Extensible L ogic Program Schemata

Timothy S. Gegg-Harrison

Department of Computer Science
Winona State University
Winona, MN 55987, USA
tsg@vax2.winona.msus.edu

Abstract. Schemabased transformational systems maintain a library of logic
program schemata which cegpture large dasss of logic programs. One of the
shortcomings of schema-based transformation approaches is their reliance on a large
(posdgbly incomplete) set of logic program schemata that is required in order to
cgpture al of the minor syntadic differences between semanticdly similar logic
programs. By defining a set of extensible logic program schemata and an associated
setof logic program transformations, it is possbleto reduce the size of the schema
library while maintaining the robustness of the transformational system. In ou
transformationa system, we have defined a set of extensible logic program schemata

in AProlog. BecausgProlog is a higher-order logic programming language, it can
be used as the representation language for bath the logic programs and the extensible
logic program schemata. In addition to the instantiation o predicate variables,
extensible logic program schemata can be extended by applying standard program-
ming techniques (e.g., acaimulating results), introducing additional arguments (e.g.,
a seoond list to append to the end d the primary list), combining logic program
schemata which share a @mmon grimary inpu, and conneding logic program
schematawhich are mnreded via a result of one schema being an input to the other
schema. These extensions increase the robustnessof logic program schemata and
enhance traditional schema-based transformational systems.

1 Introduction

Schema-basettansformational systems maintain alibrary of logic program schemata
which capture large dasss of logic programs. One of the shortcomings of schema

based transformation approachesistheir relianceonalarge (possibly incomplete) set of
logic program schemata that is required in order to cgpture dl of the minor syntadic

diff erences between semanticdly similar logic programs. By defining a set of extensible

logic program schemata and an associated set of logic program transformations, it is
posshle to reducethe size of the schemallibrary while maintaining the robustness of the
transformational system. Our schema-based approach to logic program transformation
is gmilar to the schema-based transformations of Fuchs and his colleagues [6,16]. The
main differenceis that their schema language which was developed for representing

Prolog schematain atutoring system [7,8] isnat the same as their objea language which
is Prolog. We propose using a higher-order logic programming language to represent
the logic programs and the set of extensible logic program schemata.

Logic program schemata have proven useful in teading reaursive logic
programmingto novices [8,9], debuggng logic programs [10], transforming logic
programs[5,6,16], and synthesizing logic programs[3,4]. A number of reseachers have
looked into various approaches to meta-languages which suppat logic program
schemata, including ou work on tesic Prolog schemata [7,8], the work by Brna and his
colleagues on Prolog programming techniques [2], Barker-Plummer’s work on Prolog
clichés[1], the work of Marakakis and Gallagher on rogram design schemata [14],
Flener’ swork onlogic dgorithm schemata [3,4], and the work by Hamfelt and Fischer
Nilssonon metalogic programming techniques [12]. An alternative approach to using
a meta-language to represent program schemata is to have aset of general Prolog
programs which can be extended by adding arguments and subgaals to produce other
programswithinthe class Thisisthe gproac taken by Sterling and his coll eagues with
their Prolog skeletonsthat are extended with programming techniques[13]. Thepresent
proposal attempts to merge both of these goproaches by using a higher-order logic
programminglanguage & both the objed language and the meta-language. Like
Sterling' s «keletons, extensible logic program schemata cature well-understood control
flow patterns in logic programs and can be extended by applying programming
techniques. Like traditional logic program schemata, extensible logic program schemata
are higher-order logic programs that contain predicate variables which can be
instantiated to produce logic programs with the same basic structure. Thus, extensible
logic program schemata combine the strengths of both approaches.

2 Logic Program Schemata

AProlog is a higher-order logic programming language that extends Prolog Ly
incorporating higher-order unification atieterms [15]. The syntactic conventions of
AProlog are mostly the same @ those of Prolog. In addition to AProlog's suppat of
predicatevariables and.-terms, the most notable difference between the syntax of the
Prologand APrologisthat AProlog wsesa aurried ndation. The Prologprogram sum 2:

sum([], 0). _
sum([H T],B) :- sum(T,R), Bis H+ R

which finds the summation o al the dements in its input list would be written in
AProlog's curried form as:

sum [] O.
sum[HT] B:- sumTR Bis H+ R

We can rewritessunt 2 as a single clause using disjunction:

sumA B :- (A
(A

[], B=0); ,
[HT], sumTR Bis H+ R).

which enables us to writeun 2 in AProlog is as a-term:

sumA B :- (X\Y\(sigma H (sigma T\(sigm R\ (
(X =11, Y=0); ,
X=[HT], sumTR Yis H+ R

A-terms are used in AProlog to represent predicae gplicaion and anonymous
predicates.Predicae gplicaionisdenoted imProlog by juxtaposition. Anonymous
predicaes are denated with A-abstradionswhich have theform ax. o(x) in A-calculus
andthe form (X\ (p(X)) in AProlog and represents an anonymous predicate that has
asingle agument X which succeels if o(X) succealswhere o(X) isan arbitrary set
of APrologsubgads. In additionto suppating A-terms, AProlog also permits existential
quantifiers. AProlog uses the keywordi gma to represent the existential quantifier
sotheA-termax. Ay. 3z. (p x y z) would be mded in APrologas(X\ Y\ (si gma
Z\(p XY 2))) andrepresents an anonymous predicéee that hastwo arguments X and
Y which succeeds § X Y Z succeeds for sonig

