Tag-free Garbage Collection Using Explicit Type Parameters

Andrew Tolmach
Portland State University
apt@cs.pdx.edu

Abstract

We have constructed a practical tag-free garbage collec-
tor based on explicit type parameterization of polymor-
phic functions, for a dialect of ML. The collector relies
on type information derived from an explicitly-typed
2nd-order representation of the program, generated by
the compiler as a byproduct of ordinary Hindley-Milner
type inference. Runtime type manipulations are per-
formed lazily to minimize execution overhead. We
present details of our implementation approach, and
preliminary performance measurements suggesting that
the overhead of passing type information explicitly can
be made acceptably small.

1 Introduction

Parametric polymorphic functions, as found in lan-
guages such as ML and Haskell, are traditionally com-
piled into code that executes uniformly regardless of the
types of its arguments. This approach requires adopting
a uniform data representation for all types. Typically,
one pretends that every value fits in a single machine
word; values that do not fit must be pointed to indi-
rectly (“boxed”). The executing code need not be able
to distinguish pointers from non-pointers, nor know the
format of what is pointed to.

However, the garbage collector does need this informa-
tion, in order to traverse the live data graph during a
collection. Therefore, implementations of ML and sim-
ilar languages typically use extra data fields to store
the lengths of records and to distinguish pointers from
integers; this technique derives from earlier Lisp imple-
mentations in which type tags were already necessary
to support runtime type determination. Doing away
with these extra fields could considerably decrease a
program’s space requirements, and save allocation and
reformatting time. Moreover, it would allow use of more
“natural” data representations that are closer to the for-
mat used by the machine, by other languages such as C,

and by externally-specified interfaces such as communi-
cation protocols.

“Tag-free” collection is possible in principle if the source
language has strong static typing [3]. Thus, an ML com-
piler has information about the type of every computed
value, which can be passed to the garbage collector to
guide live-data traversal. This suggests a “two-finger”
approach to collection: as it scans, the collector keeps
one finger on the data and the other on the correspond-
ing entry in a type map provided by the compiler. No
headers or tag bits are needed.

The stumbling block is that compilers usually treat gen-
eralized types in polymorphic functions as abstract. Ap-
pel [3], and subsequently Goldberg [7, 8], have observed
that a garbage collector could reconstruct the types
of abstract parameters by using the call stack to in-
spect the types of the actual arguments. Because this
technique requires a form of runtime type unification,
and a recursion bounded by the depth of the dynamic
call chain, it does not appear particularly attractive in
practice, although it has recently been used to build a
garbage collector for Id [2]. Type reconstruction mecha-
nisms built on similar principles have been implemented

in debuggers for Standard ML [18] and Id [1].

One significant disadvantage of stack-based reconstruc-
tion is that it doesn’t always work: variables in closures
may outlive the stack context information that would
allow their types to be reconstructed. Although Gold-
berg [8] has shown that such variables must always con-
tain garbage and so can be safely ignored by a collector,
practical considerations involving sharing of data struc-
tures make precise type determination very desirable.
Aditya [1, 2] uses an approach that involves storing ex-
plicit type “hints” in closures when stack-based recon-
struction would fail.

A more straightforward approach to providing type in-
formation at runtime is to augment all polymorphic
functions with explicit type parameters, which are in-
stantiated at each mention of the function. This idea
has a long “folklore” history, dating back at least to
the mid-1970°s. Morrison, et al., give a rather infor-
mal description of how this mechanism is used to sup-
port specialized data representations in the implemen-
tation of Napier88 [14]. Very similar techniques have
recently been applied in the implementation of Haskell
type classes [19, 5, 15, 11].

We suggest that the clearest way to produce an
explicitly-parameterized program is to view it as a
translation of the original program into an explicitly-
typed 2nd-order A-calculus [9]. Once suitable type rep-
resentations are chosen, the 2nd-order program can in
turn be viewed as an ordinary (1st-order) source pro-
gram, and compiled and executed directly using the
standard compiler and runtime system. Moreover, the
compiler already does all the work required to gener-
ate this augmented program as a byproduct of ordinary
Hindley-Milner type inference. We are not the first to
take this approach. For example, the Glasgow Haskell
compiler now uses an explicit 2nd-order representation
to facilitate type class operations [16]. A more elabo-
rate formal framework also based on this approach has
recently been proposed by Harper and Morrisett [10].

Although this idea is not new, to our knowledge it has
never been used to build a working garbage collector.
There are two main reasons for this lack of implemen-
tation experience. First, it has been feared that pass-
ing type information explicitly would cause unaccept-
able runtime overheads. Second, existing compilers are
generally not set up to perform the appropriate type
manipulations in the front end, nor to pass type infor-
mation from the front end to the runtime system. This
paper attempts to fill the gap by describing a practi-
cal implementation of explicit type parameterization as
part of a tag-free collector for a dialect of ML.

A key feature of our implementation is that it manipu-
lates runtime type descriptions in a lazy manner. Under
this approach, the executing program can keep track
of the correct instantiation context for its polymorphic
variables using only a single dynamic list pointer.

Although this paper is devoted to garbage collection,
the machinery it describes could easily be applied to
other “type-conscious” applications such as overloaded
printing, debugging, and non-uniform data representa-
tion.

