
Implementing lazy functional languages on stock hardware:the Spineless Tagless G-machine �Version 2.5Simon L Peyton JonesDepartment of Computing Science, University of Glasgow G12 8QQsimonpj@dcs.glasgow.ac.ukJuly 9, 1992AbstractThe Spineless Tagless G-machine is an abstract machine designed to support non-strict higher-order functional languages. This presentation of the machine falls into threeparts. Firstly, we give a general discussion of the design issues involved in implementingnon-strict functional languages.Next, we present the STG language, an austere but recognisably-functional language,which as well as a denotational meaning has a well-de�ned operational semantics. TheSTG language is the \abstract machine code" for the Spineless Tagless G-machine.Lastly, we discuss the mapping of the STG language onto stock hardware. The successof an abstract machine model depends largely on how e�cient this mapping can be made,though this topic is often relegated to a short section. Instead, we give a detailed discussionof the design issues and the choices we have made. Our principal target is the C language,treating the C compiler as a portable assembler.This paper is to appear in the Journal of Functional Programming.Changes in Version 2.0: large new section on comparing the STG machine with otherdesigns (Section 3); pro�ling material (Section 11); index.Changes in Version 2.1: proper statement of the initial state of the machine (Sec-tion 5.1); reformulation of CAF updates (Section 10.8); new format for state transitionrules, separating the guards which govern the applicability of the rules (\such that") fromthe auxiliary de�nitions (\where") | Section 5.Changes in Version 2.2: introduction of the term \lambda-form"; new subsection onlambda lifting (Section 4.5); discussion of copy-vs-share in Section 10.6; allow a variable-binding form of default alternative in algebraic case expressions.Changes in Version 2.3: more explicit discussion of the translation into the STGlanguage (Section 4.1); some re-ordering of sub-sections in Section 4; an overview of thecode generation process at the start of Section 9.Changes in Version 2.4: new-format pro�ling in Section 11; new section on blackholes, saying how to avoid space leaks without black-holing (Section 9.3.3).Changes in Version 2.5: appendix added giving gory details. Apart from the appendix,this is essentially the version published in the Journal of Functional Programming. Veryminor changes to main paper: �xed bug in Fig 5, and other typos.�Previously entitled \The Spineless Tagless G-machine: a second attempt".1

Contents1 Introduction 52 Overview 62.1 Part I: the design space : 62.2 Part II: the abstract machine : 62.3 Part III: mapping the abstract machine onto real hardware : : : : : : : : : : 72.4 Source language and compilation route : 73 Exploring the design space 93.1 The representation of closures : 93.2 Function application and the evaluation stack : : : : : : : : : : : : : : : : : : 143.3 Data structures : 163.4 Summary : 174 The STG language 194.1 Translating into the STG language : 214.2 Closures and updates : 234.3 Generating fewer updatable lambda-forms : 254.4 Standard constructors : 264.5 Lambda lifting : 274.6 Full laziness : 274.7 Arithmetic and unboxed values : 284.8 Relationship to CPS conversion : 305 Operational semantics of the STG language 325.1 The initial state : 345.2 Applications : 345.3 let(rec) expressions : 355.4 Case expressions and data constructors : 365.5 Built in operations : 375.6 Updating : 382

6 Target language 416.1 Mapping the STG machine to C : 426.2 Compiling jumps : 426.3 Optimising the tiny interpreter : 446.4 Debugging : 457 The heap 457.1 How closures are represented : 457.2 Allocation : 477.3 Two-space garbage collection : 477.4 Other garbage collector variants : 497.5 Trading code size for speed : 497.6 The standard-entry code for a closure : 508 Stacks 508.1 One stack? : 508.2 Two stacks : 519 Compiling the STG language to C 529.1 The initial state : 539.2 Applications : 559.3 let(rec) expressions : 579.4 case expressions : 609.5 Arithmetic : 6410 Adding updates 6510.1 Representing update frames : 6510.2 Partial applications : 6610.3 Constructors : 6810.4 Vectored returns : 6810.5 Returning values in registers : 6910.6 Update in place : 7110.7 Update frames and garbage collection : 723

10.8 Global updatable closures : 7311 Status and pro�ling results 74A The gory details 81A.1 Update ags : 81A.2 Black holes : 81A.3 Adding �llers : 81A.4 Performing updates : 82A.5 Lambda-form info : 83B Stack stubbing 84B.1 Implementation : 85

4

1 IntroductionThe challenges of compiling non-strict functional languages have given rise to a whole streamof research work. Generally the discussion of this work has been focussed around the designof a so-called \abstract machine", which distils the key aspects of the compilation techniquewithout becoming swamped in the details of source language or code generation. Quite a fewsuch abstract-machine designs have been presented in recent years; examples include the G-machine (Augustsson [1987]; Johnsson [1987]), TIM (Fairbairn & Wray [1987]), the SpinelessG-machine (Burn, Peyton Jones & Robson [1988]), the Oregon G-machine chip (Kieburtz[1987]), the CASE machine (Davie & McNally [1989]), the HDG machine (Kingdon, Lester& Burn [1991]), the h�;Gi machine (Augustsson & Johnsson [1989]), and the ABC machine(Koopman [1990]).Early implementations, especially those based on graph reduction, were radically di�erentfrom conventional compiler technology: the di�erence between an SK combinator implemen-tation (Turner [1979]) and (say) a Lisp compiler is substantial. So great was this divergencethat new hardware architectures were developed speci�cally to support the execution model(Scheevel [1986]; Stoye, Clarke & Norman [1984]). As understanding has developed, though,it has been possible to recognise features of more conventional systems emerging from themist, and to generate e�cient code for stock architectures.In this paper we present a new abstract machine for non-strict functional languages, theSpineless Tagless G-machine, set it in the context of conventional compiler technology, andgive a detailed discussion of its mapping onto stock hardware. Our design exhibits a numberof unusual features:� In all other the abstract machines mentioned above, the abstract machine code for aprogram consists of a sequence of abstract machine instructions. Each instruction isgiven a precise operational semantics using a state transition system.We take a di�erent approach: the abstract machine language is itself a very small func-tional language, which has the usual denotational semantics. In addition, though, eachlanguage construct has a direct operational interpretation, and we give an operationalsemantics for the same language using a state transition system.� Objects in the heap, both unevaluated suspensions and head normal forms, have auniform representation with a code pointer in their �rst �eld. Many implementationsexamine tag �elds on heap objects to decide how to treat them. With our representationwe never do this; instead, a jump is made to the code pointed to by the object. This iswhy we call the machine \tagless".� A pervasive feature of functional programs is the construction of data structures, andtheir traversal using pattern-matching. Many abstract machine designs say very littleabout how to do this e�ciently, but we pay a lot of attention to it.� The machine manipulates unboxed values directly, based on the ideas in a companionpaper (Peyton Jones & Launchbury [1991]). This is essential for an e�cient implemen-tation of arithmetic, but it is usually hidden in the code generator.5

� There is scope for exploiting the fruits of both strictness analysis and sharing analysisto improve execution speed.� Lambda lifting, a common feature of almost all functional-language implementations,is not carried out. Instead, the free variables of lambda abstractions are identi�ed, butthe abstraction is left in place.� The machine is particularly well-suited for parallel implementations, although spaceprevents this aspect being discussed in this paper (Peyton Jones, Clack & Salkild [1989]).Almost all the individual ideas we describe are present in other implementations, but theircombination produces a particularly fast implementation of lazy functional languages.An earlier version of this paper (Peyton Jones & Salkild [1989]), had a similar title andintroduction to this one. The underlying machine being described is mostly unchanged, butthe presentation has been completely rewritten.2 OverviewThe paper divides into three parts. Part I explores the design space to show how the STGmachine �ts into a wider context. Part II introduces the abstract machine and gives itsoperational semantics, and Part III discusses how the abstract machine is mapped onto stockhardware.2.1 Part I: the design spaceThe implementation of non-strict functional languages has tended to be done in a separateworld to that of \real compilers". One goal of this paper is to help bridge the gap betweenthese two cultures. To this end we identify several key aspects of a compiler (its representationof data structures, its treatment of function application, and its compilation of case-analysison data structures), and compare the approach we take with that of others.We hope that this exercise may be useful in its own right, as well as setting the context forthe rest of the paper.2.2 Part II: the abstract machineThe usual way of presenting an evaluation model for a functional language is to de�ne anabstract machine, which executes an instruction stream. The abstract machine is given anoperational semantics using a state transition system, and compilation rules are given forconverting a functional program into abstract machine code. The application of these compi-lation rules is usually preceded by lambda lifting (Johnsson [1985]), which eliminates lambdaabstractions in favour of supercombinators, functions with no free variables. A good exampleof this approach is the G-machine (Johnsson [1987]; Peyton Jones [1987]), whose abstractmachine code is called G-code. 6

This approach su�ers an annoying disadvantage: the abstract machine is generally not abstractenough. For example, the abstract G-machine uses the stack to hold many intermediatevalues. When G-code is to be compiled into native machine code, many stack operationscan be eliminated by holding the intermediate values in registers. The code generator hasto simulate the operation of the abstract stack, which is used, in e�ect, mainly to nameintermediate values. Not only does this process complicate the code generator, but it makesG-code harder to manipulate and optimise.To avoid this problem, one is driven to introduce explicitly-named values in the abstractmachine, which is how the T-code of our earlier paper was derived (Peyton Jones & Salkild[1989]). Unfortunately, the simplicity of the abstract machine is now lost.We take a slightly di�erent approach here. Instead of de�ning a new abstract machine, we usea very small functional language, the STG language, as the abstract machine code. It has theusual denotational semantics, so it is in principle possible to check the transformation of theoriginal program into the STG language is correct. But we also give it a direct operationalsemantics using a state transition system, which explains how we intend it to be executed.The problem of proving the entire system correct is thereby made easier than, for example,the G-machine1 , because only the equivalence of the denotational and operational semanticsof a single language is involved. Even so, it is a substantial task, and we do not attempt ithere.2.3 Part III: mapping the abstract machine onto real hardwareTypically, much is written about the compilation of a functional program into abstract ma-chine code, and rather little about how to map the abstract machine onto the underlyinghardware. Yet the abstract machine can only be considered a success if this mapping workswell; that is, the resulting code is e�cient.We believe that the Spineless Tagless G-machine comes out well in this regard, and devoteconsiderable space to discussing the mapping process. One of the nice aspects is that a varietyof mappings are possible, of increasing complexity and e�ciency.Our target machine code is the C language. This has become common of late, conferring, asit does, wide portability. We may pay some performance penalty for not generating nativemachine code, and plan to build other code generators which do so.2.4 Source language and compilation routeWe are interested in compiling strongly-typed, higher-order, non-strict, purely functional lan-guages such as LML, or Haskell. We expect heavy use of both higher-order functions and thenon-strict semantics (Hughes [1989]).This paper is only about the back end of a compiler. Our complete compilation route involvesthe following steps:1The task of proving a simple G-machine correct is carried out by Lester in his thesis (Lester [1989]).7

1. The primary source language is Haskell (Hudak et al. [1992]), a strongly-typed, non-strict, purely-functional language. Haskell's main innovative feature is its support forsystematic overloading.2. Haskell is compiled to a small Core language. All Haskell's syntactic sugar is trans-lated out, type checking is performed, and overloading is resolved. Pattern-matching istranslated into simple case expressions, each of which performs only a single level ofmatching.3. Program analyses and a variety of transformations are applied to the Core language.4. The Core language is translated to the STG language, which we introduce in Section 4.This transformation is rather simple.5. The code generator translates the STG language into Abstract C. The latter is just aninternal data type which can simply be printed out as C code, but which can also serveas an input to a native-code generator.Strictness analysis plays an important role in compilers for non-strict languages, enabling thecompiler to determine cases where function arguments can be passed in evaluated form, whichis often more e�cient. Using this technology compilers for lazy languages can generate codewhich is sometimes as fast as or faster than C (Smetsers et al. [1991]).Usually the results of strictness analysis are passed to the code generator, which is therebymade signi�cantly more complicated. We take a di�erent approach. We extend the Coreand STG languages with full-edged unboxed values, which makes them expressive enough toincorporate the results of strictness analysis by simple program transformations. We give abrief introduction to unboxed values in Section 4.7, but the full details, including the trans-formations required to exploit strictness analysis, are given in a separate paper (Peyton Jones& Launchbury [1991]).The code generator, which is the subject of this paper, is therefore not directly involved instrictness analysis or its exploitation, so we do not discuss it further.
8

Part I: Exploring the design space3 Exploring the design spaceBefore introducing the STG machine in detail we pause to explore the design space a little.The STG machine has its roots in lazy graph reduction. It is now folk-lore that, while graphreduction looks very di�erent to conventional compiler technology, the best compilers basedon graph reduction generate quite similar code to those for (say) Lisp. In this section weattempt to compare some aspects of the STG machine with more conventional compilers.Any implementation is the result of a raft of inter-related design decisions, each of whichis partly justi�ed by the presence of the others. That makes it hard to �nd a place tostart our description. We proceed by asking three key questions, which help to locate theimplementation techniques for any non-strict higher-order language:� How are function values, data values and unevaluated expressions represented (Sec-tion 3.1)?� How is function application performed (Section 3.2)?� How is case analysis performed on data structures (Section 3.3)?This section gives the context and motivation for many of the implementation techniquesdescribed in Parts II and III, and suitable forward references are given.3.1 The representation of closuresThe heap contains two kinds of objects: head normal forms (or values), and as-yet unevaluatedsuspensions (or thunks). Head normal forms can be further classi�ed into two kinds: functionvalues and data values. A value may contain thunks inside it; for example, a list Cons cellmight have an unevaluated head and/or tail. A value which contains no thunks inside it iscalled a normal form.It is worth noting that, in a polymorphic language, it is not always possible to distinguishthunks whose value will turn out to be a function from thunks whose value is a data value.For example, consider the composition function:compose f g x = f (g x)Is (g x) a function or not? It depends, of course, on the type of g and, since compose ispolymorphic, this is not statically determined.For reasons which will become apparent we use the term closure to refer to both values andthunks. In the remainder of this section we consider various ways in which closures can berepresented, contrasting the STG machine with other designs.9

3.1.1 Representing functionsAny implementation of a higher-order language must provide a way to represent a functionvalue. Such a value behaves like a suspended computation: when the value is applied to itsarguments, the computation is performed.The most compact way to represent a function value is as a block of static code (shared byall dynamic instances of the value), together with the values of its free variables. (Such avalue is commonly called a closure, though we use the term in a wider sense in this paper.)The most direct physical representation of such a closure is a pointer to a contiguous block ofheap-allocated storage, consisting of a code pointer which points to the static code, followedby (pointers to) the values of the free variables, thus:- ? ?Code Free variablesThis is the representation adopted by many compiled Lisp systems, by SML of New Jersey, andby the Spineless Tagless G-machine. To perform the computation, a distinguished register,the environment pointer, is made to point to the closure, and the code is executed. We callthis operation entering a closure. The code can access its free variables by o�sets from theenvironment pointer, and its arguments by some standard argument-passing convention (egin registers, on the stack, or in an activation record).Instead of storing the values of the free variables themselves in the closure, it is possibleto store a pointer to a block of free variables, or even to a chain of such blocks. Theserepresentations attempt to save storage, at the cost of slowing down access. The Orbitcompiler, for example, works hard to choose the best representation for closures, includingallocating them on the stack rather than in the heap whenever possible, and sharing one blockof free variables between several closures (Kranz [1988]). Apart from the compiler complexityinvolved, considerable extra care has to be taken in the garbage collector to avoid the spaceleakage which can occur when a closure captures a larger set of free variables than the closureitself requires. Indeed, Appel's measurements for SML of New Jersey suggest that cleverclosure-representation techniques gain little, and potentially lose a lot (in space complexity),so he recommends a simple at representation (Appel [1992, Chapter 12]).The Three Instruction Machine (TIM) takes another interesting position. Instead of repre-senting a closure by a single pointer, it represents a closure by a pair of a code pointer anda pointer to a heap-allocated frame (Fairbairn & Wray [1987]). The frame, which is a vectorof code-pointer/frame-pointer pairs, gives the values of the free variables of the closure, andmay be shared between many closures. These code-pointer/frame-pointer pairs need to behandled very carefully in a lazy system, because they cannot be duplicated without the risk ofduplicating work. Proper sharing can still be ensured, but it results in a system remarkablysimilar to the more conventional one mentioned above (Peyton Jones & Lester [1992, Chapter10

4]).3.1.2 Representing thunksIn a non-strict language, values are passed to functions or stored in data structures in uneval-uated form, and only evaluated when their value is actually required. Like function values,these unevaluated forms capture a suspended computation, and can be represented by a clo-sure in the same way as a function value. Following the terminology of Bloss, Hudak & Young[1988], we call this particular sort of closure a thunk, a term which goes back to the earlyAlgol implementations of call-by-name (Ingerman [1961]). When the value of the thunk isrequired, the thunk is forced.A thunk can (in principle) be represented simply by a parameter-less function value, but it isine�cient to do so, because it might be evaluated repeatedly. This duplicated work is avoidedby so-called lazy implementations as follows: when a thunk is forced for the �rst time, it isphysically updated with its value.There are three main strategies for dealing with updates in lazy implementations:The na��ve reduction model updates the graph after each reduction (Peyton Jones [1987]).(By \reduction" is meant the replacement of an instance of the left-hand side of afunction de�nition by the corresponding instance of its right-hand side.) Apart from afew optimisations, this is the update strategy used by the G-machine (Johnsson [1984]).Its main disadvantage is that a thunk may be updated with another thunk, so the sameobject may be updated repeatedly, and we do not consider this model further.The cell model. In the cell model, each closure is provided with a status ag to indicatewhether it is evaluated or not. The code to force (that is, get the value of) a closurechecks the status ag. If the closure is already evaluated, its value is extracted; otherwisethe suspended computation is performed (by entering the closure), the value is writteninto the cell, and the status ag is ipped (Bloss, Hudak & Young [1988]).The self-updating model, which is used by the STG machine. The cell model places theresponsibility for performing the update on the code which evaluates the thunk. Theself-updating model instead places this responsibility on the code inside the thunk itself.The code to force a closure simply pushes a continuation on the stack and enters theclosure; if the closure is a thunk, it arranges for an update to be performed whenevaluation is complete, otherwise it just returns its value. No tests need be performed.The update overwrites the thunk with a value, which therefore must also have a codepointer, because subsequent forces will re-enter the thunk-turned-value. This represen-tation is natural for function values, as we have already discussed, but is something ofa surprise for data values. A list cell, for example, is represented by a code pointer to-gether with the two pointers comprising the head and tail of the list. The code pointedto from the list cell simply returns immediately2 . In e�ect, the code pointer plays therole of the ag in cell model.2 In Section 3.3 we explore variants of this scheme, in which the code for a list cell does rather more thansimply return. 11

Bloss, Hudak & Young [1988] call this model \closure mode", but the implementationthey suggest is very much less e�cient (in both time and space) than that outlinedabove, because it is based on a translation into Lisp.The latter two models each o�er scope for optimisation. Consider the cell model, for example.Forcing can be optimised if the compiler can prove that the thunk is certainly already eval-uated (or the reverse), because the test on the ag can be omitted (Bloss, Hudak & Young[1988]). Furthermore, if the compiler can prove that there can be no subsequent code forceson the thunk, then it can omit the code which performs the update.A similar situation holds for the self-updating model. If the compiler can prove that aparticular thunk can only be evaluated at most once (which we expect to be quite common),it can create code for the thunk which doesn't perform the update. Unlike the cell model,the self-updating model cannot take advantage of order-of-evaluation analyses.3.1.3 A uniform representation for closuresAs indicated above, the self-updating model strongly suggests that every heap-allocated object(whether a head normal form or a thunk) is represented uniformly, by a code pointer togetherwith zero or more �elds which give the values of the free variables of the code. The STGmachine adopts this uniform representation, as can be seen in the operational semantics(Section 5), where all heap values are represented uniformly by some code together with asequence of values. Indeed this is why the machine is called \tagless": since all objects havethe same form there is no need for a tag to distinguish one kind of object from another(contrast the presentation in Peyton Jones [1987, Chapter 10]). We use the term \closure"to refer to both values and thunks because of their uniform representation.The decision to use a uniform representation for all closures has other interesting rami�cations,which we explore in this section.Firstly, when a thunk is updated with its value, it is possible that the value will take morespace than the thunk. In this case, the thunk must be updated with an indirection to thevalue (Figure 1). This causes no di�culty for the self-updating model, because indirectionscan be represented by a closure whose code simply enters the target closure. Such indirectionscan readily be removed during garbage collection (Section 7.3).In the cell model, either a second test must be made to check for indirections, or alternativelyevery updated thunk must be an indirection. (Figure 2 shows the latter case.) Both methodsimpose extra overhead.Secondly, the self-updating model also allows other exceptional cases to be taken care ofwithout extra tests. For example,� When a thunk is entered, its code pointer can be overwritten with a \black-hole" codepointer. If the thunk is ever re-entered before it is updated, then its value must dependon itself. It follows that the program has entered an in�nite loop, and a suitable errormessage can be displayed. Without this mechanism stack overow occurs, which is lesshelpful to the programmer. 12

