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Abstract.  Schema-based transformational systems maintain a library of logic
program schemata which capture large classes of logic programs.  One of the
shortcomings of schema-based transformation approaches is their reliance on a large
(possibly incomplete) set of logic program schemata that is required in order to
capture all of the minor syntactic differences between semantically similar logic
programs.  By defining a set of extensible logic program schemata and an associated
set of logic program transformations, it is possible to reduce the size of the schema
library while maintaining the robustness of the transformational system.  In our
transformational system, we have defined a set of extensible logic program schemata
in �Prolog.  Because �Prolog is a higher-order logic programming language, it can
be used as the representation language for both the logic programs and the extensible
logic program schemata.  In addition to the instantiation of predicate variables,
extensible logic program schemata can be extended by applying standard program-
ming techniques (e.g., accumulating results), introducing additional arguments (e.g.,
a second list to append to the end of the primary list), combining logic program
schemata which share a common primary input, and connecting logic program
schemata which are connected via a result of one schema being an input to the other
schema.  These extensions increase the robustness of logic program schemata and
enhance traditional schema-based transformational systems.

1  Introduction

Schema-based transformational systems maintain a library of logic program schemata
which capture large classes of logic programs.  One of the shortcomings of schema-
based transformation approaches is their reliance on a large (possibly incomplete) set of
logic program schemata that is required in order to capture all of the minor syntactic
differences between semantically similar logic programs.  By defining a set of extensible
logic program schemata and an associated set of logic program transformations, it is
possible to reduce the size of the schema library while maintaining the robustness of the
transformational system.  Our schema-based approach to logic program transformation
is similar to the schema-based transformations of Fuchs and his colleagues [6,16].  The
main difference is that their schema language which was developed for representing
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Prolog schemata in a tutoring system [7,8] is not the same as their object language which
is Prolog.  We propose using a higher-order logic programming language to represent
the logic programs and the set of extensible logic program schemata.

Logic program schemata have proven useful in teaching recursive logic
programming to novices [8,9], debugging logic programs [10], transforming logic
programs [5,6,16], and synthesizing logic programs [3,4].  A number of researchers have
looked into various approaches to meta-languages which support logic program
schemata, including our work on basic Prolog schemata [7,8], the work by Brna and his
colleagues on Prolog programming techniques [2], Barker-Plummer’s work on Prolog
cli chés [1], the work of Marakakis and Gallagher on program design schemata [14],
Flener’s work on logic algorithm schemata [3,4], and the work by Hamfelt and Fischer
Nilsson on metalogic programming techniques [12].  An alternative approach to using
a meta-language to represent program schemata is to have a set of general Prolog
programs which can be extended by adding arguments and subgoals to produce other
programs within the class.  This is the approach taken by Sterling and his colleagues with
their Prolog skeletons that are extended with programming techniques [13].  The present
proposal attempts to merge both of these approaches by using a higher-order logic
programming language as both the object language and the meta-language.  Like
Sterling’s skeletons, extensible logic program schemata capture well-understood control
flow patterns in logic programs and can be extended by applying programming
techniques.  Like traditional logic program schemata, extensible logic program schemata
are higher-order logic programs that contain predicate variables which can be
instantiated to produce logic programs with the same basic structure.  Thus, extensible
logic program schemata combine the strengths of both approaches.

2  Logic Program Schemata

�Prolog is a higher-order logic programming language that extends Prolog by
incorporating higher-order unification and �-terms [15].  The syntactic conventions of
�Prolog are mostly the same as those of Prolog.  In addition to �Prolog's support of
predicate variables and �-terms, the most notable difference between the syntax of the
Prolog and �Prolog is that �Prolog uses a curried notation.  The Prolog program sum/2:

sum([],0).
sum([H|T],B) :- sum(T,R), B is H + R.

which finds the summation of all the elements in its input list would be written in
�Prolog's curried form as:

sum [] 0.
sum [H|T] B :- sum T R, B is H + R.

We can rewrite sum/2 as a single clause using disjunction:
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sum A B :- (A = [], B = 0);
           (A = [H|T], sum T R, B is H + R).

which enables us to write sum/2 in �Prolog is as a �-term:

sum A B :- (X\Y\(sigma H\(sigma T\(sigma R\(
            (X = [], Y = 0);
            (X = [H|T], sum T R, Y is H + R)
           ))))) A B.

