
An aperiodic set of 13 Wang tiles �Karel Culik IIDepartment of Computer ScienceUniversity of South CarolinaColumbia, S.C. 29208, U.S.A.AbstractA new aperiodic tile set containing only 13 tiles over 5 colors is presented. Itsconstruction is based on a technique recently developed by J. Kari. The tilingssimulate behavior of sequential machines that multiply real numbers in balancedrepresentations by real constants.1 IntroductionWang tiles are unit square tiles with colored edges. A tile set is a �nite set of Wangtiles. We consider tilings of the in�nite Euclidean plane using arbitrarily many copiesof the tiles in the given tile set. The tiles are placed on the integer lattice points ofthe plane with their edges oriented horizontally and vertically. The tiles may not berotated. A tiling is valid if everywhere the contiguous edges have the same color.Let T be a �nite tile set, and f : ZZ2 ! T a tiling. Tiling f is periodic with period(a; b) 2 ZZ2 � f(0; 0)g i� f(x; y) = f(x + a; y + b) for every (x; y) 2 ZZ2. If there existsa periodic valid tiling with tiles of T , then there exists a doubly periodic valid tiling,i.e. a tiling f such that, for some a; b > 0, f(x; y) = f(x + a; y) = f(x; y + b) for all(x; y) 2 ZZ2. A tile set T is called aperiodic i� (i) there exists a valid tiling, and (ii)there does not exist any periodic valid tiling.R. Berger in his well known proof of the undecidability of the tiling problem [2]refuted Wang's conjecture that no aperiodic set exists, and constructed the �rst ape-riodic set containing 20426 tiles, he shortly reduced it to 104 tiles. Between 1966 and1978 progressively smaller aperiodic sets were found by Knuth, L�auchli, Robinson,Penerose and �nally a set of 16 tiles by R. Ammann. An excellent discussion of theseand related results is in chapters 10 and 11 of [3]. There was no further progress untilrecently, when J. Kari developed a completely new method of constructing aperiodicsets. His method also provides short and elegant correctness arguments, that is proofsthat the constructed set admits a tiling but admits no periodic one. He used hismethod to construct an aperiodic set consisting of 14 tiles over 6 colors. We will usehis method with an additional small trick to improve this to 13 tiles over 5 colors.�This work was supported by the National Science Foundation under Grant No. CCR-9417384.1



���� ���� �����2 �1 0~1,2 ~1,2} 0,1 } 0,1� 0,2 �1,1Figure 1: Sequential machine M3.2 Balanced representation of numbersFor an arbitrary real number r we denote by brc the integer part of r, i.e. the largestinteger that is not greater than r, and by frg the fractional part r � brc. In provingthat our tile set can be used to tile the plane we use Beatty sequences of numbers.Given a real number � its bi-in�nite Beatty sequence is the integer sequence A(�)consisting of the integral parts of the multiples of �. In other words, for all i 2 ZZ,A(�)i = bi � �c:Beatty sequences were introduced by S.Beatty [1] in 1926.We use sequences obtained by computing the di�erences of consecutive elements ofBeatty sequences. De�ne, for every i 2 ZZ,B(�)i = A(�)i � A(�)i�1:The bi-in�nite sequence B(�)i will be called the balanced representation of �. Thebalanced representations consist of at most two di�erent numbers: If k � � � k+1 thenB(�) is a sequence of k's and (k+1)'s. Moreover, the averages over �nite subsequencesapproach � as the lengths of the subsequences increase. In fact, the averages are asclose to � as they can be: The di�erence between l �� and the sum of any l consecutiveelements of B(�) is always smaller than one.For example,B(1:5) = : : : ; 121212 : : :, B(13 ) = : : :001001 : : :, and B(83 ) = : : :233233 : : : .Now, we introduce sequential machines which de�ne mappings on bi-in�nite strings.We will use them to implement multiplication of numbers in balanced representationand later show that they are isomorphic to set of tiles.A sequential machine is a 4-tupleM = (K;�;�; 
) where K is the set of states, � isthe input alphabet, � is the output alphabet, and 
 � K�����K is the transitionset. Sequential machineM can be represented by a labeled directed graph with nodesK and an edge from node q to node p labeled a; b for each transition (q; a; b; p) in 
.2



