
A Survey of Continuous-Time Computation TheoryPekka OrponenDepartment of MathematicsUniversity of Jyv�askyl�a�AbstractMotivated partly by the resurgence of neural computation research, and partly byadvances in device technology, there has been a recent increase of interest in analog,continuous-time computation. However, while special-case algorithms and devices arebeing developed, relatively little work exists on the general theory of continuous-timemodels of computation. In this paper, we survey the existing models and results in thisarea, and point to some of the open research questions.1 IntroductionAfter a long period of oblivion, interest in analog computation is again on the rise. Theimmediate cause for this new wave of activity is surely the success of the neural networks"revolution", which has provided hardware designers with several new numerically based,computationally interesting models that are structurally su�ciently simple to be implementeddirectly in silicon. (For designs and actual implementations of neural models in VLSI, seee.g. [30, 45]). However, the more fundamental explanation for this development is that ashardware technology has advanced, it has become generally easier to experiment with andmanufacture individualized, special-purpose computational devices, as opposed to the massproduction of general-purpose processors and memory chips. This trend will continue andbecome even more noticeable in the future, making all manners of special-purpose computa-tional models practically as well as theoretically interesting objects of study.There will thus be an increasing need of a theoretical understanding of the capabilities,limitations, and e�ectiveness of various kinds of special-purpose computational models: achallenge directed right at the heart of computational complexity research. While the presentpaper concentrates on the theoretical issues in analog computing, a similar situation exists,or can be foreseen, in e.g. cellular automata [17] and other "complex systems" models ofcomputation (e.g. [36, 40]), molecular computing [1, 28, 42], optical computing [16, 41], and| somewhat futuristically | quantum computation [6, 49].While the work on analog computation theory goes back at least to Claude Shannon'spapers in the early 1940's [46, 47], the literature is not very extensive, and also does not answermany of the questions that would appear most interesting from a present-day perspective. Forinstance, while in recent years quite a number of papers have appeared on the computationalaspects of discrete-time analog models (e.g. [3, 7, 13, 24, 25, 29, 31, 36, 51]), the number ofpapers on the implementationally more signi�cant continuous-time models is far fewer. (And�P. O. Box 35, FIN{40351 Jyv�askyl�a, Finland. E-mail: orponen@math.jyu.�.1

the amount of work on practically implementable models is close to nil. In particular, allof these papers mentioned above except [29] ignore the e�ects on the computing process ofimprecision and noise, two of the most pervasive practical problems in analog computation.)And �nally, while some work exists on computatibility in continuous-time systems, thereis practically none on the computational complexity aspects | even such basic notions ascomputation time, input size, system size, etc. are still waiting for their proper, reasonablygeneral and implementation-independent de�nitions.In this paper we survey the existing research on the general computability and complexityaspects of continuous-time computation models. In Section 2 we outline some mathematically-based, implementationwise unconstrained models [3, 8, 9, 10, 11, 33, 44]. (We are stayinghere at the level of individual, concretely speci�ed models. In particular, an important col-lection of results we do not cover, although it properly would belong to this context, is thework of Pour-El and Richards [39] on the general computability theory of common analyt-ical and physical operators.) In Section 3 we move to models that have arisen from somereal or idealized physical implementations, such as mechanical or electrical di�erential ana-lyzers [46, 38, 43], or electronically implemented neural networks [20, 34]. In Section 4 wediscuss the few existing papers on computational complexity issues. We conclude in Section 5by listing some of the main open research directions.2 Unconstrained ModelsBy a continuous-time (analog) system we generally mean an n-dimensional system of au-tonomous ordinary di�erential equations (ODE's) of the formdxdt = f(x); (1)where f : Rn ! Rn is the �eld de�ning the system. If the �eld f is su�ciently smooth(e.g. continuously di�erentiable), then the system (1) determines a unique