Anotherimportant difference between Prolog and AProlog is that AProlog is a
typed languege. AProlog hes ®verd built-in types, including typesfor int, boal, list, and
o (the type of propasitions). If 1, and 1, are types thert(- 1,) is a type corresponding
to the set of functionswhose domain andrange ae given byt, andt,, respedively. The
applicaion o T, to T, isrepresented as(T, T,) and has the typg if T, is a term of type
(t,- 1) andT,isaterm of typet,. If X is a variable and is a term of type’, then the
abstradion (X : 7\ T) isaterm of typet - t’. AProlog hes a built-in type inference
mechanismwhich gves its programmers the ill usion that they are programming in a
typelesslanguege. Thus, the type system of AProlog servesasan aid to the programmer
rather than an added layer of syntax. Lists and integers are handled the same way in
APrologasthey arein Prolog. Unlike Prolog, however, AProlog supports separate types
for propasitions and bodeans. The type o captures propasitions and has the values
true and fail and operations for conjunction, disunction, and implicaion o
propasitions. The type bool captures bodean expressons and hesthe valuest r ut h and
f al se and operations for conjunction and dsjunction d bodeans, and relationship
comparisons (<, =<, >, >=). Notethat becaise booleans are distinct from propositions,
it isnecessary to have theProlog subgoalruth is X < Yin place of the Prolog
subgoalX < Y.

We have identified several logic program schemata that serve & prototype logic
programsfor list processing [11]. Each of these schemata has two arguments, an input
list and aresult. Althoughmany logic programs can be used with various modes, we
asuume a given mode for ead of our logic programs. In addition to reaursive lig
processingschemata, it is also posshle to define aset of reaursive natural number
programswhich also have two arguments. One of the largest classes of list processing

programsis the dassof global list processng programs which includes all those ligt
processing programs that process all elements of the input list (i.e., the entire input list
is reduced). Global list processng programs are cgtured by ther educeli st/ 2
schema:

reducelList [] Result :-
Base Result.
reduceList [H T] Result :-
reduceList T R Constructor H R Result.

Global natural number processng programs are cgtured by the r educe-
Nunber / 2 schema:

reduceNunber 0 Result :-
Base Result.

reduceNunber N Result :-
Mis N - 1, reduceNunber MR,
Constructor N R Resul t.

Ther educelLi st/ 2 andr educeNunber / 2 schemata can be generalized to
include al singly-reaursive reduction programs by incorporating the termination
condition with the base case value computation and permitting an arbitrary destructor:

reduce Input Result :-
Base I nput Result.

reduce Input Result :-
Destructor Input HT, reduce T R
Constructor H R Result.

Some explanation d ther educe/ 2 schemaisin order. It hastwo argumentsand
contains three predicae variables. The first argument is the primary inpu and the
second argument is the primary output. The primary input and ouput can be dather
simple or structured terms, but they are both first-order terms. The three predicae
variablesrepresent arbitrary AProlog predicates. The predicate variabkst r uct or
definesthe processfor destructing the input. The predicae variable Const r uct or
definesthe process for constructing the output. The other predicate vaBaile, is
used to define the terminating condtion, defining bdh the process to identify the
terminating condti on and the processwhich defines how to construct the output for the
terminating condition. An example should help clarigduce/ 2.

Considerthef act ori al / 2 program. For an arbitrary queryfactorial A
B, the primary input isA and primary output iB. The destructor predicate decrements
theinpu by ore. This processcan be defined with the anonymous predicat&\ Y\ Z\
(Zis X- 1, Y = X)). The onstructor predicaefor f act ori al / 2 multiplies
the current input by the fadorial of one lessthan the arrent input and can be defined
with the anonymous predicae (X\ Z\ (Z is X * Y)). Ascan beseeninthebase
caseclause of the definition o factori al / 2, the terminating condtion accurs

4

whenever the inpu beaomes one and the terminating output value should be one in this
case. This process can be defined with the anonymous pre@iXa (X = 0, Y

= 1)) . Combiningall thistogether, we can produce aprogramfor f act ori al / 2 by
instantiating the predicate variablegiaduce/ 2:

factorial N Result :-
(XN (X =0, Y=1)) NResult.
factorial N Result :-
(XXM2\(zis X-1, Y=X)) NCM
factorial MR
(XXNMNZ\(Zis X* Y)) CR Result.

Furthermore, sincef act ori al / 2 isagloba natural number processng program,
it isaso pessible to produce a program for it by instantiating the predicate variables in
reduceNunber/ 2:

factorial O Result :-
(X\(X = 1)) Result.

factorial N Result :-
Mis N- 1, factorial MR
(XXNMN2\(Zzis X* Y)) NR Result.

