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Abstract

A new aperiodic tile set containing only 13 tiles over 5 colors is presented. Its
construction is based on a technique recently developed by J. Kari. The tilings
simulate behavior of sequential machines that multiply real numbers in balanced
representations by real constants.

1 Introduction

Wang tiles are unit square tiles with colored edges. A tile set is a finite set of Wang
tiles. We consider tilings of the infinite Euclidean plane using arbitrarily many copies
of the tiles in the given tile set. The tiles are placed on the integer lattice points of
the plane with their edges oriented horizontally and vertically. The tiles may not be
rotated. A tiling is valid if everywhere the contiguous edges have the same color.

Let T be a finite tile set, and f : Z* — T a tiling. Tiling f is periodic with period
(a,b) € Z* — {(0,0)} iff f(x,y) = f(x +a,y—+b) for every (x,y) € Z*. Tf there exists
a periodic valid tiling with tiles of T', then there exists a doubly periodic valid tiling,
i.e. a tiling f such that, for some a,b > 0, f(z,y) = f(x + a,y) = f(x,y+b) for all
(z,y) € Z°. A tile set T is called aperiodic iff (1) there exists a valid tiling, and (ii)
there does not exist any periodic valid tiling.

R. Berger in his well known proof of the undecidability of the tiling problem [2]
refuted Wang’s conjecture that no aperiodic set exists, and constructed the first ape-
riodic set containing 20426 tiles, he shortly reduced it to 104 tiles. Between 1966 and
1978 progressively smaller aperiodic sets were found by Knuth, Lauchli, Robinson,
Penerose and finally a set of 16 tiles by R. Ammann. An excellent discussion of these
and related results is in chapters 10 and 11 of [3]. There was no further progress until
recently, when J. Kari developed a completely new method of constructing aperiodic
sets. His method also provides short and elegant correctness arguments, that is proofs
that the constructed set admits a tiling but admits no periodic one. He used his
method to construct an aperiodic set consisting of 14 tiles over 6 colors. We will use
his method with an additional small trick to improve this to 13 tiles over 5 colors.
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Figure 1: Sequential machine Ms.

2 Balanced representation of numbers

For an arbitrary real number r we denote by |r] the integer part of r, i.e. the largest
integer that is not greater than r, and by {r} the fractional part r — |r]. In proving
that our tile set can be used to tile the plane we use Beatty sequences of numbers.
Given a real number « its bi-infinite Beatty sequence is the integer sequence A(«)
consisting of the integral parts of the multiples of «. In other words, for all ¢ € Z,

Ale); = i~ «.

Beatty sequences were introduced by S.Beatty [1] in 1926.
We use sequences obtained by computing the differences of consecutive elements of
Beatty sequences. Define, for every i € Z,

B(Oz)Z = A(Oz)l — A(Oz)i_l.

The bi-infinite sequence B(a); will be called the balanced representation of a. The
balanced representations consist of at most two different numbers: If k¥ < o < k+1 then
B(a) is a sequence of k’s and (k+1)’s. Moreover, the averages over finite subsequences
approach « as the lengths of the subsequences increase. In fact, the averages are as
close to ar as they can be: The difference between [ - a and the sum of any [ consecutive
elements of B(a) is always smaller than one.

For example,

B(1.5) =...,121212.., B() =...001001 ..., and B(3)=...233233....

Now, we introduce sequential machines which define mappings on bi-infinite strings.
We will use them to implement multiplication of numbers in balanced representation
and later show that they are isomorphic to set of tiles.

A sequential machine is a 4-tuple M = (K, X, A, v) where K is the set of states, X is
the input alphabet, A is the output alphabet, and v C K x ¥ x A x K is the transition
set. Sequential machine M can be represented by a labeled directed graph with nodes
K and an edge from node ¢ to node p labeled a, b for each transition (¢, a, b, p) in ~.



