’nloglogn) time.

Proof. We will show below that L defined above requires Q(n?/log’nloglogn)

time on a nondeterministic one-queue machine. Since L can be trivially accepted
by a deterministic two-queue machine in linear time, the theorem will follow.

12



Now, aiming at a contradiction, assume that a one-queue machine M accepts L
in time 7'(n) which is not in Q(n?/log*nloglogn). Without loss of generality, we
assume that M has a binary queue alphabet and that M accepts with a final state
and an empty queue. We use the same notation and definitions as in the previous
section such as Queue, |Queue(t)|, hin, hy, hy,, cycles and crossing sequence.

Choose a large n and a large enough C, such that C' >> |M| + ¢ and all the
subsequent formulas make sense, where | M| is the number of bits needed to describe
M and ¢ is a constant given in Claim 3.9 below. Choose an incompressible string
X € {0,1}", K(X) > |X]|. Let X = X'X" where | X'| = |X"| = n. Equally divide
X" into k +1 = n/(Cloglogn) parts, X" = zgz;...x), where each z; is C'loglogn
long. Consider a word w € L where a = X' and bg = x; for 1 < 57 < 4 and
0 < ¢ < k. Fix a shortest accepting path, P, of M on w. We will show that M
takes Q(n?/log*nloglogn) time on P. Since n is linearly related to the size of the
input, this will provide the lower bound in the theorem?.

Consider only the path P. Let tg be the time when h;, reaches the first &, tf,
be the time h;, reaches the second &, and ¢4 be the time when h;, reaches #.

Claim 3.6 |Queue(t)| > n — O(logn), for every tg, <t < t.

Proof. The proof of this claim is same to that of Claim 2.3. We will only sketch
the idea. Assume the claim is false, i.e., |Queue(t)] > n — g(n), with g(n) not
O(logn). Then we can conclude that K(X) < |X| as follows. For every Y such
that |Y| = | X'|, replace the second a (a = X') after the second & sign in w by Y to
form w’. Using the description of the queue, start to simulate M on w' from time
tg. By a standard argument, Y = X' (= a) iff M accepts. The information used in
this simulation is self-delimiting descriptions of |M|, tg, hin(ts), Queue(tg), and a
literal description of X" of size n. Therefore K(X) < |X/|, a contradiction. O

Claim 3.7 The number of cycles from time tg, to ty, is less than n/C®log®n loglog n.

Proof. This follows directly from the previous claim. Each cycle is of length
Q(n) and hence takes Q(n) time. If M requires at least n/C®log’nloglogn cycles
from tg to tf,, then M used Q(n?/log*nloglogn) time, contradiction. O

For each time ¢, we say that a substring s of the input w is mapped into (onto)
a set @ of cells on Queue(t) if all the cells influenced by s on Queue(t) are (exactly
those) in ). Notice that @ is a contiguous region on Queue(t).

2Here, like in the previous section, the language does not have a string of each length. The
proof provides an input which causes the machine to take a long time for each length that has at
least one string in the language. If we want a hard string for each length, just add a finite padding
in the definition of the language, for example allowing markers to repeat up to 4 or 5 times

13



Claim 3.8 Let k' = k/2 — n/C®log*nloglogn. At time ty, Queue(ty) can be

partitioned into two segments, Sy (ty) and Sy(ty), such that k' b;’s, say b;,....b;
are mapped into Si(ty), and k' other b}’s, say bh,. ,bJ1 ., are mapped into Sy (t#)

Proof. Consider any cell ¢y on the Queue(ty). By the nature of the queue and
Claim 3.7, at most m = e b}’s can influence ¢y at ¢4 because M made
no more than m cycles on the queue from tg to tx. Hence for any partition of
Queue(ty) into two parts, Sy(ty) and Sy(ty), there can be at most m b} blocks
each influencing both S;(t4) and Sy(ty). Each of the rest of £+ 1 — m b} blocks
either influences only S;(t4) or influences only Sy(t4). It is now trivial to make
|S1(t4)| — [Sa(ty)] < m to satisfy the claim. O

Look at the regions on Queue(tg, ) that influence Sy (t4) and Sy(t4). These regions
form two disjoint regions but these region may not form a partition of Queue(ty).
Partition Queue(tg) into two regions S;(tg) and Ss(tg), each exactly influencing
Si(ty) and Sy(ty) respectively. From now on, for g < t < t,, we will always
consider Queue(t) to be partitioned as S;(t) and Sy(t), where S (¢) is the region on
Queue(t) influenced by Si(tg) and Sy(t) the one influenced by Sy (g ).

