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independently with �xed probability � and the goal is to construct (�; �){stochasticnetworks which work correctly with probability at least 1� � under this assumption.In the k-fault model the goal is to build k-tolerant networks, that is networks whichwork correctly if any set of at most k comparators are faulty.Most attention in literature has been devoted to fault-tolerant networks for sort-ing. Yao and Yao [9] constructed such a k-tolerant network of minimumsize. Leightonand Ma [6] derived the �rst nontrivial upper bound O(logn+k log lognlogk ) on the depthof a k-tolerant sorting network. In their construction the constant in the O-notationdepends on the expander used to build the network. The probabilistic model as wellas other types of faulty comparators were also studied in [2, 6, 7, 9] in this context.In this paper we consider networks �nding the minimum term of a vector of realnumbers under the k-fault model. Yao and Yao constructed a k-tolerant minimum�nding network of minimum size. We are interested in building such networks withsmall depths. We construct a k-tolerant n-input network using the minimumnumberof comparators, of depth at mostmin�dlogne + k(dlog(dlogne + 1)e; 1:5dlogne + 3k + 1; �ln2 m+ 2k�� :We also establish the corresponding lower boundmax�dlogne + 2k; logn+ k log�1:28dlognek + 1 + 1:92�� ;which shows that the depth of our network is asymptotically optimal both for �xedn and arbitrary k and for �xed k and arbitrary n. No such tight bounds were knownpreviously.The paper is organized as follows. In Section 2 we present our terminology andestablish basic facts used in the paper. Section 3 is devoted to establish the lowerbound on the depth of k-tolerant minimum �nding networks and in Section 4 weconstruct and analyze a network whose depth nearly matches the lower bound fromSection 3.2 PreliminariesLet n � 2 be an integer and Rn { the set of n-element vectors of reals. For everyx 2 Rn, x[i] denotes the i-th term of x. For 1 � i < j � n, the comparator [i : j]is a mapping from Rn to Rn which transforms a vector x into vector x0 = x[i : j]de�ned as follows: x0[k] = 8<:x[k] k 6= i; jmin(x[i]; x[j]) k = imax(x[i]; x[j]) k = j:Thus [i : j] compares x[i] with x[j] and places the smaller of them in position i andthe larger in position j.Let � be a �nite sequence of comparators [i1 : j1]; : : : ; [ir : jr ]. � transforms eachvector x 2 Rn into y = x� de�ned as follows:x(0) = x;x(k) = x(k�1)[ik : jk]; for 1 � k � r;x� = x(r):



Two comparators [i1 : i2]; [i3 : i4] are called nonoverlapping if i1 6= i3; i4 and i2 6=i3; i4.Proposition1. Let C be a set of pairwise nonoverlapping comparators and �1(C),�2(C) arbitrary permutations of all elements from C. Then x�1(C) = x�2(C), forany x 2 Rn.An n-input network � is any sequence C1; C2; : : : ; Cr of nonempty sets of com-parators on Rn such that in each set Ci comparators are pairwise nonoverlapping.For any i = 1; : : : ; r let �i(Ci) be any permutation of Ci. The n-input network �transforms any x 2 Rn into x� = x�1(C1) : : :�r(Cr). The sets C1; : : : ; Cr are calledphases of the network � and r is said to be its depth. We denote r = j�j.We say that � is a j-fault subnetwork of � if � can be obtained from � bydeleting exactly j comparators. By de�nition of a faulty comparator, instead ofdeleting comparators it is equivalent to say that comparators in question fail.An n-input network � is called an mf-network (minimum �nding network) if forevery x 2 Rn, x�[1] = min(x[1]; : : :; x[n]).An n-input mf-network � is said to be k-tolerant if every j-fault subnetwork of �,j � k, is also an mf-network. We denote by Tk(n) the minimumdepth of a k-tolerantn-input mf-network. In the sequel we assume n > 2. Observe that Tk(2) = k+1, forany k � 0.Throughout the paper logx is used for log2 x and jAj denotes the size of a set A.3 Lower BoundsIn this section we give two nontrivial lower bounds on Tk(n). The �rst theoremestablishes a lower bound which is good in the case when n is �xed and k can bearbitrarily large.Theorem2. Tk(n) � dlogne+ 2k:Proof. Induction on k.k = 0This is the well-known fact that any n-input