2 Explicit Parameterization

We illustrate the principles of explicit parameterization
using a simple subset of ML expressions

ex= cl|xz|eex|Az.e1 |
let £ = €1 in ez |
letrec f = Az.e; in e2 |
if e; then e, else e |
€1 ; €2

Here x represents a variable and ¢ represents one of a
collection of built-in constants including at least unit,
integers, floats, booleans, and the usual constructors
and destructors for pairs and lists.

We define types as

Ti= a|mm— T |n x| T list |
unit | int | float | bool] ...

where « is a type variable. We define type schemes as

ou=Vai...a0n.T

Figure 1 gives typing rules for the expression language,
which are fairly standard. Type environments TF map
(ordinary) variables to type schemes. A type scheme is
produced by generalizing a type with respect to some
of its type variables. We follow Tofte [17] in folding
type generalization into the (LET) rule, and generaliz-
ing on exactly those variables of the type that are not
free in the type environment; more precisely, we de-
fine Clospg(7) as Vay....Yay,.7, where {a1,...,a,} =
{a € tyvars(r)|a ¢ tyvars(TFE)}. Similarly, we fold
type instantiation into the (VAR) rule. A type 7’ is an
instance of ¢ = Vay....Va,.7, written o > 7', if there
exists a substitution S with domain {a1,...,an} such

that S(r) =r'.

For reasons discussed more fully in the next section, we
follow Wright [20] in requiring that the defining expres-
sion of a generic let clause be a syntactic Value, i.e.,
a variable, constant, or A-expression. As usual, recur-
sive definitions must be explicit functions, and recursive
values cannot be used polymorphically within their own
definition. let-bound functions that bind type param-
eters are termed generic. We term each instantiation
point of a variable bound to a generic function a point
of mention for that function.

Programs in our explicitly-typed 2nd-order language are
derived from source language programs by explicitly ab-
stracting over the type variables in each generalizing let
and letrec (using the binding operator A), and explic-
itly applying each generic function to instance types at
its point of mention (using curly braces {} to surround
the type arguments). To make the role of each type
variable clear, we also attach a type annotation to each
variable binding. The resulting syntax is shown in Fig-
ure 2. The transformed program can be obtained as
a byproduct of running standard Hindley-Milner type-
inferencing process on the original program. Each appli-
cation of a (LET;) or (LETREC) rule results in a type
abstraction, whose parameters are exactly the bound
types in the type scheme generated using the Clos rule.
Each application of a (CONST) or (VAR) rule results
in a type application, whose instance parameters are
exactly the types in the range of the substitution that
witnesses the > relation. We omit abstraction and ap-
plication when the set of generalized variables is empty.
Mitchell and Harper [9] give a formal framework and
proof of equivalence between original and 2nd-order pro-
grams for a similar language.

Figure 3 shows a simple polymorphic program and its
2nd-order translation.

3 Runtime Type Parameters

The utility of the 2nd-order representation for theoreti-
cal studies and compile-time optimizations such as rep-
resentation analysis [12] is well-established. Our pur-
pose in this paper is to execute 2nd-order programs, but
using the standard 1st-order compiler. The key idea is
to treat type parameters and values as (more or less)
normal parameters and values. In particular, we define
a runtime format for type descriptions, and generate
code that builds and passes these descriptions at run-
time just like normal parameters. For convenience, we

TypeOf(c) > 7

CONST
TE >c: T ()
TE(z) > T
TE bz:T (VAR)
TEt{z—1'} be:r
ABS
TE bXze:7 — 1 ()
TE bei:7 =7 TE pbes: 7
TE >ejes: T (APP)
TE bei:7 TEL{z+— Clostp(r')} bex:7 e1 € Values

- (LETy)

TE >let v = €; in ez : 7T
TE bey:7 TE+{z+— 7'} ?62 i1 e1 & Values (LET,)

TE >let v = €; in ez : 7T
TEx{f—1" =7 c—7"}be:7 TEX {f — Clospp(r" — 7))} e T (LETREC)

TE > 1letrec f = Ax.e; in ez : 7T

TE >e;:bool TE Bex:m TE es:t IF
TE > if e; then ey else ez : 7 ()

TE ey : 7 TE ey:t
TE >ei ; ex: 1 (SEQ)

Figure 1: Typing rules

cAry oo m} z{m, ...)|

eiex | Az i Tier |

let = :Vay...an.T = Alag,...,an).€1 in eo |

letrec f:Var...anm — 1 = Ala1,...,an). Az : 761 in eo
if e; then e; else es |

€1 ; €2

Figure 2: Explicitly-typed 2nd-order language.

let £ = Ax.(x,x)
in let g = A(y,z).(f y, f z)

in g (3,2.0);
g (1.0,0)

let f:Va.a — (o x a) = Aadx:a. (x,x)

in let g:V3,v.(Bxv) = (B xB) x (v x7v) = A@B,v) . A(y:B,z:y). (£ {f} y, £ {7} =)

in g {int,float} (3,2.0);
g {float,int} (1.0,0)

Figure 3: A simple polymorphic program and its 2nd-order translation.

tuple together all the type parameters at a given gen-
eralization and call the resulting vector a type environ-
ment. To interpret the 2nd-order program in this way, it
suffices to read A as A, the type variables o, 3,,... as or-
dinary variables, and the type application curly braces
{} as a special sort of data constructor that produces
a runtime representation of a type environment from a
list of type expressions. We discuss concrete represen-
tations in Section 4.