When there is no ambiguity, we simply write S; and Sy for Si(¢) and Sy(¢). Notice
that the sizes of S;(¢) and Sy(¢) may change with ¢, but S;(¢) and Sy(¢) will remain
a partition of Queue(t).

The next claim is a simple generalization of a theorem proved by Maass in [Ma)]
(Theorem 3.1). The proof of the claim is a simple reworking of the Maass’ proof
and hence omitted.

Claim 3.9 Let S be a sequence of numbers from 0, ..., k, where k = 2' for some [.
Assume that every number b € {0, ..., k} is somewhere in S adjacent to the numbers
2b (mod k+1) and 2b (mod k+1)+1. Then for every partition of {0, ..., k} into
two sets G and R such that |G|, |R| > k/4, there are at least k/(clogk) (for some

fized ¢) elements of G that occur somewhere in S adjacent to a number from R. O

A k/+y/logk upper bound corresponding to the lower bound in this lemma is
contained in [Li3]. A more general, but weaker, upper bound can be found in [KI].

Remark 3.1 For each word w € L, the sequence of the subscripts of the substrings
(in the order they appear) in w between the # sign and the second & satisfies the
requirements in Claim 3.9. For example, given k, such a sequence is formed by
inserting ¢ after 2¢th number, : = 0,1, ..., k, in the following sequence,

0,1,2,..k,0,1,2, ..., k.
So each number i is adjacent to 2¢ (mod k+1), and 2i+1 (mod k+1). In what
follows we will also say that a pair of b; blocks are adjacent if their subscripts are
adjacent in above sequence.

14



Claim 3.10 At time ty,, the b;’s between # and the second & are mapped into
Queue(ty) in the following way: either

1. a set, Sy, of k/(3clogk) b;’s, which belong to {b;l, ...,b}kl}, are mapped into
S1(th); or

2. a set, Sy, of k/(3clogk) b;’s, which belong to {bi,, ...,b}k,}, are mapped into
Sa (1),

where ¢ << C 18 the small constant in Claim 3.9.

Proof. By Claim 3.7, from time ¢4 to time ¢y, M makes fewer than m

cycles. Hence, h, can alternate between S; and Sy fewer than m times.
Each time h,, alternates between S; and Sy, h,, can map at most one adjacent pair
of b} blocks into both S (t;) and Sy(t,). All other pairs are each mapped totally
into S;(ty) or totally into Sy(t%,). There are §(k) such pairs in L.

Combining Claims 3.8 and 3.9 and Remark 3.1 we know that there are at

least k/clogk — m pairs of bf’s such that each of these pairs contains

a component belongs to G = {b; ,...,; ,} and another component belongs to R =

{bjl-l, s bjl-k, }. Most of these pairs, except m
graph, are mapped either totally into S;(t;,) or totally into Sy(t%, ). Hence one of
(1) or (2) must be true. O

Without loss of generality, assume that (1) of claim 3.10 is true.

of them by the previous para-

Claim 3.11 Let te,q be the time M accepts. |Queue(te,q)] = 0. Then there exists
a time t, < tg < tena such that |Queue(ty)| < and from th, to to M made
fewer than cycles.

__n
C5logn
. n
C5logmnloglogn

Proof. Otherwise M spends Q(m) time, a contradiction. O

By Claim 3.7 the number of cycles M made from tg to t, is less than m.
And by above claim, M made at most m cycles from time t§, to ty. Hence
the length of the crossing sequence at the boundary of S; and Sy from tg to tg is
shorter than n/C*lognloglogn. For every j, if a 0¥ € S; for some k, then b} is
mapped into Sy by Claim 3.10.

Now we describe a program that reconstructs X with less than | X| information.

Consider every Y such that |Y| = |X| and Y = a yy...yx for some yq...ys.

1. Check if Y is the same as X at positions other than those places occupied by
bk e 5.
J

15



2. If (1) is true, then construct the input, wy, the same way w was constructed
except with x; replaced by y; for : = 0,1, ..., k.

