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Abstract. We consider the problem of constructing reliable minimum find-
ing networks built from unreliable comparators. In case of a faulty compara-
tor inputs are directly output without comparison. Our main result is the first
nontrivial lower bound on depths of networks computing minimum among
n > 2 items in the presence of k > 0 faulty comparators. We prove that the
depth of any such network is at least max([logn] + 2k,logn + klog f—iT")
We also describe a network whose depth nearly matches the lower bound.
The lower bounds should be compared with the first nontrivial upper bound
O(log n + klog L‘;—g—:) on the depth of k-fault tolerant sorting networks that
was recently derived by Leighton and Ma [6].

1 Introduction

Networks built from comparators are commonly used to perform such tasks as selec-
tion, sorting and merging. A comparator is a 2 input—2 output device which sorts two
items. Networks of minimum size, i.e. using the minimum number of comparators
for a given task, have been studied e.g. in [1, 3, 5]. In particular Ajtai, Komlos and
Szemeredi [1] showed an n-input sorting network that uses O(nlogn) comparators.
Another measure of performance of a network built from comparators is its depth,
i.e. the time in which it performs its task assuming that nonoverlapping comparators
(those which do not have common inputs) can act simultaneously and one compar-
ison takes a unit of time. The network from [1] is asymptotically optimal from this
point of view: it has depth O(logn).

Yao and Yao [9] originated a new approach to the study of such networks. They
supposed that some comparators can be faulty and a faulty comparator does not
work at all: inputs are output directly without comparison. In [9] networks for sort-
ing, merging and minimum selection using a small number of comparators were
built under two alternative fault models. In the stochastic model comparators fail
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independently with fixed probability é and the goal is to construct (e, §)—stochastic
networks which work correctly with probability at least 1 — e under this assumption.
In the k-fault model the goal is to build k-tolerant networks, that is networks which
work correctly if any set of at most k comparators are faulty.

Most attention in literature has been devoted to fault-tolerant networks for sort-
ing. Yao and Yao [9] constructed such a k-tolerant network of minimum size. Leighton
and Ma [6] derived the first nontrivial upper bound O(logn—+# log %E—Z) on the depth
of a k-tolerant sorting network. In their construction the constant in the O-notation
depends on the expander used to build the network. The probabilistic model as well
as other types of faulty comparators were also studied in [2, 6, 7, 9] in this context.

In this paper we consider networks finding the minimum term of a vector of real
numbers under the k-fault model. Yao and Yao constructed a k-tolerant minimum
finding network of minimum size. We are interested in building such networks with
small depths. We construct a k-tolerant n-input network using the minimum number
of comparators, of depth at most

min ([logn] + k([log(Tlogn] + 1)1, 15Mlogn] +3k+1, ([5] +2k)).

We also establish the corresponding lower bound

max ([log n] + 2k, logn + klog (1.28 [llco—%—nl] + 1.92)) ,
which shows that the depth of our network 1s asymptotically optimal both for fixed
n and arbitrary k& and for fixed k and arbitrary n. No such tight bounds were known
previously.

The paper is organized as follows. In Section 2 we present our terminology and
establish basic facts used in the paper. Section 3 is devoted to establish the lower
bound on the depth of k-tolerant minimum finding networks and in Section 4 we
construct and analyze a network whose depth nearly matches the lower bound from
Section 3.

2 Preliminaries

Let n > 2 be an integer and R™ — the set of n-element vectors of reals. For every
Z € R", Z[i] denotes the i-th term of Z. For 1 < i < j < n, the comparator [i : j]
is a mapping from R" to R™ which transforms a vector T into vector T = Z[i : j]
defined as follows:

Z[k] k#1,j

7' [k] = < min(z[d],z[j]) k=1

max(zli], 7(j]) k = ;.
Thus [i : j] compares Z[i] with Z[j] and places the smaller of them in position i and
the larger in position j.

Let « be a finite sequence of comparators [i1 : j1], ..., [ir : jr]. @ transforms each
vector T € R" into ¥ = Ta defined as follows:
70 =7,

7F) = FF =D 2 4], for 1< k <
Fa =),



Two comparators [i1 : is],[is : i4] are called nonoverlapping if i1 # i3,74 and iy #
i3, 14.
Propositionl. Let C be a set of pairwise nonoverlapping comparators and ¢1(C),

$2(C) arbitrary permutations of all elements from C. Then Tp1(C) = Tpa(C), for
any T € R™.