network computing minimum hasdepth at least dlogne.k > 0Assume that the theorem holds for networks with less than k faulty comparators.Suppose that there is a k-tolerant n-input mf-network with depth less than dlogne+2k. Let � = A1; : : : ; Ad be such a network with the smallest depth d. By the inductivehypothesis d � dlogne + 2(k � 1), since any k-tolerant mf-network is also (k � 1)-tolerant. Consider the last phase of �. This phase must contain a comparator [1 : f ],for some 2 � f � n, otherwise it would be superuous (but � is a shortest k-tolerantn-input mf-network). W.l.o.g. assume that [1 : f ] is the only comparator in Ad (theothers are useless). Since � is k-tolerant, the network �0 = A1; : : : ; Ad�1 is (k � 1)-tolerant. This and the inductive hypothesis imply d = dlogne+2(k�1)+1. Since �0is a (k � 1)-tolerant n-input mf-network with the smallest depth (by the inductivehypothesis), the phase Ad�1 must contain a comparator [1 : g], for some 1 < g � n.



We show f = g. Suppose f 6= g. Since �0 is a shortest (k � 1)-tolerant mf-network,the comparator [1 : g] in the phase Ad�1 is essential | the minimum can be placedon the line g after the execution of the phases A1; : : : ; Ad�2 in the presence of atmost k � 1 faulty comparators. Such a minimum is never moved to the line 1 inthe network � if the comparator [1 : g] is faulty. It contradicts the assumption of k-tolerance of �. Hence f = g. Let s be the index of the latest phase in � not containinga comparator [1 : f ]. Since n > 2 and � is an mf-network, such an index exists and1 � s < dlogne + 2(k � 1). Suppose that As contains a comparator [1 : h], for some1 < h � n, h 6= f . We show that the comparator [1 : h] is unessential with respectto the network �0, i.e. the minimum can be never located on the line h after theexecution of phases A1; : : : ; As�1, in the presence of at most k� 1 faults. Otherwisesuch a minimum is never moved to the line 1 in the network � if the comparator[1 : h] is faulty. This contradicts k-tolerance of �. Similarly one can prove that ifAs contains a comparator [f : m], for some f < m � n, then this comparator isalso unessential with respect to the (k � 1)-tolerant network �0 (the minimum canbe never located on the line m after the execution of the �rst s � 1 phases). Thisimplies that the network �00 = A1; : : : ; As�1 always places the minimum on one ofthe lines 1 and f in the presence of at most k � 1 faults. Now consider two cases:(1) In the presence of at most k � 2 faults �00 always places minimum on the line 1.In this case the network A1; : : : ; As�1; f[1 : f ]g is a (k�1)-tolerant mf-network withdepth less than dlogne + 2(k � 1) - a contradiction.(2) There are input data such that �00 places minimum on the line f in the presenceof at most k � l faults, for some 2 � l � k. Consider the largest such l. In thiscase s < d � l, because we need l + 1 more comparators [1 : f ] in � to move sucha minimum from line f to line 1 in the presence of l additional faults. This impliesthat the network A1; : : : ; As�1; f[1 : f ]g; : : : ; f[1 : f ]g| {z }l-timesis a (k � 1)-tolerant mf-network with depth less than dlogne + 2(k � 1) - a contra-diction.The next Theorem establishes another lower bound which is nontrivial when kis �xed and n can be arbitrarily large.Theorem3. Tk(n) � logn+ k log�1:28 dlognek+1 + 1:92� :Proof. Let � = CrCr�1 : : :C1 be a k-tolerant mf-network of depth r. For i = r; r �1; : : : ; 0 we de�ne a partition of the set of line numbers f1; 2; : : : ; ng into pairwisedisjoint sets (Ai0; Ai1; : : :) which classify line numbers after r � i initial phases of �and then, following the ideas of Berlekamp (cf. [4, 8]), we assign a weight wi toeach partition. Next we prove that this weight cannot decrease too much during onephase. This will give a lower bound on r.Let Aij (i = r; r� 1; : : : ; 0, j = 0; 1; : : :) consist of all numbers m such that:(i) there is a j-fault tolerant subnetwork �0 of CrCr�1 : : :Ci+1 and an input vectorx 2 Rn such that (x�0)[m] = min(x), and(ii) if j > 0 then for each (j�1)-fault subnetwork �0 of CrCr�1 : : :Ci+1 and for eachinput vector x 2 Rn of pairwise distinct numbers (x�0)[m] 6= min(x).