ow on Rn, i.e. afunction � : Rn+1 ! Rn such that for any x 2 Rn, �(x; 0) = x and for all � 2 R,ddt�(x; t)jt=� = f(�(x; �)):(To be precise, the existence of a
ow may only be guaranteed for � contained in some intervalI � R [19].) There are di�erent ways of de�ning a notion of computation in this context,some of which we shall discuss below. (It is e.g. by no means obvious how one should presentthe \inputs" to such a system, or how to read the \outputs.") A discrete-time (analog)system is de�ned similarly by an iterated map of the form xn+1 = f(xn).We begin by pointing out that any su�ciently regular discrete-time analog system can the-oretically be embedded as a Poincar�e section (a \snapshot sequence") of a higher-dimensionalcontinuous-time analog system. (Speci�cally, a system representable as a di�eomorphic mapof the interval [0; 1]d to itself can be embedded as a section of a smooth
ow on some (d+1)-dimensional manifold [37, p. 111].) Thus, for instance, the Turing machine simulations byiterated piecewise-linear maps on [0; 1]2 presented by Moore [31, 32] and Koiran et al. [25]can in principle be extended into smooth, locally three-dimensional systems. (Technically,one needs to require here that the Turing machines to be simulated are invertible, but it iswell known [4, 5] that any Turing machine can be converted into an invertible one.) Moore2

in his paper [32] in fact discusses the issue of continuous-time embedding at some length,and in [31] even presents a quasi-physical \billiard-ball" model for implementing the result-ing continuous-time system. In this survey, however, we shall concentrate on explicitly-givencontinuous-time systems, and not discuss discrete-time systems any further.We also mention only in passing the simulation of Turing machines by three-dimensionalcontinuous-time systems with piecewise-constant derivatives presented by Asarin and Malerin [3]. A technical point worth noting, though, is the general proof strategy used by bothAsarin and Maler, and most of the other recent authors of Turing machine simulations bydynamical systems (e.g. [8, 25, 51], implicitly also [31]). One takes as the starting point thestandard correspondence of Turing machines and two-stack pushdown automata. The Turingmachine tape is �rst represented as two opposing stacks, and then the contents of these stacksare encoded in some manner as two real numbers, leading to a representation of the systemstate as a point in R2 (usually constrained further to [0; 1]2). One then needs an additionaldimension to connect the states in a way that corresponds to the Turing machine transitionfunction. (And, in fact, both Asarin and Maler [3] and Koiran et al. [25] prove that, withinthe class of systems they consider, two dimensions are not su�cient for a continuous-timesimulation.)The same basic idea of two-stack machine simulation is the starting point of the straight-forward, but robust and quite elegant simulation of Turing machines by continuous-timesystems with continuous vector �elds presented by Branicky in [8, 9]. By his technique onecan either obtain a simulation by Lipschitz-continuous systems in R5, or by non-Lipschitzsystems in R3.Let us brie