Now consider suni 2 again. For an arbitrary querysum A B, the primary input
is A and primary output is B. The destructor predicate decomposes the input into the
head element and the tail of thelist. This processcan be defined with the anonymous
predicae (X\YWZ\ (X = [VY] Z])) . The ongructor predicate fosum 2 computes
the summation byadding the aurrent element to the sum of the rest of the list and can be
defined with the anonymous predicae (X\Y\WZ\ (Z is X + Y)). Ascan be seen in
the base cae dause of the definition d sunt 2, the terminating condtion accurs
wheneverthe inpu list becomes empty and the terminating ouput value shoud be 0.
This processcan be defined with the anonymous predicae (XXM (X = [], Y =
0)) . Combiningall thistogether, we can produce aprogram for suni 2 by instantiating
the predicate variables ireduce/ 2:

sum Li st Result :-
(XN (X =[], Y=0)) List Result.
sum Li st Result :-
(XX\NZA (X =1[VY]Z])) List HT, sumT R
(X\MNZ\(Zis X+Y)) HR Result.

Furthermoresincesuni 2 isaglobal list processing program, it is also possible
to produce aprogram for it by instantiating the predicate variables inr educeli st/ 2:

sum[] Result :-
(X\(X = 0)) Result.
sum [H T] Result :-
sumT R, (XX\M2Z\(Zis X+ Y)) HR Result.

5

In order to capture programslikeposi t i on/ 3 which smultaneously reducebath
alist andanatura number, we nedd to introduce another logic program schemata. The
reduceLN 3 schema captures programs which simultaneously reduce alist and a
number. In addition to capturing posi ti on/ 3, the reduceLN 3 schema dso
capturesprogramsliket ake/ 3 anddr op/ 3 which keg or removethefirst n elements
respectively. The educeLN 3 schema looks like:

reduceLN [] N Result.
reduceLN L N Result :-
L=[HT], Mis N- 1, reduceLNT MR
((N =0, Base L Result); Constructor HR Result).

An example of educelLN 3 schema is thposi ti on/ 3 program:

position O [E|T] E
position N[HT] E:- Mis N- 1, position MT E

If we instantiate Base to (X\Y\ (sigma 2\ (X = [Y]Z]))) and Con-
structor to (XX\VWZ\(Z = Y)) then we can produce position/ 3 from
reduceLN 3 assuming that the case of requesting the n™ element from alist of less
than n elements is a ill-posed query:

position [] N E.

position L N E : -
L=[HT], Mis N- 1, position T MR,
((N =10, (X\XW\(sigm 2\(X =1[Y]Z]))) L B);
(XX\MNZ\(Z2=Y)) HR E).

The dassof reduction programs presented so far share a common destructor. As
such, we can refer to the schemata defined so faestsuctor-specific schemata. It is
also posshble to have constructor-specific schemata. Two of the most popuar higher-
order programming pograms are map/ 3 and fi | t er/ 3. Mapping and filtering
programs are asubclassof reduction grograms that also share a @mmon constructor.
Ratherthan reducing a list by combining ead element with the result of reducing the
remainder of the list, sometimesit isdesirableto map a function predicate across all the
elementsof alist. For example, we may want to double all of the elements in a list. In
order to doube dl of the dementsof alist, we mug first apply a function predicate that
doubes eah element and then pu the doubled element in the front of the list produced
by douling al the dements in the remainder of the list. In general, the predicate
map/ 3 can be used to apply an arbitrary binary function redicae to ead element of
a list:

map [] [] P.
map [H T] Result P :-
mp T R P,
(XN 2\ (sigma W(PXW Z=[WY]))) HR Result.

6

We can writedoubl eAl | / 2 using thisvap/ 3 predicate:

doubl eAll List Result :-
map List Result (X\M\(Y is 2 * X)).

The predicae fi |l t er/ 3 takes a unary predicate and a list and filters out all
elementdrom the list that do nd satisfy the predicae. For example, we may want to
filter out al non-pasitive numbersfrom a list of numbers. We can writé | t er/ 3 in
AProlog as follows:

filter []1 [] P.
filter [HT] Result P :-
filter T RP,
(XXNZAA((P X, Z2=[XYVY]); Z=Y)) HR Result.

We can writeposi t i vesOnl y/ 2 using thisfi | t er / 3 predicate:

positivesOnly List Result :-
filter List Result (X\(truth is X > 0)).

It ispossble to consider the mapping constructor and the filtering constructor as
special cases of the following constructor:

(PX XX, Z=[XXY]); Z=Y

Noticethat this constructor hasthe alditional digunctivesubgal (Z = Y) which
is never invoked for mapping programs and it only captures filtering constructors if we
rewrite the filtering constructor to add an additional argument to its filtering predicate:

(AB (P A A-=B))

which represents the mapped element. Now we can define the following special case of
reduceli st/ 2 for mapping/filtering programs:

mapList [] [].
mapList [H T] Result :-
mapLi st T R
((P HXX Result = [XXR); Result = R).

It is important to note that the schemata presented in this section are very robust,
capturing alarge dassof programswhich also includesr ever se/ 2,i nserti on-
sort/ 2, product/ 2, prefix/ 2, andmany ahers. We ca extend eat of these
schemata to capture alditional logic programs. For example, we can extendr educe/ 2
to cgpture other programslikeappend/ 3 andcount / 3. Thisisdescribed in the next
section.