�-terms are used in �Prolog to represent predicate application and anonymous
predicates.  Predicate application is denoted in �Prolog by juxtaposition.  Anonymous
predicates are denoted with �-abstractions which have the form �x.'(x) in �-calculus
and the form (X\('(X)) in �Prolog and represents an anonymous predicate that has
a single argument X which succeeds if '(X) succeeds where '(X) is an arbitrary set
of �Prolog subgoals.  In addition to supporting �-terms, �Prolog also permits existential
quantifiers.  �Prolog uses the keyword sigma to represent the existential quantifier }
so the �-term �x.�y.}z.(p x y z) would be coded in �Prolog as (X\Y\(sigma
Z\(p X Y Z))) and represents an anonymous predicate that has two arguments X and
Y which succeeds if p X Y Z succeeds for some Z.

Another important difference between Prolog and �Prolog is that �Prolog is a
typed language.  �Prolog has several built -in types, including types for int, bool, list, and
o (the type of propositions).  If -  and -  are types then (-  � - ) is a type corresponding1 2 1 2

to the set of functions whose domain and range are given by -  and - , respectively.  The1 2

application of T  to T  is represented as (T  T ) and has the type -  if T  is a term of type1 2 1 2 1 1

(-  � - ) and T  is a term of type - . If X is a variable and T is a term of type -1, then the2 1 2 2   

abstraction (X : - \ T) is a term of type - � -1.  �Prolog has a built -in type inference
mechanism which gives its programmers the ill usion that they are programming in a
typeless language.  Thus, the type system of �Prolog serves as an aid to the programmer
rather than an added layer of syntax.  Lists and integers are handled the same way in
�Prolog as they are in Prolog.  Unlike Prolog, however, �Prolog supports separate types
for propositions and booleans.  The type o captures propositions and has the values
true and fail and operations for conjunction, disjunction, and implication of
propositions.  The type bool captures boolean expressions and has the values truth and
false and operations for conjunction and disjunction of booleans, and relationship
comparisons (<, =<, >, >=).  Note that because booleans are distinct from propositions,
it is necessary to have the �Prolog subgoal truth is X < Y in place of the Prolog
subgoal X < Y.

We have identified several logic program schemata that serve as prototype logic
programs for list processing [11].  Each of these schemata has two arguments, an input
li st and a result.  Although many logic programs can be used with various modes, we
assume a given mode for each of our logic programs. In addition to recursive list
processing schemata, it is also possible to define a set of recursive natural number
programs which also have two arguments.  One of the largest classes of list processing



4

programs is the class of global li st processing programs which includes all those list
processing programs that process all elements of the input list (i.e., the entire input list
is reduced).  Global li st processing programs are captured by the reduceList/2
schema:

reduceList [] Result :-
Base Result.

reduceList [H|T] Result :- 
reduceList T R, Constructor H R Result.

Global natural number processing programs are captured by the reduce-
Number/2 schema:

reduceNumber 0 Result :-
Base Result.

reduceNumber N Result :- 
M is N - 1, reduceNumber M R,
Constructor N R Result.

The reduceList/2 and reduceNumber/2 schemata can be generalized to
include all singly-recursive reduction programs by incorporating the termination
condition with the base case value computation and permitting an arbitrary destructor:

reduce Input Result :-
Base Input Result.

reduce Input Result :-
Destructor Input H T, reduce T R,
Constructor H R Result.

Some explanation of the reduce/2 schema is in order.  It has two  arguments and
contains three predicate variables.  The first argument is the primary input and the
second argument is the primary output.  The primary input and output can be either
simple or structured terms, but they are both first-order terms.  The three predicate
variables represent arbitrary �Prolog predicates.  The predicate variable Destructor
defines the process for destructing the input.  The predicate variable Constructor
defines the process for constructing the output.  The other predicate variable, Base, is
used to define the terminating condition, defining both the process to identify the
terminating condition and the process which defines how to construct the output for the
terminating condition.  An example should help clarify reduce/2.

Consider the factorial/2 program.  For an arbitrary query factorial A
B, the primary input is A and primary output is B.  The destructor predicate decrements
the input by one.  This process can be defined with the anonymous predicate (X\Y\Z\
(Z is X - 1, Y = X)).  The constructor predicate for factorial/2 multiplies
the current input by the factorial of one less than the current input and can be defined
with the anonymous predicate (X\Y\Z\(Z is X * Y)).  As can be seen in the base
case clause of the definition of factorial/2, the terminating condition occurs
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whenever the input becomes one and the terminating output value should be one in this
case.  This process can be defined with the anonymous predicate (X\Y\(X = 0, Y
= 1)).  Combining all this together, we can produce a program for factorial/2 by
instantiating the predicate variables in reduce/2:

factorial N Result :-
(X\Y\(X = 0, Y = 1)) N Result.

factorial N Result :-
(X\Y\Z\(Z is X - 1, Y = X)) N C M,
factorial M R,
(X\Y\Z\(Z is X * Y)) C R Result.