y outline Branicky's construction in R5. Given a Turing machine M with atmost p tape symbols and states, one represents the instantaneous con�guration of M as apair of integers (xL; xR), encoding the tape contents of M to the left and to the right of thetape head, respectively, in a p-adic encoding. (The current state q of M can be encoded as,say, the lowest-order digit of xR, so that q = xR mod p.) The transition function of M thendetermines a \�nite-gain" discrete-time mapping f(xL; xR) = (x0L; x0R), where by �nite gainwe mean that there is some constantM > 0 such that for any x 2 R2, k f(x) k�M k x k +M .Branicky's reason for using integer instead of real-number encodings as in [25, 31, 51] is thatthis gives the system some degree of robustness against small perturbations.Now one's �rst attempt at a continous-time simulation of the discrete-time system givenby f might be to de�ne a system with state variables xL; xR 2 R, and with system equationsdxLdt = �xL + fL(xL; xR);dxRdt = �xR + fR(xL; xR):This approach to \updating" the state variables does not work, however, because the variablesxL and xR do not maintain their \old values" while the \new values" are being computed.Branicky solves this dilemma by de�ning a \two-phase" continuous-time system, introducingan extra pair of state variables ~xL; ~xR 2 R, and an explicit time variable � 2 R. Using thetime variable he then de�nes two periodic \clock" functions, S+(�) and S�(�), whose valuesoscillate alternatingly between 0 and 1. Now the state variables can be coupled together sothat when the S+ clock is \high," the new values (~xL; ~xR) = f(xL; xR) are computed, andwhen the S� clock is high, these new values are simply copied from (~xL; ~xR) to (xL; xR).3

Formally (and ignoring some technical details), the continuous-time system is then con-structed as follows. First one de�nes the clock functions S�(�) asS�(�) = h(sin(���));where h(r) = 8><>: 0; for r � 1=4;4r� 1; for 1=4 < r � 1=2;1; for 1=2 � r � 1;and then connects the state variables (roughly) as follows:d~xLdt = (�~xL + fL(xL; xR)) � S+(�);d~xRdt = (�~xR + fR(xL; xR)) � S+(�);dxLdt = (�xL + ~xL) � S�(�);dxRdt = (�xR + ~xR) � S�(�);d�dt = c (constant):One aspect of the construction we are ignoring is how to make the time � run \slowly enough,"i.e. how to choose the appropriate constant c so that the other state variables can completetheir updates within one clock period. We refer the reader to the original papers [8, 9] fordetails such as this.Branicky credits Brockett [10, 11] for �rst introducing this two-phase trick, in a morespecialized context. However, while the construction technically achieves its purpose, itis conceptually somewhat unsatisfactory as it basically digitizes the analog system. (At afundamental level, our \digital" computers are clocked analog systems too, although witha potentially in�nite number of state variables.) It would be of interest to understand thecomputational capabilities of continuous-time systems without clocks, even if this notion maybe di�cult to make precise. (One possible, although maybe too restrictive condition wouldbe to require that the system possess a Liapunov function whose value is bounded from belowand decreases in time along every system trajectory [19].)The trick to go from the above presented �ve-dimensional Turing machine simulationto a three-dimensional simulation [8, 9] is to simply �rst encode the con�guration pair(xL; xR) 2 Z2 as a single integer x = 2xL3xR , and then continue as before. Unfortunately, us-ing this prime-power encoding destroys the �nite-gain property of the discrete-time transitionmapping, and consequently the resulting continuous-time system will be non-Lipschitzian. Itseems to be an open question whether Turing machines can be simulated in three dimensionsby robust, Lipschitz-continuous systems. (The continuous embeddings of the piecewise-linearmaps of [25, 31, 32] ought to satisfy the Lipschitz condition; however these systems aresensitive to arbitrarily small perturbations.)Computability by partial di�erential equations has been studied by Omohundro [33] andRubel [44]. Given an arbitrary two-dimensional cellular automaton M with the Moore(i.e., nine-neighbor) neighborhood, Omohundro constructs a system of ten coupled nonlinearPDE's, with two space variables and one time variable for simulatingM . Since two- (and even4