- - - ? ?- ? ?After updating (big value)Indirection codeValue Cons codeHead TailAfter updating (small value)CodeFree varsBefore updating
Figure 1: Updating in the self-updating model� In a system which supports concurrent threads of execution, exactly the same methodcan be used to synchronise threads. When a thunk is entered, its code pointer isoverwritten with a \queue-me" code pointer. If another thread tries to evaluate thethunk before the �rst thread has completed, the former is suspended and added to aqueue of threads attached to the thunk. When the thunk is updated, the queued threadsare re-enabled.� In a system with distributed memory, pointers to remote memory units often have tobe treated di�erently to local pointers. However, it would be very expensive to testfor remote-ness whenever dereferencing a pointer! In the self-updating model, a remotepointer can be represented as a special kind of indirection, and no tests for remotepointers need be performed. - Value1After updating- ? ?CodeFree vars0Before updatingFigure 2: Updating in the cell model13

3.2 Function application and the evaluation stackHigher-order languages, which allow functions as \�rst-class citizens", present interestingchallenges for the compiler-writer. An illuminating way of comparing compilation strategiesis to ask how function application is performed.3.2.1 CurryingThe languages in which we are interested make heavy use of curried functions. For example,consider the following Haskell function de�nition:f x y = xf is attributed the type a -> (b -> a). That is, f may be thought of as a function of oneargument, which returns a function which takes the second argument. An application off, say (f 1 2), is short for ((f 1) 2). An application of f to one argument is perfectlyacceptable; for example (map (f 1) xs).In strict languages like Lisp, Hope and SML, the de�nition of f would usually be of the formf (x,y) = xwhere f is attributed the type (a,b) -> a. (We use (a,b) to denote the type of pairs ofelements of type a and b.) The function f can only be applied to a suitable pair, and cannotbe applied to just one argument.In all of these languages it is possible (and, in SML, easy) to de�ne curried functions (otherwisethey would hardly deserve the title \higher-order"), but compilers usually implement theuncurried form much more e�ciently, and programmers respond accordingly. There is theinverse cultural tradition in non-strict functional languages, where the additional exibilityallowed by the curried form means that it is usually preferred by programmers, and compilerstypically treat curried application as fundamental.3.2.2 Compiling function applicationCompilers from the Lisp tradition usually compile function application as follows: evaluatethe function, evaluate the argument, and apply the function value to the argument. When aknown function is being applied (as is often the case, especially in Lisp), the \evaluate thefunction" part becomes trivial. This model for function application, which we call the eval-apply model, is invariably used by compilers for strict languages (eg Lisp, Hope, SML and theSECD machine (Henderson [1980]; Landin [1965])). It is also used in some implementations ofnon-strict languages, except that of course only the function is evaluated before the application(eg the ABC machine (Koopman [1990]), and the h�;Gi-machine (Augustsson & Johnsson[1989])).In contrast, compilers based on lazy graph reduction treat function application as follows:push the argument on an evaluation stack, and tail-call (or enter) the function. There is no\return" when the evaluation of the function is complete. We call this the push-enter model;it is used by the G-machine, TIM, and the STG machine.14

The di�erence between the two models seems rather slight, but it has a pervasive e�ect. It isdi�cult to say in general which of the two is \better". In essentially �rst-order programs theygenerate much the same code. For programs which make extensive use of curried functionsthe push-enter model looks better. For example, consider the (curried) function de�nitionapply3 f x y z = f x y zA Lisp-like compiler would be compelled to evaluate (f x), then evaluate that functionapplied to y, and �nally apply the result to z. A graph-reduction compiler would just pushx, y and z onto the evaluation stack before jumping to the closure for f.3.2.3 The evaluation stackThe main cost of the push-enter model of function application is that the link between afunction body and an activation frame is broken. For example, consider apply3 again. In theeval-apply model the compiler can allocate an activation frame for apply3 which is deallocatedwhen the value of (f x y z) has been computed. In the push-enter model, all that happensis that three more arguments are pushed on the evaluation stack before jumping to f. To putit another way, there are no identi�able moments at which a new activation frame should beallocated or reclaimed.This pushes the push-enter evaluation model in the direction of having a contiguous evaluationstack, rather than a linked list of heap-allocated activation frames, as exempli�ed by the NewJersey SML compiler (Appel & Jim [1989]). The idea of heap-allocated activation frames isvery appealing, because it makes it easy to implement call/cc (Appel & Jim [1989]), parallelthreads (Cooper & Morrisett [1990]) and certain debugging mechanisms (Tolmach & Appel[1990]). But all these things can be done by allocating a contiguous stack in medium-sizedchunks in the heap, at the price of a little extra complication (Hieb, Dybvig & Bruggeman[1990]; Peyton Jones & Salkild [1989]).Indeed, performance may well be better using a contiguous stack because of the improvedspatial locality, which reduces paging and cache misses. Contiguous allocation of fresh activa-tion records is pessimal for caches, since they have to both fetch useless data (since they arenot clever enough to know that it is free space which is about to be allocated) and then writeback an activation frame to main memory which is quite likely to be garbage already. Unlessone uses generational garbage collection, and the youngest generation �ts entirely within thecache, using a contiguous stack is likely to have far better cache performance (Appel [1992,Chapter 15]; Wilson, Lam & Moher [1992]). Current cache sizes are still too small to containa complete generation, but that may change. It would be very interesting to quantify thesee�ects.The h�;Gi-machine is another interesting design compromise (Augustsson & Johnsson [1989]).Here again, there is no contiguous evaluation stack. Instead, working space is allocated inevery closure (which the h�;Gi-machine calls a frame), and the closures under evaluation arelinked together much as heap-allocated activation frames are. The penalties are: space usageis worse, because all closures contain the extra space regardless of whether they are beingevaluated or not (and most are not); when a function is evaluated to a partial application,the arguments must be copied from the function's frame to the application's frame; and it is15

not always possible statically to bound the amount of working space required (unless separatecompilation is abandoned), so an exception-checking mechanism is required to deal with thecases where too little has been allocated.3.3 Data structuresStrongly-typed functional languages such as Haskell encourage the programmer to de�ne manyalgebraic data types. Even the built-in data types of the language, such as lists, booleans,tuples and (as we will see in Section 4.7) integers, may be regarded as algebraic data types.Here, for example, are representative type declarations for some of them:data Boolean = False | Truedata List a = Nil | Cons a (List a)data Tuple3 a b c = MkTuple3 a b cdata Int = MkInt Int#data Tree a = Leaf a | Branch (Tree a) (Tree a)(Special syntax for lists and tuples is provided by most high-level languages, but not by theSTG language.) Data values are built using constructors, such as False, Cons, MkTuple3,Branch, and taken apart using case expressions. For example:case t ofLeaf n -> e1Branch t1 t2 -> e2(In a high-level programming language, data values are usually taken apart using variouspattern-matching constructs, but its is well known how to translate such constructs intocase expressions with simple single-level patterns (Wadler [1987]). We here assume that thistranslation has been performed.)These operations of construction and pattern matching are so pervasive in functional programsthat they deserve particular attention. Compilers sometimes implement the built-in types(list, tuples, numbers) in special \magic" ways, and the programmer pays a performancepenalty for user-de�ned types. We take the view that the general mechanisms used for user-de�ned types should be made e�cient enough to use for built-in types too. (Lisp, of course,has no user-de�ned types, so this question does not arise.)We have already discussed the representation of data values, as a code pointer together withzero or more contents �elds. We now turn our attention to the compilation of case expressions.Notice that a case expression really does two things: it evaluates the expression whose valueit scrutinises, and then it selects the appropriate alternative.If the cell model is used, the case expression must �rst force the value to be scrutinised.Then it must inspect the value to discover which constructor it is built with, and hence whichalternative of the case expression should be executed. It follows that each data value mustcontain a tag (usually a natural number) which distinguishes from each other the constructorsof the relevant data type. So the sequence of events is:� Force the value. 16

� Extract its tag.� Take a multi-way jump based on the tag3� Bind the names in the pattern of the alternative to the components of the data value.� Execute the code for the alternative.In the case of the self-updating model, though, there are more possibilities. Recall that inthis model a closure is forced by entering it, regardless of whether it has been forced before. Sofar we have assumed that the code for a constructor always returns immediately. But othervariants are possible. It could, for example, load the tag into a register before returning,so that the tag does not need to be represented explicitly at all (Section 9.4.3). Better still,instead of returning to a multi-way jump, the constructor code could return to the appropriatemember of a vector of return addresses | we call this a vectored return (Section 9.4.3). Thesereturn conventions can be chosen on independently for each data type.In e�ect, the self-updating model used by the STG machine takes advantage of the fact thata data value is only ever forced by a case expression. This property is unique to the STGmachine. Other lazy implementations treat numeric data types as a special case, which areimplicitly forced by the built-in arithmetic operations. In the STG machine, numeric datatypes are implemented as algebraic data types, and only forced using case (Section 4.7).The idea can be taken one step further. Consider the expressioncase (f x) ofNil -> e1Cons a as -> e2and suppose that (f x) evaluates to a Cons. The cell model would evaluate (f x), resultingin a heap-allocated Cons cell, the components of which would be used in e2. But supposethat we use the self-updating model, and that the code for Cons puts the head and tail of theCons cell in registers before returning (as well as loading the tag into a register, if the returnis not vectored). Then the Cons cell need never be allocated in the heap at all! Since manyfunctions return data values this optimisation seems quite valuable.In summary, the cell model separates the forcing of a thunk from the case analysis andunpacking performed by a case expression. The self-updating model allows these operationsto be woven together, which seems to o�er interesting opportunities for optimisations. To befair, these optimisations do complicate updating, as we will see when we roll up our sleevesin Part III, so the bene�t is not entirely without cost (Section 10).3.4 SummaryThe single most pervasive design decision in the STG machine is that each closure (includingdata values) is represented uniformly, and scrutinised only by entering it. The bene�ts include3 Ireland [1992] cleverly avoids the forcing step when it is not necessary, by using the same �eld to encodethe evaluation status ag and constructor tag. The case expression's multi-way jump has an extra branch forthe case where an unevaluated thunk or indirection is encountered: it forces the thunk and then re-executesthe multi-way jump. 17

� Cheap indirections are available (and are useful when performing updates). They costnothing when they are not present, and can be eliminated easily during garbage collec-tion.� Other exceptional conditions (black holes, concurrency, etc) can be handled in the sameway.� A variety of return conventions for constructors are possible, including vectored returns,and returning the components of the constructor in registers. The latter means thatdata values may not be allocated in the heap at all.What are the costs? The main one seems to be this: in the common case when a possiblethunk turns out to be already evaluated, the self-updating model takes two jumps, one toenter the closure and one to return, while the cell model takes only one (conditional) jump.(As we have seen, though, a jump can often be saved again by using a vectored return.)Worse, the �rst jump is to an unknown destination, which means that the code generatorcannot keep things in registers. The cell model only incurs these context-switching costs ifthe thunk is unevaluated. Even so, the cell model may not always win. If there are two ormore forces in a row there is the nasty possibility of saving the context, evaluating one thunk,restoring the context, discovering the second thunk is unevaluated, and saving the contextfor a second time. In this sort of situation it may well be just as good to save the contextonce and for all at the start of a string of forces, as the self-updating model must do.There are also some underlying architectural issues. Firstly, indirect jumps are more likelyto cause cache misses than (not-taken) conditional jumps. Secondly, modern RISCs arewell optimised for taking conditional jumps (employed by the cell model), but not for takingindirect jumps (which are needed by the self-updating model). In principle, if the jump targetaddress is fetched a few instructions before the jump itself, and the instruction fetch logicinterprets the indirect jump directly, no pipeline bubbles need be caused. Most RISCs arenot (yet) optimised for this sequence, but the Tera architecture is: it allows a branch targetto be prefetched into a register, and thereby supports zero-delay indirect branches (Alversonet al. [1990]).In short, by always entering a closure when we need its value, we pay a single, fairly modest,up-front cost but get a wide variety of other bene�ts at no further cost. Whether the bene�tsoutweigh the costs is at present an open question.
18

Part II: The abstract machine4 The STG languageThe abstract machine code for the Spineless Tagless G-machine is a very austere purely-functional language, called the STG language, whose syntax is given in Figure 3. Virtuallyevery functional-language compiler uses a small purely-functional language as an intermediatecode (eg the \enriched lambda calculus" (Peyton Jones [1987]), FLIC (Peyton Jones [1988]),FC (Field & Harrison [1988]), Kid (Ariola & Arvind [1991])).The distinguishing feature of the STG language is that it has a formal operational semantics,expressed as a state transition system, as well as the usual denotational semantics. Indeed itis exactly this property which justi�es the title \abstract machine code". In particular, thefollowing correspondence between the STG language and operational matters is maintained:Construct Operational readingFunction application Tail callLet expression Heap allocationCase expression EvaluationConstructor application Return to continuationThe salient characteristics of STG code are as follows:� All function and constructor arguments are simple variables or constants. This con-straint corresponds to the operational reality that function arguments are prepared(either by constructing a closure or by evaluating them) prior to the call.It is easy to satisfy this condition when translating into the STG language, simply byadding new let bindings for non-trivial arguments.� All constructors and built-in operations are saturated. This constraint simpli�es theoperational semantics of STG code. It is easily arranged by adding extra lambdasaround an un-saturated constructor or built-in application, thus performing the oppositeof �-reduction.Notice that, in a higher-order language, we cannot ensure that every function applicationis saturated (that is, gives to the function exactly the number of arguments it expects).� Pattern matching is performed only by case expressions, and the patterns in caseexpressions are simple one-level patterns. More complex forms of pattern-matching caneasily be translated into this form (Wadler [1987]).The value scrutinised by a case expression can be an arbitrary expression, and is notrestricted to be a simple variable or constant. Nothing would be gained by such arestriction, and some performance would be lost because a closure for the expressionwould be unnecessarily built and then immediately evaluated.� There is a special form of binding. The STG language has a special form of binding,whose general form is f = {v1 ; : : : ; vn} \� {x1 ; : : : ; xm} -> e19

Program prog ! bindsBindings binds ! var1 = lf1; : : :; varn = lfn n � 1Lambda-forms lf ! varsf \� varsa -> exprUpdate ag � ! u Updatablej n Not updatableExpression expr ! let binds in expr Local de�nitionj letrec binds in expr Local recursionj case expr of alts Case expressionj var atoms Applicationj constr atoms Saturated constructorj prim atoms Saturated built-in opj literalAlternatives alts ! aalt1; : : :; aaltn; default n � 0 (Algebraic)j palt1; : : :; paltn; default n � 0 (Primitive)Algebraic alt aalt ! constr vars -> exprPrimitive alt palt ! literal -> exprDefault alt default ! var -> exprj default -> exprLiterals literal ! 0# j 1# j : : : Primitive integersj : : :Primitive ops prim ! +# j -# j *# j /# Primitive integer opsj : : :Variable lists vars ! {var1, : : :, varn} n � 0Atom lists atoms ! {atom1, : : :, atomn} n � 0atom ! var j literalFigure 3: Syntax of the STG language20

It has two readings. From a denotational point of view, the free variables v1 ; : : : ; vn andupdate ag � are ignored, and the de�nition binds f to the function (�x1 : : :xm :e).From an operational point of view, f is bound to a heap-allocated closure, containing acode pointer and (pointers to) the free variables v1 ; : : : ; vn . This closure represents thefunction (�x1 : : :xm :e); when its code is executed, a special register will point to theclosure thereby giving access to its free variables.The right-hand side of a binding is called a lambda-form, and is the only site for alambda abstraction. Notice, though, that the abstraction can have free variables, so nolambda lifting need be performed (Section 4.5).The update ag on a lambda-form indicates whether its closure should be updated whenit reaches its normal form (Section 4.2). We say a lambda-form (or a closure built fromit) is updatable if its update ag is u, and non-updatable otherwise.� The STG language supports unboxed values. This aspect is discussed below in Sec-tion 4.7.A STG program is just a collection of bindings. The variables de�ned by this top-level set ofbindings are called globals, while all other variables bound in the program are called locals.The value of an STG program is the value of the global main.The concrete syntax we use is conventional: parentheses are used to disambiguate; applicationassociates to the left and binds more tightly than any other operator; the body of a lambdaabstraction extends as far to the right as possible; and, where the layout makes the meaningclear, we allow ourselves to omit semicolons between bindings and case alternatives.The STG language is similar in some ways to \continuation-passing style" (CPS), a point wereturn to in Section 4.8.4.1 Translating into the STG languageIn this section we outline how to translate a functional program into the STG language. Webegin with an example, the well-known function map. Its de�nition, in conventional notation(eg Haskell), is as follows:map f [] = []map f (y:ys) = (f y) : (map f ys)The corresponding STG binding is this:map = {} \n {f,xs} ->case xs ofNil {} -> Nil {}Cons {y,ys} -> let fy = {f,y} \u {} -> f {y}mfy = {f,ys} \u {} -> map {f,ys}in Cons {fy,mfy}Notice the attened structure, the explicit argument lists for every call, and the free-variablelists and update ags on each lambda-form. Since map itself is a global constant it is notconsidered to be a free variable of the lambda-form for mfy.21

In this example, every lambda-form has either no arguments or no free variables. To illustratethe two in combination, consider the following alternative de�nition for map:map1 f = mf where mf [] = []mf (y:ys) = (f y) : (mf ys)Here the recursion is over mf, which has free variable f. The corresponding STG binding is:map1 = {} \n {f} ->letrecmf = {f,mf} \n {xs} ->case xs ofNil {} -> Nil {}Cons {y,ys} -> let fy = {f,y} \u {} -> f {y}mfy = {mf,ys} \u {} -> mf {ys}in Cons {fy,mfy}in mfHere, mf is an example of a lambda-form with both free variables and arguments. Notice thatmf is a free variable of its own right-hand side (see Section 4.5).4.1.1 The general transformationIn general, translation into the STG language involves the following transformations:� Replace binary application by multiple application.(: : :((f e1) e2) : : :) en =) f fe1 ; e2 ; : : : ; engThe semantics is still that of curried application, of course, but the STG machine appliesa function to all the available arguments at once, rather than doing so one by one.� Saturate all constructors and built-in operations, by �-expansion if necessary. That isc fe1 ; : : : ; eng =) �y1 : : :ym : c fe1 ; : : : ; en ; y1 ; : : : ; ymgwhere c is a built-in or constructor with arity n +m)� Name every non-atomic function argument, and every lambda abstraction, by introduc-ing a let expression:� Convert the right-hand side of each let binding into a lambda-form, by adding free-variable and update-ag information.4.1.2 Identifying the free variablesThe transformation to STG code requires the free variables of each lambda-form to be iden-ti�ed. The rule is as follows: a variable must appear in the free variable list of a lambda-formif 22