Each generic function now takes an additional curried
initial argument which is a (formal) type environment;
each mention of a generic function is replaced by an
application of that function to an (actual) type envi-
ronment. The actual types of the parameters thus be-
come available for either explicit or implicit use by the
code generated for the body. Explicit uses of type de-
scriptions might include a true polymorphic printing or
eval function. Garbage collection makes implicit use of
these descriptions: the garbage collector may need to
know the value of any type parameter that appears in
the type of any heap-allocated variable or temporary.

There is one major difficulty with treating A as an or-
dinary abstraction: evaluation cannot proceed under it.
Thus, if the body of the generic let binding performed
any computation, this computation would be repeated
each time the function name was mentioned. This is cer-
tainly inefficient; more seriously, it is unsound if evalua-
tion of the body causes side-effects. It is for this reason
that we adopt Wright’s value restriction [20].

The 2nd-order program appears to require many more
function calls than the original, since each mention of a
generic function now is replaced by a call. Fortunately,
whenever the generic function’s point-of-mention is an
application, it is possible to combine the type instanti-
ation and the call; we uncurry the function, so that the
type environment parameter becomes simply another
argument, which can be passed relatively inexpensively.
In fact, many compilers already perform a suitable un-
currying transformation on ordinary user code. We can-
not always avoid a curried call, however. Consider the
following code:

let f:int — (int x int) = Ax:int.(x+1,x+1)
in let g:Va.a — (a X a) = Aa.Ay:a. (y,y)
in (if ... then f else g {int}) 3

We cannot avoid a separate partial call to g, since, al-
though it is statically clear that either function applied
to 3 takes an integer argument, only g expects a type
environment parameter. Fortunately, such situations
appear rare in practice. Partial calls may actually be
desirable in some circumstances; see Section 7.1.

Type expressions passed to generic functions often
themselves contain type variables, as illustrated in Fig-
ure 3. In particular, type expressions of this kind may
arise in programs of the form let £ = ey in let g =
ez in es, where both f and g are generic. This pat-
tern is common in ML, because any sequence of “top-
level” declarations (in the interactive system or within
a module) is type-checked as if it were syntactic sugar
for nested let expression of this form. In particular,
library functions are defined as if they were let-bound
in the scope of ordinary user code.

Under the translation scheme of the previous section,
the type variables referenced in a function body are not
necessarily immediate members of that function’s type
environment parameter. Consider the code at the top of
Figure 4, which illustrates a different, rather less com-
mon, way of nesting generic let expressions. Note that
the type of x, namely «, is not present in the type envi-
ronment passed to g, since g is not polymorphic in «;in
effect o is free in g. However, if we perform A-lifting or
equivalent closure conversion, it is easy to arrange that
every type variable mentioned in a function #s included
in that function’s vector of formal type parameters, as
illustrated in the bottom of Figure 4.

It is illuminating to consider the 2nd-order represen-
tation of types that cannot be reconstructed solely by
stack walking. Consider this example:

let f:Ya.a — int — int =
Ao dx:a. Ay:int. (x5 y+1)
in let g:int—int = £ {bool} true
in g 4

At the point where the inner A-expression in f is called,
the fact that x was bound to a boolean is no longer
deducible from information on the call stack, i.e., the
value of o has been lost.! The 2nd-order representation
makes it evident that o is itself a free variable of the
inner nested abstraction (Ay), and must be saved in its
closure, just like x.

4 Representing Types and Type Environments

To compile our 2nd-order language using an ordinary
1st-order compiler, we must choose concrete runtime
representations for types and describe when and how
polymorphic types are instantiated. These represen-
tations are ultimately used by the application that
requires runtime type information—in our case, the
garbage collector; they also represent types in the type-
environment vector passed to generic functions.

Different applications require different levels of type in-
formation. Debugging and overloaded printing, for ex-
ample, require complete source-level type descriptions.
For garbage collection, we need only a simplified digest
of type information for heap-allocated data, including
the size of each allocated record and the locations and
(digested) types of any pointers within that record. This
section describes a suitable representation scheme for
a language whose types include integers, floats, func-
tion types, products, and sums (discriminated unions)
of products. For simplicity, we neglect the remaining
essential constructor, namely arrays.

Figure 5 shows a concrete ML-style definitions for run-
time type descriptions (rttds) and type environments
(tenvs). The representation of monomorphic type ex-
pressions is straightforward. Integers, floats, and point-
ers to non-heap memory (such as code pointers) are
represented by Integer, Float and Static_pointer re-
spectively. Type expressions corresponding to heap-
allocated records have the form Record(x), where x is

1Of course, x could be treated as garbage without disturbing
this computation, but in more elaborate examples the desirabil-
ity of obtaining types for all variables becomes clear [8].

let f:Va.a — ((a x int) X (a x bool) = Aa.Ax:a.let g:V3.8 — (a x B) = AB.Ay:6.(x,y)

in £ {int} 3; f {real} 3.14

in (g {int} 2, g {bool} true)

let g’:V3,a.f—a — (ax) = A(f,a). Ay:f. Ax:a. (x,7)

in let f:Va.a — ((a X int) X (@ X bool)) =
in £ {int} 3; £ {real} 3.14

Aa.dx:a. (g’ {int,a} 2 x, g’ {bool,a} true x)

Figure 4: Code involving free type variables, before and after A-lifting.