Machine M computes a relation p(M) between bi-infinite sequences of letters. A
bi-infinite sequence x over set S is a function x : Z — S. We will abbreviate z(¢) by
x;. Bi-infinite sequences x and y over input and output alphabets, respectively, are in
relation p(M) if and only if there is a bi-infinite sequence s of states of M such that,
for every ¢ € Z, there is a transition from s;_1 to s; labeled by x;,y;.

For a given positive rational number ¢ = -, let us construct a sequential machine
(nondeterministic Mealy machine) M, that multiplies balanced representations B(«)
of real numbers by ¢. The states of M, will represent all possible values of ¢|r| — [¢7]
for r € IR. Because

glr] =1<qr—1<|gr] <qr <q(lr] +1),
we have
—¢ <gqlr]—lgr] <1
Because the possible values of ¢|r] — |¢r] are multiples of %, they are among the
n+m — 1 elements of
1 n-2 m—2 m-—1

n—
S:{_ m y sy ’ }

m m m

S is the state set of M.
The transitions of M, are constructed as follows: There is a transition from state
s € S with input symbol a and output symbol b into state s + qa — b, if such a
state exists. If there 1s no state s + ga — b in S then no transition from s with
label a,b is needed. After reading input ... B(a);—2 B(a);—1 and producing output
.. B(ga);—3 B(qa);—1, the machine is in state

si—1 = qA(a)ic1 — Alga)i—1 € S.

On the next input symbol B(a); the machine outputs B(g«); and moves to state

si-1+¢B(a)i — B(ga)i = qA(a)i—1 +¢B(a)i — (A(ga)i—1 + B(qa)i)
= qA(a); — A(q);
= 5 €85

The sequential machine was constructed in such a way that the transition is possible.
This shows that if the balanced representation B(«a) is a sequence of input letters and
B(gqa) is over output letters, then B(«) and B(ga) are in relation p(My).

Sequential machine M3 in Fig. 1 1s constructed in this fashion for multiplying by
3, using input symbols {0, 1} and output symbols {1,2}. This means that B(a) and
B(2a) are in relation p(Ms) for all real numbers « satisfying0 < e < 1 and 1 < 3a < 2,
that is, for all a € [%, %] Similarly, Mo, shown in Fig. 2(a), is constructed for input
symbols {0, 1,2} and output symbols {0, 1}, so that B(«) and B(%a) are in relation
p(My)s) for all o € [0, 2].

Our intention is to iterate sequential machines M3 and M1 without allowing M1
to be used more than twice in a row. To assure this, we mocfify M% by introducian
new input/output symbol 0’ and changing its diagram to M} as shown in Fig. 2(b).
We also change the state 0 to 0’ to make the sets of states of Mz and M disjoint.

That allows us to view the union of M3 and M/ as one sequential machine M.
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Figure 2: Sequential machines My and M.

b
Figure 3: A tile corresponding to the transition s 2y

3 Sequential machines and tile sets

There 1s a one-to-one correspondence between tile sets and sequential machines which
translates the properties of tile sets to properties of computations of sequential ma-
chines.

A finite tile set T" over set of colors C'gw on east-west edges and set of colors Cig
on north-south edges is represented by sequential machine M = (Cgw,Cns, Cns, )
where (s,a,b,t) € v iff there is a tile in T whose left, top, bottom and right edges are
colored s, a,b and ¢, respectively, as shown in Fig. 3. Obviously, bi-infinite sequences
z and y are in the relation p(M) iff there exists a row of tiles, with matching vertical
edges, whose upper edges form sequence xz and lower edges sequence y. So there is a
one-to-one correspondence between valid tilings of the plane, and bi-infinite iterations
of the sequential machine on bi-infinite sequences.

Clearly, the two conditions for 7" being aperiodic can be translated to conditions
on computations of M. Clearly, set T is aperiodic if (i) there exists a bi-infinite
computation of M, and (ii) there is no bi-infinite word w over Cyg such that (w, w) €
[p(M) ]t, where pT denotes the transitive closure of p.