Furthermore, since factorial/2 is a global natural number processing program,
it is also possible to produce a program for it by instantiating the predicate variables in
reduceNumber/2:

factorial 0 Result :-
(X\(X = 1)) Result.

factorial N Result :-
M is N - 1, factorial M R,
(X\Y\Z\(Z is X * Y)) N R Result.

Now consider sum/2 again.  For an arbitrary query sum A B, the primary input
is A and primary output is B.  The destructor predicate decomposes the input into the
head element and the tail of the list.  This process can be defined with the anonymous
predicate (X\Y\Z\(X = [Y|Z])).  The constructor predicate for sum/2 computes
the summation by adding the current element to the sum of the rest of the list and can be
defined with the anonymous predicate (X\Y\Z\(Z is X + Y)).  As can be seen in
the base case clause of the definition of sum/2, the terminating condition occurs
whenever the input list becomes empty and the terminating output value should be 0.
This process can be defined with the anonymous predicate (X\Y\(X = [], Y =
0)).  Combining all this together, we can produce a program for sum/2 by instantiating
the predicate variables in reduce/2:

sum List Result :-
(X\Y\(X = [], Y = 0)) List Result.

sum List Result :-
(X\Y\Z\(X = [Y|Z])) List H T, sum T R,
(X\Y\Z\(Z is X + Y)) H R Result.

Furthermore, since sum/2 is a global li st processing program, it is also possible
to produce a program for it by instantiating the predicate variables in reduceList/2:

sum [] Result :-
(X\(X = 0)) Result.

sum [H|T] Result :-
sum T R, (X\Y\Z\(Z is X + Y)) H R Result.
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In order to capture programs like position/3 which simultaneously reduce both
a list and a natural number, we need to introduce another logic program schemata.  The
reduceLN/3 schema captures programs which simultaneously reduce a list and a
number.  In addition to capturing position/3, the reduceLN/3 schema also
captures programs like take/3 and drop/3 which keep or remove the first n elements,
respectively.  The reduceLN/3 schema looks like:

reduceLN [] N Result.
reduceLN L N Result :-

L = [H|T], M is N - 1, reduceLN T M R,
((N = 0, Base L Result); Constructor H R Result).

An example of reduceLN/3 schema is the position/3 program:

position 0 [E|T] E.
position N [H|T] E :- M is N - 1, position M T E.

If  we instantiate Base to (X\Y\(sigma Z\(X = [Y|Z]))) and Con-
structor to (X\Y\Z\(Z = Y)) then we can produce position/3 from
reduceLN/3 assuming that the case of requesting the n  element from a list of lessth

than n elements is a ill-posed query:

position [] N E.
position L N E :-

L = [H|T], M is N - 1, position T M R,
((N = 0, (X\Y\(sigma Z\(X = [Y|Z]))) L E);
 (X\Y\Z\(Z = Y)) H R E).

The class of reduction programs presented so far share a common destructor.  As
such, we can refer to the schemata defined so far as destructor-specific schemata.  It is
also possible to have constructor-specific schemata.  Two of the most popular higher-
order programming programs are map/3 and filter/3.  Mapping and filtering
programs are a subclass of reduction programs that also share a common constructor.
Rather than reducing a list by combining each element with the result of reducing the
remainder of the list, sometimes it is desirable to map a function predicate across all the
elements of a list.  For example, we may want to double all of the elements in a list.  In
order to double all of the elements of a list, we must first apply a function predicate that
doubles each element and then put the doubled element in the front of the list produced
by doubling all the elements in the remainder of the list.  In general, the predicate
map/3 can be used to apply an arbitrary binary function predicate to each element of
a list:

map [] [] P.
map [H|T] Result P :-

map T R P,
(X\Y\Z\(sigma W\(P X W, Z = [W|Y]))) H R Result.
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We can write doubleAll/2 using this map/3 predicate:

doubleAll List Result :-
 map List Result (X\Y\(Y is 2 * X)).

The predicate filter/3 takes a unary predicate and a list and filters out all
elements from the list that do not satisfy the predicate.  For example, we may want to
filter out all non-positive numbers from a list of numbers.  We can write filter/3 in
�Prolog as follows:

filter [] [] P.
filter [H|T] Result P :-

filter T R P,
(X\Y\Z\((P X, Z = [X|Y]); Z = Y)) H R Result.

We can write positivesOnly/2 using this filter/3 predicate:

positivesOnly List Result :-
filter List Result (X\(truth is X > 0)).