datatype rttd =

Integer (* simple integer *)
| Float (* simple float; only legal within product list *)
| Static_pointer (* pointer to non-gc’ed memory (e.g., code) *)
| Closure_pointer (* pointer to self-describing closure *)
| Record of rtrd (* pointer to heap record #*)
| Type_var of int (* index into type environment *)
and rtrd =
Sum of rtrd vector (* list of variant types; indexed by header tag *)

| Product of rttd vector (* list of record fields *)

datatype type_env =

Tenv of {instance:rttd vector, mentioner:type_env}

| Empty_tenv

Figure 5: Contents of runtime type descriptions.

a runtime record description (rtrd), which details the
contents of the record. A simple product record is de-
scribed by listing the rttds of its fields, which may in-
clude nested Records. For sum types, it is necessary
to describe the layout of each possible variant; the ac-
tual variant at hand is determined by consulting a tag
in the record. Note that this mechanism can describe
recursive types. Finally, function closure records are
self-describing (see Section 5.2), so they receive a spe-
cial Closure pointer descriptor.

The key questions are how to represent type expressions
that contain type variables, and how to instantiate such
expressions at runtime, after the actual values of the
type variables have become available. Polymorphic type
expressions arise only inside generic functions, and their
type variables become available when the function is
passed its type environment vector. In principle, there-
fore, every type expression within the function body
could be instantiated as soon as the type environment
is seen. Perhaps the simplest approach to instantiation
would be to have the compiler generate code to con-
struct, at runtime, a completely fresh description of the
instantiated type, using the polymorphic type as a tem-
plate and filling in the actual type parameters in place
of the type variables. Under this approach, there would
actually be no need to represent polymorphic types at
runtime, and the rttd fields already described would
suffice.

But generating such instantiated descriptions at run-
time would quite time-consuming; worse, these descrip-
tions would have to be heap-allocated, costing addi-

tional space and time. Moreover, only the garbage col-
lector needs to examine the entirety of a type descrip-
tion, and it only needs to do so for the types of variables
that happen to be live at a collection point. Thus, much
of this instantiation work would be completely wasted.

We therefore choose instead to implement a lazy form of
instantiation. The key idea is to represent polymorphic
types in parametric form and to interpret them relative
to an instantiation vector of types. Concretely, we in-
troduce an rttd constructor of the form Type_var(i),
where i is an integer index into an auxiliary vector inst
of rttds. To interpret a type description containing the
rttd Typevar (i), one simply fetches inst[i]. Instan-
tiating a description now amounts simply to forming
an assoclation between an rttd and an appropriate in-
stantiation vector. Of course, whenever we transmit an
rttd containing type variables, e.g., to the garbage col-
lector or as a type parameter to a generic function, we
must take care to transmit the appropriate instantiation
vector as well.

Appropriate instantiation vectors are already at hand.
Recall that after the A-lifting transform described in
Section 3, each type variable mentioned in a function
appears in that function’s formal type-environment vec-
tor parameter. Thus we can easily assign the type vari-
able a runtime description Type_var(i) where i is the
variable’s index in the current environment.

Figure 5 shows a concrete representation for type envi-
ronments, called tenvs. There is a tenv corresponding
to each mention of a generic function; it is constructed
by the function that contains the point-of-mention (the

mentioner of the generic function) and passed as an ex-
plicit argument to the mentioned function.? A tenv con-
tains a instance vector of rttds corresponding to the
type variables referenced by the function, as described
above.

An rttd listed in a tenv instance may be a Record
description or any simple data type that occupies one
word, i.e., Integer or Static_pointer. Moreover, it
may itself be a type parameter of the form Type_var(j).
In this case, the parameter index j must be interpreted
in the type environment of the mentioner. The simplest
way to make this environment available to the generic
function is for the the mentioner to incorporate a pointer
to it into the tenv; the mentioner field contains exactly
this pointer. Naturally, this environment may itself con-
tain type variables, necessitating the consultation of a
further type environment, and so forth. However, this
recursion is limited by the static depth of nesting of
generic functions, which in practice is surely quite small.

Figure 6 shows code from an earlier example re-
expressed using these representations. Type annota-
tions of variables show the rttd that would be passed
to the garbage collector for that variable.

It is tempting to believe that the mentioner field is dis-
pensable. Often, the mentioner and caller of a function
will be one and the same, in which case the mentioner’s
tenv could, in principle, be obtained via the call stack.
In general, however, the mentioner may no longer exist
at the point of call, and no stack-based mechanism can
connect mentioner and callee appropriately.

This representation of rttds and tenvs was designed to
minimize the amount of dynamic allocation required to
support runtime type resolution. Note that rttds and
the instance vectors of tenvs are completely static. In
fact, only the tenv records themselves, i.e., the associ-
ations of instance vector with mentioner’s tenv, ever
need to be allocated dynamically. Of course, care must
be taken to scan tenvs during garbage collection!®

Harper and Morrisett [10] give an abstract treatment
of a system similar to ours, intended to support a wide
range of applications. They characterize type instantia-
tion as normalization in simply-typed A-calculus of type
expressions. They point out that such normal forms can
be found using a variety of strategies, including call-by-
need or call-by-value. Viewed in this framework, our
“lazy” approach appears to be an implementation of
call-by-need, while the “eager” instantiation approach
we 1nitially considered but rejected is call-by-value.

There are many other possible representations for type
environments, which we have not fully explored. One
alternative approach is based on the observation that
a polymorphic program can be “unfolded” into a
monomorphic one by making a separate copy of each
generic function each time it is mentioned. If we gen-
erated, type-checked, and executed the unfolded pro-
gram, each function code address would uniquely de-
termine a (monomorphic) type for all the function’s
variables. The resulting environment descriptions could

?In some cases, the mentioner can reuse an existing tenv
rather than constructing a new one; see Section 5.3.