There are a few other techniques that can be used to design small sequential ma-
chines computing simple functions on integers in balanced representation. If sequential
machine M computes f(z), we can modify it to compute f(x)+n for arbitrary integer
n by simply replacing outputs m,m + 1 by outputs m + n,m 4+ n + 1, respectively.
Another modification is to interchange the outputs m and m + 1. That will change



f(z) to 2m + 1 — f(x). Both these modifications are “free” they do not increase the
size of the machine. We tried to use this in building an even smaller aperiodic set but
without success.
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Figure 4: An aperiodic set of 13 Wang tiles

4 Aperiodic sets of tiles

We say that the tile in Fig. 3 multiplies by ¢ if ag + s = b + ¢t. In other words, the
tile multiplies the number on its upper edge by ¢, adds the ”carry” from the left edge,
and splits the result between the lower edge and the "carry” to the right.

Let us denote by T35 and by T% the tile sets representing the sequential machines
Ms and M7 | respectively. Therefore, T5 and T% multiply by 3 and by 1/2; respectively.
The tile set T = T3 U T%, consisting of 13 tiles, is shown in Fig. 4.

Now, we proceed to prove that T i1s an aperiodic set of tiles.

Lemma 1 Tile set T' admits uncountably many valid tilings of the plane.

Proof. From the input sequence B(a) for any o € [%, 2], the sequential machine
M computes output B(3a) if o € [%, %] and output B(5) if a € [%,2]. In the later
case, if o € [2,2] then output B(%) € [£,1] can be encoded in alphabet {0’,1} and
the second application of M computes B(§) € [%, %] represented in alphabet {0,1}.
In any case, the machine M can be applied again using the previous output as input,
and this may be repeated arbitrarily many times.

On the other hand, if o € [%, 2] there is input B(§) or B(2a), that is in relation
p(M) with B(a). Input sequence B(%) is used for a > 1, and B(2a) for o < 1. This
can be repeated many times so M can be iterated also backwards. Hence, for every



bi-infinite B(a), o € [%, 2], there is a bi-infinite iteration yielding a tiling of the plane.
O

Lemma 2 The tile set T' does not admit a periodic tiling.

Proof. Assume that f : Z? — T is a doubly periodic tiling with horizontal period
a and vertical period b. The colors on the vertical edges of the tiles in 73 and 17,5 are
disjoint from each other, so on each row of tiles all tiles are from the same set Tj.

It is easy to see that the tile set T',5 alone cannot tile the plane: Label 0 does not
appear on the upper edge of any tile in 775, so tiles with 0 on the lower edge cannot
be used. Similarly, tiles with label 2 are not used because 2 appears only on the upper
edges of tiles. Clearly the remaining two tiles do not admit a valid tiling.

We can assume without loss of generality that in row b the tiles are from 75. Let n;
denote the sum of colors on the upper edges of tiles f(1,4), f(2,%), ..., f(a,%). Because
the tiling is horizontally periodic with period a, the “carries” on the left edge of f(1,¢)
and the right edge of f(a, i) are equal.

Therefore n;_1 = ¢;n;, where ¢; = 3 if tiles from T3 are used in row ¢ and ¢; = % if
tiles from T /5 are used. Because the vertical period of tiling is b,

Ny =No = 4192 .- -4y - Tp .

Since tiles from T3 are used for ¢ = b, there are no 0’s on the upper edges of the b’th row
and thus np # 0. Hence, q192...q» = 1. This contradicts the fact that no nonempty
product of 3’s and %’s can be 1. a
Corollary. The tile set T 1s aperiodic.
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Figure 5: An aperiodic set of 13 tiles over 5 colors

Since no rotation of given Wang tiles is allowed when coloring the plane, we can
obviously replace the colors in one tile set by the max of the number of states and



the number of input/output symbol, that is max(5,4) = 5. One of the aperiodic sets
which we obtain is shown in Fig. 5.
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