One can observe that Ar0 = f1; 2; : : :; ng, Ar1 = Ar2 = : : : = ; and A00 = f1g,A01 = A02 = : : : = A0k = ;, Sj>kA0j = f2; : : : ; ng, since � is a k-tolerant mf-network.Let wi = kXj=0�� ik � j����Aij�� ;where ((ij)) = (i0) + (i1) + � � �+ (ij) is a sum of binomial coe�cients. Asumme that((ij)) = (ij) = 0 for j < 0 and (ij) = 0 for j > i: Observe that ((i+1j )) = ((ij))+(( ij�1)):Equivalently, instead of associating the weight wi with a partition, we can assign anindividual weight vim = (( ik�j)) to each line m 2 Aij and consider wi as vi1 + vi2 +� � �+ vin.Thus wr = ((rk))n and w0 = 1. In order to �nish the proof of the theorem weneed the following lemma.Lemma4. For i = r; : : : ; 1,wi�1 � 8<: (1=2)wi i � 2k;(2=5)wi 1 < i < 2k;(1=3)wi i = 1:Proof. Due to space limitations, it will appear in the full version of the paper.It follows from Lemma 4 that wr � 2r 32(54 )2k�2w0. Hence ((rk))n � 2r 32(54 )2k�2and consequently, using the result of Theorem 2, Tk(n) � minfr � dlogne + 2k :((rk))n � 2r 32 (54)2k�2g: While ((rk)) � (r+1k ) � (2r�k+3k+1 )k � (2dlogne+3k+3k+1 )k, a fewtransformations of the above inequality yieldTk(n) � logn+ k log�1:28dlognek + 1 + 1:92� ;which concludes the proof of the theorem.4 Upper BoundIn this section we construct a k-tolerant mf-network whose depth is nearly optimal.Unfortunately we are not able to compute this depth precisely but we will give agood estimate.In what follows the term \network" means an n-input comparator network with�xed n > 4. It is easy to verify that Tk(m) = dlogme+2k, for m = 3; 4 and arbitraryk � 0.Let � be a network of depth l with phases A1; : : : ; Al. We say that numbersli; ri are the left and the right bounds of the phase Ai, respectively, if li = min(fx :[x : y] 2 Aig) and ri = max(fy : [x : y] 2 Aig), for i = 1; : : : ; l. For two networks� = A1; : : : ; Aa and � = B1; : : : ; Bb we de�ne the network � (�; �) as follows:Let i be the smallest non-negative integer � a� b such that for each j > i, eitherj > a or j � a and the left bound of the (j� i)-th phase in � is larger than the rightbound of the j-th phase in �. Then� (�; �) = A1; : : : ; Ai; Ai+1 [B1; : : : ; Aa [Ba�i; Ba�i+1; : : : ; Bb:



The depth of � (�; �) is i+ b.4Given k � 1 and networks �1; : : : ; �k we de�ne the k-run network �k(�1; : : : ; �k)with runs �1; : : : ; �k as follows:�k(�1; : : : ; �k) = ��1 k = 1� (�k�1(�1; : : : ; �k�1); �k) k > 1:Let  = �k(�1; : : : ; �k) be a k-run network. For each 1 < i � k, the numberj�i(�1; : : : ; �i)j � j�i�1(�1; : : : ; �i�1)jis called the delay of the run �i with respect to . The delay of �1 is de�ned to beits depth j�1j.Proposition5. Let  = �k(�1; : : : ; �k) be a k-run network and let Di, for i � k, bethe delay of the run �i with respect to . Then the depth of  equals D1 + � � �+Dk.Proposition6. Let  = �k+1(�1; : : : ; �k+1) be a (k + 1)-run network whose runsare mf-networks. Then  is a k-tolerant mf-network.Proof. Deleting at most k comparators from  leaves at least one minimum �ndingrun �i intact.An n-input mf-network � = A1; : : : ; Aa is called normal i� the following con-straints are satis�ed:(1) � contains exactly n� 1 comparators.5(2) For every 1 � j < a, if [ix : x] 2 Aj and [iy : y] 2 Aj+1 then x > y.