one-) dimensional cellular automata can simulate Turing machines [17], Omohundro's con-struction establishes that also continuous-time PDE's are universal computational systems.However, the simulation is again rather digital, the idea being to evolve localized \bumps"in the XY{space, whose height indicates the state of the simulated automaton at each cellposition.Rubel [44], on the other hand, in his work on the \extended analog computer" (EAC) isinterested in the production of real functions as solutions to systems of di�erential equationsset up in a certain systematic \quasi-e�ective" manner. He starts from the \general-purposeanalog computer" (GPAC) systems de�ned by Shannon [46, 47] and Pour-El [38] (see below),and extends these with the capability to solve boundary-value problems for systems of PDE'sde�ned by lower-order versions of the EAC. Rubel proves that the EAC is a quite powerfulgeneration model, being able to produce many functions which are beyond the GPAC model(for some examples, see below).3 Constrained ModelsLet us then move to analog computation models that correspond to idealized versions ofexisting devices | which of course does not mean that arbitrary computations in thesemodels could be precisely implemented by any real physical hardware.The earliest theoretical study of the computational capabilities of analog devices seemsto have been Shannon's 1941 [46] work on the generative power of Bush's Di�erential Ana-lyzer [12]. Di�erential analyzers can be built either mechanically, out of rotating gears andshafts connecting them, or electronically from resistors and capacitors. Bush's original ma-chine was (electro-)mechanical; electronic di�erential analyzers were developed during WorldWar II initially for �re control purposes, and were then widely used in engineering until the1960's. We shall discuss here only very brie
y the electronic version of the device; for moredetails we refer the reader to the large literature on the solution of engineering problems ondi�erential analyzers, e.g. any of the textbooks [18, 22, 23, 26].Electronic di�erential analyzers are constructed by interconnecting resistors, capacitors,and high-gain operational ampli�ers in a systematic manner. Recall that, given a time-varying input voltage u(t), a resistor of resistance R creates (passes) a current i(t) = u(t)=R,and a capacitor of capacitance C creates a current i(t) = C du(t)dt . Operational ampli�ers actas simple (large) constant voltage multipliers. In particular, since voltage di�erences acrosscapacitors correspond to integrals of capacitative currents, they can, with the help of resistorsand ampli�ers, also be used to perform integration over input voltages. Figure 1 illustrates thedesign of an integrator which, for input voltage u(t), gives the response v(t) = �1RC R u(t) dt,assuming the gain of the ampli�er A is very large.Abstractly, an electronic di�erential analyzer can be viewed as consisting of the followingkinds of computational devices, interconnected into a possibly cyclic network [38]:1. Integrator. A two-input, one-output device producing from input functions u(t), v(t)the output function R u(t) dv(t) + C, where C is a constant whose value depends onthe initial settings of the device.2. Constant multiplier. A one-input, one-output device producing from input u(t) theoutput Cu(t), where C is an arbitrarily chosen real constant.5

L L � � L LL L u uuu " " " "bbbb� � L L � � v(t)A CRu(t) Figure 1: An electronic integrator.3. Adder. A two-input, one-output device producing from inputs u(t), v(t) the outputu(t) + v(t).4. Variable multiplier. A two-input, one-output device producing from inputs u(t), v(t)the output u(t) � v(t).5. Constant function. A one-input, one-output device producing from input u(t) theoutput C1(t) � 1.Among these devices, the variable multiplier is in fact redundant, because it can be imple-mented as u(t) � v(t) = Z t0 u(�) dv(�) + Z t0 v(�) du(�) + u(0)v(0):Pour-El [38] (and already Shannon [46] in the context of the mechanical di�erential ana-lyzer) observes that a real function u(t) can be generated from the input t on some interval[0; T] by a network of devices of the above types, if and only if there is a system of ODE's ofthe form duidt = nXj;k=0 aijkuj dukdt ; i = 2; : : : ; n; (2)where u0(t) = 1, u1(t) = t, together with initial conditions ui(0) = u0i , such that the systemhas a unique solution (u2(t); : : : ; un(t)) for t 2 [0; T], and u(t) = un(t) on this interval.If one in addition requires that the system (2) possess a \domain of generation," meaningthat any sequence of initial values su�ciently close to (u02; : : : ; u0n) gives rise to a locallyunique solution, then one can show that