An n-input network « is any sequence C,C5, ..., of nonempty sets of com-
parators on R” such that in each set C; comparators are pairwise nonoverlapping.
For any i = 1,...,r let ¢;(C;) be any permutation of C;. The n-input network «
transforms any € R” into Tao = ¢1(C1) . .. ¢, (Cr). The sets C1, ..., C, are called
phases of the network « and r is said to be its depth. We denote r = |«|.

We say that § is a j-fault subnetwork of « if 3 can be obtained from « by
deleting exactly j comparators. By definition of a faulty comparator, instead of
deleting comparators it is equivalent to say that comparators in question fail.

An n-input network « is called an mf-network (minimum finding network) if for
every T € R", Za[l] = min(Z[1], ..., Z[n]).

An n-input mf-network « is said to be k-tolerant if every j-fault subnetwork of «,
J <k, is also an mf-network. We denote by Tj(n) the minimum depth of a k-tolerant
n-input mf-network. In the sequel we assume n > 2. Observe that T} (2) = k+ 1, for
any k£ > 0.

Throughout the paper log« is used for log,  and |A| denotes the size of a set, A.

3 Lower Bounds

In this section we give two nontrivial lower bounds on Tj(n). The first theorem
establishes a lower bound which is good in the case when n 1s fixed and k can be
arbitrarily large.

Theorem 2. Ti(n) > [logn] + 2k.

Proof. Induction on k.
k=20

This is the well-known fact that any n-input network computing minimum has
depth at least [logn].
k>0

Assume that the theorem holds for networks with less than k faulty comparators.
Suppose that there is a k-tolerant n-input mf-network with depth less than [logn]+
2k. Let o = Ay, ..., Az be such anetwork with the smallest depth d. By the inductive
hypothesis d > [logn] + 2(k — 1), since any k-tolerant mf-network is also (k — 1)-
tolerant. Consider the last phase of «. This phase must contain a comparator [1 : f],
for some 2 < f < n, otherwise it would be superfluous (but « is a shortest k-tolerant
n-input mf-network). W.l.o.g. assume that [1 : f] is the only comparator in A4 (the
others are useless). Since « is k-tolerant, the network o = Ay, ..., Aq_1 is (k — 1)-
tolerant. This and the inductive hypothesis imply d = [logn] +2(k—1)+ 1. Since '
is a (k — 1)-tolerant n-input mf-network with the smallest depth (by the inductive
hypothesis), the phase A4_; must contain a comparator [1 : ¢], for some 1 < g < n.



We show f = g. Suppose f # g. Since o is a shortest (k — 1)-tolerant mf-network,
the comparator [1 : ¢] in the phase A4_; is essential — the minimum can be placed
on the line ¢ after the execution of the phases Ai,..., Aj_o in the presence of at
most k& — 1 faulty comparators. Such a minimum is never moved to the line 1 in
the network « if the comparator [1 : ¢] is faulty. It contradicts the assumption of k-
tolerance of a. Hence f = g. Let s be the index of the latest phase in & not containing
a comparator [1 : f]. Since n > 2 and « is an mf-network, such an index exists and
1 <s < [logn] 4+ 2(k —1). Suppose that A, contains a comparator [1 : k], for some
1 <h<n, h# f. We show that the comparator [1 : h] is unessential with respect
to the network o', i.e. the minimum can be never located on the line h after the
execution of phases Ay, ..., A;_1, in the presence of at most & — 1 faults. Otherwise
such a minimum is never moved to the line 1 in the network « if the comparator
[1 : A] is faulty. This contradicts k-tolerance of «. Similarly one can prove that if
As contains a comparator [f : m], for some f < m < n, then this comparator is
also unessential with respect to the (k — 1)-tolerant network &' (the minimum can
be never located on the line m after the execution of the first s — 1 phases). This
implies that the network o' = A;,..., A,_; always places the minimum on one of
the lines 1 and f in the presence of at most & — 1 faults. Now consider two cases:
(1) In the presence of at most k& — 2 faults o always places minimum on the line 1.
In this case the network Ay, ..., As_1, {[1: f]} is a (k — 1)-tolerant mf-network with
depth less than [logn] + 2(k — 1) - a contradiction.

(2) There are input data such that o’ places minimum on the line f in the presence
of at most k — [ faults, for some 2 < ! < k. Consider the largest such [. In this
case s < d — [, because we need [ + 1 more comparators [1 : f] in « to move such
a minimum from line f to line 1 in the presence of | additional faults. This implies
that the network

Ar, oA {1 A AT 1)
-times
is a (k — 1)-tolerant mf-network with depth less than [logn] + 2(k — 1) - a contra-
diction. u

The next Theorem establishes another lower bound which i1s nontrivial when &
is fixed and n can be arbitrarily large.

Theorem 3. T;(n) > logn + klog (1.28%)%1 + 1.92) .