(3) For every 1 � j � a, if [ix : x] 2 Aj , [iy : y] 2 Aj and x 6= y then x > y i�ix < iy.For every interval of lines 1 � x; x+1; : : : ; y � n we de�ne the set of comparatorsCOMP (x; y) as follows: Let s = bx+y�12 c. ThenCOMP (x; y) = f[x : y]; [x+ 1 : y � 1]; : : : ; [s : y � (s � x)]g:We now describe the k-tolerant mf-networkMINk+1 whose depth is close to opti-mal. To this end we de�ne the in�nite sequence min1;min2; : : : of normal minimum-�nding networks and then MINk+1 will be de�ned to be the (k + 1)-run network�k+1(min1; : : : ;mink+1). The networks mini = M i1; : : : ;M idi are de�ned inductivelyon i.i = 1In this case d1 = dlogne and M1j = COMP (1; d n2j�1 e), for j = 1; : : : ; dlogne.i > 1Suppose that the network mini�1 is constructed. Let ri�1j be the right bound of thej-th phase in mini�1, for 1 � j � di�1. Set ri�1j = 0, for all j > di�1. Denote by s4 It is important for further considerations that the last phase of � is not earlier than thelast phase of � in the network � (�;�).5 Observe that for each 1 < x � n, � must contain exactly one comparator of the form[ix : x].



the largest index such that ri�1s � n� 1. For every p � 1 let lip and rip be de�ned asfollows: li1 = ri�1s+1 + 1; ri1 = n if p = 1;lip = ri�1s+p + 1; rip = b lip�1+rip�12 c for p > 1: (1)Let di be the smallest p such that rip = 2. Thenmini = COMP (l1; r1); COMP (l2; r2); : : : ; COMP (ldi; rdi):Easy induction on i shows that the networks mini, i � 1, are normal mf-networks.This implies the following theorem:Theorem7. MINk+1 is a (k + 1)-run network whose runs min1; : : : ;mink+1 arenormal mf-networks.The network MIN3 for n = 16 is illustrated in Fig. 1.We will estimate the depth of network MINk+1 from above. The following the-orem will be helpful in this task.Theorem8. The depth of the networkMINk+1 is the minimum depth of all (k+1)-run networks �k+1(�1; : : : ; �k+1) with normal, minimum �nding runs �1; : : : ; �k+1.Proof. Let  be a (k + 1)-run network �k+1(�1; : : : ; �k+1) with normal, minimum�nding runs �1; : : : ; �k+1. Denote by I(x; l) the index of the phase in  containing acomparator [ilx : x] from the run �l, for x = 2; : : : ; n and l = 1; : : : ; k+1. The theoremis an immediate consequence of the following lemma. Due to space limitations itsproof will appear in the full version of the paper.Lemma9. For all x; l such that 1 < x � n and 1 � l � k + 1, IMINk+1 (x; l) �I(x; l). . .12 34 56 78 910111213141516 run 1 run 2 run 3Fig. 1 The network MIN3 for n = 16.