It is possible to consider the mapping constructor and the filtering constructor as
special cases of the following constructor:

(P X XX, Z = [XX|Y]); Z = Y

Notice that this constructor has the additional disjunctive subgoal (Z = Y) which
is never invoked for mapping programs and it only captures filtering constructors if we
rewrite the filtering constructor to add an additional argument to its filtering predicate:

(A\B\(P A, A = B))

which represents the mapped element.  Now we can define the following special case of
reduceList/2 for mapping/filtering programs:

mapList [] [].
mapList [H|T] Result :-

mapList T R, 
((P H XX, Result = [XX|R]); Result = R).

It is important to note that the schemata presented in this section are very robust,
capturing a large class of programs which also includes reverse/2, insertion-
sort/2, product/2, prefix/2, and many others.  We can extend each of these
schemata to capture additional logic programs.  For example, we can extend reduce/2
to capture other programs like append/3 and count/3.  This is described in the next
section.
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3  Extensions to Logic Program Schemata

The reduce/2 schema captures a large group of logic programs, but there is still a
large group of logic programs that it is unable to capture.  One of the major differences
between logic programs is the number of arguments.  In addition to instantiating
predicate variables in logic program schemata to produce logic programs, it is also
possible to extend program schemata to include additional arguments.  Vasconcelos and
Fuchs [16] handle this in their enhanced schema language by introducing argument
vectors and having positional indicators to ensure specified arguments occur in the same
position across terms.  We propose handling varying number of arguments by extending
our logic program schemata.  There are several types of argument extension that can be
applied to the reduce/2 schema, corresponding to adding arguments to the predicate
variables in reduce/2.  We can extend the reduce/2 schema to add an additional
argument to the Base predicate:

reduceB Input Result ArgBase :-
Base Input Result ArgBase.

reduceB Inputt Result ArgBase :-
Destructor Input H T,
reduceB T R ArgBase,
Constructor H R Result.

An example of this type of extension is the creation of append/3 from prefix/2:

prefix [] L.
prefix [H|T] [H|L] :- prefix T L.

The prefix/2 predicate succeeds if its primary list is a prefix of its other list.
The prefix/2 predicate can be extended by the adding a new argument which
represents the second list (i.e., the list that is to be appended to the primary list).  If we
make the new Base predicate unify its arguments then we get append/3:

append [] L List :- (X\Y\(X = Y)) L List.
append [H|T] [H|L] List :- append T L List.

Another argument extension that can be applied to the reduce/2 schema is to
add an argument to the Constructor predicate:

reduceC Input Result ArgCons :-
Base Input Result.

reduceC Input Result ArgCons :-
Destructor Input H T,
reduceC T R ArgCons,
Constructor H R Result ArgCons.
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An example of this type of extension is the creation of count/3 from length/2:

length [] 0.
length [H|T] L :- length T X, L is X + 1.

If we make the new Constructor predicate increment the count only when the
head of the list satisfies a predicate given by the newly added argument then we can
produce count/3:

count [] 0 P.
count [H|T] C P :- 

count T R P,
(W\X\Y\Z\(P W, Y is X + 1); Y = X) H R C P.

Note that the additional argument on the Constructor for count/3 serves as
a “ filt er” which tests the appropriateness of the input element.  For such programs, it
would be possible incorporate the “filter” into the Destructor (i.e., it is possible to
extend reduce/2 by adding an additional argument to the Destructor predicate):

count [] 0 P.
count List C P :-

(W\X\Y\Z\(remove W X Y Z)) List H T P,
count T R P, C is R + 1.

remove [A|B] A B P :- P A.
remove [H|T] A B P :- remove T A B P.

which is an example of the use of reduceD/3:

reduceD Input Result ArgDest :-
Base Input Result.

reduceD Input Result ArgDest :-
Destructor Input H T ArgDest,
reduceD T R ArgDest,
Constructor H R Result.