Machine M computes a relation �(M ) between bi-in�nite sequences of letters. Abi-in�nite sequence x over set S is a function x : ZZ ! S. We will abbreviate x(i) byxi. Bi-in�nite sequences x and y over input and output alphabets, respectively, are inrelation �(M ) if and only if there is a bi-in�nite sequence s of states of M such that,for every i 2 ZZ, there is a transition from si�1 to si labeled by xi,yi.For a given positive rational number q = nm , let us construct a sequential machine(nondeterministic Mealy machine) Mq that multiplies balanced representations B(�)of real numbers by q. The states of Mq will represent all possible values of qbrc � bqrcfor r 2 IR. Because qbrc � 1 � qr � 1 < bqrc � qr < q(brc + 1);we have �q < qbrc � bqrc < 1:Because the possible values of qbrc � bqrc are multiples of 1m , they are among then+m � 1 elements ofS = f�n� 1m ;�n� 2m ; : : : ; m � 2m ; m� 1m g:S is the state set of Mq .The transitions of Mq are constructed as follows: There is a transition from states 2 S with input symbol a and output symbol b into state s + qa � b, if such astate exists. If there is no state s + qa � b in S then no transition from s withlabel a; b is needed. After reading input : : : B(�)i�2 B(�)i�1 and producing output: : : B(q�)i�2 B(q�)i�1, the machine is in statesi�1 = qA(�)i�1 � A(q�)i�1 2 S:On the next input symbol B(�)i the machine outputs B(q�)i and moves to statesi�1 + qB(�)i �B(q�)i = qA(�)i�1 + qB(�)i � (A(q�)i�1 + B(q�)i)= qA(�)i � A(q�)i= si 2 SThe sequential machine was constructed in such a way that the transition is possible.This shows that if the balanced representation B(�) is a sequence of input letters andB(q�) is over output letters, then B(�) and B(q�) are in relation �(Mq).Sequential machine M3 in Fig. 1 is constructed in this fashion for multiplying by3, using input symbols f0; 1g and output symbols f1; 2g. This means that B(�) andB(2�) are in relation �(M2) for all real numbers � satisfying 0 � � � 1 and 1 � 3� � 2,that is, for all � 2 �13 ; 23�. Similarly,M1=2, shown in Fig. 2(a), is constructed for inputsymbols f0; 1; 2g and output symbols f0; 1g, so that B(�) and B(12�) are in relation�(M1=2) for all � 2 �0; 2�.Our intention is to iterate sequential machines M3 and M 12 without allowing M 12to be used more than twice in a row. To assure this, we modify M 12 by introducingnew input/output symbol 00 and changing its diagram to M 012 as shown in Fig. 2(b).We also change the state 0 to 00 to make the sets of states of M3 and M 012 disjoint.That allows us to view the union of M3 and M 012 as one sequential machine M .3



���� ����0 12~1,0} 1,1�2,1 �2,1O0,0 O0,0(a) M 12 ���� ����0' 12~1,0 -1,0'} 1,1�2,1 �2,1O0',0 O0',0(b) M 012Figure 2: Sequential machines M 12 and M 012 .bs taFigure 3: A tile corresponding to the transition s a;b�! t3 Sequential machines and tile setsThere is a one-to-one correspondence between tile sets and sequential machines whichtranslates the properties of tile sets to properties of computations of sequential ma-chines.A �nite tile set T over set of colors CEW on east-west edges and set of colors CNSon north-south edges is represented by sequential machine M = (CEW ; CNS ; CNS; 
)where (s; a; b; t) 2 
 i� there is a tile in T whose left, top, bottom and right edges arecolored s; a; b and t, respectively, as shown in Fig. 3. Obviously, bi-in�nite sequencesx and y are in the relation �(M ) i� there exists a row of tiles, with matching verticaledges, whose upper edges form sequence x and lower edges sequence y. So there is aone-to-one correspondence between valid tilings of the plane, and bi-in�nite iterationsof the sequential machine on bi-in�nite sequences.Clearly, the two conditions for T being aperiodic can be translated to conditionson computations of M . Clearly, set T is aperiodic if (i) there exists a bi-in�nitecomputation of M , and (ii) there is no bi-in�nite word w over CNS such that (w;w) 2[�(M ) ]+, where �+ denotes the transitive closure of �.There are a few other techniques that can be used to design small sequential ma-chines computing simple functions on integers in balanced representation. If sequentialmachineM computes f(x), we can modify it to compute f(x)+n for arbitrary integern by simply replacing outputs m;m + 1 by outputs m + n;m + n + 1, respectively.Another modi�cation is to interchange the outputs m and m + 1. That will change4