3The rttd for a tenv is a constant known to the collector; it
is similar to that of an integer list.

be stored in a table indexed by function code address.
Of course, actually unfolding the program would prob-
ably increase code size unacceptably (although recent
results of Jones [11] suggest otherwise). Moreover, do-
ing so might be impractical in a separate compilation
environment, where the “whole program” is never seen
at once. But we could generate code in the ordinary,
folded-up program to keep track of which “copy” of a
function we would be executing, were we running the un-
folded program [18]. This tracking could use essentially
the same dynamic list technique as the one described
above. It could also be done using nested lookup tables,
or perhaps a single table with some form of hashing.
Moreover, we can certainly generate an appropriate ta-
ble containing fully instantiated type environments for
each function and “copy.” Conveniently, the type infor-
mation can be digested to an appropriate form for dif-
ferent applications (e.g., full user-level descriptions for
debugging, record layout information for garbage collec-
tion, etc.) without changing the copy-tracking code.

Some “two-finger” garbage collectors have been im-
plemented by passing type-specific traversal functions
rather than type descriptions that must be interpreted
by a universal collector function [8]. Such approaches
make elegant use of first-class functions, but we suspect
that the costs of applying the general closure construc-
tion mechanism for these functions will outweigh the
benefits of avoiding interpretation.

5 Implementation

5.1 Gallium

These ideas have been implemented by extending Xavier
Leroy’s Gallium compiler [12] for the Caml Light dialect
of ML [13]. The compiler has two main parts: the front
end generates an intermediate language called “C—- —7;
the back end generates native code for a MIPS proces-
sor, using a direct-style, stack-based compilation model.
The front end was originally designed to support rep-
resentation analysis based on compile-time type infor-
mation. Gallium was chosen for this experiment pri-
marily because C— — already annotates identifiers and
temporaries with crude type descriptions, namely in-
teger, float, and pointer (to anything). The back end
uses this information to type registers and stack frame
locations.

Ordinarily, Gallium uses a simple, non-generational,
depth-first copying collector. Records are self-
describing: at allocation, each record is given a header
that points to a static record layout description, which
is generated from the record constructor definition. The
layout description classifies each record field as integer,
float, or pointer; it also contains a tag to distinguish
variants of concrete types. Values in polymorphic fields
are always boxed, even if they are integers; the corre-
sponding field description is thus always “pointer.” This
technique obviates the need for tag bits to distinguish
integers from pointers, at the cost of storing integers
inefficiently. Live roots are passed to the garbage col-
lector via frame descriptors, which are embedded in the
code stream at each function call site, and can be ac-
cessed by the collector via the function’s return address.

let £ = Aftenv.Ax:Type_var(0). (x,x)

in let g = Agtenv.A(y:Type_var(0),z:Type_var(1)).

(f Tenv{instance=[|Type_var(0)|],mentioner=gtenv} y,
f Tenv{instance=[|Type_var(1)|],mentioner=gtenv} z)
in g Tenv{instance=[|Integer,Float|],mentioner=Empty_tenv} (3,2.0);
g Tenv{instance=[|Float,Integer|],mentioner=Empty_tenv} (1.0,0)

Figure 6: Representing explicit type parameters using the example of Figure 3. The symbols [| and |] construct a

vector from the expressions listed between them.

Each frame descriptor consists of a list of pointers (in
registers or the stack frame) that are live at the given
function invocation. To trace all local roots, the garbage
collector must walk the call stack, tracing all pointers
in each active frame descriptor. There is also a static
list of global roots. The collector is coded in C.

5.2 Adding Type Descriptions

For these experiments, we made significant changes to
the garbage collector’s method for tracing data. Lay-
out information is no longer obtained from record head-
ers; indeed, record headers are no longer present except
when necessary to distinguish variants in sum types.*
Instead, the frame descriptors are expanded to include
a tenv for the function and an rttd for each live register
or frame slot that might contain a pointer. The collector
traverses type information in parallel with data.

The C representation of an rttd fits in a single word, as
follows: Type_var(i) is represented simply by i, which
is certain to be small (say < 0x100); Record(rtrd) is
represented by the address of the rtrd, which is certain
to be large (say >= 0x1000); the remaining constructors
are represented by constants in the intervening range.
An rtrdis represented as a C union in a straightforward
way.

Each rttd is statically allocated; if it corresponds to
a polymorphic variable, it will contain one or more
Type_vars that reference the function’s tenv. The back
end arranges to store the current tenv at a fixed offset
in the stack frame before each procedure call or invo-
cation of the allocator. The C representation of a tenv
is just a two-word pair; each field of the pair points to
a statically generated record, so the pairs themselves
are the only components in the type description scheme
that are dynamically allocated.

Closures introduce considerable complications. Even in
monomorphic type system, it is impossible to deter-
mine the number and type of a function’s free variables
from the function’s type, so closure records must be
self-describing. Gallium uses simple flat closures; the
function’s code address is always in the first field.> To
avoid a header field within the closure itself, we embed
an rtrd describing the closure record in the code stream
at a fixed offset before the function’s starting address.

Polymorphism opens the possibility that a closure’s

4They are also used to store length information for arrays,
which we do not discuss further.