The purpose of these semantics-altering extensions that enable the addition of
arguments is to widen the applicabilit y of the semantics-preserving schema transforma-
tions.  Any transformation that is applicable to reduce/2 is also applicable to
reduceB/3, reduceC/3, and reduceD/3.  There are two types of semantics-
preserving extensions that can be applied to logic program schemata to produce
equivalent logic program schemata: application of programming techniques and
combination (or merging) and connection of logic program schemata.  The first type of
semantics-preserving extension is the application of programming techniques to logic
program schemata.  Programming techniques have been studied fairly extensively and
a number of commonly occurring programming practices have been identified.  One
popular programming technique is the introduction of an accumulator, enabling the
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composition of the output from the right rather than from the left.  Given that a program
unifies with the reduce/2 schema, we can transform the program by instantiating the
following reduceAcc/2 schema with the same Base and Constructor predicates:

reduceAcc Input Result :- 
Base Dummy Acc,
reduceAcc2 Input Result Acc.

reduceAcc2 Input Result Result :-
Base Input Dummy.

reduceAcc2 Input Result Acc :-
Destructor Input H T, Constructor Acc H A,
reduceAcc2 T Result A.

as long as Constructor is an associative predicate.  As an example, consider sum/2
again.  We can produce the more efficient (tail recursive) accumulator implementation
of sum/2 by instantiating this reduceAcc/2 schema:

sum List Result :-
(X\(X = 0)) Acc, sum2 List Result Acc.

sum2 [] Result Result.
sum2 [H|T] Result Acc :-

(X\Y\Z\(Z is X + Y)) Acc H A, sum2 T Result A.

A similar type of transformation is possible for programs captured by the
reduceLN/3 schema.  The reduceLN/3 is a forward processing schema which
reduces its list from the front and reduces its integer from some maximum value down
to 0.  An equivalent backward processing schema which continues to reduce its list from
the front but reduces its integer up from 0 to the maximum rather than from the
maximum down to 0 looks like:

reduceUpLN L N Result :- 
Max = (X\(X = N)),
reduceUpLN2 L 0 Max Result.

reduceUpLN2 [] N Max Result.
reduceUpLN2 L N Max Result :-

L = [H|T], M is N + 1, reduceUpLN2 T M Max R,
((Max N, Base L Result); Constructor H R Result).

As an example, consider position/3 again.  We can transform the standard
forward processing program given in the previous section to a backward processing
program using the reduceLN/3 < reduceUpLN/3 transformation producing the
following implementation of position/3:

position L N E :-
Max = (X\(X = N)),
position2 L 0 Max E.
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position2 [] N Max Result.
position2 L N Max E :-

L = [H|T], M is N + 1, position2 T M Max R,
((Max N, (X\Y\(sigma Z\(X = [Y|Z]))) L E);
 (X\Y\Z\(Z = Y)) H R E).

The second type of semantics-preserving logic program extension is the
combination (or merging) of logic program schemata.  The idea is to merge two logic
program schemata whenever they have a common argument.  Combination schema
transformations are listed in the following table.

Initial Schemata Combination Schema

mapList/2 reduceList/2 mapReduceList/2

reduceList/2 reduceList/2 reduceListList/3

reduceLN/3 reduceLN/3 reduceLNLN/4

reduceListAcc/2 reduceUpLN/3 reduceConnect/2

reduceListAcc/2 reduceUpLNLN/4 reduceConnect/3

Probably the most obvious combination schema transformation is to combine logic
program schemata which have a common primary input.  The reduceList/2 +
reduceList/2 < reduceListList/3 transformation combines two reduce-
List/2 schemata that have a common primary input.

reduceList [] Result1 :- reduceList [] Result2 :-
 Base1 Result1.  Base2 Result2.
reduceList [H|T] Result1 :- reduceList [H|T] Result2 :-
 reduceList T R,  reduceList T R, 
 Constructor1 H R Result1.  Constructor2 H R Result2.

?
reduceListList [] Result1 Result2 :- 
 Base1 Result1, Base2 Result2.
reduceListList [H|T] Result1 Result2 :-
 reduceListList T R1 R2,
 Constructor1 H R1 Result1,
 Constructor2 H R2 Result2.

An example of the use of the reduceList/2 + reduceList/2 <
reduceListList/3 transformation is the creation of a singly-recursive implementa-
tion of the average/2 predicate from the following straightforward solution:
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average List Average :-
length List Length,
sum List Sum, 
Average is Sum / Length.

length [] 0.
length [H|T] Length :- length T R, Length is R + 1.

sum [] 0.
sum [H|T] Sum :- sum T R, Sum is R + H.

Applying the reduceList/2 + reduceList/2 < reduceListList/3
transformation to this program produces the following implementation of average/2:

average List Average :-
average2 List Length Sum,
Average is Sum / Length.

average2 [] 0 0.
average2 [H|T] Length Sum :-

average2 T L S, Length is L + 1, Sum is S + H.