f(x) to 2m + 1 � f(x). Both these modi�cations are \free" they do not increase thesize of the machine. We tried to use this in building an even smaller aperiodic set butwithout success. 2-2 -11 1-2 01 2-1 01 1-1 -2020 -20 10 -10 00' 0'0' 10' 0'200' 121 0'0' 121 012 120' 112 122 1 0'12 1Figure 4: An aperiodic set of 13 Wang tiles4 Aperiodic sets of tilesWe say that the tile in Fig. 3 multiplies by q if aq + s = b + t. In other words, thetile multiplies the number on its upper edge by q, adds the "carry" from the left edge,and splits the result between the lower edge and the "carry" to the right.Let us denote by T3 and by T 12 the tile sets representing the sequential machinesM3 andM 012 , respectively. Therefore, T3 and T 12 multiply by 3 and by 1=2, respectively.The tile set T = T3 [ T 12 , consisting of 13 tiles, is shown in Fig. 4.Now, we proceed to prove that T is an aperiodic set of tiles.Lemma 1 Tile set T admits uncountably many valid tilings of the plane.Proof. From the input sequence B(�) for any � 2 [13 ; 2], the sequential machineM computes output B(3�) if � 2 [13 ; 23 ] and output B(�2 ) if � 2 [23 ; 2]. In the latercase, if � 2 [43 ; 2] then output B(�2 ) 2 [23 ; 1] can be encoded in alphabet f00; 1g andthe second application of M computes B(�4 ) 2 [13 ; 12 ] represented in alphabet f0; 1g.In any case, the machine M can be applied again using the previous output as input,and this may be repeated arbitrarily many times.On the other hand, if � 2 [13 ; 2] there is input B(�3 ) or B(2�), that is in relation�(M ) with B(�). Input sequence B(�3 ) is used for � � 1, and B(2�) for � � 1. Thiscan be repeated many times so M can be iterated also backwards. Hence, for every5



bi-in�nite B(�); � 2 [13 ; 2], there is a bi-in�nite iteration yielding a tiling of the plane.2Lemma 2 The tile set T does not admit a periodic tiling.Proof. Assume that f : ZZ2 ! T is a doubly periodic tiling with horizontal perioda and vertical period b. The colors on the vertical edges of the tiles in T3 and T1=2 aredisjoint from each other, so on each row of tiles all tiles are from the same set Tx.It is easy to see that the tile set T1=2 alone cannot tile the plane: Label 0 does notappear on the upper edge of any tile in T1=2, so tiles with 0 on the lower edge cannotbe used. Similarly, tiles with label 2 are not used because 2 appears only on the upperedges of tiles. Clearly the remaining two tiles do not admit a valid tiling.We can assume without loss of generality that in row b the tiles are from T3. Let nidenote the sum of colors on the upper edges of tiles f(1; i); f(2; i); : : : ; f(a; i). Becausethe tiling is horizontally periodic with period a, the \carries" on the left edge of f(1; i)and the right edge of f(a; i) are equal.Therefore ni�1 = qini, where qi = 3 if tiles from T3 are used in row i and qi = 12 iftiles from T1=2 are used. Because the vertical period of tiling is b,nb = n0 = q1q2 : : : qb � nb :Since tiles from T3 are used for i = b, there are no 0's on the upper edges of the b'th rowand thus nb 6= 0. Hence, q1q2 : : : qb = 1. This contradicts the fact that no nonemptyproduct of 3's and 12 's can be 1. 2Corollary. The tile set T is aperiodic.ca bb ba cb cb cb bb aacc aa bc ba ad dd bd dcad eb dd eb ae ed be ec be dbFigure 5: An aperiodic set of 13 tiles over 5 colorsSince no rotation of given Wang tiles is allowed when coloring the plane, we canobviously replace the colors in one tile set by the max of the number of states and6



the number of input/output symbol, that is max(5; 4) = 5. One of the aperiodic setswhich we obtain is shown in Fig. 5.Acknowledgement.The author is grateful to J.Kari for the early communication of his results and theirelegant presentation, for allowing the author to repeat a number of de�nitions andarguments, and for reading a draft of this paper.References[1] S. Beatty, Problem 3173, Am. Math. Monthly 33 (1926) 159; solutions in 34 (1927)159.[2] R. Berger, The Undecidability of the Domino Problem, Mem. Amer. Math. Soc.66 (1966).[3] B. Gr�unbaum and G.C. Shephard, Tilings and Patterns (W.H.Freeman and Com-pany, New York, 1987).[4] J. Kari, A small aperiodic set of Wang tiles, Discrete Math., to appear.
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