this class of \GPAC-generable" functions u(t) infact coincides with the class of di�erentially algebraic functions, i.e. those that satisfy somealgebraic di�erential equation of the formP (t; u; u0; u00; : : : ; u(n)) = 0;where P is a nonzero polynomial in all its variables. (This result was �rst claimed by Shan-non [46], then by Pour-El [38], who argues that Shannon's proof was seriously incomplete,and �nally by Lipshitz and Rubel [27], who also claim to have discovered a gap in Pour-El'sreasoning.)One corollary of this characterization of the GPAC-generable functions is that some in-teresting functions already known to be not di�erentially algebraic are thus shown to be notgenerable by di�erential analyzer -type analog computers. These include, e.g. [46] the Gammafunction �(s) = R10 ts�1e�tdt, and Riemann's Zeta function �(s) =P1k=0 1ks . However, thesetwo functions can be generated in Rubel's EAC-model discussed above [44].6

� � L L � � L L � � L LL L aa! !aa! !aa! !! !� � LL �� LL �� LLL L s sss sc s" " "bbby�jy�k �ui Ci�iRijRik vi = �(ui)�vi = ��(ui)Figure 2: Hop�eld's electronic neuron.A di�erent approach to continuous-time computation is taken in the electronically-based\neural network" model proposed by Hop�eld in 1984 [20]. Here the basic computationalunit is an electronic \neuron," schematically shown in Figure 2.As Figure 2 llustrates, Hop�eld-type neurons are again constructed from resistors, capac-itors, and ampli�ers; however this time the ampli�ers are assumed to have some saturatingnonliner response characteristic � such as �(u) = � tanh(u)+�. A \continuous-time Hop�eldnetwork" then consists of some �nite number of interconnected units of this type.Let us consider the behavior of a neuron i in a network of n such neurons. Let �i and Cibe the input resistance and capacitance, respectively, of the ampli�er at neuron i. Denotethe input voltage of the ampli�er by ui, and the output voltage by vi. In order to establishalso inhibitory interconnections between neurons, also the inverted output voltages �vi = �viare needed. (For simplicity, we indicate voltages relative to some reference level V0.)The neuron i, as shown in Figure 2, draws input from other neurons (indicated as j andk in the Figure) via resistors, whose resistances are denoted by Rij and Rik. The voltages v�jand v�k are obtained from the appropriate output terminals of neurons j and k, dependingon whether the interconnections are excitatory or inhibitory.The circuit equations for a network of n neurons can now be written asCiduidt + ui�i = nXj=1 1Rij (v�j � ui); for i = 1; : : : ; n: (3)By choosing the circuit parameters appropriately and normalizing the RC constants to 1, onecan use such a network to implement any system of �rst-order nonlinear di�erential equationsof the form duidt = �ui + nXj=1hij�(uj); i = 1; : : : ; p: (4)(One essentially chooses Rij = 1=hij and normalizes; for details see [20].)Hop�eld proved in [20], by a Liapunov-function argument, that if the interconnectionsbetween the neurons are symmetric, i.e. if Rij = Rji for every pair i; j = 1; : : : ; n, then thesystem (3) is globally asymptotically stable, i.e. from any initial voltage state (u1; : : : ; un) thenetwork relaxes towards some stable equilibrium state. One can thus view such a networkas performing an input-output mapping from initial states to their respective equilibriumstates. (Note that this point of view completely ignores the time-evolution of the system,7

which was the central topic of interest in the study of di�erential analyzers.) Based onthis convergence behavior, and the particular type of Liapunov function used in the proof,Hop�eld and others [20, 21, 14] have proposed various special-case uses of such networks forassociative memory and combinatorial optimization applications.The general computational power of Hop�eld's network model was studied in [34], whereit was shown that arbitrary polynomially space-bounded Turing machines can be simulatedby polynomial-size networks with the piecewise-linear ampli�er response function�(u) = 8><>: �1; for u < �1;u; for � 1 � u � 1;1; for u > 1:However, the networks constructed in [34] are asymmetric, and the computational power ofpolynomial-size symmetric networks