1. it is mentioned in the body of the lambda abstraction, and2. it is not bound by the lambda, and3. it is not bound at the top level of the program.Thus, in the �rst version of map in the previous section, map does not appear in the free-variable list of mfy because it is a global constant. On the other hand, in the second versionof map, mf is a free variable of both itself and mfy.The free-variable rule handles mutual recursion without any further complications. For ex-ample, the Haskell de�nitionf x y = fbodywhereg1 a = ...a...g2...x...g2 b = ...b...g1...y...would transform to the STG de�nition:f = {} \n {x,y} -> letrecg1 = {g2,x} \n {a} -> ...a...g2...x...g2 = {g1,y} \n {b} -> ...b...g1...y...infbodyThe letrec builds a pair of closures, each of which points to the other.The rule above says when a variable must appear in a free-variable list of a lambda-form. Ofcourse, any in-scope variable may appear (redundantly); surprisingly, there is one situationin which such redundant free variables prove useful | see Section 4.4.4.2 Closures and updatesIn the STG language, let(rec) expressions bind variables to lambda-forms. Two pieces ofdenotationally redundant but operationally signi�cant information are attached to a lambda-form: a list of the free variables of the lambda-form, and an update ag. In this section wefocus on the update ag.Updates are an expensive feature of lazy evaluation, whereby the closure representing anunevaluated expression is updated with its (head) normal form when it is evaluated (Sec-tion 3.1.2). The aim is to avoid evaluating a particular closure more than once.In contrast to the G-machine, which performs an update after almost every reduction, theSpineless Tagless G-machine is able to decide on a closure-by-closure basis whether updatingis required. (It shares this property with TIM and the Spineless G-machine.) The update/no-update decision is controlled by the update ag on a lambda-form: if the update ag is \u",the corresponding closure will be updated with its head normal form if it is ever evaluated; ifit is \n" no update will be performed.It is clearly safe to set the update ag of every lambda-form to u, thereby updating every23

closure. But we can do much better than this. The obvious question is: to which lambda-forms can we safely assign an update ag of \n", without losing the single-evaluation property?We explore this question by classifying lambda-forms into distinct classes:Manifest functions. A manifest function is a lambda-form with a non-empty argument list.For example, map and mf are manifest functions in the examples of the previous section.Manifest functions do not require updating because they are already in head normalform.Partial applications. A partial application lambda-form is of the formvs \n fg -> f fx1 ; : : : ; xmgwhere f is known to be a manifest function taking more than m arguments. Likemanifest functions, partial applications are already in head normal form, and hence donot require updating. Both manifest functions and partial applications are of coursefunction values.Partial applications sometimes appear directly in programs, but they also arise as aresult of performing updates (Section 5.6).Only lambda-forms in precisely the form given above are classi�ed as partial applica-tions. For example, the lambda-form{x,y} \u {} -> let z = ...in f {z}is not classi�ed as a partial application, because its body is not in the required form.There is a good reason for this: if a closure built from this lambda-form was not updated,the closure for z would be re-built each time it was entered.Constructors. A constructor is a lambda-form of the formvs \n fg -> c fx1 ; : : : ; xmgwhere c is a constructor. (Since constructor applications are always saturated in theSTG language, c is bound to have arity m.) The update ag on a constructor is alwaysn (no update).Thunks. The remaining lambda-forms, those with an empty argument list but not of thespecial form of a partial application or a constructor, are called thunks. The lambda-forms mfy and fy are examples of thunks in the previous section.Since thunks are not in normal form, it appears at �rst that they should all have theirupdate ag set to u. However, if the compiler can prove that a thunk can be evaluatedat most once then it is safe to set its update ag to n, thereby allowing the update tobe omitted.For example, consider the following de�nition:24

f = {} \n {p,xs} -> let j = {p} \n {} -> factorial pincase xs ofNil {} -> + {j,1}Cons {y,ys} -> + {j,2}Here it is clear that j will be evaluated at most once, so its closure does not need to beupdated.In summary, updates are never required for functions, partial applications and constructors;and may in addition sometimes be omitted for thunks.The analysis phase which determines which thunks need not be updated is called updateanalysis. Not much work seems to have been done on this topic, but we are working on asimple update analyser.4.3 Generating fewer updatable lambda-formsThe translation from the Core to STG language is largely straightforward (apart from theupdate analysis, which can of course be omitted by agging all thunks as updatable). Thereis an important opportunity to reduce the incidence of updates, which concerns constructorsand partial applications. Consider the Haskell expressionlet xs = y1 : (y2 : (y3 : [])))in ...A straightforward translation into the STG language giveslet xs = {y1,y2,y3} \u {} ->let t1 = {y2,y3} \u {} ->let t2 = {y3} \u {} ->let t3 = {} \n {} -> Nil {}in Cons {y3,t3}in Cons {y2,t2}in Cons {y1,t1}in ...Three updatable thunks have been built which will subsequently be updated when (and if)xs is traversed. An alternative, and usually superior, translation is this:let t3 = {} \n {} -> Nil {}in let t2 = {y3,t3} \n {} -> Cons {y3,t3}in let t1 = {y2,t2} \n {} -> Cons {y2,t2}in let xs = {y1,t1} \n {} -> Cons {y1,t1}in ...No updatable thunks are built at all. The only bad thing about this translation is that if xswas to be discarded without being traversed then the work of constructing all four constructorclosures would have been wasted. (This is a strictly bounded amount of work, however.)25

Just the same alternative translation is possible when a known function is applied to too fewarguments; the let bindings for the argument expressions can be lifted up a level so that apartial-application lambda-form remains, which does not need to be updated.In general,� Updates can be omitted for parameterless lambda-forms if the body is a head normalform.� Opportunities for this improvement may be enhanced by moving let(rec) bindingsfrom the lambda-form to its enclosing context. More generally, any small, bounded,computation may be moved from a lambda-form to its enclosing context to expose ahead normal form, and thereby avoid an update.4.4 Standard constructorsThe �nal form of the example in the previous section had three lambda-forms of the form{x,xs} \n {} -> Cons {x,xs}for various x and xs . Because they all have the same shape, they can clearly all share a singlecode pointer. In general, a lambda-form of the formfx1 ; : : : ; xmg \n fg -> c fx1 ; : : : ; xmgwhere c is a constructor of arity m, is called a standard constructor. All such lambda-formsfor a particular constructor c can share common code.The free-variable list of a global de�nition is usually empty, since the global can only mentionother globals, and is represented by a closure consisting only of a code pointer. However,consider the following global Haskell de�nition:aList = [thing]thing = ...A straightforward translation to the STG language givesaList = {} \n Cons {thing,nil}nil = {} \n Nil {}thing = ...This is perfectly correct, but it means having special-purpose code for aList, which hasreferences to thing and nil wired into it. If aList was a list with several items in it, eachcell in the list would have a separate code sequence! An alternative translation, isaList = {thing,nil} \n Cons {thing,nil}nil = {} \n Nil {}thing = ...The lambda-form for aList now has free variables which are not strictly necessary, but thepayo� is that the lambda-form is now a standard constructor, and can use the standard code26

for Cons. Instead of being represented by a code pointer alone, aList is now represented bythe Cons code together with pointers to the globals thing and nil.We apply this idea throughout, not just at top level, to make sure that every lambda-formwhose body is a simple constructor application is a standard constructor.For nullary constructors, such as Nil, it is not only possible to share its code, but also toshare its closure. Thus, in the above example, the nil global can be shared by all occurrencesof Nil in the program.4.5 Lambda liftingLambda lifting is a process whereby all function de�nitions are lifted to the top level, bymaking their free variables into extra arguments (Johnsson [1985]; Peyton Jones & Lester[1991]). In a lambda-lifted program each lambda-form has either no free variables or noarguments. In contrast to most other abstract machines, the STG machine does not requirethe program to be lambda lifted; a right-hand side can have both free variables and arguments.The operational di�erence between the two is fairly slight. Consider the following STGlanguage de�nition:f = {} \n {x1,x2,x3} -> let z = {x1,x3} \n {y} -> zbodyin fbodyin which the lambda-form for z has the free variables x1 and x3, and argument y. If lambdalifting is performed, a new global function (or supercombinator) $z is introduced, giving:$z = {} \n {x1,x3,y} -> zbodyf = {} \n {x1,x2,x3} -> let z = {x1,x3} \n {} -> $z {x1,x3}in fbodyNow the program has only thunks (like z) and supercombinators (like f and $z). Opera-tionally, what happens is that when z is entered, it pushes its two free variables, x1 and x3,onto the evaluation stack and jumps to $z. In the original version, which the STG machinecan execute directly, the free variables can be used directly from the closure itself.In short, the local environment in which the STG machine executes consists of two parts(Section 5.2): values held in the closure just entered (its free variables), and values held onthe stack (its arguments). This two-level environment reduces somewhat the movement ofvalues from the heap to the stack, but it is not yet clear whether this is a big improvementor only a marginal one.4.6 Full lazinessConsider the bindingf = {x} \n {y} -> let z = {x} \u {} -> ezin ef 27

where ez and ef are arbitrary expressions. Suppose x and y are both free in ef, but only x isfree in ez. Since the lambda-form for z does not have y as a free variable, this is equivalentto the pair of bindingsz = {x} \u {} -> ezf = {x,z} \n {y} -> efFurthermore, the latter form may save work if f is applied many times, because z will beinstantiated only once rather than once for each call of f. In general, each binding can bemoved outwards until its immediately enclosing lambda abstraction binds one of the freevariables of the binding. This transformation is called the full laziness transformation, and isdescribed in detail by Peyton Jones & Lester [1991].4.7 Arithmetic and unboxed valuesIn a non-strict functional language implementation, when a variable is bound, it is generallybound to an unevaluated closure allocated in the heap. When the value of the variable isrequired, the closure to which it points is evaluated, and the closure is overwritten with theresulting value. Further evaluations of the same closure will �nd the value immediately.This evaluation model means that all numbers are represented by a pointer to a heap-allocatedclosure, or \box", which contains either information which enables the number to be com-puted, or (if the closure has been evaluated) the actual value of the number. We call the\actual value" an unboxed value; it can be manipulated directly by the instruction set of themachine.The uniform boxed representation makes arithmetic horribly expensive. A simple addition,which takes one instruction in a conventional system, requires a sequence of instructions to:evaluate the two operands, fetch their values, add them, allocate a new box for the result,and place the result in it.One of the innovative features of our compiler is that unboxed values are explicitly part of theCore and STG languages. That is, variables may be bound to unboxed values, functions maytake unboxed values as arguments and return them as results, unboxed values may be storedin data structures, and so on. The main motivation for this approach is that we can then beexplicit about the steps involved in (say) addition. To begin with, we declare the followingdata type:data Int = MkInt Int#This declares the data type of (boxed) integers, Int, as an algebraic data type with a singleconstructor, MkInt. The latter has a single argument of type Int#, the type of unboxedintegers. So the value (MkInt 3#) represents the boxed integer 3 (3# stands for the unboxedconstant 3, of type Int#).Now, given the expression (e1 + e2), say, we can rewrite it like this:case e1 ofMkInt x# -> case e2 ofMkInt y# -> case (x# +# y#) of28

t# -> MkInt t#The outer two case expressions evaluate e1 and e2 respectively, while the inner case expressesthe fact that x# and y# are added, and then their result t# is boxed with a MkInt constructor.(By convention, we use a trailing # for identi�ers whose values or results are primitive. Thisis just for human readability: the identi�ers + and +# are distinct, but the # is not otherwiserecognised specially by the compiler.)It turns out that this simple idea allows several optimisations which hitherto were buried inthe code generator to be reformulated as program transformations. Furthermore, the idea canbe generalised in a number of directions, such as allowing general algebraic data types withunboxed components (rather than just Int). All of this is discussed in detail in Peyton Jones& Launchbury [1991].For the purposes of this paper, it su�ces to establish the following facts:� Data types are divided into two kinds: algebraic data types are introduced by explicitdata declarations, while primitive data types are built into the system. Values of primi-tive type can be manipulated directly by machine instructions, and are always unboxed.For example, Int is an algebraic type, while Int# is primitive. For the purpose of thispaper, it su�ces to identify primitive types with unboxed types, though the generalisa-tions discussed in Peyton Jones & Launchbury [1991] permit unboxed algebraic typesas well.� All literal constants are of primitive type; literals of algebraic type are expressed bygiving an explicit application of a constructor.� All arithmetic built-in operations operate over primitive values (for example +# above).De�nitions for functions operating over non-primitive (ie algebraic) values can be ex-pressed directly in the STG language, and hence do not need to be built in.� Values of unboxed type need not be the same size as a pointer. For example, Double#,the type of double-precision oating-point numbers, occupy 64 bits while pointers usu-ally occupy 32 bits. As a result, polymorphic functions can take only arguments of boxedtype, because arguments must be passed to such functions in a uniform representation.(Even if unboxed values were always the same size as a pointer there would still be adi�culty for the garbage collector in distinguishing a pointer from a non-pointer.)� A let or letrec expression cannot bind a variable of unboxed type. Such a binding isinstead made using a case expression. The reason for this is that when a variable ofunboxed type is bound, the expression to which it is bound must be evaluated imme-diately; the whole point about unboxed values is that they cannot be represented byas-yet-unevaluated closures.In other words, in the STG language, case expressions perform evaluation, while letand letrec build closures. This uniform semantics gives rise to uniform transformationlaws; for example, a let expression whose bound variable is not used can always beelided.For the same reason, the global (top-level) bindings of an STG program cannot bindvalues of unboxed type. 29

� There are two forms of case expression, as the the syntax of Figure 3 describes. Onetakes apart a value of an algebraic data type, while the other performs case analysis ona value of primitive type.4.8 Relationship to CPS conversionTransformation to continuation-passing style (CPS) is a technique which has been used togood e�ect in several compilers for strict (call-by-value) languages (Appel [1992]; Fradet &Metayer [1991]; Kelsey [1989]; Kranz [1988]; Steele [1978]). Though the STG language is lazy,it has much the same avour as CPS: nested constructs are attened to an explicit sequenceof simple operations, so that the ow of control is manifest, and there is a direct relationshipbetween the remaining language constructs and individual machine operations.To make the connection explicit, the following table shows the approximate correspondencebetween the constructs of the CPS language used by Appel (Appel [1992]), and those of theSTG language.Operation Appel CPS form STG formApplication APP ApplicationLocal function de�nition FIXRecord construction RECORD let(rec)Thunk construction |Forcing of data values |Selection of alternative SWITCH case on algebraic typesExtraction of record components SELECTPrimitive operations PRIMOP case on primitive typesThere are a few minor di�erences between Appel's CPS and the STG language. Firstly, CPS-based implementations usually unbundle case expressions into forcing, multi-way selection,and extraction of the components of the data value. These are all bundled up together incase expressions which, as we have seen, can be used to advantage by the STG machine.Secondly, the STG language uses a single construct, let(rec), to allocate function-valuedand data-valued closures, thus allowing arbitrary mutual recursion between the two. It is notso clear how to achieve this using Appel's form of CPS.There is a much more important di�erence though: the STG language is not a continuation-passing style! In CPS, every user-de�ned function is given an extra parameter, namely thecontinuation to apply to its result. For example, assuming a continuation k, the expression(f x) + ywould be converted to the CPS formf x (\fx. + fx y (\r. k r))The call to f is made into a tail call, passing to f an extra argument, the continuation(\fx. + fx y (\r. k r)). This continuation says what to do after (f x) has been com-puted, namely add the result to y and pass that value to k. In contrast, the STG form of thesame expression is: 30

case (f x) ofMkInt x# -> case y ofMkInt y# -> case (x# +# y#) ofr# -> MkInt r#The continuation to the call to f is passed implicitly; when evaluation of f x is complete,control returns to the second case expression. The second case evaluates y, which of courseis not necessary in Appel's world since SML is strict. A lazy version of CPS would require thesuspended computation inside a thunk to be a function taking a continuation as its argument.So the CPS form would really bef x (\fx. force y (\yr. + fx yr (\r. k r)))where force is the function which forces a thunk (its �rst argument) by applying it to force'ssecond argument (the continuation). This code is strikingly similar to the STG form above.This di�erence in the way in which continuations are handled clearly distinguishes CPS fromthe STG language, but it is quite di�cult to pin down all the implications of the di�erence.For example, the CPS version has a natural stack-less implementation, since every call is a tailcall. On the other hand, it may thereby incur the cost of heap-allocating the closure for thecontinuation, and passing it as an argument to f. The STG version suggests a stack-basedimplementation, since the current activation frame contains the environment in which thecontinuation should be executed. But of course, either implementation is possible from bothstyles.The STG style also seems to be more natural for curried function application. Consider thecall (f x y), which is left unchanged by the conversion to the STG language. If convertedto CPS (assuming that the call itself has continuation k), this would generate something like:f x (\w. w k y)This is a rather expensive and clumsy compilation for an ordinary function application! Weexpect curried function application to be pervasive, so the STG language provides it as prim-itive.Of course, this imposes an extra requirement on the code generator for the STG language:it must cope with functions applied to more or fewer arguments than they are expecting.(For example f might take one argument, x, do a lot of computation, and �nally reduce to afunction which takes the second argument y.) As Section 5 will show, though, graph reductiongives a natural way to provide this functionality.In summary, the STG language has a similar avour to CPS, but is a little less extreme.So far we have not discovered any opportunities for optimisation which are exposed by CPSbut hidden by the STG language. (Consel & Danvy [1991] show that transforming the sourceprogram to CPS may improve the accuracy of some analyses; we have not investigated whetheror not the STG language has a similar property.)31

5 Operational semantics of the STG languageThe STG language is the abstract machine code for the STG machine. In this section we givea direct operational semantics for the STG language using a state transition system.A state transition semantics speci�es (a) an initial state for the machine, and (b) a series ofstate transition rules. Each rule speci�es a set of source states and the corresponding targetstates after the transition has taken place. The set of source states is speci�ed implicitly, usingpattern-matching and guard conditions; if a state is in the source set for a given transitionrule we say that the rule matches the state. At most one transition rule should match anygiven state, and if no rule matches, the machine halts.The state has �ve components:1. the code, which takes one of several forms, given below;2. the argument stack, as , which contains values;3. the return stack, rs , which contains continuations;4. the update stack, us , which contains update frames;5. the heap, h, which contains (only) closures;6. the global environment, �, which gives the addresses of all closures de�ned at top level.Sequences are used extensively in what follows. They are denoted using curly brackets, thusfa1 ; : : : ; ang. The empty sequence is denoted fg; if as and bs are two sequences then as ++ bsis their concatenation; and a : as denotes the sequence obtained by adding the item a to thebeginning of the sequence as . The length of a sequence as is denoted length(as).A value takes one of the following forms:Addr a A heap addressInt n A primitive integer valueIn the operational semantics, values are tagged with Addr and Int and so on to distinguishthese di�erent kinds of value. We discuss later ways to avoid actually implementing thistagging in a real implementation (Section 8). We could add further forms of value for otherprimitive data types, such as oating-point numbers, but they are handled exactly analogouslyto integers, so we omit them to reduce clutter.We use w ;w1 ; : : :, to range over values, and ws to range over sequences of values.The argument stack, as , is just a sequence of values. The \top" of the stack is the beginningof the sequence. The return stack and update stack will be dealt with later (Sections 5.4 and5.6 respectively).The heap, h, is a mapping from addresses, ranged over by a; a1 ; : : :, to closures. Every closureis of the form (vs \� xs -> e) ws32

Intuitively, the lambda-form (vs \� xs -> e) denotes the code of the closure, while the sequenceof values ws gives the value of each of the free variables vs . (We use � to range over updateags, which can be either u or n.) This is exactly the uniform representation discussed inSection 3.1.3.The global environment component of the state, �, maps the name of each variable bound atthe top level of the program to the address of its closure. These closures can all be allocatedonce and for all before execution begins. (Indeed, unlike the other components, � does notchange during execution.) The STG machine is unusual in binding globals to closures ratherthan to code sequences. It is important to do so, however, because a global may be updatable,so there must be a closure to update!As we discussed earlier, it is possible to share the code for standard-constructor closures(Section 4.4). In the special case of constructors with no arguments (such as Nil) it ispossible to share not just the code for the closure, but the closure itself. For example, allreferences to Nil can use the address of a single global closure. This is easily done by addingniladic constructors as a possible form of atom (Figure 3), and extending � with the addressof a suitable closure for each niladic constructor. For the sake of simplicity, we do not performthis optimisation in the operational semantics which follows.Finally, the code component of the state takes one of the following four forms, each of whichis accompanied by its intuitive meaning:Eval e � Evaluate the expression e in environment �and apply its value to the arguments on theargument stack. The expression e is an arbi-trarily complex STG-language expression.Enter a Apply the closure at address a to the argu-ments on the argument stack.ReturnCon c ws Return the constructor c applied to values wsto the continuation on the return stack.ReturnInt k Return the primitive integer k to the continu-ation on the return stack.The local environment, �, maps variable names to values. The notation �[v 7! w] extends themap � with a mapping of the variable v to value w . This notation also extends in the obviousway to sequences of variables and values; for example �[vs 7! ws].The val function takes an atom (Figure 3) and delivers a value:val � � k = Int kval � � v = � v if v 2 dom(�)= � v otherwiseIf the atom is a literal k , val returns a primitive integer value. If it is a variable, val looksit up in � or � as appropriate. val extends in the obvious way to sequences of variables:val � � vs is the sequence of values to which val � � maps the variables vs .33