In order to give upper bounds on the depth of the network MINk+1 we estimateit now at 1:5dlogne+ 3k+ 1 and then construct two (k+ 1)-run networks Net1 andNet2 with normal minimum �nding runs and of depths dlogne + kd(dlog ne + 1)eand dn2 e + 2k, respectively. By Theorem 8 we getTheorem10.Tk(n) � jMINk+1j � min8<: dlogne + kdlog(dlogne + 1)e;1:5dlogne + 3k + 1;dn2 e + 2k:The network MINk+1, whose depth is bounded by the depth of networks Net1and Net2, contains exactly (k+ 1)(n� 1) comparators. It should be noted that thisnumber is optimal (cf. [9]).Estimation of the depth of MINk+1We would like to estimate rights bounds of all k+1 runs ofMINk+1. To this end wede�ne Rij; the right bound of the i-th run in the j-th phase, assuming that Rij = nbefore the start of the run and Rij = 0 after its end. According to (1) we can stateRij = 8<:0 if i = 0 or Rij�1 = 2;n if 0 < i � k + 1 and j = 0;b12 (Ri�1j�1 +Rij�1 + 1)c if 0 < j and 0 < i � k + 1 and Rij�1 6= 2:Let us notice that for each j � 0; R0j � R1j � : : : � Rk+1j , moreover, the depth ofMINk+1 is equal to the minimum j such that R1j = R2j = : : : = Rk+1j = 0: We canrewrite the recurrence for Rij using the following de�nition. Let f(a1; a2; : : : ; ak+1) =(g(0; a1); g(a1; a2); g(a2; a3); : : : ; g(ak; ak+1)); where g(x; y) = bx+y+12 c if x + y > 2and 0 otherwise. One can easily observe thatf(R1j�1; R2j�1; : : : ; Rk+1j�1) = (R1j ; R2j ; : : : ; Rk+1j ):Let f (j) denote the j-th iteration of f . Thus f (j)(n; n; : : : ; n) = (R1j ; R2j ; : : : ; Rk+1j ):Let an inequality of sequences of terms means inequalities of respective terms andlet ((nk )) = Pmin(n;k)i=0 (ni ). The following lemmas give an estimation of Ridlogne, 1 �i � k + 1:Lemma11. For j = 0; 1; : : : ; dlogne,f (j)(n; n; : : : ; n) � �d n2j e((j0)); d n2j e((j1)); : : : ; d n2j e((jk))� :Proof. Induction on j using the inequality b dxem+12 c � dx2em; where x � 0 andm � 1 is an integer. Notice that f is nondecreasing with respect to each argument.Lemma12. f (m)(n; n; : : : ; n) � (0; 2m=3+2; 2m=3+4; : : : ; 2m=3+2k); for m = dlogne:



Proof. By induction on m one can prove that ((mk )) < 2m=3+2k and get the resultby substituting this in the inequality from Lemma 11.To get the upper bound 1:5dlogne+ 3k + 1 we need the following lemma.Lemma13. f (3bm=6c+3k+1)(0; 2dm=3e+2; 2dm=3e+4; : : : ; 2dm=3e+2k) = (0; 0; : : : ; 0):Proof. Let a > 1 be an integer. An easy calculation gives the following relations:f (3)(0; a � 23; a � 25; a � 27; : : : ; a � 22k+1) � (0; a; a � 23; a � 25; : : : ; a � 22k�1)f (4)(0; 24; 26; 28; : : : ; 22k+2) = (0; 0; 8; 38;156;625�20; 625�22 : : : ; 625�22(k�5))f (3)(0; : : : ; 0| {z }i�times ; 8; 38; 156;625; 625�22 : : : ; 625�22(k�i�4)| {z }�x ; 625�22(k�i�3)) � ( 0; : : : ; 0| {z }i+1�times; �x):We start with the sequence (0; 2dm=3e+2; 2dm=3e+4; : : : ; 2dm=3e+2k) and using bm=6c-times the �rst inequality we get the upper-bound sequence (0; 24; 26; 28; : : : ; 22k+2),then we use second inequality and end up using (k � 1)-times the last one.Construction of the Network Net1The network Net1 is a (k + 1)-run network whose �rst run is a network � and theremaining runs are copies of a network �. The networks � and � are de�ned below.Let H = dlogne and L = dlog(dlogne + 