remains an open question. (On the other hand, in [35]it was shown that in the corresponding discrete-time model, asymmetric and symmetricnetworks are computationally equivalent.) Also, the simulation in [34] uses a similar two-phasing trick as Branicky's construction in [8, 9], and is thus in the same way somewhatunsatisfactory. And �nally, the result is only a lower bound on the computational power:the possibility still remains that polynomial-size Hop�eld networks might be even more pow-erful than polynomial-space Turing machines: conceivably even �nite networks might haveuniversal power, as was the case with the models discussed in Section 2.4 Computational ComplexityVery little work has been done on the potentially most fruitful �eld of computational com-plexity analysis of continuous-time systems. Even the basic de�nitions have not yet been�xed in a universally acepted manner.Apparently, the only published paper in this area is that of Vergis et al. [52], wherethe authors study the possibility of using GPAC-type systems (cf. equation (2)), or moregenerally Lipschitz-continuous systems of ODE's, for solving combinatorial problems fasterthan is possible by digital means. By a standard numerical-integration argument, they cometo the conclusion that any analog computation can be simulated (integrated on a given interval[0; t]), to an arbitrary precision " by a digital computer in a number of steps that is polynomialin 1=" and R, the maximum magnitude of the second derivative of the simulated system. Theintended implication is then that Lipschitzian analog systems cannot be superpolynomiallymore e�cient than digital computers for solving limited-precision problems.However, looking more carefully at the argument in [52], one notices that the number ofsteps in the digital simulation is in fact exponential in the length of the analog time interval[0; t], which is assumed predetermined in the proof. Of course, an analog computation can bearti�cially sped up to occur within any given time interval, but then the maximum secondderivative of the system during this interval increases. Thus, it seems that the length of theinterval [0; t] should also appear as a parameter in the result, and the argument in [52] isinconclusive.A promising approach to de�ning a general notion of analog computation time is suggested(based on discussions with the present author) in [50]. Let us assume that a system givenby a �eld dxdt = f(x) relaxes from an initial state x(0) = x towards a stable equilibriumstate x(1) = x�. De�ne the computation time for input x and precision " > 0 to be the8

smallest t� � 0 such that for all t > t�, k x(t) � x� k � ". To obtain a natural time scale,one linearizes the �eld around the stable state x� to obtain its stability matrix M (so thatclose to x�, dydt � My, where y = x � x�). If all of the eigenvalues of M have negative realparts, and �� is the largest of them, then the state of the system approaches x� locally asjx(t)�x�j � e��t [19]. (All the eigenvalues must have nonpositive real parts, since the systemis stable at x�.) Thus, for every increase of 1=� in t, the state gets closer to x� by a factor ofe, and it is natural to choose 1=� as the (local) unit of time.Obviously, this approach is still preliminary: the time scales obtained are valid only locally,in the vicinity of each individual stable state (although one can argue [50] that at least simplesystems \usually" converge \quickly" to one of these neighborhoods); and also it is not clearhow to de�ne time scales for systems some of whose stability matrix eigenvalues vanish. Thereis also the question how (and whether) to de�ne a notion of input size in this model. Theauthors of [50] propose considering the computation relative to a grid, and de�ning the inputsize as log2 1=", where " � 1 is the largest gridsize for which the computation is performedcorrectly, when both input and output are observed with precision ".5 Conclusion and Open ProblemsWe have surveyed the so far rather sparsely and unsystematically researched �eld of continuous-time computation theory. As has become apparent, most of the interesting research problemsare still open, and in some cases even the proper de�nitions have not yet been