5.1 The initial stateWe begin by specifying the initial state of the STG machine. The general form of an STGprogram is as follows:g1 = vs1 \�1 xs1 -> e1: : :gn = vsn \�n xsn -> enOne of the gi will be main. Given this program, the corresponding initial state of the machineis: Arg Return UpdateCode stack stack stack Heap GlobalsEval (main fg) fg fg fg fg hinit �where � = 264 g1 7! (Addr a1): : :gn 7! (Addr an) 375hinit = 264 a1 7! (vs1 \�1 xs1 -> e1) (� vs1): : :an 7! (vsn \�n xsn -> en) (� vsn) 375We write a machine state as a horizontal row of its components, sometimes with auxiliaryde�nitions (as here) introduced by a \where" clause. In this initial state, the code componentsays that main is to be evaluated in the empty local environment; the argument, return andupdate stacks are empty; the initial heap, hinit , contains a closure for each global; and theglobal environment, �, binds each global to its closure.Notice that the values in the range of the global environment are all addresses. This reectsthe fact that global variables are always boxed.5.2 ApplicationsWe begin the main operational semantics with the rule for applications.(1) Eval (f xs) � as rs us h �such that val � � f = Addr a=) Enter a (val � � xs) ++ as rs us h �The top line of the rule gives the state before the transition, while the bottom line givesthe state afterwards. We use a pattern-matching notation for the top line. In this case, therule only matches if the code component is an Eval of an expression of the given form. The\such that" clause further constrains the rule to the case where f is bound to the address ofa closure (and not to a primitive value). 34

The rule says that to perform a tail call, the values of the arguments are put on the argumentstack, and the value of the function is entered. The function is expected to be a closure; theother case, when f is not an address but rather is a primitive value instead, is dealt with inSection 5.5. Notice that the local environment is discarded at this point; in general, the localenvironment only has a very local lifetime.The next thing to discuss is the rule for entering a closure. We give only the rule for enteringnon-updatable closures; the rule for updatable closures is given in Section 5.6.(2) Enter a as rs us h[a 7! (vs \n xs -> e) wsf] �such that length(as) � length(xs)=) Eval e � as 0 rs us h �where wsa ++ as 0 = aslength(wsa) = length(xs)� = [vs 7! wsf ; xs 7! wsa]When a non-updatable closure is entered, the local environment is constructed by binding itsfree variables to the values, wsf , found in the closure, and its arguments to the values, wsa ,found on the stack. Then the body of the closure is evaluated in this environment. In thisrule we use a \where" clause to give values to variables used in the result state of the rule.5.3 let(rec) expressionsAs mentioned earlier, a let expression constructs one or more closures in the heap.(3) Eval 0BBB@let x1 = vs1 \�1 xs1 -> e1: : :xn = vsn \�n xsn -> enin e 1CCCA � as rs us h �=) Eval e �0 as rs us h 0 �where �0 = �[x1 7! Addr a1 ; : : : ; xn 7! Addr an]h0 = h 264 a1 7! (vs1 \�1 xs1 -> e1) (�rhs vs1): : :an 7! (vsn \�n xsn -> en) (�rhs vsn) 375�rhs = �The rule for letrec is almost identical, except that �rhs is de�ned to be �0 instead of �.35

5.4 Case expressions and data constructorsThe return stack is used for the �rst time when we come to case expressions. Given theexpression case e of altsthe operational interpretation is \push a continuation onto the return stack, and evaluate e".When the evaluation of e is complete, execution will resume at the continuation, which thendecides which alternative to execute. The rule for case follows fairly directly:(4) Eval (case e of alts) � as rs us h �=) Eval e � as (alts ; �) : rs us h �The continuation is a pair (alts ; �); the alternatives alts say what to do when evaluation ofe completes, while the environment � provides the context in which to evaluate the chosenalternative. We will have more to say about how this expensive-looking environment savingis performed later, in Section 9.4.1.The other side of the coin is the rules for constructors and literals. Presumably e eventu-ally evaluates to either a constructor or a literal, at which point the continuation must bepopped from the return stack and executed. The rules for constructors and literals each usean intermediate state, ReturnCon and ReturnInt respectively, just as the rule for functionapplication uses Enter . Primitive values are dealt with in the next section, while the rulesfor constructors are given next.Evaluating a constructor application simply moves into the ReturnCon state:(5) Eval (c xs) � as rs us h �=) ReturnCon c (val � � xs) as rs us h �The rules for ReturnCon return to the appropriate continuation taken from the return stack:(6) ReturnCon c ws as (: : :; c vs -> e; : : : ; �) : rs us h �=) Eval e �[vs 7! ws] as rs us h �Provided that the continuation on the return stack contains a pattern c vs whose constructorc is the same as that being evaluated, we just evaluate the right-hand side of that alternative,in the saved environment � augmented with bindings for the variables vs to the values of theactual arguments to c.If there is no such alternative, the default alternative is taken. The rule for this is easy whenno variable is bound in the default case:(7) ReturnCon c ws as 0BBB@ c1 vs1 -> e1;: : :;cn vsn -> en;default -> ed ; �1CCCA : rs us h �such that c 6= ci (1 � i � n)=) Eval ed � as rs us h �36

However, if a variable v is bound by the default, we need to heap-allocate a constructorclosure to which to bind v , thus:(8) ReturnCon c ws as 0BBB@ c1 vs1 -> e1;: : :;cn vsn -> en;v -> ed ; �1CCCA : rs us h �such that c 6= ci (1 � i � n)=) Eval ed �[v 7! a] as rs us h 0 �where h 0 = h[a 7! (vs \n {} -> c vs) ws]vs is a sequence of arbitrary distinct variableslength(vs) = length(ws)This rule is a little complicated, and a simple program transformation can eliminate thevariable-binding form of default from the language (for algebraic case expressions, anyway):case e of : : :; v -> b =) let v = xs \u {} -> eincase v of : : :; default -> bIn implementation terms this version is a little less e�cient, because a closure for v will beallocated and then updated, whereas using Rule 8 simply allocates the constructor in its �nalform.Lastly, if there is no match and no default alternative, no rule matches, which is interpretedas failure.5.5 Built in operationsIn this section we give the extra rules which handle primitive values. The rule for evaluatinga primitive literal, k , enters the ReturnInt state:(9) Eval k � as rs us h �=) ReturnInt k as rs us h �A similar rule deals with the case where a variable bound to a primitive value is entered:(10) Eval (f fg) �[f 7! Int k] as rs us h �=) ReturnInt k as rs us h �Next come the rules for the ReturnInt state, which look for a continuation on the returnstack. First, the case where there is an alternative which matches the literal:(11) ReturnInt k as (: : :; k->e; : : : ; �) : rs us h �=) Eval e � as rs us h �Next, the cases where the default alternative is taken:37

(12) ReturnInt k as 0BBB@ k1 -> e1;: : :;kn -> en;x -> e ; �1CCCA : rs us h �such that k 6= ki (1 � i � n)=) Eval e �[x 7! Int k] as rs us h �(13) ReturnInt k as 0BBB@ k1 -> e1;: : :;kn -> en;default -> e ; �1CCCA : rs us h �such that k 6= ki (1 � i � n)=) Eval e � as rs us h �Finally, we need a family of rules for built-in arithmetic operations which, for each binarybuilt-in operation � have the form:(14) Eval (� fx1 ; x2g) �[x1 7! Int i1 ; x2 7! Int i2] as rs us h �=) ReturnInt (i1 � i2) as rs us h �5.6 UpdatingIn this section we cover the updating technology necessary for a graph reduction machine.Updates happen in two stages:1. When an updatable closure is entered, it pushes an update frame onto the updatestack, and makes the argument and return stacks empty. An update frame is a triple(asu ; rsu; au), consisting of:� asu , the previous argument stack;� rsu , the previous return stack;� au , a pointer to the closure being entered, and which should later be updated.2. When evaluation of the closure is complete an update is triggered. This can happen inone of two ways:� If the value of the closure is a data constructor or literal, an attempt will be madeto pop a continuation from the return stack, which will fail because the returnstack is empty. This failure triggers an update. (In the real implementation wecan avoid making the test by merging the return and update stacks, and makingthe update into a special sort of continuation | Section 10.1.)� If the value of the closure is a function, the function will attempt to bind argumentswhich are not present on the argument stack (because they were squirreled awayin the update frame). This failure to �nd enough arguments triggers an update.38

These situations are made precise in the following rules. First, we need to add an extra rulewhich applies when entering an updatable closure (that is, one whose update ag is u). Therule is similar to the usual closure-entry rule (Rule 2):(15) Enter a as rs us h[a 7! (vs \u {} -> e) wsf] �=) Eval e � fg fg (as ; rs ; a) : us h �where � = [vs 7! wsf]The di�erence is that the argument stack, return stack, and closure being entered are formedinto an update frame, which is pushed onto the update stack. (Naturally, the real implemen-tation manipulates pointers rather than copying entire stacks | Section 10.3.) Since closureswith a non-empty argument list are never updatable (Section 4.2), we only deal with this casein the rule given.Next, we need new rules for constructors which see an empty return stack. When this happens,they update the closure pointed to by the update frame, restore the argument and returnstacks from the update frame, and try again. It may be that the restored return stack containsthe continuation, but it too may be empty, in which case a second update is performed, andso on until the continuation is exposed.(16) ReturnCon c ws fg fg (asu ; rsu ; au) : us h �=) ReturnCon c ws asu rsu us hu �where vs is a sequence of arbitrary distinct variableslength(vs) = length(ws)hu = h[au 7! (vs \n fg -> c vs) ws]The closure to be updated (address au) is just updated with a standard-constructor closure.Only a rule for ReturnCon need be given. It is not possible for the ReturnInt state to seean empty return stack, because that would imply that a closure should be updated with aprimitive value; but no closure has a primitive type (Section 4.7).Finally, we need a rule to handle the case where there are not enough arguments on the stackto be bound by a lambda abstraction, which triggers an update. The relevant rule is:(17) Enter a as fg (asu ; rsu ; au) : us h �such that h a = (vs \n xs -> e) wsflength(as) < length(xs)=) Enter a as ++ asu rsu us hu �where xs1 ++ xs2 = xslength(xs1) = length(as)hu = h[au 7! ((vs ++ xs1) \n xs2 -> e) (wsf ++ as)]39

(The rule will only apply if the number of arguments #xs is greater than zero, so the closurebeing entered will be non-updatable; hence the \n in the �rst line of the rule.) The closureto be updated (address au) has as its value the value of the closure being entered (addressa) applied to the arguments on the stack as . It is therefore updated with a closure whosecode is ((vs ++ xs1) \n xs2 -> e); the body e is the same as that of a, but it has more freevariables (xs1 as well as vs) and fewer arguments (xs2 instead of xs). After the update theEnter is retried.This concludes the basic rules for updating. However, one of the constraints in a real im-plementation is that it cannot manufacture compiled code \on the y", so we need to becareful about the code part of closures which are created by updating. The code required forconstructors, (vs \n fg -> c vs) is OK, because we can precompile it for each constructor c.The code for partial applications, ((vs ++ xs1) \n xs2 -> e), is more tiresome, since it suggeststhat we need to precompile the entire body e of every function for every possible partialapplication. An alternative rule for partial-application updates avoids this problem:(17a) Enter a as fg (asu ; rsu ; au) : us h �such that h a = (vs \n xs -> e) wsflength(as) < length(xs)=) Enter a as ++ asu rsu us hu �where xs1 ++ xs2 = xslength(xs1) = length(as)f is an arbitrary variablehu = h[au 7! ((f : xs1) \n fg -> f xs1) (a : as)]Here the closure being entered, a, is used in the new closure. The new code required, namely((f : xs1) \n fg -> f xs1), can be shared between all partial applications to the same numberof arguments. All that is required is a family of such code-blocks, one for each possible numberof arguments.
40

Part III: Mapping the abstract machine to stockhardwareWe have now completed the abstract description of the Spineless Tagless G-machine. Whilstit has some interesting features, its real justi�cation is that it maps very nicely onto stockhardware, with a rich set of design alternatives, some of which we have already indicated. Inthe rest of the paper we describe the mapping in detail.6 Target languageOur goal is, of course, to generate good native code for a variety of stock architectures. Oneapproach to this is to write individual code generators for each architecture, and this is likelyto give the best results in the end. Unfortunately, to compete with more mature imperativelanguages, whose code generators have evolved and improved over many years, we would haveto do a comparably good job of code generation, which is a lot of work.Motivated by this concern, we generate code in the C language as our primary target, ratherthan generating native code direct. In this way we gain instant portability, because C isimplemented on a wide variety of architectures, and we bene�t directly from improvementsin C code generation. This approach, of using C as a \high-level assembler" has gainedpopularity recently (Bartlett [1989]; Miranda [1991]).4 In particular, the work of Tarditi etal on compiling SML to C, developed independently and concurrently with ours, addressesessentially the same problems (Tarditi, Acharya & Lee [1991]).Rather than generating C directly, we go via an internal datatype called \Abstract C". Thisallows the following spectrum of alternatives for the �nal code generation, with increasinge�ciency and decreasing portability:� We can generate ANSI-standard C, which should be widely portable.� We can generate C which exploits various non-standard extensions to C supported bythe Gnu C compiler (Stallman [1992]).� We can generate native machine code directly.So far we have concentrated only on the �rst two alternatives.Compiling via C is very attractive for portability reasons, but like all good things, it does notcome for free. In the rest of this section we describe a few tricks which substantially improvethe code we can generate using this route, usually by exploiting non-standard extensions toC provided by Gnu C.4Here, \Miranda" is not the trade mark. It is the last name of a researcher at Queen Mary and West�eldCollege, London. 41

6.1 Mapping the STG machine to CAt �rst it appears sensible to try to map functions from the original functional programonto C functions, but we soon abandoned this approach. The mis-match between C and anon-strict higher-order functional language is too great.Instead, the argument stacks and control stack are mapped onto explicit C arrays, bypassingthe usual C parameter-passing mechanism. All \registers", such as the stack pointers, heappointer, heap limit, and other registers introduced later, are held in global variables.This approach results in a great deal of global-variable manipulation. The overheads canbe reduced without losing portability, by caching such globals in (register-allocated) localvariables during the execution of a single code-block, based on a simple usage analysis (Tarditi,Acharya & Lee [1991]). At the expense of portability, the overheads can be eliminated entirely,by telling the C compiler to keep particular globals in speci�ed registers permanently, a (highlynon-standard, architecture-speci�c) facility provided by the Gnu C compiler.6.2 Compiling jumpsThe main di�culty with generating C concerns labels. We use the term code label (or justlabel) to mean an identi�er for a code sequence. The important characteristics of a code labelare that:� It can be used to name an arbitrary block of code.� It can be manipulated; for example, it can be pushed onto a stack, stored in a closure,or placed in a table.� It can be used as the destination of a jump.We usually think of labels as being represented by code addresses. The trouble is that C hasnothing which directly corresponds to code labels. There are two ways out of this dilemma,which we outline in the following subsections.6.2.1 Using a giant switchThe �rst solution is to map labels onto integer tags, and embed the entire program in a loopwith the following form:int cont = 1;while (TRUE) doswitch (cont) {1: ...code for label 1...;2: ...code for label 2...;... and so on ...} 42

Now a jump can be implemented by assigning to cont followed by a break statement. Theswitch statement will then re-execute with the new label.The shortcomings of the technique are clear. Firstly, a layer of indirection has been imposed,because labels are not implemented directly as code pointers.Secondly, and more seriously, separate compilation is made much more di�cult. The C codefor the entire program, including the run-time system, has to be gathered together into asingle giant C procedure and then compiled. Not only does this stress the C compiler quitesubstantially, and impose heavy recompilation costs on even local changes, but it also meansthat a special linker has to be written to paste together the C code generated from eachseparately-compiled source-language module.6.2.2 Using a tiny interpreterBecause of these problems we use an alternative method, based on a nice trick. The ideais to compile each labelled block of code to a parameter-less C function whose name is therequired label. Now, C does treat functions as storable values, representing each by a pointerto its code. The only problem is how to jump to such a code block. The only mechanism Cprovides is to call the function, but then every jump would make C's return stack grow byone more word, causing certain stack overow.A C compiler which implemented a tail call as a jump would not su�er from this problem, butit would hardly be a portable solution to require such an optimisation for correct operation.Furthermore, C is complicated enough to make the tail-call optimisation quite hard to getright (in the presence of variadic functions, for example) and no C compiler known to us doesso.So here is the trick: each parameterless function, representing a code block, returns the codepointer to which it would like to jump, rather than calling it. The execution of the entireprogram is controlled by the following one-line \interpreter":while (TRUE) { cont = (*cont)(); }That is, cont is the address of the code block (that is, C function) to be executed next. Thefunction to which it points is called, and returns the address of the next one, and so on. Theloop is �nally broken by a long-jump, though one could equally well test cont for a particularvalue instead, for a fairly minor cost.Here, for example, is a code block which jumps to a label found on top of the return stack:CodeLabel f() {CodeLabel lbl = *RetSp--;return(lbl);}The result is a fully-portable implementation which supports separate compilation in theusual way, with a standard linker. Labels are represented directly by code addresses.Temporary variables, used within a single code block, are declared as local variables of theC function generated for the code block. Their scope is thereby limited, so that a good C43

compiler will put them in registers where possible.It turns out that this idea is actually very old, and that we only reinvented it. Like severalother clever ideas, Steele seems to have been its inventor; he called it the \UUO handler" inhis Rabbit compiler for Scheme (Steele [1978]). The same idea is used by Tarditi, Acharya &Lee [1991], who use C as a target for their SML compiler.6.3 Optimising the tiny interpreterIn the portable tiny interpreter described above, a \jump" has the following overheads:� the epilogue generated by the C compiler for the current C function, concluding with areturn instruction, which pops the return address to return to the \interpreter";� a jump to implement the interpreter's loop;� a subroutine call instruction, which pushes the interpreter's return address;� the prologue generated by the C compiler for the new C function.At the expense of portability, we can make some architecture- and compiler-speci�c optimi-sations to this jump sequence:Eliminating register saves. For architectures with a �xed register set, most C compilersimplement a callee-saves convention for all registers except a small number of workregisters. There is a save sequence at the start of each function and a restore sequenceat the end.Gnu C provides a compiler ag which makes the compiler use a caller-saves convention.In conjunction with the direct-jump optimisation described below this eliminates allregister save instructions.Eliminating the frame pointer. Most C compilers generate instructions at the beginningand end of functions to set up a frame pointer register. This is redundant, because thecompiler can always �gure out the o�sets of local variables from the stack pointer itself,but it is vital for debuggers.Gnu C provides a compiler ag to suppress frame-pointer manipulation, at the expenseof confusing the debugger.Generating direct jumps. Instead of generating return(lbl) we actually generateJUMP(lbl), where JUMP is a macro. For a portable implementation, JUMP expandsto a return statement, but the implementation can be made faster by making JUMPexpand to an in-line assembly-code instruction which really does take a jump. (Most Ccompilers provide an assembly-language trapdoor, which we exploit here.) Using in-lineassembly code in this way has its pitfalls, especially if we simultaneously try to use localvariables. Miranda gives details of the tricky things one has to do (Miranda [1991]).44

6.4 DebuggingThe use of a tiny interpreter turned out to have a very useful property which we had notanticipated: it is a tremendous debugging aid.The STG machine frequently takes an indirect jump, to the code pointed to by a closure. Ifa bug has caused a closure to be corrupted, this indirect jump usually causes a segmentationfault or illegal instruction. The di�culty is that there usually no way of backing up to thecode which performed the jump, which is the �rst step in identifying the source of the error.Using the (unoptimised) tiny interpreter provides an easy solution, because it can easily recorda trail of the most recent few jumps. Since every jump passes through the tiny interpreter, itfaithfully records the address of the code block containing the fatal jump.Furthermore, it is easy to add to the tiny interpreter's loop a call to a hygiene-checkingroutine, which checks that the machine state looks plausible. While it slows down the programconsiderably, we have found this hygiene-checking an invaluable aid for trapping the pointat which the machine state becomes corrupt, rather than the point at which the corruptioncauses a crash, which is often much much later.It is hard to overstate the usefulness of this trick, especially since it has no impact at all on thecompiler and the code it generates. Only people who have spent all night trying to �nd thecause of the heap corruption which subsequently led to a system crash can truly appreciateit!7 The heapThe heap is a collection of closures of variable size, each identi�ed by a unique address. Weuse the term pointer to refer to the address of a closure.7.1 How closures are representedEach closure occupies a contiguous sequence of machine words, which is always laid out asshown in Figure 4.The �rst word of a closure is called its info pointer, and points to its info table. Followingthe info pointer is a block of words each of which contains a pointer, followed by a block ofwords containing no pointers. (The distinction between the two is that the garbage collectormust follow the former but not the latter.) There is a single, statically-allocated, info tableassociated with each bind in the program text (Figure 3). Each dynamic instance of thisbinding is a heap-allocated closure whose info-pointer refers to its static info table (Rule 3).The info table contains a number of �elds which will be described later, but the most importantis the �rst �eld, which contains the label of the closure's standard-entry code. The operationof entering a closure is performed by:� loading the address of the closure into the Node register, and45

tttt - ---
. Standard entry codeEvacuation codeScavenge codeOther info...Info tablePointer words Non-pointer wordsInfo pointer