3 Extensionsto Logic Program Schemata

Ther educe/ 2 schema catures a large group d logic programs, but there is dill a
large group d logic programsthat it is unable to capture. One of the major differences
betweenlogic programs is the number of arguments. In addition to instantiating
predicatevariables in logic program schemata to produce logic programs, it is aso
posshleto extend program schemata to include alditional arguments. Vasconcelos and
Fuchs [16] hande this in their enhanced schema language by introducing argument
vedorsand having pationa indicaors to ensure spedfied arguments ocaur in the same
positionaaossterms. We propase handing varying number of argumentsby extending

our logic program schemata. There ae several types of argument extension that can be
applied to ther educe/ 2 schema, corresponding to adding arguments to the predicate
variablesinr educe/ 2. We can extendther educe/ 2 schemato add an additional
argument to th8ase predicate:

reduceB I nput Result ArgBase : -
Base I nput Result ArgBase.

reduceB I nputt Result ArgBase :-
Destructor Input H T,
reduceB T R ArgBase,
Constructor HR Result.

An example of this type of extension is the creatioaggfend/ 3 frompr ef i x/ 2:

prefix [] L.
prefix [HT] [HL] :- prefix T L.

The pr ef i x/ 2 predicate succeals if its primary list isa prefix of its other list.
The prefix/ 2 predicae can be extended by the alding a new argument which
represents the second list (i.e., the list that is to be appended to the primary list). If we
make the nevBase predicate unify its arguments then we gppend/ 3:

append [] L List :- (XN (X =Y)) L List.
append [H T] [H L] List :- append T L List.

Anotherargument extension that can be gplied to ther educe/ 2 schemaisto
add an argument to tlf@nst r uct or predicate:

reduceC I nput Result ArgCons : -
Base I nput Result.

reduceC I nput Result ArgCons : -
Destructor Input H T,
reduceC T R ArgCons,
Constructor H R Result ArgCons.

An example of this type of extension is the creatiooaint / 3 from| engt h/ 2:

length [] O.
length [HT] L :- length T X, Lis X + 1.

If we make the new Const r uct or predicateincrement the count only when the
headof the list satisfies a predicate given by the newly added argument then we can
producecount / 3:

count [] O P.
count [HT] CP :-
count T R P,
(WXINZA(PW Yis X+1); Y=X) HRCP.

Notethat the alditional argument onthe Const r uct or for count/ 3 serves as
a “filter” which tests the gpropriatenessof the input element. For such programs, it
would be possble incorporate the “filter” into the Dest r uct or (i.e., it is possible to
extendr educe/ 2 by adding an additional argument to best r uct or predicate):

count [] O P.

count List CP :-
(WX\\W2\ (remove WX Y Z2)) List HT P,
count TRP, Cis R+ 1.

renove [A|B] ABP:- P A
renove [HT] ABP:- renove T ABP.

which is an example of the useradduceDy 3:

reduceD I nput Result ArgDest :-
Base I nput Result.

reduceD I nput Result ArgDest :-
Destructor Input H T ArgDest,
reduceD T R ArgDest,
Constructor HR Result.

The purpose of these semantics-altering extensions that enable the adition o
argumentsisto widen the gplicability of the semantics-preserving schema transforma-
tions. Any transformation that is applicable to r educe/ 2 is aso applicable to
reduceB/ 3, reduced 3, and r educeD/ 3. There ae two types of semantics-
preserving extensions that can be gplied to logic program schemata to produce
equivalent logic program schemata: applicaion o programming techniques and
combination (or merging) and conrection of logic program schemata. The first type of
semantics-preservingctensionis the gplication d programming techniques to logic
program schemata. Programming techniques have been studied fairly extensively and
a number of commonly occurring rogramming pradices have been identified. One
popuar programming technique is the introduction o an acamulator, enabling the

9

compasition d the output from the right rather than from the left. Given that a program
unifieswith ther educe/ 2 schema, we can transform the program by instantiating the
followingr educeAcc/ 2 schemawith the ssme Base andConst r uct or predicétes.

reduceAcc I nput Result :-
Base Dummy Acc,
reduceAcc2 | nput Result Acc.
reduceAcc2 | nput Result Result :-
Base | nput Dumy.
reduceAcc2 | nput Result Acc :-
Destructor Input HT, Constructor Acc H A
reduceAcc2 T Result A

aslongas Const r uct or isan asciative predicae. Asan example, considesuni 2
again. We can produce the more efficient (tail recursive) accumulator implementation
of sum 2 by instantiating this educeAcc/ 2 schema:

sum Li st Result :-

(X\ (X =0)) Acc, sun? List Result Acc.
sun? [] Result Result.
sum? [H T] Result Acc :-

(XXN2\(Z2is X+ Y)) Acc HA sun2 T Result A

A similar type of transformation is possble for programs ceptured by the
reduceLN 3 schema. The r educeLN 3 is aforward processng schema which
reducesits list from the front and reduces its integer from some maximum value down
to 0. Anequivalent badkward processng schemawhich continuesto reduceitslist from
the front but reduces its integer up from 0 to the maximum rather than from the
maximum down to O looks like:

reduceUpLN L N Result :-
Max = (X\(X = N)),
reduceUpLN2 L 0 Max Result.
reduceUpLN2 [] N Max Result.
reduceUpLN2 L N Max Result :-
L=[HT], Mis N+ 1, reduceUpLN2 T M Max R,
((Max N, Base L Result); Constructor HR Result).