5Mutually recursive functions share a closure, as described
in [4, Section 10.2].

rtrd contains type variable fields. If so, the closure
record must contain the tenv current when the closure
is built and its rtrd generated. In some cases this tenv
will already be present in the closure as a free variable in
its own right; in other cases, it must be forced into the
closure explicitly. In either case, the offset of the tenv
within the closure record varies from one closure to an-
other, so this value is also embedded in the code stream
at a (second) fixed offset before the function’s starting
address. Note that the closure may also contain other,
different, tenv values needed as free variables, e.g., to
set the current tenv value within the function itself. In-
deed, a given free variable value in the closure may be
traced at different times by the garbage collector using
two completely different descriptions and tenvs.

5.3 Compiler Changes

The original C- — attaches crude type descriptions (in-
teger, float, or pointer) to the results of loads, function
arguments, and function return values. We refine the
description of pointer-valued data by including the ad-
dress of an rttd describing what is pointed to. The
back end now picks up this address for use in frame
descriptors; it required no other significant changes.

The front end required more substantial revisions. Type
annotations for generic functions and their mentions are
extracted during the type-checking phase and stored
in the abstract syntax tree. A newly-added process-
ing phase inserts formal and actual parameters repre-
senting type environments and code for building tenv
pairs where needed. The compiler avoids constructing
a new tenv when the environment of the mentioned
and mentioning function are the same. This is quite
common because recursive functions always call them-
selves with the same tenv they were passed by the ini-
tial, non-recursive call. As another optimization, if the
mentioner field is empty, the tenv can be statically allo-
cated; this circumstance arises naturally when the men-
tioning function’s tenv is empty, and can be forced arti-
ficially if the instance vector contains no type variable

fields.

This phase precedes the existing uncurrying optimiza-
tion phase, so that the latter can remove type instanti-
ation calls where possible; no changes to the uncurrying
phase were required except minor modifications to keep
more precise track of type information in the uncurried
code.

The closure construction phase has been modified to
treat free type variables like ordinary free variables, and

to install tenvs in closures where needed and not al-
ready present. The free type variables of a function are
calculated as the type variables that appear in the or-
dinary free (value) variables of that function. Since a
tenv may itself be a source of free variables, processing
order within this function is delicate.

The final front end phase, which emits C— —, is enhanced
to generate data segments containing static rtrd records
and tenv instance vectors; the addresses of these seg-
ments are associated with pointer-typed values in C— —.
A memoization mechanism is used to avoid generating
multiple identical rtrds from a single source file; a sim-
ilar mechanism at link time would clearly be desirable.

5.4 Garbage Collector Changes

The garbage collector is substantially revised to cope
without record headers. Some records, e.g., members
of variant types, still have header fields, but these are
treated as ordinary data fields by the collector. The
principal change is that type information is now taken
from frame descriptors and, on recursive traversals, from
rtrds, rather than from headers. The collector’s inner
copy loop is now parameterized by an rttd and tenv in
addition to source address and contents.

We make fundamental use of the collector’s depth-first
traversal strategy here, since there is no convenient
place to queue typing information that a breadth-first
collector would require. Of course, we could use the in-
formation available at record creation time to store a
pointer to a monomorphic type description within the
record. This approach would effectively require us to
reintroduce headers, though it would still permit us to
avoid integer vs. pointer tags. A slightly more at-
tractive possibility is to avoid attaching a header un-
til the record is actually copied at collection time® but
even this option seems likely to cut significantly into the
space savings we hope to achieve.

Ordinarily, Gallium uses headers to store forwarding ad-
dresses during copying collection. Since not all bits are
needed for tagging, it is easy to distinguish forwarding
pointers from unforwarded headers. In the new scheme,
forwarding pointers must be placed in data fields. Since
forwarding pointers cannot, in general, be distinguished
from integers or real numbers, they can only be placed in
pointer fields. The first field guaranteed to be a pointer
(if any) is used for forwarding; its offset is stored in
each rtrd. Either heap or static pointer fields can be
used, as forwarding pointers can be distinguished by
a range check or by setting otherwise unused low-order
bits in the pointer. For simplicity, abstract fields, which
might or might not contain pointers depending on how
they are instantiated, are not used. Records contain-
ing only numbers (e.g., pairs of integers) are forwarded
by recording them in an auxiliary hash table and using
the first field to store the forwarding pointer.” Other
possible approaches include using a bit map in place of
a hash table, or forcing all-numeric records to have an
extra field for forwarding purposes.

6 Greg Morrisett suggested this idea.
" John Reppy suggested this technique.

6 Assessment

6.1 Performance

We have only preliminary performance information. Ta-
ble 1 shows the relative performance of the new sys-
tem vs. ordinary Gallium on a number of synthetic
benchmarks, intended to exercise the allocator and the
type representation mechanism. Benchmarks were con-
ducted on a Decstation 5000/240. sieve is a prime
number generator. sumlist sums a list of integers and
sumlistf sums a list of floats. pair repeatedly applies
a function similar to repair in Figure 7 to integers and
pairf applies it to floats; each call to pair builds a
fresh dynamic closure. pclist constructs and evalu-
ates a list of polymorphic closures. Ratios of run times
(total cpu times) are presented for three different heap
sizes selected independently for each benchmark: Small
Heap is close to the smallest heap in which the bench-
mark would run, with frequent collections; Large Heap
is large enough that no collections occurred; Medium
Heap is a size somewhere in between with a “comfort-
able” number of collections.