Because the reduceListList/3 schema was created by combining two global
list processing schemata which share a common primary input and have distinct outputs,
the same process can also be used to combine two accumulated implementations of
global li st processing schemata (or even one of each).  It is also possible to combine two
reduceLN/3 schemata with the reduceLN/3 + reduceLN/3 < reduce-
LNLN/4 transformation.

reduceLN [] N Result1. reduceLN [] N Result2.
reduceLN L N Result1 :- reduceLN L N Result2 :-
 L = [H|T], M is N - 1,  L = [H|T], M is N - 1,
 reduceLN T M R,  reduceLN T M R,
 ((N = 0, Base1 L Result1);  ((N = 0, Base2 L Result2); 
 Constructor1 H R Result1).  Constructor2 H R Result2).

?
reduceLNLN [] N Result1 Result2.
reduceLNLN L N Result1 Result2 :-
 L = [H|T], M is N - 1, 
 reduceLNLN T M R1 R2,
 ((N = 0, Base1 L Result1, Base2 L Result2);
  (Constructor1 H R1 Result1),
   Constructor2 H R2 Result2)).

An example of the use of the reduceLN/3 + reduceLN/3 < reduce-
LNLN/4 transformation is the splitti ng of a list into two sublists, one sublist which
contains the first n elements of the list and a second sublist which contains all but the
first n elements of the list.  This task can be accomplished using the well -known
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take/3 and drop/3 predicates:

takedrop List N FirstPart ButFirstPart :-
take List N FirstPart, drop List N ButFirstPart.

take [] N [].
take L N Result :-

L = [H|T], M is N - 1, take T M R,
((N = 0, (X\Y\(Y = [])) L Result);
 (X\Y\Z\(Z = [X|Y])) H R Result).

drop [] N [].
drop L N Result :-

L = [H|T], M is N - 1, drop T M R,
((N = 0, (X\Y\(Y = X)) L Result);
 (X\Y\Z\(Z = Y)) H R Result).

Applying the reduceLN/3 + reduceLN/3 < reduceLNLN/4 transforma-
tion to takedrop/4 produces the following implementation:

takedrop [] N [] [].
takedrop L N Res1 Res2 :-

L = [H|T], M is N - 1, takedrop T M R1 R2,
((N = 0,
  (X\Y\(Y = [])) L Res1, (X\Y\(Y = X)) L Res2);
 (X\Y\Z\(Z = [X|Y])) H R1 Res1),
  (X\Y\Z\(Z = Y)) H R2 Res2)).

The reduceLN/3 + reduceLN/3 < reduceLNLN/4 transformation has
a corresponding reduceUpLN/3 + reduceUpLN/3 < reduceUpLNLN/4
transformation which enables the combination of two backward processing reduce-
LN/3 programs.  Although the transformational system of Vasconcelos and Fuchs [16]
supports the combination of logic program schemata which share a common input, their
system currently does not support any transformations which connect two logic programs
where the output of one schema is the input to another schema.  We can support such
transformations by connecting mapList/2 and reduceList/2 where the
mapping/filtering program maps a predicate across the elements of the input list and this
mapped list is then reduced.  The mapList/2 + reduceList/2 < mapReduce-
List/2 transformation combines the mapList/2 schema with the reduceList/2
schema where the list that is produced by the mapping/filtering program is the input to
the reduction program.
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mapList [] []. reduceList [] Result :-
mapList [H|T] TempRes :-  Base Result.
 mapList T R, reduceList [H|T] Result :-
 ((P H XX, TempRes = [XX|R]);  reduceList T R, 
  TempRes = R).  Constructor H R Result.

?
mapReduceList [] Result :-
 Base Result.
mapReduceList [H|T] Result :-
 mapReduceList T R,
 ((P H XX, Constructor XX R Result); Result = R).

As an example, consider the following straightforward solution to counting the
number of positive elements in a list by filtering out the non-positive elements (using
positivesOnly/2) and then counting the number of elements in the filtered list
(using length/2):

positiveCount List Result :-
positivesOnly List X, length X Result.

positivesOnly [] [].
positivesOnly [H|T] Result :-

positivesOnly T R,
((truth is H > 0, XX = H, Result = [XX|R]);
 Result = R).

length [] 0.
length [H|T] L :- length T X, L is X + 1.

Applying the mapList/2 + reduceList/2 < mapReduceList/2
transformation to this positiveCount/2 program produces the following
implementation:

positiveCount [] 0.
positiveCount [H|T] Result :-

positiveCount T R,
(((truth is H > 0, XX = H), Result is R + 1);
 Result = R).