Proof. Let @« = C,.C._1...C be a k-tolerant mf-network of depth r. For ¢ = r,r —
1,...,0 we define a partition of the set of line numbers {1,2,...,n} into pairwise
disjoint sets (A%, A%, ...) which classify line numbers after  — i initial phases of o
and then, following the ideas of Berlekamp (cf. [4, 8]), we assign a weight w; to
each partition. Next we prove that this weight cannot decrease too much during one
phase. This will give a lower bound on 7.
Let A; (i=r,r—1,...,0,5=0,1,...) consist of all numbers m such that:

(i) there 1s a j-fault tolerant subnetwork o of C\.C\_1...C;41 and an input vector
Z € R™ such that (Za')[m] = min(F), and

(ii) if j > 0 then for each (j — 1)-fault subnetwork o of C,.C\_; ...Ci41 and for each
input vector T € R™ of pairwise distinct numbers (Za')[m] # min(T).



One can observe that A5 = {1,2,....n}, A} = A5 = ... = 0 and AJ = {1},
Al =AY = ... =AY =0, Ujsr A? ={2,...,n}, since a is a k-tolerant mf-network.

w0 )

j=0

where ((4)) = (5) + (1) + -+ (}) is a sum of binomial coefficients. Asumme that

((;)) = (;) =0 for j <0 and (;) = 0 for j > 4. Observe that ((Z}H)) = ((;))-I—((]Z_l))
Equivalently, instead of associating the weight w; with a partition, we can assign an
individpal weight vf, = ((kl_])) to each line m € A; and consider w; as v} + v +

Thus w, = ((3))n and wo = 1. In order to finish the proof of the theorem we
need the following lemma.

Lemma4. Fori=r, ... 1,

(1/2)w; > 2k,
Wi—1 > (2/5)wl l<i< 2]6‘,
(1/3)w;  i=1.

Proof. Due to space limitations, it will appear in the full version of the paper. m

It follows from Lemma 4 that w, < 2’“%(%)2’“_2100. Hence ((3))n < 27“%(%)2’“_2
and consequently, using the result of Theorem 2, Ti(n) > min{r > [logn] + 2k :

(1)) < 273(3)7=2). While ((5)) > (F1) > (Zpkt2)r > (lospld8bi3yk -y foy

transformations of the above inequality yield

1
Ti(n) > logn + klog (1.28 [koiq]

+ 1.92) ,

which concludes the proof of the theorem. n

4 Upper Bound

In this section we construct a k-tolerant mf-network whose depth is nearly optimal.
Unfortunately we are not able to compute this depth precisely but we will give a
good estimate.

In what follows the term “network” means an n-input comparator network with
fixed n > 4. Tt is easy to verify that Ti,(m) = [logm] +2k, for m = 3,4 and arbitrary
k> 0.

Let « be a network of depth [ with phases A;p,..., A;. We say that numbers
l;,r; are the left and the right bounds of the phase A;, respectively, if {; = min({z :
[ :y] € A4;}) and vy = max({y : [z : y] € A;}), for i = 1,... 1. For two networks
a=Ay,...,Aqg and f = By,..., By we define the network I'(«, 8) as follows:

Let ¢ be the smallest non-negative integer > a — b such that for each j > ¢, either
J > aor j < aand the left bound of the (j —¢)-th phase in § is larger than the right
bound of the j-th phase in «. Then

F(Oz,ﬁ)IAl,...,Ai,Ai+1UBl,...,AaUBG_Z',BG_Z'_H,...,B[].



The depth of I'(«r, 3) is i + b.%
Given k > 1 and networks a1, ..., aj we define the k-run network I'y(aq, ..., ap)
with runs «q, ..., a; as follows:

Ty(a ag) = I Eo
FEL o BT D (Do, ), ) k> L

Let v = I't(av1, . .., ap) be a k-run network. For each 1 < ¢ < k, the number
[T, . o) — [Himi(a, .o o)

is called the delay of the run «; with respect to 7. The delay of oy 1s defined to be
its depth |aq].

Proposition5. Lety = I'h(aq, ..., ap) be a k-run network and let D;, fori < k, be
the delay of the run oy with respect to v. Then the depth of v equals Dy + -+ Dy.

Proposition6. Let v = Ipyi(a1, ..., apq1) be a (k + 1)-run network whose runs
are mf-networks. Then v 1s a k-tolerant mf-network.