As an example, consider posi ti on/ 3 again. We can transform the standard
forward processng program given in the previous dion to a badkward processng
program using ther educeLN 3 = r educeUpLN 3 transformation producing the
following implementation oposi ti on/ 3:

position L N E :
Max = (X\ (X
L

= =N),
position2 0 Max E.

10

position2 []

N Max Result.

position2 L N Max E : -

L
((Max N,

[H T,

(X\Y\ (sigma 2\ (X = [Y

Mis N+ 1, position2 T M Max R,

Z]))) L B;

(XNZ\(Z=Y)) HRE).

The seand type of semantics-preserving logic program extension is the
combination (or merging) of logic program schemata. The ideaisto merge two logic
program schemata whenever they have a @mmon argument. Combination schema

transformations are listed in the following table.

Initial Schemata

Combination Schema

maplLi st/ 2

reducelList/2

mapReducelLi st/ 2

reducelList/2

reducelList/2

reducelLi stList/3

reduceLN 3

reduceLN 3

reduceLNLN 4

reduceli st Acc/ 2

reduceUpLN 3

reduceConnect/ 2

reduceli st Acc/ 2

reduceUpLNLN 4

reduceConnect/ 3

Probably the most obvious combination schematransformationisto combine logic
program schemata which have a @mmon primary inpu. Ther educeList/2 +
reducelLi st/ 2 = reduceli st Li st/ 3 transformation combinestwo r educe-
Li st/ 2 schemata that have a common primary input.

reduceList [] Resultl :- reducelList [] Result2 :-
Basel Result1. Base2 Result 2.
reduceList [HT] Resultl :- reducelList [HT] Result2 :-

reduceList T R
Constructorl HR Resultl.

reduceList T R
Constructor2 H R Resul t 2.

l

reduceListList [] Resultl Result2 :-
Basel Resultl, Base2 Result?2.
reduceListList [HT] Resultl Result2 :-
reduceListList T Rl R2,
Constructorl HRL Result1l,
Constructor2 H R2 Resul t 2.

An example of the use of the reducelList/2 + reducelList/2 =
r educeli st Li st/ 3 transformationisthe aeaion d asingly-rearsiveimplementa-
tion of theaver age/ 2 predicate from the following straightforward solution:

11

average List Average :-
I ength List Length,
sum Li st Sum
Average is Sum/ Length.

length [] O.
length [HT] Length :- length T R, Length is R + 1.

sum [] O.
sum[H T] Sum:- sumT R Sumis R + H.

Applyingther educeli st/ 2 + reduceList/2 = reduceli stList/3
transformation to this program produces the foll owing implementation ofaver age/ 2:

average List Average :-
average2 List Length Sum
Average is Sum/ Length.
average2 [] 0 O.
average2 [H T] Length Sum: -
average2 T L S, Lengthis L + 1, Sumis S + H.

Becaisether educeli st Li st/ 3 schemawas creaed by combining two gobal
list processng schemata which share a ommon grimary inpu and have distinct outputs,
the same process can also be used to combine two acamulated implementations of
global li st processng schemata (or even ore of ead). Itisaso passble to combine two
reduceLN 3 schemata with the r educeLN' 3 + reduceLN 3 = reduce-
LNLN 4 transformation.

reduceLN [] N Result1. reduceLN [] N Result?2.
reduceLN L N Resultl :- reduceLN L N Result2 :-
L=[HT], Mis N- 1, L=[HT], Mis N- 1,
reduceLN T M R, reduceLN T M R

((N =0, Basel L Resul ; ((N =0, Base2 L Result?2);

t1) 2)
Constructorl HR Resultl). Constructor2 HR Result?).

l

reduceLNLN [] N Resultl Result?2.

reduceLNLN L N Resultl Result2 :-

L=[HT], Mis N- 1,

reduceLNLN T M R1 R2,

((N =0, Basel L Resultl, Base2 L Result?2);
(Constructorl H Rl Resultl),
Constructor2 HR2 Result?2)).

An example of the use of ther educelLN' 3 + reducelLN 3 = reduce-
LNLN 4 transformation is the splitting d alist into two sublists, one sublist which
containsthe first n elements of the list and a second sublist which contains all but the
first n elements of the list. This task can be acomplished using the well-known

12

t ake/ 3 anddr op/ 3 predicates:

takedrop List N FirstPart ButFirstPart :-
take List N FirstPart, drop List N ButFirstPart.

take [] N].

take L N Result :-
L=[HT], Mis N- 1, take T MR
((N=0, (XXMN(Y =1])) L Result);
(XXNZ\(Z=1[XY])) HR Result).

drop [] N[

L=1[HT], M:IS N- 1, drop T MR
((N =0, (X\Y\(Y:X)) L Result);
(XX\NZ\(Z =Y)) HR Result).