3. Record the crossing sequences between Sy and Sy from tg to ty of length less
than n/C*lognloglogn. Also record the contents of Sy at time ¢y, which
is shorter than #Ogn by Claim 3.11. Simulate M from the beginning to tg
normally. Then simulate M from tg to ty such that h, never goes into Ss.
Whenever h, reaches the border of Sy it compares the current 7D with the
corresponding one in the crossing sequence. If they match, then M jumps over
Sy and, using the next I'D on the other side of Sy to start from, M continues
until time £y,. At time ¢y, if above simulation is consistent, ¢z.e. M’s status
matches the crossing sequence every time M reaches the boundary of S;, we
put the (short) contents of Sy recorded beforehand back to the position of S,

and simulate M from ¢y to the end in the normal way.

4. By the end M has an accepting path iff Y = X.
The information we used in this program is only the following.

1. X — S;, plus the information to describe the relative locations of b;? € S, in
X. This would require at most

| X[ — [S1[[b5] + O(]S1| log(k/|S1]))

< 2n — |S1|Cloglogn + O(]S1|(loglogn + 21log C))
< 2n — (|S1|Cloglogn)/2

<2n —n/C*logn,

where in the first line the second term is for the b;’s in 51, the third term is
for the information to describe the relative positions of b; € S;: To represent
|S;| elements of {0, 1, ..., k}, sort the elements, determine the sequence of their
differences, and use a self-delimiting encoding of the natural numbers to write
each difference. The final encoding has approximately O(|S;|log(k/|S:])) bits.
(See for example [LV,Lo,El}).

2. Description of the crossing sequence, of length less than m, around

Ss. Again by the above efficient encoding method, this requires at most 03+)gn

bits. The detail of this encoding can be found in [LV]. The idea is as follows:

Each item in the c.s. is (state of M, hy,’s position). Trivial encoding of

oo long c.s. needs o bits. But we can use the above method
ognloglogn oglogmn

and encode only the differences of h;,’s positions, thus use less than

bits.

__n
C3logn

16



3. Description of the contents of Sy at time #o. But |Queue(to)| < &

4. Extra O(logn) bits to describe the program discussed above.

The total is less than 2n — &—. Therefore K(X) < |X], a con tradiction. O

Corollary. Simulating two deterministic tapes by one nondeterministic queue
requires Q(n?/log® nloglogn).

Proof. Since L can also be accepted by a two tape Turing machine in linear time.
O

Theorem 3.12 To simulate two deterministic queues by one deterministic queue
requires Q(n?) time.

Proof Idea. Define a language L, as follows. (Below, a,z;, y; € {0,1}*.)

Ly = {a & 218758, $ap#u: S, Sy (17, 171) (172, 172).. (1, 19" & a |
=y &p=t1+..+i, ¢g=j+..+j5) &1 <t <s}

Ly can be accepted by a deterministic two queue machine in linear time. Using
the techniques in the above theorem and in the proof of one deterministic Turing
machine tape requiring square time for this language (See [LV]), it can be shown
that L; requires Q(n?) for a one queue deterministic machine. We omit the proof.
O

Acknowledgement. We are grateful to the referee for has careful analysis and
extensive comments on the first version of this paper.

References
[Aa] Aanderaa, S.O., “On k-tape versus (k-1)-tape real-time computation, in Com-

plexity of Computation, ed. R.M. Karp, SIAM-AMS Proceedings, vol. 7, pp. 75-96,
American Math. Society, Providence, R.1., 1974.

[BG] Book, R. and S. Greibach, “Quasi real-time languages,” Math. System
Theory, vol. 4, pp. 97-111, 1970.

[BGW] Book, R., S. Greibach, and B. Wegbreit, “Time- and tape-bound Turing
acceptors and AFL’s,” J. Computer and System Sciences, vol. 4, pp. 606-621, 1970.

17



[Ch] Chaitin, G.J., “Algorithmic Information Theory,” IBM J. Res. Deuv., vol.
21, pp. 350-359, 1977.

[DGPR]| Duris, P., Z. Galil, W. Paul, and R. Reischuk, “Two nonlinear lower
bounds for on-line computations,” Information and Control, vol. 60, pp. 1-11, 1984.