Proof. Deleting at most k comparators from v leaves at least one minimum finding
run «; intact. u

An n-input mf-network o = Ay,..., A, 18 called normal iff the following con-
straints are satisfied:
(1) « contains exactly n — 1 comparators.
(2) For every 1 < j < a,if [iy : ] € A; and [y : y] € Aj41 then z > y.
(3) For every 1 < j < a,if [ip : 2] € 4;, [iy : y] € A4; and © # y then © > y iff
te < Iy.

For every interval of lines 1 < xz, 241, ...,y < n we define the set of comparators
COMP(z,y) as follows: Let s = L%J Then

5

COMP(z,y)=A[x:yl,[x+1:y—1],....[s:y— (s —x)]}.

We now describe the k-tolerant mf-network M I Ny 1 whose depth is close to opti-
mal. To this end we define the infinite sequence miny, mins, ... of normal minimum-
finding networks and then M INj41 will be defined to be the (£ + 1)-run network
Ty1(ming, ..., mingy1). The networks min; = Mi, ..., Mél are defined inductively
on ¢.
=1
In this case dy = [logn] and ]\4]»1 =COMP(1, [57%]), for j =1,..., [logn].
t>1
Suppose that the network min;_; is constructed. Let r;_l be the right bound of the
j-th phase in min;_1, for 1 < j < d;_1. Set r;_l =0, for all j > d;_1. Denote by s

* Tt is important for further considerations that the last phase of § is not earlier than the
last phase of « in the network I'(«, 8).

® Observe that for each 1 < # < n, @ must contain exactly one comparator of the form
[tz : z].



the largest index such that #i=' > n — 1. For every p > 1 let l;, and 7“;; be defined as
follows:

li:ri:ﬁ—l—l, r=n it p=1,
li _oi—1 1 i _ l;—1+7‘;—1 f 1 (1)
=T+ 1L, =[] for p> L

Let d; be the smallest p such that 7“;; = 2. Then
min; = COMP(l1,r),COMP(ls,r2),...,COMP(lg,,rq,).

Easy induction on ¢ shows that the networks min;, ¢ > 1, are normal mf-networks.
This implies the following theorem:

Theorem 7. MINyy1 is a (k4 1)-run network whose runs miny, ... mingy, are
normal mf-networks.

The network M INz for n = 16 is illustrated in Fig. 1.
We will estimate the depth of network M INj;; from above. The following the-
orem will be helpful in this task.

Theorem 8. The depth of the network M INyy1 is the minimum depth of all (k+1)-
run networks Ihp1(a, ..., apy1) with normal, minimum finding runs o1, ..., apq1.

Proof. Let v be a (k + 1)-run network I'pyi(aq, ..., apq1) with normal, minimum
finding runs o, ..., @g41. Denote by I, (z, ) the index of the phase in 4 containing a
comparator [i, : z] from the run a7, forx = 2,...,nand{ = 1,..., k+1. The theorem
is an immediate consequence of the following lemma. Due to space limitations its
proof will appear in the full version of the paper.

Lemma9. For all x,l such that 1 <z <mn and 1 <1 < k+1, Iyrn,,, (2,1 <
L(xz,1).

|
run 1 run 2 run 3

Fig. 1 The network M IN3 for n = 16.



In order to give upper bounds on the depth of the network M I N1 we estimate
it now at 1.5[logn] 4+ 3k + 1 and then construct two (k+ 1)-run networks Net; and
Nety with normal minimum finding runs and of depths [logn] + k[([logn] + 1)]
and [%] 4 2k, respectively. By Theorem 8 we get

Theorem 10.
[logn] + k[log([logn] + 1)],

Tip(n) < |MINk41] <min< 1.5[logn] + 3k + 1,
5]+ 2k.

The network M INj 1, whose depth is bounded by the depth of networks Nety
and Nety, contains exactly (k4 1)(n — 1) comparators. It should be noted that this
number is optimal (cf. [9]).

Estimation of the depth of MINj,,

We would like to estimate rights bounds of all k41 runs of M I Ny 1. To this end we
define Rj», the right bound of the i-th run in the j-th phase, assuming that Rj» =n
before the start of the run and Rj» = 0 after its end. According to (1) we can state

0 if i=0 or R§_1:2,
R;: n ' if 0<i<k+1 and j=0,
[$(RZI+Ri_,+1)] if 0<j and 0<i<k+1 and Ri_, #2.

Let us notice that for each j > 0, R? < R]l <...< Rf"'l, moreover, the depth of
MINp41 is equal to the minimum j such that R]l = RJZ» =...= R}“‘H = 0. We can
rewrite the recurrence for Rj» using the following definition. Let f(ay,as, ..., a541) =

(9(0,a1), g(a1, as), g(az, as), ..., glax, axt1)), where g(z,y) = |ZHEL| if 2 4+ y > 2
and 0 otherwise. One can easily observe that

JRj_,,Ri_,,... Ri*))= (R}, R;,... RIth).