Applyingther educeLN 3 + reducelLN 3 = reduceLNLN 4 transforma
tion tot akedr op/ 4 produces the following implementation:

takedrop [] N [T [1]-
takedrop L N Resl Res2 : -
[HT], Mis N- 1, takedrop T MRl R2,
N=20

(X\Y\'(= [])) L Resl, (X\V\(Y = X)) L Res2);
(XNZ\(Z = [XY)) HRL Resl),
(XNZ2\(Z = Y)) HR2 Res2)).

ThereducelLN 3 + reducelLN 3 = reduceLNLN 4 transformation has
a correspondng reduceUpLN 3 + reduceUpLN 3 = reduceUpLNLN 4
transformation which enables the combination of two backward processihg e-

LN 3 programs. Althoughthe transformational system of Vasconcelos and Fuchs [16]

suppatsthe mmbination d logic program schemata which sharea common input, their
system currently does nat suppat any transformations which conned two logic programs
wherethe output of one schema is the input to another schema. We can suppat such
transformationsby conreding mapLi st/ 2 and reducelLi st/ 2 where the
mappingfiltering program maps a predicae acossthe dements of the input list and this
mapped lististhenreduced. ThemapLi st/ 2 + reduceli st/ 2 = mapReduce-
Li st/ 2 transformation combinesthemapLi st / 2 schemawith ther educeli st/ 2

schemawhere the list that is produced by the mapping/filtering program is the input to

the reduction program.

13

mapList [] [].
mapLi st [H T] TenpRes : -
mapList T R

TempRes = R).

((P HXX, TempRes = [XX|R]);

reducelList [] Result :-
Base Result.
reducelList [H T] Result

reduceList T R
Constructor HR Result.

l

Base Result.
mapReducelLi st [H T]
mapReduceList T R,

mapReduceLi st [] Result :-

Resul t

((P H XX, Constructor XX R Result);

Result =

R).

As an example, consider the following straightforward solution to courting the
number of positive dementsin alist by filtering ou the non-positive dements (using
posi tivesOnl y/ 2) and then courting the number of elements in the filtered list
(usingl engt h/ 2):

positiveCount List Result :-
positivesOnly List X, length X Result.

positivesOnly [] [].
positivesOnly [H T] Result :-
positivesOnly T R

((truth is H> 0, XX =H, Result = [XX R);
Result = R).

length [] O.

length [HT] L :- length T X, Lis X + 1.

Applying the mapLi st/2 + reducelist/2 = mapReducelList/2
transformation to this positiveCount/2 program produwces the following
implementation:

positiveCount [] O.

positiveCount [H T] Result :-
positiveCount T R,
(((truth is H> 0, XX = H),
Result = R).

Result is R+ 1);

Ancther classof combination schematransformations enable the cmnredion of two
logic program schemata that share a @mmon grimary input and the result of one schema
isan additional input to the other schema. We have identified two schema transforma-
tions for this type of combination schema transformation: r educeli st Acc/ 2 +

reduceUpLN 2 = reduceConnect/2 andreducelLi st Acc/2 + reduce-
UpLNLN/ 3 = reduceConnect/ 3.

14

reduceLi stAcc L N :- reduceUpLN L N Result :-
Basel A, Max = (X\ (X = N)),
reduceLi stAcc2 L N A reduceUpLN2 L O Max Result.
reduceLi st Acc2 [] N N reduceUpLN2 [] N Max Result.
reduceLi stAcc2 L N A : - reduceUpLN2 L N Max Result :-
L=[HT], L=[HT], Mis N+ 1,
Constructorl A H B, reduceUpLN2 T M Max R,
reduceLi st Acc2 T N B. ((Max N, Base2 L Result);
Constructor2 HR Result).

l

reduceConnect List Result :-

Basel Acc, Max = (X\(X = Q)),

reduceC2 List Acc A O Max Result.

reduceC2 [] Acc Acc N Max Result :-

Connect Acc C, Max = (X\(X = Q).

reduceC2 List Acc RL N Max Result : -

List = [HT], Mis N+ 1, Constructorl Acc H A
reduceC2 T A RL MMx R

((Max N, Base2 List Result); Constructor2 HR Result).

Asan example of ther educeAccLi st/ 2 + reduceUpLN 2 = reduce-
Connect / 2 transformation, consider finding the middle dement in an arbitrary list.
A graightforward solutionto this problem is to count the number of elements in the list
(usingl engt h/ 2), dividethis court by two, andthen usethisvalueto find the middle

element (usingosi ti on/ 3):

mddle List Mddle :-
length List Length, Half is Length div 2,
position List Half M ddle.

length [] O.
length [HT] Length :- length T R, Length is R + 1.
position [] N E.
position L N E : -
L=[HT], Mis N- 1, position T MR
((N =10, (XW\(sigm 2\(X =1[Y][Z]))) L B);
(XX\MNZ\(Z2=Y)) HR E).

Thefirst step in the transformation aof ddl e/ 2 is to transforml engt h/ 2 to
an acawmulated implementation using the educe/ 2 = reduceAcc/ 2 tranforma-
tion producing the following implementation loéngt h/ 2:

length List Length :- Acc = 0, length2 List Length Acc.