The figures presented are encouraging. Total alloca-
tion decreased for all benchmarks but pairf, because
the new system’s occasional need to heap-allocate tenvs
was more than offset by its use of unboxed integers and
lack of need for headers. In fact, both ordinary Gallium
and our new system use a very naive representation for
sum types which requires each list cell to have a tag
field; if this were fixed, the improvement in the new
system would be even more marked for list-based pro-
grams like sumlist. The poor behavior of pairf could
be addressed by the hoisting optimization described in
Section 7.1. Moreover, execution times in the absence of
garbage collection (Large Heap) also decreased (except
for pairf) in line with decreased allocation, suggesting
that passing type parameters need not be a significant
cost.

Comparing performance when collections occurred is
difficult because the percentage of live data at a col-
lection can vary enormously depending on the precise
point where the collection occurs. However, we can con-
clude that the new system behaves about as well as the
old at moderate collection rates (Medium Heap), but
that some benchmarks behave significantly worse under
the new system when garbage collection is very frequent
(Small Heap). We believe that this behavior is due in
part to increased amounts of live data (holding tenv
parameters and values), but also to poor engineering of
the collector code, which can be improved. For example,
nearly 25% of sumlistf’s execution time was devoted
to managing the hash table for forwarding floats, which
suggests that other forwarding mechanisms should be
investigated. We also expect the recursion optimization
described in Section 7.1 to be useful.

6.2 Experience

Implementing support for explicit type parameteriza-
tion for a full-featured language turned out to be some-
what more complex than we had expected, particu-
larly in the front end. All told, at least 20% of the

let pair:Va.a —

(@ xa) = Aa. Ax:a. (x,x) in
let repair:Vg.

B—((Bxp)x(Bxp)) = Ag.Ay.pair {(8 x)} (y,y) in

let doit n = if n = 0 then () else repair {int} n; doit (n-1)
Figure 7: Worst-case example for dynamic tenv creation.

Benchmark Ratios (New Collector/Ordinary Gallium)

Records Bytes Execution Time

Allocated | Allocated | Small Heap | Medium Heap | Large Heap
sieve 0.8 0.8 1.0 1.0 1.0
sumlist 0.5 0.6 0.4 0.6 0.6
sumlistf 1.0 0.8 2.6 1.0 0.9
pair 1.0 1.0 1.1 1.0 1.0
pairt 1.2 1.1 0.7 0.8 1.2
pclist 1.0 0.9 1.9 1.1 1.0

Table 1: Benchmark Results

front-end code (which totals about 10,000 lines of ML)
required modification, and even more radical changes
would probably improve the reliability of the code.

The collector itself was not too difficult to implement.
One essential aid was was provision of a debugging
mode, in which the allocator stores a fully instanti-
ated type description for each record in a separate ta-
ble. Whenever the collector scans a record it can com-
pare the stored type with the parametric type it be-
lieves to be correct. A formal proof that the collector
views record types correctly at all times would certainly
strengthen our work.

7 Future Work

We will continue to explore our collector’s performance
on a range of more realistic programs. Since Gallium
is a stack-based system, many programs will allocate
much less rapidly than our benchmarks, so we expect
performance differences in heap management will be less
significant.

7.1 Implementation Optimizations

Analysis of our preliminary performance results sug-
gests a number of useful optimizations that we have not
yet implemented.

It is fairly inexpensive to pass tenvs as parameters or
storing them in the stack frame, but constructing new
tenvs dynamically is expensive because it requires heap
allocation. We already avoid generating a new tenv
in certain common cases, e.g., when the tenvs of men-
tioned and mentioning function are the same, but other
optimizations are possible. For example, if the tenv
of the mentioned function is a subset of the mention-
ing function, possibly permuted, the type variables of
the mentioned function could be renumbered to refer
directly to slots in the mentioning function’s tenv. Of
course, in general this cannot be done for all mentions
of a function, but constructing a tenv can be avoided

at one mention at least. This optimization is analo-
gous with choosing argument registers for calls to known
functions so as to avoid register moves [4, p. 159].

If a function’s mentioner and caller are the same, as is
usually the case, it is possible for the garbage collector to
obtain the mentioner’s tenv via the stack frame rather
than from the called function’s tenv mentioner field.
The mentioner field could take on a special constant
value to signal this situation, allowing the tenv to be
built statically. The resulting scheme might resemble
Aditya’s use of “hints” [1, 2].

As noted in Section 5.3, the tenv passed to the first,
non-recursive call of a recursive function is retransmit-
ted to each recursive call of the function. If this tenv
is heap-allocated, it would be desirable to avoid pass-
ing 1t repeatedly in this manner. This is because, in
addition to the usual costs of passing and storing a pa-
rameter, each copy of the tenv must itself be scanned
by the garbage collector, so it will appear as an extra
local root in the function’s frame. If a collection occurs
during a deep recursion, the addition of a single extra
root to each recursive frame can considerably increase
its cost, even if the tenv structure itself is trivial to scan.

A solution would be to maintain the current tenv in a
global location rather than in the stack frame. Ordinar-
ily, the code to call a function would store the current
tenv into the stack frame before the call and restore it
after the return; the start-up code within the function
would set a new current tenv. Calls to recursive func-
tions (and any other calls statically known not to alter
the tenv) would simply leave the current tenv unal-
tered, storing an appropriate mark into the stack frame
to advise the garbage collector to continue using the
current tenv when processing this frame.