1)e. The network � is a sequence AH ,AH�1; : : : ; A1 of H phases (i.e. A1 is the last phase in �), whereAi = �COMP (1; 2i) 1 � i < HCOMP (n� 2(n� 2H�1) + 1; n) i = H:It is easy to observe that � is a normal mf-network ( after performing phasesAH ; : : : ; Ai, the minimum is always on one of the lines 1; 2; : : : ; 2i�1). Denote byr�i the right bound of the phase Ai in �. Then r�i equals 2i, for i = 1; : : : ;H � 1,and n if i = H.Now we describe the network �. Consider a sequence of integers (vi)i�1, de�nedas follows: vi = �2i 1 � i � L2vi�1 � 2i�L i > L:Observe thatvL+H�1 = 2L+H�1�(H�1)2H�1 = 2H�1(2L�H+1) � 2H�1(H+1�H+1) = 2H � n:Let S be the smallest integer such that vL+S � n. For i = 1; : : : ; L+ S de�ne:r�i = �vi i < L+ S � 1;n i = L+ S; l�i =8<:1 i � L;2i�L + 1 L < i � L + S � 1;n� 2(n� r�L+S�1) + 1 i = L+ S:Observe that l�i < r�i , for each 1 � i � L + S. The network � consists of L + Sphases BL+S ; BL+S�1; : : : ; B1, where Bi = COMP (l�i ; r�i ). Note that for each 1 <i � L + S, b l�i +r�i2 c = r�i�1. This implies that � is a normal mf-network. De�neNet1 = �k+1(�; �; : : : ; �| {z }k�times ):



Observe that l�j = 1, for j = 1; : : : ; L, but r�i � r�i = 2i < 2i + 1 = l�L+i, for eachi = 1; : : : ; S. This implies that the delay of each copy of � in Net1 is L. Since j�j = Hwe get (by Proposition 6) that the depth of Net1 equals H + kL.Construction of the Network Net2The network Net2 consists of k + 1 identical runs �. Now the network � is de�nedas follows:Let S = dn2 e. For i = 1; : : : ; S de�ne:r�i = �2i i < S � 1;n i = S; l�i = 8<:1 i = 1; 2;2(i� 2) + 1 2 < i < S;n� 2(n� 2(S � 1)) + 1 i = S:Obviously l�i < r�i , for i � S. The network � consists of S phases AS ; AS�1; : : : ; A1,where Ai = COMP (l�i ; r�i ). Now de�neNet2 = �k+1( �; : : : ; �| {z }(k+1)�times):The same argument as before shows that Net2 is a k-tolerant mf-network of depthS + 2k.References1. M. Ajtai, J. Komlos & E. Szemeredi, An O(n log n) Sorting Network, Proc. 15thAnnual ACM Symposium on Theory of Computing, 1983, 1-9.2. S. Assaf & E. Upfal, Fault-Tolerant Sorting Networks, Proc. 32nd Annual IEEE Sym-posium on Foundations of Computer Science, 1990, 275-284.3. K.E. Batcher, Sorting Networks and Their Applications, Proc. AFIPS 1968 SJCC,Vol. 32, AFIPS Press, Montvale, NJ, 307-314.4. E.R. Berlekamp, Block Coding for the Binary Symmetric Channel with Noiseless,Delayless Feedback, in Error-Correcting Codes, Wiley, New York, 1968, 61-85.5. D.E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison Wesley,Reading, MA, 1975.6. T. Leighton & Y. Ma, Breaking the �(n log2 n) Barier for Sorting with Faults, Proc.34th Annual IEEE Annual Symposium on Foundations of Computer Science, 1993,734-743.7. T. Leighton & Y. Ma, Tight Bounds on the Size of Fault-Tolerant Merging and Sort-ing Networks with Destructive Faults, Proc. 1993 ACM Symposium on Parallel Algo-rithms and Architectures, 1993, 30-41.8. R.L. Rivest, A.R. Meyer, D.J. Kleitman, K. Winklmann & J. Spencer, Coping withErrors in Binary Search Procedures, Journal of Comp. Syst. Sci. 20, 1980, 396-404.9. A.C. Yao & F.F. Yao, On Fault Tolerant Networks for Sorting, SIAM J. Comput. 14,1985, 120-128.This article was processed using the LaTEX macro package with LLNCS style