Figure 4: The layout of a closure� jumping to the standard-entry code for the closure, whose label is usually fetched fromthe info table by indirecting from Node.The standard-entry code can access the various �elds of the closure by indexing from theNode register. The rest of the info table contains:� Enough information to enable the garbage-collector to do its job. In fact we implementthis information as two code labels, which are described further in Section 7.3.� Debugging information for inspection by a debugger or trace generator.� For our parallel implementation, enough information to enable the closure to be ushedinto global memory. This, too, is actually implemented as a code label.It is usual for heap-allocated objects to contain layout information, to specify their size andwhich of their �elds contain pointers. In contrast, our closures do not contain any suchinformation. Rather, as we shall see, size and layout information is encoded in the info table.Indirection closures are generated by update operations, and they have a particularly e�cientrepresentation: -Ind Info Pointer to another closureThe standard-entry code for Ind_Info consists of only two instructions: one to load theindirection pointer from the closure into Node and a second to enter the new closure.In retrospect, this representation is quite similar to that chosen by the Chalmers group fortheir G-machine implementation (Johnsson [1987]). In their system, every heap cell has aone-word \tag" which points to a table of entry points for the various operations that couldbe performed on the cell. Our system di�ers from theirs in two respects. First, and most46

important, rather than having a �xed collection of \tags", we generate a new info table foreach bind in the program text, together with its associated code. This essentially eliminatesthe \interpretive unwind" used by the G-machine. Second, the operation of entering a closureinvolves an indirection to �nd the code label to jump to; this indirection can be avoided whengenerating native code directly, as Section 7.6 discusses.7.2 AllocationThe closures for top-level globals are allocated statically at �xed addresses; we call them staticclosures. A static closure is not necessarily immutable, however, because it may be a thunkwhich is updated during execution. (The alert reader will spot that this policy gives rise toa garbage-collection problem, which we return to in Section 10.8.)All other closures are allocated dynamically from the heap. As is now well understood, forgood performance it is essential to allocate from a contiguous block of free space, rather thanfrom a free list (Appel [1987]). Free space is delimited by two special registers: the Hp registerpoints to one end of it, while the HLimit register points to the other. Allocation is done on abasic-block basis, so that only one free-space exhaustion check is made for each basic block.7.3 Two-space garbage collectionGarbage collection is performed by a two-space stop-and-copy collector (Baker [1978]). Avail-able memory is divided into two semi-spaces. When garbage collection is initiated, all liveclosures are copied from one semi-space to (one end of) the other.This copying process involves two basic operations on closures:� Each live closure must be evacuated from from-space to to-space.� As to-space is scanned linearly, each closure must be scavenged; that is, each closure towhich it points must be evacuated, unless it has already been evacuated, and the newto-space pointer substituted for the old from-space pointer.The unusual feature of our system is that these two operations, evacuation and scavenging,are implemented by code pointed to from the info table of each closure. These code sequences\know" the exact structure of the closure, and therefore can operate without interpretiveloops, and without any further layout information.The evacuation code, which is called as a C function, does the following:� It copies the closure into to-space.� It overwrites the closure in from-space with a forwarding pointer, which points to thenewly-allocated copy of the closure in to-space.� It returns the new to-space address of the closure to the caller.47

The scavenging code of a closure, also called as a C function, does the following. For eachpointer in the closure,� it calls the evacuation code for the closure to which it points;� it replaces the pointer in the original closure with the to-space pointer returned fromthis evacuation call.The scavenging code knows which of the argument �elds contain closure addresses (and hencemust be evacuated), and which are not (and hence must not be evacuated).A C function does the once-per-collection work of switching spaces and accumulating statis-tical information, but almost all the work of garbage-collection is carried out by the evacuateand scavenge routines of the closures in the heap. As in the case of the standard-entry codeof a closure, the info-table dispatch mechanism for evacuation and scavenging provides theopportunity to deal with several special cases \for free" (that is, without any further tests):Forwarding pointers. A forwarding pointer handles the situation where a second attemptis made to evacuate the closure; an attempt to evacuate a closure which has beenoverwritten with a forwarding pointer simply returns the to-space address found inthe forwarding pointer. There is a nice optimisation available here. Most systemsdistinguish a forwarding pointer by some sort of tag bit, which has to be tested justbefore evacuating. Instead, we make a forwarding pointer look just like any otherclosure: it has an info pointer and one �eld which points to the to-space copy. Theinfo table for a forwarding pointer has rather simple \evacuation" code, which justreturns the to-space address found in the forwarding pointer! So to evacuate a closureone simply jumps to its evacuation code, regardless of whether the closure is now aforwarding pointer or not. No forwarding-pointer test is performed.All heap-allocated closures are at least two words long, in order to leave enough spacefor a forwarding pointer.Indirections. All indirections can easily be removed during garbage collection, by anothernice trick. All that is required is that the evacuation routine of an indirection jumpsto the evacuation routine of the closure to which the indirection points! (The use of\jumps to" rather than \calls" is deliberate | this is a tail call!) Since indirections arethereby never moved into to-space, they don't have a scavenging routine.Static closures. Some closures, notably those for global closures (Section 5.1), are allocatedat �xed, static locations. These closures must not be moved by the garbage collector.This is easily arranged by making their evacuation code return immediately withoutmoving the closure.Constructor closures can exist in both static and dynamic space (Section 4.4), so infact we need two info tables for each constructor, one for each of these cases. (Thestandard-entry code for the constructor can still be shared, of course.)Small integers. A �xed-precision integer (of type Int) is represented by the MkInt construc-tor applied to the primitive integer value (Section 4.7). This in turn is represented by48

a two-word closure consisting of the MkInt info pointer and the primitive integer value.The evacuation code for MkInt sees if the value of the integer lies in a pre-determinedrange and, if so, uses the integer to index a table of statically-allocated Int closures,returning the address of this static closure. The e�ect is that all small integers are\commoned up" by the garbage collector, and made to point to one of a �xed collectionof small-integer closures.If the integer is not in the range of the table, the closure is evacuated to to-space asusual. There is an easy re�nement: give the new copy a di�erent info pointer whichwon't perform the test again next time (because it will certainly fail again).The small-integer check could of course be made at the time an Int is allocated, butthat means generating extra code in lots of places, whereas doing it in the garbagecollector requires just one chunk of extra code. The same optimisation applies to Charclosures and all other constructors isomorphic to Int or Char.7.4 Other garbage collector variantsTwo-space garbage collection works well until the residency of the program approaches halfthe real memory available, at which point the virtual memory system begins to thrash. Wehave implemented a dual-mode collector, which switches dynamically between a single-spacecompacting collector and a two-space collector to try to minimise paging, with encourag-ing early results (Sansom [1991]). We are developing a further extension to a generationalcollector, based on Appel's simple two-generation scheme (Appel [1989]).7.5 Trading code size for speedThe info-table dispatch mechanism outlined above allows some interesting space-time tradeo�sto be made.So far we have assumed that each kind of closure has its own evacuation and scavengingcode, which \knows about" its size and layout. This requires new evacuation and scavengingroutines to be compiled for each closure in the program. But since the garbage collectionroutines for a closure depend only on its structure, it is often possible to share them. Forexample, all closures which consist of exactly one pointer �eld (apart from the info pointer)can share the same evacuation and scavenging routines. Indeed our runtime system containsstandard garbage-collection routines for a number of common layouts.What if a closure must be constructed which does not match one of these standard layouts?It is possible to compile special garbage-collection code for it, but actually we adopt a com-promise position which allows us to provide all evacuation and scavenging routines as partof the runtime system. Instead of generating code for garbage-collection routines for a \non-standard" closure, we provide \generic" evacuation and scavenging routines in the runtimesystem. These routines look in the closure's info table to �nd certain layout information,namely the number of pointer words and non-pointer words in the closure. (This is containedin the \Other info" �eld of Figure 4.) They then each use a loop to do their work, instead ofhaving the loop unrolled as the special-purpose routines do. Notice that the layout informa-49

tion is stored in the (static) info table, so there is no extra cost in allocating the closure. Theonly extra execution cost is in executing the loops in the garbage collection routines.It is for the bene�t of these \generic" routines that closures are laid out with pointers precedingnon-pointers. This convention means that only two numbers are required to encode the layoutinformation. It also makes it more likely that a closure's layout will \�t" a standard layoutdirectly supported by the runtime system. For example, all closures with two words of non-pointers and two of pointers can use the same routines; if the layout convention was moreliberal, there would be a number of di�erent possible layouts of such closures. The conventioncarries no runtime cost, of course.7.6 The standard-entry code for a closureThere is one particular place where we have found that the use of C prevents an obviouscode improvement. The info pointer of a closure points to a table containing a number ofcode labels. One of these is used much more than the others, namely the one used when theclosure is entered.It would be better to arrange that the info pointer pointed directly to this code, placingthe rest of the info table just before the code. Then, entering the closure takes one fewerindirections, but the other info-table entries are still available by using negative o�set fromthe info pointer.This is usually quite easy to arrange when generating native code, but even the Gnu C compilerdoesn't allow the programmer to specify that an array (the info table) must immediatelyprecede the �rst word of the code for a function!We abstract away from this issue by using a C macro ENTER(c), where c contains theaddress of the closure to be entered. The usual de�nition of ENTER is:#define ENTER(c) JUMP(**c)8 StacksThe abstract machine contains three stacks:� The argument stack, which contains a mixture of closure addresses and primitive values.� The return stack, which contains continuations for case expressions.� The update stack, which contains update frames.The question is: how are these stacks to be mapped onto a concrete machine?8.1 One stack?The three stacks all operate in synchrony, so it would be possible to represent them all bya single concrete stack. The major reason we choose not to do so is to avoid confusing the50

garbage collector. The garbage collector must use all the pointers in the stack as a source ofroots, and must update them to point to the new locations of the closures. Thus, it needs toknow which stack locations are closure addresses and which are code addresses or primitivevalues.There are a couple of ways around this problem, while retaining a single stack. One possibilityis to distinguish pointers from non-pointers with a tag bit (usually the least-signi�cant bit).This is a nuisance, because it makes arithmetic slower, and because it makes standard 32-bitoating-point numbers impossible. It is also rather against the spirit of our implementation,where all type information is static, requiring no runtime testing.Another possibility, described in an earlier version of the Spineless Tagless G-machine (Pey-ton Jones & Salkild [1989]) uses static bit-masks associated with the code pointed to byreturn addresses on the stack to give the stack layout. This works �ne, but since then wehave introduced the idea of fully-edged unboxed values, which fatally wounds this technique.Consider, for example, the programpick b f g = if b then f else gh b n = pick b (+# 1#) (-# 1#) nHere, when pick is called, the four arguments b, (+# 1#), (-# 1#), and n will be on theargument stack. The last of these will presumably be primitive, since later (+# 1#) or(-# 1#) will be applied to them. Now here is the point: if garbage collection is initiatedduring the evaluation of b, there is no context information available to tell that the bottomargument on the stack is primitive.To conclude, using a single stack seems to require runtime tagging; previous ways of avoidingthis cannot cope with fully-edged unboxed values.8.2 Two stacksThe obvious solution, which we use, is to provide two concrete stacks, the A-stack for pointersand the B-stack for non-pointers. This was the solution adopted by the G-machine, wherethe non-pointer stack was called the V-stack, and a number of subsequent systems. Thenomenclature we use is taken from the ABC machine (Koopman [1990]), where \A" standsfor \argument" and \B" for basic value. However, our argument stack is split between the Aand B stacks, and the B stack contains other things besides non-pointer arguments, as willbecome apparent. The detailed mapping of each of the abstract stacks to these two concretestacks is given in subsequent sections.The stack pointers are held in special registers SpA and SpB. Like other twin-stack imple-mentations, we make the two stacks grow towards each other, to avoid the risk that one willoverow while the other has plenty of space left; in this paper, the A-stack grows towardslower addresses. In our sequential implementation, this stack space is allocated in a �xed-sizearea, separate from the heap. 51

9 Compiling the STG language to CWe are now at last ready to discuss the code which is generated for each of the constructsin the STG language. This section is rather long and detailed. We make no apology for thisbecause, as remarked earlier, an abstract machine can only be considered a success if it mapswell onto concrete architectures, with plenty of opportunities for optimisations.We begin with an overview of the code generation process for an arbitrary STG expression,by considering the various syntactic forms an expression can take (Figure 3):� Calls to non-built-in functions (Section 9.2). The expression f a1 ; : : : ; an is compiled toa sequence of statements which pushes the arguments a1 ; : : : ; an onto the appropriatestacks, adjusts the A and B stack pointers to their �nal values, and enters the functionf . As we discuss later, this \enter" may take the form of entering the closure bound tof via its info table, or of jumping direct to the appropriate code for f .� let(rec) expressions (Section 9.3). The let expressionlet x1 = lf1; : : :; xn = lfn in eis compiled to a sequence of statements which allocates a closure in the heap for eachlambda-formlf1 ; : : : ; lfn, followed by the code for e. letrec expressions are treated inthe same way, the only di�erence being that the closures allocated thereby may becyclic.If the lambda-formlfi is not a standard constructor, the code generator also produces:{ A separate block of code labelled xi_entry, obtained by compiling the body of lfi .(See Section 9.2.1 for why it may be useful to give this code an extra entry point.){ The declaration for a statically-initialised array xi_info, which is the info tablefor xi . The �rst element of the info table is (the label of) the standard-entry codexi_entry.Both of these declarations are hoisted out to the top level, rather than appearing em-bedded in the middle of the code for the let expression. In our code generator thisattening process is performed after code generation, the intermediate data type (Ab-stract C) permitting nested declarations.If the lambda-formis a standard constructor, the shared info table for the appropriateconstructor can be used, and there is no need to generate xi_info and xi_entry.� Literals and calls of built-in operators (Section 9.5). A primitive literal k is compiledto statements which load k into a register (exactly which register depends on k 's type),adjusts the A and B stack pointers to their �nal values, and returns to the address ontop of the B stack. A call to a built-in operation works in the same way except that theoperation is performed �rst.This makes it sound as if every built-in operation is associated with a return, but aneasy optimisation allows sequences of built-in operations to be compiled (Section 9.5).52

� case expressions (Section 9.4). The primitive case expressioncase e of paltsis compiled to code which saves any volatile variables used by palts on the stacks, andpushes a return address on the B stack, followed by the code for e. An arbitrary butunique label is invented for the return address, which is used to label a separate blockof code compiled from palts .The code compiled for palts performs case analysis on the value returned (if there areany non-default alternatives) followed by the code for each alternative expression. Likethe code for lambda-forms, this entire code block is hoisted to the top level.The code for algebraic case expressions is similar, except that (the address of) a returnvector is pushed instead of a return address (Section 9.4.3).� Top level bindings (Section 9.1). The top-level bindings are treated a little di�erentlyto nested ones. Each declaration gi = lfi is compiled to the declaration of a statically-initialised array gi_closure, which represents the static closure for gi . An info tablegi_info and standard-entry code-block gi_entry are also produced just as for nestedbindings.� Standard constructors (Section 9.4.2). As already mentioned, no code is generated forlambda-forms which are standard constructors, the shared info table and code for theconstructor being used instead. It is therefore necessary to generate this info table andentry code for each constructor declared in the module.To make these ideas concrete, Figure 5 gives the code compiled for map, whose STG code isas follows (see Section 4.1):map = {} \n {f,xs} ->case xs ofNil {} -> Nil {}Cons {y,ys} -> let fy = {f,y} \u {} -> f {y}mfy = {f,ys} \u {} -> map {f,ys}in Cons {fy,mfy}This code is written assuming that lists use a vectored return convention, and Cons returnsits arguments in registers, matters which are explained more fully in Section 9.4.The rest of this section explores code generation in more detail. Each subsection correspondsto the similarly-numbered subsection of Section 5 which gives !the operational semantics ofthe STG language.9.1 The initial stateThe machine is initialised to evaluate the global main, with empty argument, return andupdate stacks (Section 5.1). The abstract machine's initial heap is not empty, but rathercontains a closure for each globally-de�ned variable. We implement this by allocating a staticclosure for each such variable (Section 7.2). Each of these closures can be referred to directlyby its C label, thus e�ectively using the linker to implement the global environment �.53

StgWord map_closure[] = {map_info};StgWord map_info[] = {map_entry, ...rest of info table...}map_entry() {...argument satisfaction check...JUMP(map_direct);}map_direct() {...stack overflow check...SpB[1] = ret_vec1; SpB = SpB+1; /* Push return vector */Node = SpA[1]; ENTER(Node); /* Enter xs */}StgWord ret_vec1[] = {ret_nil1, upd_nil, ret_cons1, upd_cons};ret_nil1() {SpA = SpA+2; /* Pop args */SpB = SpB-1; RetVecReg = SpB[1]; /* Grab return vector */JUMP(RetVecReg[0]);}ret_cons1() { /* Head and tail in regs RetData1 and RetData2 *//* Allocate fy and mfy */Hp = Hp + 6;...heap overflow check...Hp[-5] = fy_info; Hp[-4] = SpA[0]; Hp[-3] = RetData1;Hp[-2] = mfy_info; Hp[-1] = SpA[0]; Hp[0] = RetData2;/* Return the cons cell */RetData1 = &Hp[-5]; RetData2 = &Hp[-2];SpB = SpB-1; RetVecReg = SpB[1]; SpA = SpA+2;JUMP(RetVecReg[2]);}StgWord fy_info[] = {fy_entry, ...rest of info table...}fy_entry() {...push update frame... /* This is an updatable thunk */...stack overflow check...SpA[-1] = Node[2]; SpA = SpA-1; /* Push y */Node = Node[1]; ENTER(Node); /* Enter f */}StgWord mfy[] = {mfy_entry, ...rest of info table...}mfy_entry() {...stack overflow check ...SpA[-1] = Node[2]; SpA[-2] = Node[1]; SpA = SpA-2; /* Push f,ys */JUMP(map_direct);} Figure 5: The code generated for map54

9.2 ApplicationsThe code generated for applications follows directly from Rule 1 in the operational semantics,and consists of two steps:� push the arguments on the stack and adjust the stack pointer,� enter the closure which represents the function.We discuss these steps separately below. Before doing so, here is a small example. Considerthe bindingapply3 = {} \n {f,x} -> f {x,x,x}The following code is generated for the application f {x,x,x}. When this code is executed,a pointer to f is on top of the A stack, and under it is a pointer to x.Node = SpA[0]; /* Grab f into Node register */t = SpA[1]; /* Grab x into a local variable */SpA[0] = t; /* Push extra args */SpA[-1] = t;SpA = SpA - 1; /* Adjust stack pointer */ENTER(Node); /* Enter f */9.2.1 Entering a closureWhat does it mean to \enter" a closure? After all, the operational semantics has quite afew rules dealing with the Enter state. The Spineless Tagless machine devolves responsibilityfor all these complications to the closure being entered, so that the code to enter a closureis simple and uniform. We establish the following very simple entry convention for closures:when a closure is entered a particular register, the Node register, points to the closure. Thecode for the closure can access its free variables by indexing directly from the Node register.All the \caller" has to do is to load a pointer to the closure into the Node register, and jumpto the standard-entry code for the closure via its info pointer. (As previously discussed, thisjump can involve either one or two indirections, depending on the particular representationchosen for closures and info tables | Section 7.6.)It is possible to make some useful optimisations to this process, when entering a non-updatableclosure. Many functions are de�ned at the top level of the program, or in standard libraries(map, for example). Entry to such functions can be made much more e�cient than thestandard entry mechanism just described:� Such a function has no free variables, so there is no point in making Node point to itsclosure.� The code label for the function is statically determined, so the jump can be a directone, rather than indirecting via the info pointer.55