Consider again the code in Figure 7, in which the recur-
sive function doit repeatedly invokes the generic func-
tion pair indirectly via repair. The optimization just
described won’t prevent repair from building n identi-
cal dynamic tenvs for pair, one on each call. This prob-
lem could be solved by taking advantage of the fact that

the explicitly typed form of repair is curried. We could
arrange to construct pair’s tenv just once, by hoisting
the code to generate it above repair’s inner abstrac-
tion, and hoisting the partial application of repair (to
{int}) out of the recursion in doit. Evidently, this opti-
mization would need to be applied in lieu of uncurrying.

7.2 Alternative GC Methods

For completeness, we could also compare performance
of our collector with a reconstruction-based collector in
the style of Goldberg [7, 8] or Aditya [2], possibly using
specialized collector functions. It would also be inter-
esting to try producing completely specialized versions
of polymorphic functions, as Jones does for overloaded
functions in Gofer [11]. Finally, we should compare our
approach with that of conservative collection [6].

7.3 Other Applications

We also hope to extend our results beyond garbage col-
lection. If manipulating explicit type information is suf-
ficiently cheap, there are many other potential applica-
tions. These include providing better type information
for debugging; providing an eval-like capability; use
of more efficient and specialized data formats; and im-
plementing more sophisticated forms of representation
analysis, e.g., coding parametric polymorphic functions
to behave differently according to the size of their argu-
ments.

Acknowledgements

Xavier Leroy graciously provided access to the code for
his Gallium system, and permission to modify it for
these experiments. Robert Harper provided useful com-
ments on an earlier version of this paper.

References

[1] S. Aditya and A. Caro. Compiler-directed type re-
construction for polymorphic languages. In FFPCA
98 Conference on Functional Programming Lan-
guages and Computer Architecture, pages T4-82,
June 1993.

[2] S. Aditya and C. H. Flood. Garbage collection for
strongly-typed languages using run-time type re-
construction. In Proc. 1994 ACM Conference on
Lisp and Functional Programming, June 1994.

3] A. W. Appel. Runtime tags aren’t necessary. Lisp
g
and Symbolic Computation, 2:153-62, 1989,

[4] A. W. Appel. Compiling with Continuations. Cam-
bridge University Press, 1992.

[5] L. Augustsson. Implementing haskell overloading.
In FPCA 98 Conference on Functional Program-
ming Languages and Computer Architecture, pages
65-73, June 1993.

[6] H.-J. Boehm and M. Weiser. Garbage collection in
an uncooperative environment. Software— Practice
and Ezperience, 18(9):807-820, Sept. 1988.

[7] B. Goldberg. Tag-free garbage collection for
strongly typed polymorphic languages. In Proc
ACM SIGPLAN °91 Conf. on Prog. Lang. Design
and Implementation, pages 165-176. ACM Press,
1991.

[8] B. Goldberg and M. Gloger. Polymorphic type re-
construction for garbage collection without tags. In
Proc. 1992 ACM Converence on Lisp and Func-
tional Programming, pages 53—65, June 1992.

[9] R. Harper and J. C. Mitchell. On the type structure
of standard ml. ACM Trans. Prog. Lang. Syst.,
15:211-252, Apr. 1993.

[10] R. Harper and G. Morrisett. Compiling with non-
paramteric polymorphism (preliminary report).
Technical Report CMU-CS-94-122, Carnegie Mel-
lon University School of Computer Science, Feb.
1994.

[11] M. P. Jones. Partial evaluation for dictionary-free
overloading. Technical Report YALEU/DCS/RR-
959, Yale University Dept. of Computer Scinece,
Apr. 1993.

[12] X. Leroy. Unboxed objects and polymorphic typ-
ing. In Proc. Nineteenth Annual ACM Symp. on
Principles of Programming Languages, pages 177—
188, New York, January 1992. ACM Press.

[13] X. Leroy and M. Mauny. The Caml Light system,
Release 0.6, Documentation and User’s Manual,
1993.

[14] R. Morrison, A. Dearle, R. Connor, and A. L.
Brown. An ad hoc approach to the implementa-
tion of polymorphism. ACM Trans. Prog. Lang.
Syst., 13(3):342-371, July 1991.

[15] J. Peterson and M. Jones. Implementing type
classes. In Proc. ACM SIGPLAN 93 Conference
on Programming Language Design and Implemen-
tation, pages 227-236, June 1993.

[16] S. L. Peyton Jones, C. Hall, K. Hammond, W. Par-
tain, and P. Wadler. The Glasgow Haskell compiler:
a technical overview. In Proc. UK Joint Framework
for Information Technology (JFIT) Technical Con-
ference, Keele, 1993.

[17] M. Tofte. Operational Semantics and Polymorphic
Type Inference. PhD thesis, Edinburgh University,
1988. CST-52-88.

[18] A. P. Tolmach. Debugging Standard ML. PhD the-
sis, Princeton University, Oct. 1992. Also Prince-
ton Univ. Dept. of Computer Science Tech. Rep.
CS-TR-378-92.

[19] P. Wadler and S. Blott. How to make ad-hoc poly-
morphism less ad hoc. In Proc. Sixteenth Annual
ACM Symp. on Principles of Programming Lan-
guages, pages 60-76, January 1989.

[20] A. K. Wright. Polymorphism for imperative lan-
guages without imperative types. Technical Report
TR93-200, Rice University Dept. of Computer Sci-
ence, Feb. 1993.