[El] Elias, P., “Universal codeword sets and representation of integers,” IEEE
Trans. Information Theory, vol. 1T-21, pp. 194-203, 1975.

[GKS] Galil, Z., R. Kannan, E. Szemeredi, “On nontrivial separators for k-page
graphs and simulations by nondeterministic one-tape Turing machines,” in Proceed-
ings 18th Annual ACM Symposium on Theory of Computing, pp. 39-49, 1986.

[HM] Hood, R and R. Melville, “Real-time queue operations in pure LISP,” In-
formation Processing Letters, vol. 13, pp. 50-54, 1981.

[HS1] Hartmanis, J. and R.E. Stearns, “On the computational complexity of
algorithms,” Trans. Amer. Math. Soc., vol. 117, pp. 285-306, 1969.

[HS2| Hennie, F.C. and R.E. Stearns, “Two tape simulation of multitape Turing
machines,” J. Ass. Comp. Mach., vol. 4, pp. 533-546, 1966.

[HU] Hopcroft, J.E. and J.D. Ullman, Formal Languages and their Relations to
Automata, Addison-Wesley, 1969.

[K1] Klawe, M., “Limitations on explicit construction of expanding graphs,”
SIAM J. Comp., vol. 13, no. 4, pp. 156-166, 1984.

[Ko|] Kolmogorov, A.N., “Three approaches to the quantitative definition of in-
formation, Problems in Information Transmission, vol. 1, no. 1, pp. 1-7, 1965.

[Kos] Kosaraju S., “Real time simulation of concatenable double-ended queues
by double-ended queues,” 11th Annual ACM Symposium on Theory of Computing,
pp. 346-351, 1979.

[Lil] Li, M., “Simulating two pushdowns by one tape in O(n**1.5 (log n)**0.5)

time,” 26th Annual IEEE Symposium on the Foundations of Computer Science, pp.
56-64, 1985.

18



[Li2] Li, M., “Lower Bounds in Computational Complexity,” Ph.D. Thesis, Re-
port TR-85-663, Computer Science Department, Cornell University, march 1985.

[Li3] Li, M., “Lower bounds by Kolmogorov-complexity”, 12th ICALP, Lecture
Notes in Computer Science, 194, pp. 383-393, 1985.

[LV] Li, M. and P.M.B. Vitanyi, “Tape versus queue and stacks: The lower
bounds,” Information and Computation Vol. 77, 1988.

[LO] Loui, M.C., “The complexity of sorting on distributed systems,” Informa-
tion and Control Vol. 60, pp. 70-85, 1984.

[LS] Leong, B.L. and J.I. Seiferas, “New real-time simulations of multihead tape
units,” J. Ass. Comp. Mach., vol. 28, pp. 166-180, 1981.

[Ma] Maass, W., “Combinatorial lower bound arguments for deterministic and
nondeterministic Turing machines,” Trans. Amer. Math. Soc., 292,2, pp. 675-693,
1985.

[MSZ| Maass, W., G. Schnitger, and E.Szemeredi, “Two tapes are better than
one for off-line Turing machines,” Proceedings 19th ACM Symposium on Theory of
Computing, pp. 94-100, 1987.)

[PSS] Paul, W.J., J.I. Seiferas, and J. Simon, “An information theoretic ap-
proach to time bounds for on-line computation, J. Computer and System Sciences,
vol. 23, pp. 108-126, 1981.

[Pa] Paul, W.J., “On-line simulation of k41 tapes by k tapes requires nonlinear
time,” Information and Control, pp. 1-8, 1982.

[So| Solomonoff, R., “A formal theory of inductive inference, Part 1 and Part 2,”
Information and Control, vol. 7, pp. 1-22,224-254, 1964.

[Vil] Vitanyi, P.M.B., “One queue or two pushdown stores take square time on
a one-head tape unit,” Computer Science Technical Report CS-R8406, CWI, Ams-
terdam, March 1984.

[Vi2] Vitanyi, P.M.B., “An N**1.618 lower bound on the time to simulate one
queue or two pushdown stores by one tape,” Information Processing Letters, vol.

19



21, pp. 147-152, 1985.

[Vi3] Vitdnyi, P.M.B., “On two-tape real-time computation and queues,” J.
Computer and System Sciences, vol. 29, pp. 303-311, 1984.

20