Il ength2 [] Len Len.
length2 [H T] Len Acc :- Ais Acc + 1, length2 T Len A

15

Thenext step is to transforposi t i on/ 3 from a forward processing program
to a badkward processng program using the r educeLN' 3 = reduceUpLN 3
transformation producing the following implementatiorpoki t i on/ 3:

position L N E : -
Max = (X\ (X = N)),
position2 L O Max E
position2 [] N Max Result.
position2 L N Max E : -
L=[HT], Mis N+ 1, position2 T M Max R,
(Max N, (X\W\ (sigma 2\ (X =1[VY]|Z]))) L B);
(X\NZ\(Z =Y)) HRE).

The fina step in the transformation is to apply the r educeli st Acc/ 2 +
reduceUpLN 3 = reduceConnect / 2 transformationto combinel engt h/ 2 and
posi ti on/ 3 to produce the following implementationmf dd| e/ 2:

mddle List Mddle :-

Acc = 0, Max = (X\(X = Half)),

m ddl e2 List Acc Length 0 Max M ddl e.
m ddl e2 [] Length Length AH Max M ddle : -

Half is Length div 2, Max = (X\(X = Half)).
m ddle2 [H T] AL Length AH Max M ddl e : -

NL is AL + 1, NHis AH + 1,

mddle2 T NL Length NH Max M d,

((Max AH, Mddle = H); Mddle = Md).

The final combination schema transformation that we consider isther educe-
Li st Acc/ 2 + reduceUpLNLN/ 4 = reduceConnect/ 3 transformation.

L=[HT,
Constructorl A H B,
reduceLi st Acc2 T N B.

reduceLi stAcc L N : - reduceUpLNLN L N RL R2 : -

Basel A, Max = (XN (X = N)),

reduceLi st Acc2 L N A reduceUpLNLN2 L 0 Max R1 R2.

reduceLi stAcc2 [] NN reduceUpLNLN2 [] N Max Rl R2.

reduceLi stAcc2 L N A :- [reduceUpLNLN2 L N Max R2 : -
i

L=[HT], Mis N+
reduceUpLNLN2 T M Ma
((Max N, Base2l L R1
(Constructor21 H S1

Constructor22 H S2

16

reduceConnect List RlL R2 :
Basel Acc, Max = (X\ (X
reduceC2 List Acc AO R1
reduceC2 [] Acc Acc N Max R1
Connect Acc C, Max = X

—~

reduceC2 T ARL ML M Max S1 S2,
((Max N, Base2l List Rl, Base22 List R2);
(Constructor21 H S1 R1), Constructor22 H S2 R2)).

As an example of the reduceListAcc/2 + reduceUpLNLN 4 =
reduceConnect / 3 transformation, consider thetask of splitting a list of elements in
half. We can do this idProlog by invoking three reduction programs:

splitlist List FirstHalf LastHalf :-
length List NN Mis Ndiv 2,
take List MFirstHal f, drop List M LastHalf.

length [] O.
length [H T] Length :- length T R Lengthis R + 1.
take [] N[].
take L N Result :-
L=[HT], Mis N- 1, take T MR,
((N=0, (XV(Y =1])) L Result);
(XN2\(Z2=1[XY])) HR Result).
drop [1 N[].

, drop T MR
X)) L Result);
R Result).

In order to apply ther educeUpLN 3 + reduceUpLN 3 = reduceUp-
LNLN 4 transformationtot ake/ 3 anddr op/ 3 we must first transform them from
forward processng programsto badkward processng pogramsusingther educeLN 3
= reduceUpLN 3 transformation:

take L N Result :-
Max = (X\ (X = N)),
take2 L 0 Max Result.
take2 [] N Max [].
take2 L N Max Result :-
L=[HT], Mis N+ 1, take2 T M Max R
((Max N, (X\VW(Y =1])) L Result);
(XX\NZ\(Z2 =[XY])) HR Result).

17

drop L N Result : -
Max = (X\ (X = N)),
drop2 L 0 Max Resul t .

drop2 [] N Max [].

drop2 L N Max Result :-
L=[HT], Mis N+ 1, drop2 T M Max R
((Max N, (X\NW(Y = X)) L Result);
(XNZ\(Z =Y)) HR Result).

Now we can combinet ake/ 3 anddr op/ 3 by applyingther educeUpLN 3
+ reduceUpLN 3 = reduceUpLNLN 4 transformation:

takedrop L N Resl Res2 : -
Max = (X\ (X = N)),
takedrop2 L 0 Max Resl Res2.
takedrop2 [] N Max [] [].
takedrop2 L N Max Resl Res2 : -
L=[HT], Mis N+ 1,
takedrop2 T M Max Rl R2,

((Max N,

XN (Y =[])) L Resl, (XN(Y = X)) L Res2));
(XNZ\(Z =[X Y])) HRL Resl),

(XN2\(Z = Y)) HR2 Res2)).