Another class of combination schema transformations enable the connection of two
logic program schemata that share a common primary input and the result of one schema
is an additional input to the other schema. We have identified two schema transforma-
tions for this type of combination schema transformation:   reduceListAcc/2 +
reduceUpLN/2 < reduceConnect/2 and reduceListAcc/2 + reduce-
UpLNLN/3 < reduceConnect/3.
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reduceListAcc L N :- reduceUpLN L N Result :-
 Base1 A,  Max = (X\(X = N)),
 reduceListAcc2 L N A.  reduceUpLN2 L 0 Max Result.
reduceListAcc2 [] N N. reduceUpLN2 [] N Max Result.
reduceListAcc2 L N A :- reduceUpLN2 L N Max Result :-
 L = [H|T],  L = [H|T], M is N + 1,
 Constructor1 A H B,  reduceUpLN2 T M Max R,
 reduceListAcc2 T N B.  ((Max N, Base2 L Result); 

  Constructor2 H R Result).

?
reduceConnect List Result :- 
 Base1 Acc, Max = (X\(X = C)),
 reduceC2 List Acc A 0 Max Result.
reduceC2 [] Acc Acc N Max Result :-
 Connect Acc C, Max = (X\(X = C)).
reduceC2 List Acc RL N Max Result :-
 List = [H|T], M is N + 1, Constructor1 Acc H A,
 reduceC2 T A RL M Max R,
 ((Max N, Base2 List Result); Constructor2 H R Result).

As an example of the reduceAccList/2 + reduceUpLN/2 < reduce-
Connect/2 transformation, consider finding the middle element in an arbitrary list.
A straightforward solution to this problem is to count the number of elements in the list
(using length/2), divide this count by two,  and then use this value to find the middle
element (using position/3):

middle List Middle :-
length List Length, Half is Length div 2,
position List Half Middle.

length [] 0.
length [H|T] Length :- length T R, Length is R + 1.

position [] N E.
position L N E :-

L = [H|T], M is N - 1, position T M R,
((N = 0, (X\Y\(sigma Z\(X = [Y|Z]))) L E);
 (X\Y\Z\(Z = Y)) H R E).

The first step in the transformation of middle/2 is to transform length/2 to
an accumulated implementation using the reduce/2 < reduceAcc/2 tranforma-
tion producing the following implementation of length/2:

length List Length :- Acc = 0, length2 List Length Acc.
length2 [] Len Len.
length2 [H|T] Len Acc :- A is Acc + 1, length2 T Len A.
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The next step is to transform position/3 from a forward processing program
to a backward processing program using the reduceLN/3 < reduceUpLN/3
transformation producing the following implementation of position/3:

position L N E :-
Max = (X\(X = N)),
position2 L 0 Max E.

position2 [] N Max Result.
position2 L N Max E :-

L = [H|T], M is N + 1, position2 T M Max R,
((Max N, (X\Y\(sigma Z\(X = [Y|Z]))) L E);
 (X\Y\Z\(Z = Y)) H R E).

The final step in the transformation is to apply the reduceListAcc/2 +
reduceUpLN/3 < reduceConnect/2 transformation to combine length/2 and
position/3 to produce the following implementation of middle/2:

middle List Middle :-
Acc = 0, Max = (X\(X = Half)),
middle2 List Acc Length 0 Max Middle.

middle2 [] Length Length AH Max Middle :-
Half is Length div 2, Max = (X\(X = Half)).

middle2 [H|T] AL Length AH Max Middle :-
NL is AL + 1, NH is AH + 1,
middle2 T NL Length NH Max Mid,
((Max AH, Middle = H); Middle = Mid).

The final combination schema transformation that we consider is the reduce-
ListAcc/2 + reduceUpLNLN/4 < reduceConnect/3 transformation.

reduceListAcc L N :- reduceUpLNLN L N R1 R2 :-
 Base1 A,  Max = (X\(X = N)),
 reduceListAcc2 L N A.  reduceUpLNLN2 L 0 Max R1 R2.
reduceListAcc2 [] N N. reduceUpLNLN2 [] N Max R1 R2.
reduceListAcc2 L N A :- reduceUpLNLN2 L N Max R1 R2 :-
 L = [H|T],  L = [H|T], M is N + 1,
 Constructor1 A H B,  reduceUpLNLN2 T M Max S1 S2,
 reduceListAcc2 T N B.  ((Max N, Base21 L R1, Base22 L R2);

  (Constructor21 H S1 R1),
   Constructor22 H S2 R2)).

         ?
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reduceConnect List R1 R2 :- 
 Base1 Acc, Max = (X\(X = C)),
 reduceC2 List Acc A 0 Max R1 R2.
reduceC2 [] Acc Acc N Max R1 R2 :-
 Connect Acc C, Max = (X\(X = C)).
reduceC2 List Acc RL N Max R1 R2 :-
 List = [H|T], M is N + 1, Constructor1 Acc H A,
 reduceC2 T A RL M1 M2 Max S1 S2,
 ((Max N, Base21 List R1, Base22 List R2); 
  (Constructor21 H S1 R1), Constructor22 H S2 R2)).