� The code generator knows how many arguments (if any) the closure is expecting, so ifat least this number of arguments is being supplied by the call, the jump can be madeto a point (called the direct-entry point) just after the argument satisfaction check (seeSection 9.3.2 below). Indeed, with a bit more cleverness, the stack and heap overowchecks can often be bypassed as well.� The argument-passing convention at the direct-entry point can be di�erent to the stan-dard ones. In particular, arguments can be passed in registers.This should be bene�cial, but perhaps less so than in a strict language, because functionsfrequently begin by evaluating one of their arguments, so the others have to be savedon the stack anyway. We have not yet implemented this idea.Of these improvements, all but the �rst can be applied to locally-de�ned functions as well.For example, consider the expressionf = {} \n {x,y} -> let g = {x} \n {z} -> + {x,z}in g {y}The call to g can be made by pushing its argument y onto the stack, loading a pointer tothe closure for g into Node, and then jumping directly to the appropriate code for g. Sincethe call is to a function whose de�nition is statically visible, the code generator can compiledirect jumps, including bypassing the argument satisfaction check where appropriate.We need to take a bit more care when entering an updatable closure. In this case we mustjump to it via its info pointer, and never directly to its standard-entry code, because anupdate might have changed the info pointer! At �rst it seems that we must also always makeNode point to the closure, since the standard-entry code for an updatable closure begins bypushing an update frame recording the address of the closure to be updated. But since thecode to push the update frame is compiled individually for each closure, we can arrange forit to include the static address of the closure in the update frame, rather than Node.No optimisations at all apply when entering the closure for a lambda-bound variable, as inthe case of apply3 above.9.2.2 Pushing the arguments\Pushing the arguments onto the stack" is not quite as simple as it sounds.Firstly, the arguments may be a mixture of pointers and non-pointers so each must be pushedon the appropriate stack. The argument stack of the operational semantics is thereby splitbetween the A and B stacks.Secondly, in our implementation the environment � of the operational semantics is representedpartly by locations in the stacks. This is quite conventional in many language implementa-tions. It means, though, that the stacks must be cleared of the accumulated environment(or perhaps just part of it | see Section 9.4.1) before pushing the arguments to the call.Of course, we need to take a little care here: we must not overwrite a stack location whichcontains a value which is required for another argument position. There are several ways to56

solve this, the simplest being to move all the threatened live stack locations into registers(when generating C, local variables) before starting to overwrite them.Here is an example:f = {} \n {x,y} -> g {y,x}On entry to f, x and y will be on the stack. It immediately calls g which requires the samearguments, but in the other order, so at least one register must be used during the stackrearrangement.Such argument-shu�ing is rather unusual. It is much more common for the same argumentto appear in the same position, in which case no code need be generated at all. This is oftenthe case for recursive functions which pass some arguments along unchanged.9.3 let(rec) expressionsAs mentioned earlier, let and letrec expressions always compile to code which allocates aclosure in the heap for each de�nition, followed by code to evaluate the body of the let(rec).Each of these closures consists of an info pointer, and a �eld for each of its free variables.For example, the expression let f = fs \� xs -> bin ecompiles to code which allocates a closure for f , and then continues with code to evaluate e.For example, consider the de�nition of compose:compose = {} \n {f,g,x} -> let gx = {g,x} \u {} -> g {x}in f {gx}The code for the body of compose runs as follows:/* Allocate heap block */Hp = Hp - 3; /* Allocate some heap */if (Hp < HLimit) /* Heap exhaustion check */{ ...trigger GC... };/* Fill in closure for gx */Hp[0] = &gx_info; /* info pointer */Hp[1] = SpA[1]; /* g */Hp[2] = SpA[2]; /* x *//* Call f */Node = SpA[0]; /* Grab f into Node */SpA[2] = &Hp[0]; /* Push gx */SpA = SpA + 2; /* Adjust SpA */ENTER(Node);Here, gx_info is the statically-allocated info table for gx:57

static int gx_info[] ={ &gx_entry,&scavenge_2,&evacuate_2,...}In this info table, gx_entry is the name of the C function which implements the standard-entry code for the closure gx. scavenge_2 and evacuate_2 are runtime system routines forperforming garbage collection on closures containing two pointers (Section 7.3).9.3.1 AllocationThe allocation of these closures is straightforward, and was discussed in Section 7.2.References to dynamically-allocated closures within a single instruction sequence are madeby o�setting from the heap pointer. (The code generator keeps track of the physical positionof the heap pointer, so that correct o�sets can be made even if it is moved by instructionswithin the basic block.)Notice the use here of the term \single instruction sequence". In particular, this method ofaddressing cannot survive over the evaluation triggered by a case expression, because suchan evaluation may take an unbounded amount of computation. Not only may this move theheap pointer unpredictably, but it may trigger garbage collection, which may rearrange therelative positions of the closures. In short, at the points in the operational semantics wherethe environment � is saved on the return stack, a pointer to each live closure must be savedon the pointer stack (Section 9.4.1).9.3.2 The code for a closureMuch more interesting, of course, is the standard-entry code for the closure. This is the codewhich will get executed if the closure is ever entered. The standard-entry code for everyclosure begins with the following sequence:Argument satisfaction check. This concerns updating, and is discussed in Section 10.2.It is only generated if there are one or more arguments.Stack overow check. If the execution of the closure can cause either stack to overow, or(if the stacks are organised to grow towards each other) collide, execution is halted. (Ona parallel machine, which works with many stacks, di�erent action is taken.) This stackoverow check can \look ahead" into all the branches of any case expressions involvedin the evaluation of the closure, taking the worst-case path as the overow criterion. Ofcourse, if there is no net stack growth, no check is performed.Heap overow check. A similar check is performed for heap overow, if any heap is allo-cated. This was discussed in Section 7.2. The heap check cannot look ahead into casebranches, because the evaluation implied by a case can perform an unbounded amountof computation. 58

Info pointer update. In the case of an updatable closure, its info pointer may now beoverwritten with a \black hole" info pointer or, in a parallel system, a \queue me" infopointer. This is discussed in more detail below (Section 9.3.3).Update frame construction. For updatable closures only, an update frame is pushed ontothe update stack. This action causes a later update, which overwrites the closure withits head normal form. The implementation of updates, and the mapping of the updatestack, are discussed in detail in Section 10.Code is now generated for the body of the closure, with the free variables bound to appro-priate o�sets from the Node register, and the arguments to o�sets from the appropriate stackpointers. (Like many other compilers, ours keeps track of where the stack pointers are point-ing within the current activation record, so that at any moment it can generate the correcto�set from the current stack pointer.)9.3.3 Black holesWhen an updatable closure is entered, its standard-entry code has the opportunity to over-write the closure's info pointer with a standard \black hole" info pointer provided by theruntime system. Whilst this operation costs an instruction, it has two advantages:� If the closure is ever re-entered before it is updated, the black hole entry code can reportan error. This situation occurs in programs where a value depends on itself; for exampleletrec a = 1+a in a� If a closure is left undisturbed until it is �nally updated with its head normal form,there is a serious risk of a space leak. For example, consider the STG de�nitionsns = {} \u {x} -> ..x..l = {} \u {ns} -> last {ns}where ..x.. produces some very long list. and last returns the last element of a list. Ifthe thunk for l is left undisturbed until it is �nally updated with the last element of thelist ns, it will retain a pointer to the entire list, rather than consuming it incrementally.(This nice example is due to Jones [1991].) Overwriting the thunk for l with a blackhole immediately it is entered solves this space leak, because a black hole retains nopointers.It is also possible to obtain both these advantages in a slightly more subtle way, without per-forming the black-hole overwriting operation. Firstly, non-termination of the form detectableby black holes always results in stack overow. The cause of the stack overow can theneasily be determined by noticing that there is more than one pointer on the update stack tothe same closure. This can only happen if its value depends on itself. It is also possible thatthe error message obtainable from a post-mortem of the update stack could be rather moreinformative, because the entire collection of closures involved in the self-dependent loop can59

be identi�ed and, since they all still have their original info tables attached, their source codelocation information could be shown too.Secondly, we address the space-leak question. In the above example, the pointer to ns retainedby l only matters at garbage-collection time. In almost all cases a thunk will be entered andupdated between garbage collections, so that no space improvement is gained by overwritingwith a black hole. What we would like to do is to black-hole only those thunks which areunder evaluation at garbage collection time. Happily, they are exactly the thunks to whichthe update stack points! So we can safely omit the black-hole update on thunk entry, providedthat instead we begin garbage collection by black-holing all the thunks pointed to from theupdate stack.Since both these techniques rely on the update stack, they only apply to updatable thunks(update ag u). If a thunk is non-updatable (update ag n) it must still be black-holed byits standard-entry code. For this reason in our implementation we have two variants of then update ag: r for reentrant (the closure may be entered many times, and should not beblack-holed), and s for single-entry (the closure will be entered at most once, and should beblack-holed). The r ag is used for manifest functions, constructors and partial applications,while the s ag is only used for thunks where update analysis has determined that an updateis not required.In a parallel system, the standard-entry code for an updatable thunk should overwrite thethunk with a \queue me" info pointer (Section 3.1.3). Unlike the black-holing of a sequentialsystem, this operation cannot be postponed until garbage collection.9.4 case expressionsPattern matching, via case expressions, is utterly pervasive in lazy functional programs, allthe more so in the Spineless Tagless G-machine because the boxing and unboxing operationsof arithmetic are done using case expressions rather than by some ad hoc mechanism. Oneof the strengths of the Spineless Tagless G-Machine is that there is a rather rich design spacefor how pattern-matching can be implemented, including some rather e�cient options.case expressions (and only case expressions) cause evaluation to take place. In the op-erational semantics this is expressed by pushing a continuation onto the return stack, andevaluating the expression to be scrutinised (Rule 4). This is mirrored precisely by the codegenerated for case expressions.In code generation for most languages the act of pushing a continuation (or return address)is immediately followed by a function call. It is worth noticing in passing that this is notthe case for the STG language; there may be a signi�cant gap between the instruction(s)which push the continuation and the instruction (if any) which actually transfers control. Forexample, consider the expressioncase (case f x of ...)of ...The continuation for the outer case is pushed, then the continuation for the inner case, andthen the call to f is made. Few programmers write this sort of code, but it arises as a result60

of program transformations within the compiler. The order of the two case expressions canbe interchanged, but only at the risk of code duplication.The main point of interest is how continuations are represented. Recall that a continuationin the operational semantics consists of two parts:1. The alternatives of the case expression.2. The environment � in which they should be executed.The representation of alternatives is intimately connected with the code generated for prim-itive values and constructors, so we defer discussion of the �rst topic until the followingsections. Environment-saving is independent of constructors, so we discuss it �rst.9.4.1 Saving the local environmentThe local environment is saved by saving in the stacks the values of all variables which arelive (that is, free) in any of the alternatives. The way in which a live variable is saved dependson where it currently resides:� It may already be in a stack, for example if it was an argument to the current closure.No code need be generated.� It may be in a register, or it may be bound to an o�set from the heap pointer. In thiscase it must be saved in the appropriate stack.� It may be in the closure currently pointed to by Node. In this case there are twopossibilities: save the variable itself, or save Node.The latter reduces the number of saves because saving Node e�ectively saves the valuesof several variables at once. On the other hand, an extra memory access is subsequentlyrequired to get the value of the variable.Another problem with saving Node is that the entire contents of the closure must thenbe retained by the garbage collector, even though the continuation may only use someof its �elds. The space-leak avoidance mechanisms described in Section 9.3.3 cannot beapplied. (It is possible to rescue the space behaviour by compiling a bitmask to indicatewhich �elds of the closure are live, but it is complicated.)Our current policy is to avoid these di�culties by saving all variables individually.When saving a variable in a stack, we can economise on stack usage by re-using stack slotsbelonging to variables which are now dead. There is also a useful side bene�t: the structurepointed to by dead pointers in the stack cannot be reclaimed by the garbage collector, sooverwriting such pointers with live ones helps to avoid space leaks. One could experiment(though we have not yet done so) with generating extra instructions to overwrite dead pointerswhose slots are not to be reused, speci�cally in order to make their space reclaimable. Wecall this \stack stubbing". 61

9.4.2 Constructor applicationsThe expression scrutinised by a case expression must eventually evaluate either to a primitivevalue or a constructor application. We deal with the latter case in this section, deferring theprimitive case to Section 9.5.The code generated for a constructor application must return control to the appropriatealternative of the case expression, making the argument of the application available to thealternative. This is just what is done by the rules for constructors in the operational semantics(Rules 5, 6 and 7).For example, consider the expression:let hd = {} \n {xs} -> case xs ofCons {y,ys} -> y {}Nil {} -> error {}single = {w,ws} \n {} -> Cons {w, ws}inhd {single}where w and ws are bound by some enclosing scope. The code generated for the case ex-pression in hd pushes a continuation and enters the closure for xs, which is bound to singlein this case. The code for the constructor application Cons {w,ws}, in the body of single,should return control to the appropriate alternative, returning w and ws in some agreed way.(Remember that constructor applications in the STG language are always saturated.)There are two main aspects to consider:� There may be several alternatives, so there is the question of how the appropriate oneis selected.� The constructor for a particular alternative may have arguments, in which case theseneed to be communicated to the code for the alternative.These two issues are now discussed in turn.9.4.3 Selecting the alternativeThe simplest possible representation for the alternatives is a single code label, which we calla return address, pushed on the B stack. Control is returned by the constructor applicationto the labelled code when evaluation of the scrutinised object is completed.If there is only one member of the algebraic data type (tuples, for example), the evaluationof the (single) alternative can proceed immediately. If there is more than one member of thetype (lists, for example), the tag of the object is put into a particular register RTag, and aC switch statement is generated to perform the case analysis on RTag. (In a native-codegenerator, this multi-way jump can be compiled using a tree of conditionals or using a jump62

- --Return vectorB stack Code for Nil alternativeCode for Cons alternativeFigure 6: Vectored returnstable, depending on the sparsity of the alternatives, but using C as our target code allows todelegate this choice to the C compiler.)This is not the only possible representation for the alternatives. Another possibility is torepresent the alternatives by a pointer to a table of code labels, with one entry in the tablefor each constructor in the data type. Figure 6 illustrates the situation for a case expressionwhich is scrutinising a list. A pointer to this table, which we call a return vector, is pushedon the B stack by the code for the case expression. Then, instead of loading RTag, the codefor the constructor application can transfer control directly to the appropriate destination,thus saving a jump. We call this a vectored return, and the pointer to the return vector avectored return address.The important point to note is that the return convention can be chosen independently ona datatype by datatype basis. A particular case expression will only scrutinise objects of aparticular type. In practice, we (somewhat arbitrarily) use vectored returns for data typeswith up to eight constructors, because this catches the vast majority of data types withoutrisking wasting (code) space on large sparsely-used return vectors.9.4.4 Returning the constructor argumentsThere is a correspondingly simple convention available for communicating the constructorarguments to the alternative: make the Node register point to a constructor closure containingthe appropriate values. The code for the alternative can then address its components byindexing from the Node register as usual.This works �ne, and is simple enough, but a much better alternative is readily available: ifthere are su�ciently few arguments, return them in registers! If the closure being scrutinisedis already a constructor then not much is gained; indeed something may be lost, because allits components may be loaded into registers when perhaps the alternative only requires oneof them. But there is a terri�c gain when a thunk is scrutinised, because it may therebyavoid ever building the constructor in the heap. The most critical example of this is ordinaryinteger arithmetic. Consider the following example:63

neg = {} \n {x} -> case x ofMkInt {x#} -> case (neg# {x#}) ofy# -> MkInt {y#}neg is the function which negates an integer. It operates by evaluating the integer x to extractits primitive value x#, negating it to give y#, and then returning the integer MkInt {y#}. Now,under the simple return convention, the boxed value MkInt {y#} would be constructed in theheap, Node would be made to point to it, and control returned to the continuation. If, instead,the component of the constructor, y# is returned in a register, the value need never be builtin the heap, except as result of an update (Section 10). It turns out that this has a big e�ecton performance .As before, the important point is that the return convention can be chosen on a datatype bydatatype basis. Integers are not a special case. For example, list \cons" cells can be returnedby putting the head and tail values into speci�c registers. (Independently, a vectored or non-vectored return convention can be chosen.) Even the choice of which registers are used toreturn values can also be made independently for each data type. For example, a oating-point number can be returned in a oating-point register.For the reason given before, it is probably not a good idea to return constructors with manyarguments entirely in registers. We therefore make a virtue of necessity (there are only alimited number of registers) and return larger constructors by allocating them in the heapand making Node point to them.It turns out that the return-in-registers convention makes updates substantially harder, as weshall see, but the gain is well worth it.9.5 ArithmeticSuppose that the expression scrutinised by a case turns out to evaluate to a primitive value;that is, either a primitive literal (Rule 9), a variable whose value is primitive (Rule 10), oran arithmetic operation whose result is primitive (Rule 14). All three of these rules enter theReturnInt state, which takes action depending on the alternatives stored on top of the returnstack.The return convention for primitive values is simple. The continuation on top of the returnstack is always a return address, pointing directly to the continuation code. The primitivevalue itself is returned in a standard return register, chosen independently for each primitivedata type. For example, one register can be used for integers and another for oating pointvalues. The code generated for a primitive literal simply loads the speci�ed value into theappropriate return register, pops the return address from the B stack and jumps to it. Simi-larly, the code generated for a primitive variable just loads the value of the variable into thereturn register and returns; and arithmetic follows in the same way.The code generated at the return address implements the case analysis implied by the alter-natives (if any), using a suitable C switch statement. Often there is only one alternative,which binds a variable to the value returned. This is easily done by binding the variable tothe appropriate return register. 64

There is a very important special case, when compiling expressions of the form:case v1 � v2 of altsfor built-in arithmetic operations �. It would be pointless to push a return address, evaluatev1 � v2 , and return to the return address! These operations can easily be short-circuited,and it is practically essential to do so. We can express this equivalence by doing some simpletransformations on the rules to give the derived rules:(18) Eval 0BBBBB@ case � fx1 ; x2g ofk1 -> e1;: : :kn -> en;x -> e 1CCCCCA � " x1 7! Int i1x2 7! Int i2 # as rs us h �=) Eval e �[x 7! Int (i1 � i2)] as rs us h �where kj 6= i1 � i2 (1 � j � n)(19) Eval 0BBB@ case � fx1 ; x2g of: : :k -> e;: : : 1CCCA � " x1 7! Int i1x2 7! Int i2 # as rs us h �=) Eval e � as rs us h �where k = i1 � i2In particular, once this optimisation is implemented, the expressioncase � fx1 ; x2g of x -> ecompiles to the simple C statement:x = x1 � x2where x, x1 and x2 are the C local variables used to hold the values of x , x1 and x2 .10 Adding updatesSo far everything has been quite tidy: tree reduction is nice and easy. Sadly, graph reductionis harder, and updates are quite complicated. This is much the trickiest part of the SpinelessTagless G-machine. Still, we begin bravely enough.10.1 Representing update framesRecall that when a closure is entered it has the opportunity to push an update frame ontothe update stack. An update frame consists of65

� A pointer to the closure to be updated.� The saved argument and return stacks.After an update frame is pushed, execution continues with empty argument and return stacks.Of course, we don't actually copy the argument and return stacks onto a separate updatestack! Instead, we dedicate two registers, called the stack base registers, to point just belowthe bottom-most word of the A and B stacks respectively. The argument and return stackscan now be \saved" and then \made empty" merely by saving the stack base registers in theupdate frame, and making them point to the current top of the A and B stacks.Where is the update stack kept? It could be represented by a separate stack all of its own,but we have chosen to merge it with the B stack. The minor reason for this is to avoid yetanother stack. The major reason is that it makes available an important optimisation whichwe discuss below (Section 10.3).To conclude, the operation of pushing an update frame (Rule 15) is done by:� Pushing an update frame onto the B stack.� Setting the stack base registers to point to the top of their respective stacks.(The alert reader will have spotted that a pointer (to the closure to be updated) has therebyended up on the B stack. We discuss this in Section 10.7.)An update is triggered in one of two ways: either a function �nds too few arguments on thestack, or a constructor application �nds an empty return stack. These two situations arediscussed in the following sections.10.2 Partial applicationsWhen a closure is entered which �nds too few arguments on the stack, an update is triggered.This is described by Rules 17 and 17a. The check for too few arguments is called the argumentsatisfaction check, and occurs at the start of the code for every closure which takes one ormore arguments (cf Section 9.3.2).A minor complication is that the arguments are split between the A and B stacks, but thispresents little di�culty. If the last argument is available then certainly all the others will be,so the check is performed only on the stack which contains the last argument.The argument satisfaction check is performed by subtracting the stack base pointer of theappropriate stack from the corresponding stack pointer, giving a di�erence in words. Thisis compared with the (statically calculated) number of words required for all the argumentswhich are passed on that stack. If too few words are present, a jump is taken to a runtimesystem routine, UpdatePAP, which performs the update. Once the update has been done,UpdatePAP concludes by re-entering the closure, which Node should be pointing to. Theargument satisfaction check is thereby performed again, as Rule 17 requires, in case a furtherupdate is needed. 66