After transformingl engt h/ 2 to itsacamulated implementation aswe did in the
previous example, we can apply ther educelLi st Acc/ 2 + reduceUpLNLN 4 =
r educeConnect/ 3 transformation groduwing the following implementation o
splitlist/3:

splitlist L Resl Res2 :-

Acc = 0, Max = (X\(X = Half)),

splitlist2 L Acc N O Max Resl Res2.
splitlist2 [] Length Length N th [

Half is Length div 2, Max = (X\(X = Half))

splitlist2 L AL Length AH Max Resl Res2 : -
L=[HT, NLis AL +1, NHis AH + 1,
splitlist2 T NL Length NH Max Rl R2,
((Max AH, (X\Y\(Y =1])) L Resi,
(XN (Y = X)) L Res2);
(XN (Z =[XVY])) HRL Resi,
(XX\NZ\(Z =Y)) HR2 Res2)).

Logic program schemata and logic program schema transformations can be used
to help in program development by enabling the programmer to produce asimple
straightforward solution to the problem and then transform that solutioninto an efficient
one by applying a set of program transformations.

18

4 Conclusion

We have propacsed an extensible schema-based logic program transformation system as
an improvement to the traditional schema-based meta-language gproaches. In this
system, we have defined a set of extensible logic program schematain AProlog. Becaise
APrologisahigher-order logic programming languege, it can be used as the representa-
tion language for both the logic programs and the extensible logic program schemata

In addition to the instantiation o predicate variables, extensible logc program schemata
can be extended by applying standard programming techniques (e.g., acaimulating
results), introducing additional arguments (e.g., aseand list to append to the end of the
primary list), combininglogic program schemata which share a common primary input,
and conredinglogic program schemata which are cnrected via a result of one schema
being an inpu to the other schema. These extensions increase the robustnessof logic
program schemata and enhance traditional schema-based transformational systems.

References

[1] D.Barker-Plummer. Cliché Programming in Prolog. In M. Bruynooghe, editor,
Proceedings of the 2 Workshop on Meta-Programming in Logic, Leuven,
Belgium, pages 247-256, 1990.

[2] P.Brna, A.Bundy, A. Dodd M. Eisenstadt, C. Looi, H. Pain, D. Robertson, B.
Smith, and M. van Someren. Prolog Programming Techniques. Instructional
Science, 20: 111-133, 1991.

[3] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer
Academic Publishers, 1995.

[4] P.Flener andY. Deville. Logic Program Synthesis from Incomplete Spedfica
tions. Journal of Symbolic Computation, 15: 775-805, 1993.

[5] P.FenerandY. Deville. Logic Program Transformation Through Generalization
Schemata. In M. Proietti, editor, Proceedings of the 5 International Workshop on
Logic Program Synthesis and Transformation, Utredht, The Netherlands, pages
171-173, Springer-Verlag, 1995.

[6] N.E. Fuchs and M.P.J. Fromhertz. Schema-Based Transformations of Logic
Programs. In T.P. Clement and K. Lau, editors, Proceedings of the 1% International
Workshop on Logic Program Synthesis and Transformation, Manchester, England,
pages 111-125, Springer-Verlag, 1991.

19

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T.S. Gegg-Harrison. Basic Prolog Schemata. Tedhnicd Report CS-198920,
Department of Computer Science, Duke University, Durham, North Caroling,
1989.

T.S. Gegg-Harrison. Leaning Prolog in a Schema-Based Environment.
Instructional Science, 20: 173-190, 1991.

T.S. Gegg-Harrison. Adapting Instruction to the Student's Capabilitbesnal
of Artificial Intelligence in Education, 3: 169-181, 1992.

T.S. Gegg-Harrison. Exploiting Program Schemata in an Automated Program
Debugger.Journal of Artificial Intelligence in Education, 5: 255-278, 1994.

T.S. Gegg-Harrison. Representing Logic Program Schemata in AProlog. In L.
Sterling, editor, Proceedings of the 12" International Conference on Logic
Programming, Kanagawa, Japan, pages 467-481, MIT Press, 1995.

A. Hamfelt and J. Fischer Nilson. Dedarative Logic Programming with Primitive
RecursiveRelations on Lists. In M. Maher, editor, Proceedings of the 13" Joint
International Conference and Symposiumon Logic Programming, Bonn, Germany,
pages 230-243, MIT Press, 1996.

M. Kirschenbaum and L.S. Sterling. Applying Tedhniques to Skeletons. In J.
Jacquet, editoiConstructing Logic Programs, pages 127-140, MIT Press, 1993.

E. Marakakis and J.P. Gallagher. Schema-Based Top-Down Design d Logic
Programsusing Abstrad Data Types. In L. Friboug and F. Turini, editors
Proceedings of the 4" International Workshops on Logic Program Synthesis and
Transformation and Meta-Programming in Logic, Pisa, Italy, pages 138153
Springer-Verlag, 1994.

G. Nadathur and D. Miller. An Overview of AProlog. In R.A. Kowalski and K.A.
Bowen, editors,Proceedings of the 5" International Conference and Symposium
on Logic Programming, Seattle, Washington, pages 810-827, MIT Press, 1988.

W.W. Vasconcdos and N.E. Fuchs. An Oppatunistic Approach for Logic
Program Analysis and Optimisation Using Enhanced Schema-Based Trans-
formations. In M. Proietti, editorProceedings of the 5" International Workshop
on Logic Program Synthesis and Transformation, Utredht, The Netherlands, pages
174-188, Springer-Verlag, 1995.

20