established. Themost signi�cant unexplored area is surely the computational complexity theory of continuous-time systems: here one should �rst �nd the correct de�nitions for the basic notions of com-putation time, input size, etc., and then develop techniques for global analysis of interestingconcrete systems, in the spirit of traditional discrete algorithm analysis. (For an initial step,one might look into the local analysis of the Hop�eld associative memory presented in [50].)In parallel, one should develop the appropriate notions of complexity classes, reductions, andhard problems for continuous-time computation.Also many interesting, more specialized problems remain open. In Section 2 we surveyedsome �nite-dimensional systems capable of simulating Turing machines. However, in eachof these simulations there was little concern about implementability. Are any of the moreimplementation-based �nite-dimensional systems, e.g. �nite Hop�eld networks, computation-ally universal? Also, many of the Turing machine simulations presented were unsatisfactoryin being based on an explicitly constructed \system clock." What is the computational powerof continuous-time systems without such a clock, e.g. of systems that possess Liapunov func-tions? Again, the most interesting concrete example is the class of Hop�eld networks withsymmetric neuron interconnections.References[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems. Science266 (11 Nov. 1994), 1021{1024.[2] J. A. Anderson and E. Rosenfeld (eds.), Neurocomputing: Foundations of Research. TheMIT Press, Cambridge, MA, 1988. 9

[3] E. Asarin, O. Maler, On some relations between dynamical systems and transition sys-tems. Proc. 21st Internat. Colloq. on Automata, Languages, and Programming, 59{72.Lecture Notes in Computer Science 820, Springer-Verlag, Berlin, 1994.[4] C. H. Bennett, Logical reversibility of computation. IBM J. Res. Develop. 17 (1973),525{532.[5] C. H. Bennett, Time/space trade-o�s for reversible computation. SIAM J. Comput. 18(1989), 766{776.[6] E. Bernstein, U. Vazirani, Quantum complexity theory. Proc. 25th ACM Symp. on The-ory of Computation, 11{20. ACM Press, New York, NY, 1993.[7] L. Blum, M. Shub, S. Smale, On a theory of computation over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math.Soc. 21 (1989), 1{46.[8] M. Branicky, Analog computation with continuous ODEs. Proc. Workshop on Physicsand Computation 1994, 265{274. IEEE Computer Society Press, Los Alamitos, CA,1994.[9] M. Branicky, Universal computation and other capabilities of hybrid and continuousdynamical systems. Theoret. Comput. Sci. 138 (1995), 67{100.[10] R. W. Brockett, Smooth dynamical systems which realize arithmetical and logical oper-ations. Three Decades of Mathematical System Theory (H. Nijmeijer, J. M. Schumacher,eds.) Lecture Notes in Control and Information Sciences 135, Springer-Verlag, Berlin,1989.[11] R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices, and solve linearprogramming problems. Linear Algebra and Its Applications 146 (1991), 79{91.[12] V. Bush, The di�erential analyzer, a new machine for solving di�erential equations. J.Franklin Inst. 212 (1931), 447{488.[13] M. Casey, The dynamics of discrete-time computation, with application to recurrentneural networks and �nite state machine extraction. Neural Computation 8 (1996), 1135{1178.[14] A. Cichocki, R. Unbehauen, Neural Networks for Optimization and Signal Processing.Wiley/Teubner, Stuttgart, 1993.[15] Hop�eld, J. J. and Tank, D. W. Neural computation of decisions in optimization prob-lems. Biological Cybernetics 52 (1985), 141{152.[16] D. G. Feitelson, Optical Computing: A Survey for Computer Scientists. The MIT Press,Cambridge, MA, 1988.[17] M. Garzon, Models of Massive Parallelism: Analysis of Cellular Automata and NeuralNetworks. Springer-Verlag, Berlin, 1995.10