Let fU) denote the j-th iteration of f. Thus fU)(n,n,...,n) = (R]l, R]Z, Cel R}“‘H).
Let an inequality of sequences of terms means inequalities of respective terms and
l.et< (1522)1: Z?;g(”’k)(?). The following lemmas give an estimation of Riﬂogn]’ 1<
i< .

Lemmall. For j=0,1,...,[logn],

n n n

FOn,n) < (TG T3 1), T51(6))

Proof. Induction on j using the inequality | T;HJ < [%]m, where £ > 0 and
m > 1 is an integer. Notice that f is nondecreasing with respect to each argument.
]

Lemma12. f(™)(n,n,... n) < (0,27/3+2 gm/3+4  9m/3+2ky " for m = [logn].



Proof. By induction on m one can prove that (7)) < 27/3+2% and get the result
by substituting this in the inequality from Lemma 11. n

To get the upper bound 1.5[logn] + 3k + 1 we need the following lemma.
Lemma13. fBU»/6143k+1)( olm/3142 olm/3144  9lm/31+2ky = (0,0, ...,0).

Proof. Let a > 1 be an integer. An easy calculation gives the following relations:
FON0,a-2%a-2%a-27, ... a- 221 < (0,a,a-2%,a-2°, ... a- 2%
FH(0,2426 28 . 22042) = (0,0, 8, 38,156,625-2°,625-2% .. ., 625.22(k=5))
F3)0,...,0,8,38,156,625,625-22. .. 625-22k == §95.92(k=i=3)) < (0,..., 0 ,Z).
N— — N——

i—times T i+1—times
We start with the sequence (0, 2™m/31+2 2[m/31+4 olm/314+2k) and using [m/6]-
times the first inequality we get the upper-bound sequence (0,2% 25 28 ... 22k+2)
then we use second inequality and end up using (k — 1)-times the last one. nm

Construction of the Network Net,

The network Net; is a (k + 1)-run network whose first run is a network « and the
remaining runs are copies of a network 5. The networks « and 3 are defined below.

Let H = [logn] and L = [log([logn] + 1)]. The network « is a sequence A,
Apg—_1,..., A1 of H phases (i.e. A; is the last phase in «), where

L [coMP(1,2) 1<i<H
Tl COMP(n—2(n—2""1Y 1+ 1,n) i=H.

It is easy to observe that « is a normal mf-network ( after performing phases
Ag, ..., A;, the minimum is always on one of the lines 1,2,...,271). Denote by
r® the right bound of the phase A; in . Then r# equals 2¢, for i = 1,..., H — 1,
and nif e = H.

Now we describe the network 3. Consider a sequence of integers (v;);>1, defined
as follows:

2t 1<i<L
v {2%»_1 —2i-L s
Observe that
vpyg_1 =2 (H—1)2f -t = 2f 1ol a1y > 2H Y (H41-H41) = 29 > n.
Let S be the smallest integer such that vpyg > n. Fori=1,..., L+ S define:

i< L+S-1 : i<,
PP Ju < b= s ) g g L<i<L+S—1,
g n 1=L4+S5, ¢ 3 )
n—2(n—rL+S_1)—|—1 i=L+ 5.
Observe that lf < r?, for each 1 < ¢ < L 4+ S. The network 3 consists of L + .5
phases Bris, Brys—1,...,B1, where B; = COMP(I?,T?). Note that for each 1 <
8 Tﬂ . . . .
1< L4+5, Ll’ i | = r?_l. This implies that 3 is a normal mf-network. Define

2
Net1:Fk+1(a,ﬁ,...,ﬁ.

k—times



Observe that l]@ =1,for j=1,...,L, but 7“;6 <r e =21< 241 = l€+i’ for each
i=1,...,5. This implies that the delay of each copy of 3in Net; is L. Since |o| = H
we get (by Proposition 6) that the depth of Net; equals H + kL.

Construction of the Network Net,

The network Nets consists of & + 1 1dentical runs «. Now the network « 1s defined
as follows:

Let S =[%] Fori=1,...,5 define:

o
re =

. 1 i=1,2,
{2’ LN =dai-24 2<i<S,

rorEe n—2n-2S-1)+1 i=85.
Obviously I < r, for ¢ < S. The network « consists of S phases Ag, Ag_1,..., Ay,
where A; = COM P(I¢, r). Now define

Nety = Ipp1( oy a0 ).
—_——

(k+1)—times

The same argument as before shows that Nets is a k-tolerant mf-network of depth

S+ 2k.
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