A special case is required for top-level closures, because the code entering the closure may nothave made Node point to it (Section 9.2.1). In this case, just before jumping to UpdatePAP,the argument-satisfaction-check code loads a pointer to the closure into Node. (Recall thattop-level closures are statically allocated, so their address is �xed.)What does UpdatePAP do? It follows Rule 17a:1. First, it builds in the heap a closure representing the partial application, whose structureis given below.2. Next, it overwrites the closure to be updated (obtained from the update frame) withan indirection to the newly-constructed closure.3. It restores the values of the stack-base registers from their values saved in the updateframe.4. It removes the update frame from the B stack, sliding down the portion of the stack (ifany) which is above it.5. Finally, it re-enters the closure pointed to by Node.What does the partial-application closure look like? In the most general case it contains:� The info pointer PAP_Info.� The total size of the closure, and the number of pointers in it. As well as being usedby the storage manager, this information is required by the standard-entry code ofPAP_Info (see below).� The pointer to the function closure, which is in Node.� The contents of the A stack between the top of stack and its stack base pointer.� The contents of the B stack between the top of stack and its stack base pointer.If this partial-application closure is entered, the standard-entry code of PAP_Info pushes thesaved stack contents onto their respective stacks (using the size information to determinehow many words to move to which stack), and then enters the function closure saved in thepartial application closure. Its garbage-collection routines use the size information stored inthe closure to guide their work.So much for the general case. A couple of optimisations are readily available. Firstly, a col-lection of specialised PAP_Info pointers can be provided for various combinations of numbersof pointer and non-pointer words. For example, PAP_Info_1_0 is used when there is onepointer word and no non-pointers. The advantages of such specialised info pointers are: thereis no need to store the �eld sizes in the closure; and the entry and garbage-collection code isfaster because it has no interpretive loop. There is, of course, a small execution-time cost inUpdatePAP to decide whether a special case applies.Secondly, if the new closure is small enough it can be built directly on top of the closure tobe updated. 67

10.3 ConstructorsThe other way in which an update can be triggered is when a constructor �nds an emptyreturn stack. It looks as though the code for a constructor application has to test for an emptyreturn stack; indeed this is just what is implied by Rule 16. This looks expensive, becauseconstructors are so common. Furthermore, the return stack is almost always non-empty, sothe test is in vain. Data structures are often built once and then repeatedly traversed. Eachtime pattern matching is performed on a data structure, a continuation is pushed on thereturn stack, and the closure representing the data structure is entered. Since it is alreadyevaluated, it returns immediately (perhaps using a vectored return), but it must �rst performthe return-stack test.So now comes the tricky part. Since update frames and continuations are both stored on theB stack, if a return address is not on top of the stack, then an update frame must be. Ifwe make the top word of each update frame into a code label, UpdateConstr, the constructorcould just return without making any test. In the common case where there is no updateframe this does just what we want. If an update is required there will be an update frame ontop of the B stack, so the \return" will land in the UpdateConstr code, which can performthe update and then return again, perhaps to another update frame, or perhaps to the \real"continuation.Before we examine the complications, it is worth looking at the crude costs and bene�ts. Thecost is one extra instruction for every update frame pushed. The bene�t is the omission ofa couple of instructions (one of them a conditional jump) from every constructor evaluation.If data structures are traversed repeatedly, constructor evaluations will occur substantiallymore often than updates. The bene�ts look signi�cant.The trouble is that this trick interacts awkwardly with the various return conventions forconstructors discussed in Sections 9.4.3 and 9.4.4. With the simple return conventions, ev-erything works �ne. The case alternatives are always represented by a simple code label onthe B stack, and the result is returned by making Node point to the constructor closure. AllUpdateConstr need do is to overwrite the closure to be updated with an indirection to thisconstructor closure, restore the stack base registers, and return again.10.4 Vectored returnsLife gets more complicated when we add vectored returns. There is no problem with providinga vectored form of UpdateConstr; each entry in its return vector points to code which performsthe update and then returns in its turn in a vectored fashion. The di�culty is that when theupdate frame is created, the return convention is not known. This is because the type of theexpression may be polymorphic. Consider, for example, the compose function, which lookslike this in the STG language:compose = {} \n {f,g,x} -> let gx = {g,x} \u {} -> g {x}in f {gx}The code for the closure gx does not know its type. Hence, when it pushes the update frameit cannot know whether a vectored return is to be expected or not. In short, UpdateConstr68

- ---- Code for Nil alternativeCode to update with NilCode for Cons alternativeCode to update with ConsReturn vectorB stack
Figure 7: Vectored updatesmust be able to cope with either a vectored or a non-vectored return.If we were generating machine code this would present little problem. We just adopt theconvention that the pointer to a vector table points just after the end of the table, so thatthe table is accessed by indexing backwards from the pointer. Now UpdateConstr labelsordinary code immediately preceded by its vector table. Sadly, C does not allow us to specifythe relative placement of data and code in this way, so instead we have to adopt the conventionthat non-vectored returns behave just like vectored returns through a vector table with oneentry (cf Section 7.6). This imposes an extra indirection on non-vectored returns.10.5 Returning values in registersUnfortunately, matters get worse when we consider the idea of returning constructor valuesin registers. Now UpdateConstr has no way to �gure out how to perform the update, becauseit has no way to tell what return convention is being used. Can the closure which pushedthe update frame push a version of UpdateConstr appropriate for the data type? As justdiscussed, the answer is no, because of polymorphism.This looks like a rather serious problem. There is a way round it, but it is rather tricky.The idea is this: the update frame may not know the type of the value being returned, but thecase expression which caused the evaluation in the �rst place certainly does. So UpdateConstrdoes not perform an update at all; it merely records that an update is required, by placinga pointer to the closure to be updated in a special register UpdatePtr. It is up to the caseexpression continuation to perform the update. How does the continuation \know" whetheran update is pending? Simple: each entry in the case-expression's return vector is expandedto a pair of code labels (Figure 7). The �rst of these is just as before (ie the code for the case-expression alternative); the other performs an update on the closure pointed to by UpdatePtr,and then jumps to the �rst. We call these the normal return code and update return coderespectively. All UpdateConstr has to do to precipitate the update is to return to the updatereturn code rather than the normal return code, which it can do merely by increasing itso�set into the return vector by one. 69

The costs are surprising slight. There is a static space cost, as each vector table now doublesin size. The extra code to perform the update can be generated once only for each constructor,and then pointed to from all the return vectors for its data type. This per-constructor updatecode can still �nd its way to the appropriate case alternative provided the pointer to thereturn vector is kept handy in a register.One objection remains, which looks serious: suppose there are several update frames on topof each other before the \real" continuation is reached? This can arise in programs like thefollowing:let x1 = ...inlet x2 = {x1} \u {} -> x1inlet x3 = {x2} \u {} -> x2in...x3...When x3 is entered, it will push an update frame and then enter x2, which will push anotherupdate frame and enter x1. When x1 reaches head normal form it will �nd two update frameson top of the stack, reecting the fact that both the closure for x2 and that for x3 must beupdated with x1's value. This looks like a rather special case, but it does arise in practice: anyclosure which may return the value of another closure has the same property. For example,the de�nition of x3 could be:x3 = {x2,z} \u {} case ... ofNil {} -> x2Cons {p,ps} -> pThe problem with multiple update frames is that the UpdatePtr register can only point toone closure! Fortunately there is an easy solution. Recall that all return vectors includingthat for UpdateConstr consist of paired entries, and that UpdateConstr returns to the updatereturn code rather than the normal return code of the pair. The update return code of theUpdateConstr vector therefore knows that it is not the �rst update frame, and so UpdatePtris already in use. One possibility would be to chain together all the closures to be updated,but there is a simpler way: the second (and subsequent) update frames just update theirclosures with an indirection to the one pointed to by UpdatePtr. When the latter is �nallyupdated all the updating has been successfully completed. This can result in chains of at mosttwo indirections; and remember that indirections are all eliminated by the garbage collector.Finally, what of non-vectored returns? We still need a pair of code addresses to return to,as in the vectored case. If the results are returned in a heap-allocated closure pointed to byNode there is no problem: the update return code just performs the update and jumps to thenormal return code. If results are being returned in registers, then the update return codeneeds to perform case analysis on RTag to �gure out how to perform the update. As before,there need be only one copy of this update return code.70

10.6 Update in placeThe update technology just described has another very important bene�t: it allows the up-dated closure to be overwritten directly with the result (if it is small enough), rather than beingoverwritten with an indirection to the result.Up to now, our uniform return convention has meant that closures are only ever overwrittenby indirections, even though it is often the case that it is in principle possible to overwrite itdirectly with the result. Not only does this introduce extra indirections but, more seriously,it gives rise to a lot of extra memory allocation. Kieburtz and Agapiev speci�cally identifyand quantify this shortcoming (Kieburtz & Agapiev [1988]).If the dual-return mechanism of the previous section is used, however, then this shortcomingcan easily be overcome. The code performing the update knows exactly how the closure islaid out so, if it is small enough, it can directly overwrite the closure to be updated. Forexample, here is the code to perform updates for a list Cons cell:ConsUpd() {UpdatePtr[0] = Cons_Info;UpdatePtr[1] = Head;UpdatePtr[2] = Tail;JUMP(ReturnVector[2]);}Here we are assuming that the Cons constructor returns its head in a register Head and tail inTail. Cons_Info is the info table for the Cons constructor. The address of the return vectoris assumed to be in a register ReturnVector. The o�set of 2 picks the �rst code address ofthe pair for Cons.For larger constructors, the new object cannot be built directly on top of the old one, so a newobject must be built in the heap and the old one updated with an indirection to it. The usualheap-exhaustion check must be made, and garbage collection triggered if no space remains.The update routine must then be careful to save any pointers being returned in registers intoa place where the garbage collector will �nd them.How does the updating code know if the closure to be updated is large enough? There aretwo main possibilities:� We can establish a global convention for the minimum size of updatable closures; makingthem all large enough (by padding if necessary) to contain a list cons cell seems aplausible guess. There is scope for another small optimisation here: if a closure is beingallocated whose type is (say) Int, then it cannot possibly be updated by anything otherthan an integer, so it does not need to be padded out to cons-cell size.� The updating code can look in the closure's info table to �nd its size, and either updatein place or use an indirection, depending on what it �nds. This costs more time thanthe unconditional scheme, but has the merit that it will succeed in updating in placemore often. This is another aspect of the design which we plan to quantify.Update in place is not always desirable. Suppose that the value of the thunk turned out to71

be an already-existing constructor which returns its components in registers. Then update-in-place will overwrite the thunk with a copy of the constructor. No work is duplicated thereby,but there is a potential loss of space if both copies stay live for a while. At worst, a great manycopies of the same object could be built in this way, substantially increasing the space usageof the program. The point is this: once copied, there is no cheap mechanism for \commoningup" the original with the copy.Our preliminary measurements suggest that up to 10% of all updates copy an already-existingconstructor, though the �gure can occasionally be much higher (for the program reported byRunciman & Wakeling [1992] it is 47%). We plan to make more careful measurements tosee how important this e�ect is. If it turns out to be signi�cant we will implement a simpleextension of the dual-return-address scheme outlined in Section 10.5, whereby each elementof the return vector is a triple of return addresses. We omit the details, but the scheme hasthe e�ect of always updating a thunk with an indirection whenever the value of the thunk isan already-existing heap object.10.7 Update frames and garbage collectionUpdate frames, which include a pointer to the closure to be updated, are kept on the B stack.At �rst this looks rather awkward, because the garbage collector expects all pointers to be onthe pointer stack, but it actually turns out to be quite convenient, because of the followingobservation: if the only pointer to a closure is from an update frame, then the closure can bereclaimed, and the update frame discarded.We can take advantage of this during garbage collection in the following way. First performgarbage collection as usual, but without using the pointers from update frames as roots. Now,look at each update frame and see if it points to a closure which has been marked as live. Ifso, and a copying collector is being used, adjust the pointer to point to the new copy of theclosure. If not, squeeze the update frame out of the B stack altogether.It is easy to �nd all the update frames, because the stack base register for the B stack alwayspoints to the topmost word of the topmost update frame; and the saved stack base register forthe B stack points to the next update frame, and so on. This gives a top-to-bottom traversal,but it turns out that a bottom-to-top traversal makes the \squeezing-out" process much moree�cient, for two reasons:� Since the squeeze must move data towards the bottom of the stack (otherwise the stackwould creep up in memory!), working from bottom to top means that each word of theB stack is moved only once.� When an update frame is removed, the stack-base pointers for the next update frameabove it need to be adjusted. This is easy to do when working bottom to top.Happily, it is easy to make a top-to-bottom traversal, reversing all the pointers, and thenmake the bottom-to-top traversal to do the work.The result of all this is that the garbage collector reclaims redundant update frames. Themain bene�t is the saving in updates performed. This optimisation was performed, but notdocumented, in Fairbairn and Wray's original TIM implementation.72

10.8 Global updatable closuresAs previously discussed (Section 9.1), each globally-de�ned variable is bound to a statically-allocated closure. Since such closures have no free variables (except of course other statically-allocated closures), there is no need to treat them as a source of roots during garbage collec-tion.But some of these global closures may have no arguments, and hence be updatable: we callsuch such argument-less top-level closures constant applicative forms or CAFs. For example,ints is a CAF whose value is the in�nite list of integers:ints = {} \u {} from {zero}zero = {} \n {} MkInt {0#}where from is a function returning the in�nite list of integers starting from its argument.There are two di�culties:1. If such a CAF is updated, there will be pointers from the static space into the dynamicheap. The question is: how is the garbage collector to �nd all such pointers?2. With the garbage-collection techniques described in Section 7.3 closures in static spaceneed di�erent garbage-collection code from those in the dynamically-allocated heap.The two are readily distinguishable (by address) but it is unfortunate if every updateis slowed down by a test when the vast majority of updates are to dynamic closures.There is more than one way to solve this problem, but the one we have adopted is as follows.The idea is to arrange that:1. CAFs which are being evaluated, or whose evaluation is complete, are linked togetheronto the CAF list, which is known to the garbage collector. This solves the �rst of theabove problems.2. All update frames point to closures in the dynamic heap, thus solving the second prob-lem.We achieve these goals by adding a little extra code to the start of the standard-entry code fora CAF (Figure 8). The extra code does the following: it allocates a black hole closure in theheap whose purpose is to receive the subsequent update; it pushes an update frame pointingto this black hole; and it overwrites the static CAF closure with a three-word CAFlist cell,pointing to the black hole in the heap, and linked onto the CAF list.In the example shown in Figure 8, the CAFs p, q and r have all been entered, and hence arelinked onto the CAF list (we use CL to abbreviate the info pointer for a CAFList cell). Theevaluation of p is not yet complete, so it still points to a black hole in the dynamic heap (infopointer BH). The evaluation of q has been completed, and the black hole has been updatedwith an indirection (info pointer I) to its value. s has not been entered, so it consists of ainfo pointer (S) only.A CAFList cell looks like any other closure. If entered, it simply enters the heap-allocatedclosure to which it points, behaving just like an indirection. The garbage collector knows73

- -- - -��-
-p q r sCL CLCaf List I SSTATIC SPACEDYNAMIC HEAP CLBH Figure 8: Global updatesabout the CAF list, and walks it iteratively, evacuating the heap-allocated closure to whicheach cell points, and updating the cell appropriately. This is slightly pessimistic, since itholds onto the value of every CAF even though the program may never reference it again,but there is no avoiding this unless the garbage collector traverses the code as well.11 Status and pro�ling resultsWe have built a compiler for Haskell whose back end is based on the STG machine, justas described above. The whole implementation has been constructed rather carefully sothat it may be used as a \motherboard" into which other implementors may \plug in"their optimisation passes. All the source code is available by anonymous FTP by contactinghaskell-request@dcs.glasgow.ac.uk.Apart from the STGmachine technology described in the current paper, the major innovationsof the compiler are:� The systematic use of unboxed values to implement built-in data types.� A new approach to input/output based on monads, which allows the entire I/O systemto be written in Haskell (Hammond, Peyton Jones & Wadler [1992]). This is done viaa general-purpose mechanism which allows arbitrary calls to be made from Haskell toC. As a result the I/O system can be readily extended without modifying the compileror its runtime system.� The Core language, which serves as the main intermediate data type in the compiler,is actually based on the second-order lambda calculus, complete with type abstractionand application. This permits us to maintain complete type information in the presenceof extensive program transformation, as well as accommodating other front ends whosetype system is more expressive than Haskell's.74

The implementation covers almost the whole language, but virtually no optimisations haveyet been implemented. As a result, we have not compared its absolute performance withother compilers. (This omission is an important shortcoming of this paper, which will berecti�ed by a follow-up paper.)We have begun to gather simple dynamic statistics, however. Figure 9 shows some outputtaken from a run of a simple type-inference program. This program takes some 600 linesof Haskell source code (apart from functions used from the Prelude), and the sample runallocated about 10 megabytes of heap. The pro�le has the following main headings:Allocations, split into various categories. Most allocation is for thunks. The proportionof data-value allocation seems surprisingly low, because most data values are built byupdating a thunk, rather than by performing new allocation in a let(rec). Thisprogram uses monads heavily, so quite a lot of function-valued closures are allocated.Stack high-water marks are self explanatory.Enters, with a classi�cation of what kind of closure is being entered. In this case, a ratherlow proportion of function calls (34%) bypass the argument satisfaction check, againdue to the very higher-order nature of the program.Returns, which give information about the data-value returns which took place. In thisrun, almost all were vectored and in registers. The third classi�cation tells how manyreturns were from entering an already-evaluated constructor (some 50% in this case).In the cell model, the enter/return sequence would not be performed for these cases.Update frames classi�es various forms of update frame, which is rather uninformative inthis case.Updates. The �fth line counts the number of times two or more update frames were stackeddirectly on top of one another. The last line counts the number of updates in which analready-existing value was copied by an updates (Section 10.6).AcknowledgementsThis paper has been a long time in gestation. I would like to thank those who have beenkind enough to give me help and guidance in improving it. Andrew Appel made detailedcomments about the relationship of this work to his. Geo� Burn, Cordy Hall, Denis Howe,Rishiyur Nikhil, Chris Okasaki, Julian Seward, and the two anonymous referees gave veryuseful feedback. The implementation of the compiler itself owes much to the work of CordyHall and Will Partain.Sadly, my friend and colleague Jon Salkild, who co-authored the �rst STG paper, died mostsuddenly in 1991. 75

ALLOCATIONS: 73920 (231212 words total:70387 admin, 136489 goods, 24336 slop)avg #words of: admin goods slop14426 (19.5%) function values 1.0 1.7 0.145131 (61.1%) thunks 1.0 1.7 0.59609 (13.0%) data values 1.0 1.7 0.00 (0.0%) big tuples0 (0.0%) partial applications407 (0.6%) black-hole closures 3.0 0.0 0.04341 (5.9%) partial-application updates 0.0 4.4 0.06 (0.0%) data-value updates 0.0 4.5 0.0Total storage-manager allocations: 49594 (235559 words)STACK USAGE:A stack max. depth: 222 wordsB stack max. depth: 446 wordsENTERS: 142737, of which 41914 (29.4%) direct to the entry code[the rest indirected via Node's info ptr]35626 (25.0%) thunks24713 (17.3%) data values64346 (45.1%) function values[of which 21604 (33.6%) bypassed arg-satisfaction chk]4788 (3.4%) partial applications13264 (9.3%) indirectionsRETURNS: 4921248991 (99.6%) in registers [the rest in the heap]49210 (100.0%) vectored [the rest unvectored]24499 (49.8%) from entering a new constructor[the rest from entering an existing constructor]UPDATE FRAMES: 35626 (0 omitted from thunks)35626 (100.0%) standard frames0 (0.0%) constructor frames0 (0.0%) black-hole framesUPDATES: 3562625788 (72.4%) data values[25781 in place, 6 allocated new space, 1 with Node]4349 (12.2%) partial applications[8 in place, 4341 allocated new space]5489 (15.4%) updates followed immediately2594 (10.1%) in-place updates copiedFigure 9: Example output of dynamic pro�ling information76