As an example of the reduceListAcc/2 + reduceUpLNLN/4 <
reduceConnect/3 transformation, consider the task of splitting a list of elements in
half.  We can do this in �Prolog by invoking three reduction programs:

splitlist List FirstHalf LastHalf :-
length List N, M is N div 2,
take List M FirstHalf, drop List M LastHalf.

length [] 0.
length [H|T] Length :- length T R, Length is R + 1.

take [] N [].
take L N Result :-

L = [H|T], M is N - 1, take T M R,
((N = 0, (X\Y\(Y = [])) L Result);
 (X\Y\Z\(Z = [X|Y])) H R Result).

drop [] N [].
drop L N Result :-

L = [H|T], M is N - 1, drop T M R,
((N = 0, (X\Y\(Y = X)) L Result);
 (X\Y\Z\(Z = Y)) H R Result).

In order to apply the reduceUpLN/3 + reduceUpLN/3 < reduceUp-
LNLN/4 transformation to take/3 and drop/3 we must first transform them from
forward processing programs to backward processing programs using the reduceLN/3
< reduceUpLN/3 transformation:

take L N Result :-
Max = (X\(X = N)),
take2 L 0 Max Result.

take2 [] N Max [].
take2 L N Max Result :-

L = [H|T], M is N + 1, take2 T M Max R,
((Max N, (X\Y\(Y = [])) L Result);
 (X\Y\Z\(Z = [X|Y])) H R Result).
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drop L N Result :-
Max = (X\(X = N)),
drop2 L 0 Max Result.

drop2 [] N Max [].
drop2 L N Max Result :-

L = [H|T], M is N + 1, drop2 T M Max R,
((Max N, (X\Y\(Y = X)) L Result);
 (X\Y\Z\(Z = Y)) H R Result).

Now we can combine take/3 and drop/3 by applying the reduceUpLN/3
+ reduceUpLN/3 < reduceUpLNLN/4 transformation:

takedrop L N Res1 Res2 :-
Max = (X\(X = N)),
takedrop2 L 0 Max Res1 Res2.

takedrop2 [] N Max [] [].
takedrop2 L N Max Res1 Res2 :-

L = [H|T], M is N + 1,
takedrop2 T M Max R1 R2,
((Max N,
  (X\Y\(Y = [])) L Res1, (X\Y\(Y = X)) L Res2));
 (X\Y\Z\(Z = [X|Y])) H R1 Res1),
  (X\Y\Z\(Z = Y)) H R2 Res2)).

After transforming length/2 to its accumulated implementation as we did in the
previous example, we can apply the reduceListAcc/2 + reduceUpLNLN/4 <
reduceConnect/3 transformation producing the following implementation of
splitlist/3:

splitlist L Res1 Res2 :- 
Acc = 0, Max = (X\(X = Half)), 
splitlist2 L Acc N 0 Max Res1 Res2.

splitlist2 [] Length Length N Max [] [] :-
Half is Length div 2, Max = (X\(X = Half)).

splitlist2 L AL Length AH Max Res1 Res2 :-
L = [H|T], NL is AL + 1, NH is AH + 1,
splitlist2 T NL Length NH Max R1 R2,
((Max AH, (X\Y\(Y = [])) L Res1, 
  (X\Y\(Y = X)) L Res2);
 ((X\Y\Z\(Z = [X|Y])) H R1 Res1,
  (X\Y\Z\(Z = Y)) H R2 Res2)).

Logic program schemata and logic program schema transformations can be used
to help in program development by enabling the programmer to produce a simple
straightforward solution to the problem and then transform that solution into an efficient
one by applying a set of program transformations.
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4  Conclusion

We have proposed an extensible schema-based logic program transformation system as
an improvement to the traditional schema-based meta-language approaches.  In this
system, we have defined a set of extensible logic program schemata in �Prolog.  Because
�Prolog is a higher-order logic programming language, it can be used as the representa-
tion language for both the logic programs and the extensible logic program schemata.
In addition to the instantiation of predicate variables, extensible logic program schemata
can be extended by applying standard programming techniques (e.g., accumulating
results), introducing additional arguments (e.g., a second list to append to the end of the
primary list), combining logic program schemata which share a common primary input,
and connecting logic program schemata which are connected via a result of one schema
being an input to the other schema.  These extensions increase the robustness of logic
program schemata and enhance traditional schema-based transformational systems.
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