[18] A. Hausner, Analog and Analog/Hybrid Computer Programming. Prentice-Hall, Engle-wood Cli�s, NJ, 1971.[19] M. W. Hirsch, S. Smale, Di�erential Equations, Dynamical Systems, and Linear Algebra.Academic Press, San Diego, CA, 1974.[20] J. J. Hop�eld, Neurons with graded response have collective computational proper-ties like those of two-state neurons. Proc. Nat. Acad. Sci. USA 81 (1984), 3088{3092.Reprinted in [2], pp. 579{583.[21] J. J. Hop�eld, D. W. Tank, Neural computation of decisions in optimization problems.Biological Cybernetics 52 (1985), 141{152.[22] A. S. Jackson, Analog Computation. McGraw-Hill, New York, NY, 1960.[23] C. L. Johnson, Analog Computer Techniques, 2nd Ed. McGraw-Hill, New York, NY,1963.[24] P. Koiran, Dynamics of discrete time, continuous state Hop�eld networks. Neural Com-putation 6 (1994), 459{468.[25] P. Koiran, M. Cosnard, M. Garzon, Computability with low-dimensional dynamicalsystems. Theoret. Comput. Sci. 132 (1994), 113{128.[26] G. A. Korn, T. M. Korn, Electronic Analog and Hybrid Computers, 3rd Ed.McGraw-Hill,New York, NY, 1964.[27] L. Lipshitz, L. Rubel, A di�erentially algebraic replacement theorem, and analog com-putability. Proc. Amer. Math. Soc. 99 (1987), 367{372.[28] R. J. Lipton, DNA solution of hard computational problems. Science 268 (28 Apr. 1995),542{545.[29] W. Maass, P. Orponen, On the e�ect of analog noise in discrete-time analog computation.Proc. Neural Information Processing Systems 1996, to appear.[30] C. Mead, Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1989.[31] C. Moore, Unpredictability and undecidability in physical systems. Phys. Review Letters64 (1990), 2354{2357.[32] C. Moore, Generalized shifts: unpredictability and undecidability in dynamical systems.Nonlinearity 4 (1991), 199{230.[33] S. Omohundro, Modelling cellular automata with partial di�erential equations. Physica10D (1984), 128{134.[34] P. Orponen, On the Computational Power of Continuous Time Neural Networks. ProjectNeuroCOLT Report NC-TR-95-051, Royal Holloway College, Univ. of London, Dept. ofComputer Science, 1995. 18 pp.[35] P. Orponen, The computational power of discrete Hop�eld nets with hidden units. NeuralComputation 8 (1996), 403{415. 11

[36] P. Orponen, M. Matamala, Universal computation by �nite two-dimensional coupledmap lattices. Proc. Workshop on Physics and Computation 1996, to appear.[37] J. Palis, Jr., W. de Melo, Geometric Theory of Dynamical Systems: An Introduction.Springer-Verlag, New York, NY, 1982.[38] M. B. Pour-El, Abstract computability and its relation to the general purpose analogcomputer (some connections between logic, di�erential equations and analog computers).Trans. Amer. Math. Soc. 199 (1974), 1{28.[39] M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics. Springer-Verlag,Berlin, 1989.[40] P. Pudl�ak, Complexity theory and genetics. Proc. 9th Ann. IEEE Conf. on Structure inComplexity Theory, 383{395. IEEE Computer Society Press, Los Alamitos, CA, 1994.[41] J. H. Reif, J. D. Tygar, A. Yoshida, The computability and complexity of optical beamtracing. Proc. 31st Ann. IEEE Symp. on Foundations of Computer Science, 106{114.IEEE Computer Society Press, Los Alamitos, CA, 1990.[42] D. Roo�, K. Wagner, On the Power of Bio-Computers. Technical Report, Universit�atW�urzburg, Inst. f�ur Informatik, Feb. 1995.[43] L. A. Rubel, Some mathematical limitations of the general-purpose analog computer.Adv. in Appl. Math. 9 (1988), 22{34.[44] L. A. Rubel, The extended analog computer. Adv. in Appl. Math. 14 (1993), 39{50.[45] E. S�anchez-Sinencio, C. Lau, Arti�cial Neural Networks: Paradigms, Applications, andHardware Implementations. IEEE Press, New York, 1992.[46] C. E. Shannon, Mathematical theory of the di�erential analyzer. J. Math. Phys. MIT20 (1941), 337{354. Reprinted in [48], 496{513.[47] C. E. Shannon, The theory and design of linear di�erential equation machines. Reportto the National Defense Research Council, January 1942. Reprinted in [48], pp. 514{559.[48] C. E. Shannon, Collected Papers (N. J. A. Sloane, A. Wyner, eds.). IEEE Press, Piscat-away, NJ, 1993.[49] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring. Proc.35th Ann. IEEE Symp. on Foundations of Computer Science, 124{134. IEEE ComputerSociety Press, Los Alamitos, CA, 1994.[50] H. T. Siegelmann, S. Fishman, Analog computing and dynamical systems. Manuscript,April 1996. 34 pp.[51] H. T. Siegelmann, E. D. Sontag, On the computational power of neural nets. J. Comput.System Sciences 50 (1995), 132{150.[52] A. Vergis, K. Steiglitz, B. Dickinson, The complexity of analog computation. Math. andComputers in Simulation 28 (1986), 91{113.12