BibliographyR Alverson, D Callahan, D Cummings, B Koblenz, A porter�eld & B Smith [June 1990],\The Tera computer system," in Proc International Conference on Supercomputing,Amsterdam.AW Appel [1987], \Garbage collection can be faster than stack allocation," Info Proc Lett 25,275{279.AW Appel [1992], Compiling with continuations, Cambridge University Press.AW Appel [Feb 1989], \Simple generational garbage collection and fast allocation," Software{ Practice and Experience 19, 171{183.AW Appel & T Jim [Jan 1989], \Continuation-passing, closure-passing style," in Proc ACMConference on Principles of Programming Languages, ACM, 293{302.ZM Ariola & Arvind [June 1991], \A syntactic approach to program transformations," inSymposium on Partial Evaluation and Semantics-Based Program Manipulation, Yale.L Augustsson [1987], \Compiling lazy functional languages, part II," PhD thesis, Dept CompSci, Chalmers University, Sweden.L Augustsson & T Johnsson [Sept 1989], \Parallel graph reduction with the <nu,G>-machine,"in Proc IFIP Conference on Functional Programming Languages and Computer Ar-chitecture, London, ACM.Henry Baker [Apr 1978], \List processing in real time on a serial computer," CACM 21, 280{294.JF Bartlett [Jan 1989], \SCHEME to C: a portable Scheme-to-C compiler," DEC WRL RR89/1.A Bloss, P Hudak & J Young [1988], \Code optimizations for lazy evaluation," Lisp andSymbolic Computation 1, 147{164.Geo� Burn, SL Peyton Jones & John Robson [July 1988], \The Spineless G-machine," in ProcACM Conference on Lisp and Functional Programming, Snowbird, 244{258.C Consel & O Danvy [Sept 1991], \For a better support of static data ow," in FunctionalProgramming Languages and Computer Architecture, Boston, Hughes, ed., LNCS523, Springer Verlag, 496{519.EC Cooper & JG Morrisett [Dec 1990], \Adding threads to Standard ML," CMU-CS-90-186,Dept Comp Sci, Carnegie Mellon Univ.AJT Davie & DJ McNally [1989], \CASE - a lazy version of an SECD machine with a atenvironment," in Proc IEEE TENCON, Bombay .77

Jon Fairbairn & Stuart Wray [Sept 1987], \TIM - a simple lazy abstract machine to executesupercombinators," in Proc IFIP conference on Functional Programming Languagesand Computer Architecture, Portland, G Kahn, ed., Springer Verlag LNCS 274, 34{45.AJ Field & PG Harrison [1988], in Functional programming , Addison Wesley.P Fradet & D Le Metayer [Jan 1991], \Compilation of functional languages by program trans-formation," ACM Transactions on Programming Languages and Systems 13.K Hammond, SL Peyton Jones & PL Wadler [Feb 1992], \A new input/output model forpurely-functional languages," Dept of Computing Science, University of Glasgow.P Henderson [1980], Functional programming: application and implementation, Prentice Hall.R Hieb, RK Dybvig & C Bruggeman [June 1990], \Representing control in the presence of�rst-class continuations," in Proc Conference on Programming Language Design andImplementation (PLDI 90).P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M Guzman,K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil, W Partain & J Peterson[May 1992], \Report on the functional programming language Haskell, Version 1.2,"SIGPLAN Notices 27.John Hughes [Apr 1989], \Why functional programming matters," The Computer Journal 32,98{107.PZ Ingerman [1961], \Thunks," Comm ACM 4, 55{58.E Ireland [Jan 1992], \The Lazy Functional Abstract Machine," in Proc 15th AustralianComputer Science Conference, Hobart, World Scienti�c Publishing.Thomas Johnsson [1985], \Lambda lifting: transforming programs to recursive equations,"in Proc IFIP Conference on Functional Programming and Computer Architecture,Jouannaud, ed., LNCS 201, Springer Verlag, 190{205.Thomas Johnsson [1987], \Compiling lazy functional languages," PhD thesis, PMG, ChalmersUniversity, Goteborg, Sweden.Thomas Johnsson [June 1984], \E�cient compilation of lazy evaluation," in Proc SIGPLANSymposium on Compiler Construction, Montreal.R Jones [March 1991], \Tail recursion without space leaks," Department of Computer Science,University of Kent.R Kelsey [May 1989], \Compilation by program transformation," YALEU/DCS/RR-702, PhDthesis, Department of Computer Science, Yale University.RB Kieburtz [Oct 1987], \A RISC architecture for symbolic computation," in Proc ASPLOSII . 78

RB Kieburtz & B Agapiev [Sept 1988], \Optimising the evaluation of suspensions," in Procworkshop on implementation of lazy functional languages, Aspenas.H Kingdon, D Lester & GL Burn [1991], \The HDG-machine: a highly distributed graphreducer for a transputer network," Computer Journal 34, 290{302.PWM Koopman [1990], \Functional programs as executable speci�cations," PhD thesis, Uni-versity of Nijmegen.DA Kranz [May 1988], \ORBIT - an optimising compiler for Scheme," PhD thesis, Departmentof Computer Science, Yale University.PJ Landin [March 1965], \A correspondence between Algol 60 and Church's lambda calculus,"Comm ACM 8, 158{165.D Lester [Apr 1989], \Combinator graph reduction: a congruence and its applications," PhDThesis, Programming Research Group, Oxford.Erik Meijer [Sept 1988], \Generalised expression evaluation," in Proc workshop on implemen-tation of lazy functional languages, Aspenas.E Miranda [Apr 1991], \How to do machine-independent fast threaded code," Dept of Com-puter Science, Queen Mary and West�eld College, London.SL Peyton Jones [1987], The implementation of functional programming languages, PrenticeHall.SL Peyton Jones [1988], \FLIC - a functional language intermediate code," SIGPLAN Notices23.SL Peyton Jones, C Clack & J Salkild [June 1989], \High-performance parallel graph reduc-tion," in Proc Parallel Architectures and Languages Europe (PARLE), E Odijk, MRem & J-C Syre, eds., LNCS 365, Springer Verlag, 193{206.SL Peyton Jones & J Launchbury [Sept 1991], \Unboxed values as �rst class citizens," inFunctional Programming Languages and Computer Architecture, Boston, Hughes,ed., LNCS 523, Springer Verlag.SL Peyton Jones & D Lester [May 1991], \A modular fully-lazy lambda lifter in Haskell,"Software { Practice and Experience 21.SL Peyton Jones & DR Lester [1992], Implementing functional languages: a tutorial, PrenticeHall.SL Peyton Jones & Jon Salkild [Sept 1989], \The Spineless Tagless G-machine," in FunctionalProgramming Languages and Computer Architecture, D MacQueen, ed., AddisonWesley.C Runciman & D Wakeling [April 1992], \Heap pro�ling of lazy functional programs," De-partment of Computer Science, University of York.79

P Sansom [Aug 1991], \Combining copying and compacting garbage collection," in ProcFourth Annual Glasgow Workshop on Functional Programming , Springer VerlagWorkshops in Computer Science.Mark Scheevel [Aug 1986], \NORMA - a graph reduction processor," Proc ACM Conferenceon Lisp and Functional Programming .S Smetsers, E Nocker, J van Groningen & R Plasmeijer [Sept 1991], \Generating e�cient codefor lazy functional languages," in Functional Programming Languages and ComputerArchitecture, Boston, Hughes, ed., LNCS 523, Springer Verlag.RM Stallman [Feb 1992], \Using and porting Gnu CC, Version 2.0," Free Software FoundationInc.GL Steele [1978], \Rabbit: a compiler for Scheme," AI-TR-474, MIT Lab for Computer Sci-ence.William Stoye, Thomas Clarke & Arthur Norman [August 1984], \Some practical methods forrapid combinator reduction," in Proc 1984 ACM symposium on Lisp and functionalprogramming , 159{166.D Tarditi, A Acharya & P Lee [March 1991], \No assembly required: compiling Standard MLto C," School of Computer Science, Carnegie Mellon University.AP Tolmach & AW Appel [June 1990], \Debugging Standard ML without reverse engineer-ing," in Proc ACM Conference on Lisp and Functional Programming, Nice, ACM.DA Turner [1979], \A new implementation technique for applicative languages," SoftwarePractice and Experience 9, 31{49.P Wadler [1987], \E�cient compilation of pattern matching," in The implementation of func-tional programming languages, SL Peyton Jones, ed., Prentice Hall, 78{103.
80

PR Wilson, MS Lam & TG Moher [Jan 1992], \Caching considerations for generationalgarbage collection," Department of Computer Science, University of Texas.A The gory detailsThis appendix contains gory implementation-speci�c notes for the Glasgow Haskell compiler.ToDo: add some stu� about stack stubbing.A.1 Update agsThere are really three kinds of update ag:� Updatable. Update me with my normal form.� Single-entry. Don't update me with my normal form, but you can overwrite me with ablack hole to prevent a space leak. I promise I will be entered at most once.� Reentrant. Don't update me with my normal form, or with a black hole. I may beentered (and re-evaluated) more than once. Manifest functions, constructors, and partialapplications are always reentrant. Note that the latter two have zero arguments, so zero-arg things may be reentrant.A.2 Black holesThere are three reasons for overwriting a thunk with a black hole immediately it is entered:� To prevent space leaks.� To give a better error message when there's an in�nite loop.� To do thread synchronisation in a parallel system.The �rst two can be dealt with in a di�erent way by the garbage collector. Space leaks canbe prevented by black-holing the things on the update stack at GC time. In�nite loops canbe detected by a post-mortem on the update stack, following a stack overow. So until weneed parallelism, black-holing is a waste of instructions.A.3 Adding �llersThe great invariant is this: if a closure is to be modi�ed, either by being overwritten with ablack hole, or by updating, a �ller is written over the \tail" of the closure, so that the initialsegment is exactly FIXED_HDR_SIZE+MIN_UPD_SIZE words long.81

MIN_UPD_SIZE is at least 2, to allow for cons cells and linked indirections. Another truth:GEN objects are always bigger than FIXED_HDR_SIZE+MIN_UPD_SIZE+2; that leaves room fora GEN �ller following a min-size closure slot.That means that the black hole and update code have a well-de�ned �xed-size thing to modify.All such closures are thunks, of either SPEC or GEN form. If the latter, the �ller is set withSET_GEN_FILLER(Node, slop)where slop is the size of the closure (excl �xed hdr, of course) � MIN_UPD_SIZE.If the closure is of SPEC form, and there are more than MIN_UPD_SIZE words of ptrs + non-ptrs,the �ller is set withSET_SPEC_FILLER(Node, slop)where slop is the size of the closure - MIN_UPD_SIZE. In the SPEC case, the slop argument isguaranteed to be an integer, so can be used in building a label. (Remember, SPEC closureshave no variable header, so the size is just ptrs + non-ptrs, which the compiler can calculate.)All this is done at the end of the basic block, just before Node is discarded (or assigned). Butif Node is being loaded from the closure itself we have to go via a temporary, so we need:SET_GEN_FILLER_AND_LOAD_NODE(Node, final_node, size)SET_SPEC_FILLER_AND_LOAD_NODE(Node, final_node, size)If one-space collection isn't being done, these �ller macros generate nothing (except of coursethe LOAD_NODE variants still load Node).A.4 Performing updatesThe update-performing code behaves as follows:� If the new closure doesn't �t in a min-size closure slot:Allocate the new object from the heapUPD_IND(&Hp[-xxx], HeapCheck_xxxLive)� If the new closure �ts in a min-size closure slot:UPD_INPLACE(UpdPtr, HeapCheck_xxxLive)Fill in UpdPtr[0...]if incompletely filled, use SET_UPD_FILLER(UpdPtr, slop)In generational GC the UPD_INPLACE code checks for a old-gen update, and if so allocatesa min-size closure in new-space, updates the old-gen thing with a pointer to the new-space thing, and makes UpdPtr point to it.The SET_UPD_FILLER �lls in any remaining slop. The slop argument is guaranteed tobe an integer. 82

A.5 Lambda-form infoNow we are ready to summarise the (remarkably subtle) questions of entry and update con-ventions. Reentrant Updatable Single-entryNode mustpoint to it If has fvs; or ar-ity=0 and usingcost centres (note9,12) Yes (note 6) If has fvs or using cost-centres (note 9)Can jump di-rect to code Yes (note 8) No YesPush updateframe No Yes (note 5) NoBlack hole onentry (note 7) No Optional (notes 2,3) i� has fvs (notes 4)UPD_BH_UPDATABLE UPD_BH_SINGLE_ENTRYUse �ller (if 1sgc) No Yes, unless static (note11) I� has fvs (note 10)SET_xxx_FILLER dittoNote 1. We NO LONGER assume that any closure with no free variables is allocated stati-cally. However, we do assume that (HAS FVS implies NOT STATIC).Note 2. We never black-hole an updatable static closure. Instead, it will be overwritten witha CAFList cell pointing to a newly allocated black hole.Note 3. Black-holing can be done by the garbage collector (by running down the updatestack and black-holing any pending updatees); and in�nite loops detected by a post-mortem on the update stack.Note 4. A single-entry closure which has free vars is *always* black-holed, to avoid spaceleaks. The trick mentioned in Note 3 doesn't work for them because they don't sit onthe update stack.One could argue that space leaks from omitting the black-hole for single-entry thingsare similar to other unavoidable space leaks, but we don't; we black-hole them.A single-entry closure with no fvs is *never* black-holed; it cannot give rise to a spaceleak, and we trust the single-entry ag which should mean it can't form part of aloop. (Even if that's not true, the update stack post-mortem would reveal the loop.)Notice that this means that static single-entry closures (which have no fvs) are neverblack-holed.Note 5. For updatable static closures, the update frame will point to the newly-allocatedblack hole.Note 6. If a closure is updatable, Node must be made to point to it, even if it is a staticno-fv closure. Reason: it may have been updated with a CAF indirection. We haveto indirect via the closure to get the entry code anyway (because it might have been83

updated), so it is no big deal to load Node too. In theory we could have a di�erentCAF indirection code for each CAF, which "knows" the closure address, but it saves notime.Note 7. The node-must-point-to-it conditions ensure that Node always points to a closurewhich is to be black-holed.Note 8. For reentrant things with arity > 0, there is still a choice as to whether to jump tothe fast or slow entry point, depending on how many args the thing is applied to.Note 9. When cost-centre pro�ling, Node must point to anything which isn't a HNF (evenif it has no fvs) , so that the cost centre can be extracted from the closure.Note 10. Single-entry closures only need a �ller if they have been black-holed. Hence thecondition. (NB fvs implies not static.)Note 11. Static updatable closures don't need a �ller, because the black hole freshly allo-cated for them is already the standard size.Note 12. This rule says that Node doesn't need to point to no-fv closures with arity > 0.But that could be a problem because such things have an argument-satisfaction check,which needs to know where the closure is. We solve this by allocating such closuresstatically: this can't result in a space leak because they are HNFs already and have nofvs; nor can it result in loss of laziness.Imported things which we know nothing about are entered as if they were updatable thingswith no free vars.A.6 Stack stubbingBlack holing closures is a way to avoid space leaks, but there is another important sourcewhich is not caught thereby, namely pointers on the stack which happen to be dead. Forexample f x = case x of ...not involving x...Here x is passed to f on the stack, but is dead as soon as it is entered.The simplest solution is:� Just before every tail call, overwrite any stack-held ptrs which are now dead with apointer to a special Stub closure. Stub is a static closure with no pointers inside it, soit plugs any space leak.The entry code for Stub elicits an error message, because the stack slot is supposed tobe dead.How do we know which slots are dead? Because they are bound to variables which aren't freein the continuation.Unfortunately, this stack-stubbing takes instructions to perform. We can improve matterssomewhat: 84

� Use dead stack slots to save volatile variables in for a case expression. Not only doesthis mean that fewer slots need to be stubbed, but it also reduces stack growth.There is one way of avoiding the remaining stack-stubbing instructions, namely by attaching abit-mask to return (vector) addresses pushed on the B stack, which identify the dead A-stackpointers. This is quite a bit more work, so we don't do it at present | but we count howmany stubbing instructions we execute.A.6.1 ImplementationWe need to keep extra information in the code generator state:1. We need to keep track of which A-stack slots are used for what purpose; in particular,which slots are used to store which variables.This info is used when saving volatile variables (at a case expression), to identify deadslots, and at a tail call to identify slots which must be stubbed.We can do this just by adding an extra component to the code generator state, car-ried around by the monad, and making sure we keep it up to date when we alter theenvironment.2. When compiling a tail call we need to know which variables, if any are used in thecontinuation (if any) so that any others occupying stack slots below the tail-call SpAcan be stubbed.This is easy too: just add a piece of inherited information to the monad rather like theset-�ller stu�. The di�erence is that at a case expression the needed-var info goes intothe case branches rather than into the scrutinee.The scheme so far is slightly pessimistic. Consider the expresionf x = let y = ... incase x of...y...The code generated for this is:Allocate ySave y on the stackPush the continuationEnter xNow, since x is still live at the point we save y, we will allocate a new stack slot for y, andhave to stub the x slot just before entering x. It would be better to save y in x's slot. Wecan spot this as a special case, perhaps including the slightly more general case where thescrutinee is a function application. 85

Indexh�;Gi-machine, 14, 15A-stack, 51ABC machine, 5, 14Abstract C, 8, 52activation frame, 15, 31address, 32, 45algebraic data type, 29allocation, 58argument satisfaction check, 38, 58, 66argument stack, 32, 50arithmetic, 28, 64B-stack, 51black holes, 12, 59built-in operation, 52cache, 15CAF list, 73CAFs, 73call/cc, 15case expression, 16case expressions, 19cell model, 11closure, 9closure mode, 12closures, 12, 32, 45entering, 10, 45, 55static, 47, 48code, 33code pointer, 10continuation, 38constant applicative form, see CAFsconstructors, 16, 24niladic, 33standard, 26, 52, 53continuation, 60continuation-passing style, see CPSCore language, 8CPS, 21, 30currying, 14, 31data structures, 16data values, 9debugging, 45

direct-entry point, 56Enter , 33entering, see closuresenvironment pointer, 10evacuation, 47Eval , 33eval-apply model, 14evaluation stack, 15, 31forcing, see thunksforwarding pointer, 48frame, 10frame pointer, 44free variables, 22full laziness, 27function application, 14, 31, 34, 55function values, 9, 10G-machine, 14garbage collection, 47, 72generational garbage collection, 15, 49global environment, 33globals, 21, 29, 47, 53, 73graph reduction, 14Haskell, 7head normal forms, 9heap, 32heap overow check, 58indirection, 12indirections, 46, 70info pointer, 45info table, 45, 50, 52initial state, 34, 53input/output, 74integerssmall, 48lambda lifting, 21, 27lambda-form, 21laziness, 11local environment, 33saving, 61locality, 1586

locally-de�ned functions, 56locals, 21main, 21, 34manifest functions, 24monads, 74non-updatable, 21normal forms, 9normal return code, 69operational semantics, 32paging, 15PAP_Info, 67parallel execution, 13partial applications, 24, 40, 67pattern matching, 16, 19, 60pointer, 45primitive data type, 29primitive values, 37pro�ling, 74push-enter model, 14\queue me", 13, 60reduction, 11reentrant, 81register saves, 44return address, 62return convention, 17, 63return stack, 36, 50return vector, 63ReturnCon, 33, 36ReturnInt , 33, 36, 37, 64scavenging, 48SECD machine, 14second-order lambda calculus, 74self-updating model, 11sequences, 32single-entry, 81space leak, 10, 59, 61stack base registers, 66stack overow check, 58stack stubbing, 61stacks, 50standard constructors, see constructorsstandard-entry code, 45, 58

state transition system, 32status ag, 11STG language, 8, 19strictness analysis, 8supercombinator, 27suspension, 9T-code, 7tag big, 51tagless, 12target language, 41threads, 15Three Instruction Machine, see TIMthunks, 9, 24forcing, 11, 16representing, 11TIM, 10, 14unboxed values, 8, 28uniform representation, 12updatable, 21, 81update ag, 20, 23reentrant, 60single-entry, 60update frame, 38, 59, 65, 68update return code, 69update stack, 38, 50UpdatePAP, 66updates, 11, 12, 23, 38in place, 71values, 9, 32vectored return, 63, 68vectored returns, 17
87

