
Tag-free Garbage Collection Using Explicit Type ParametersAndrew TolmachPortland State Universityapt@cs.pdx.eduAbstractWe have constructed a practical tag-free garbage collec-tor based on explicit type parameterization of polymor-phic functions, for a dialect of ML. The collector relieson type information derived from an explicitly-typed2nd-order representation of the program, generated bythe compiler as a byproduct of ordinary Hindley-Milnertype inference. Runtime type manipulations are per-formed lazily to minimize execution overhead. Wepresent details of our implementation approach, andpreliminary performance measurements suggesting thatthe overhead of passing type information explicitly canbe made acceptably small.1 IntroductionParametric polymorphic functions, as found in lan-guages such as ML and Haskell, are traditionally com-piled into code that executes uniformly regardless of thetypes of its arguments. This approach requires adoptinga uniform data representation for all types. Typically,one pretends that every value �ts in a single machineword; values that do not �t must be pointed to indi-rectly (\boxed"). The executing code need not be ableto distinguish pointers from non-pointers, nor know theformat of what is pointed to.However, the garbage collector does need this informa-tion, in order to traverse the live data graph during acollection. Therefore, implementations of ML and sim-ilar languages typically use extra data �elds to storethe lengths of records and to distinguish pointers fromintegers; this technique derives from earlier Lisp imple-mentations in which type tags were already necessaryto support runtime type determination. Doing awaywith these extra �elds could considerably decrease aprogram's space requirements, and save allocation andreformatting time. Moreover, it would allow use of more\natural" data representations that are closer to the for-mat used by the machine, by other languages such as C,

and by externally-speci�ed interfaces such as communi-cation protocols.\Tag-free" collection is possible in principle if the sourcelanguage has strong static typing [3]. Thus, an ML com-piler has information about the type of every computedvalue, which can be passed to the garbage collector toguide live-data traversal. This suggests a \two-�nger"approach to collection: as it scans, the collector keepsone �nger on the data and the other on the correspond-ing entry in a type map provided by the compiler. Noheaders or tag bits are needed.The stumbling block is that compilers usually treat gen-eralized types in polymorphic functions as abstract. Ap-pel [3], and subsequently Goldberg [7, 8], have observedthat a garbage collector could reconstruct the typesof abstract parameters by using the call stack to in-spect the types of the actual arguments. Because thistechnique requires a form of runtime type uni�cation,and a recursion bounded by the depth of the dynamiccall chain, it does not appear particularly attractive inpractice, although it has recently been used to build agarbage collector for Id [2]. Type reconstruction mecha-nisms built on similar principles have been implementedin debuggers for Standard ML [18] and Id [1].One signi�cant disadvantage of stack-based reconstruc-tion is that it doesn't always work: variables in closuresmay outlive the stack context information that wouldallow their types to be reconstructed. Although Gold-berg [8] has shown that such variables must always con-tain garbage and so can be safely ignored by a collector,practical considerations involving sharing of data struc-tures make precise type determination very desirable.Aditya [1, 2] uses an approach that involves storing ex-plicit type \hints" in closures when stack-based recon-struction would fail.A more straightforward approach to providing type in-formation at runtime is to augment all polymorphicfunctions with explicit type parameters, which are in-stantiated at each mention of the function. This ideahas a long \folklore" history, dating back at least tothe mid-1970's. Morrison, et al., give a rather infor-mal description of how this mechanism is used to sup-port specialized data representations in the implemen-tation of Napier88 [14]. Very similar techniques haverecently been applied in the implementation of Haskelltype classes [19, 5, 15, 11].

We suggest that the clearest way to produce anexplicitly-parameterized program is to view it as atranslation of the original program into an explicitly-typed 2nd-order �-calculus [9]. Once suitable type rep-resentations are chosen, the 2nd-order program can inturn be viewed as an ordinary (1st-order) source pro-gram, and compiled and executed directly using thestandard compiler and runtime system. Moreover, thecompiler already does all the work required to gener-ate this augmented program as a byproduct of ordinaryHindley-Milner type inference. We are not the �rst totake this approach. For example, the Glasgow Haskellcompiler now uses an explicit 2nd-order representationto facilitate type class operations [16]. A more elabo-rate formal framework also based on this approach hasrecently been proposed by Harper and Morrisett [10].Although this idea is not new, to our knowledge it hasnever been used to build a working garbage collector.There are two main reasons for this lack of implemen-tation experience. First, it has been feared that pass-ing type information explicitly would cause unaccept-able runtime overheads. Second, existing compilers aregenerally not set up to perform the appropriate typemanipulations in the front end, nor to pass type infor-mation from the front end to the runtime system. Thispaper attempts to �ll the gap by describing a practi-cal implementation of explicit type parameterization aspart of a tag-free collector for a dialect of ML.A key feature of our implementation is that it manipu-lates runtime type descriptions in a lazy manner. Underthis approach, the executing program can keep trackof the correct instantiation context for its polymorphicvariables using only a single dynamic list pointer.Although this paper is devoted to garbage collection,the machinery it describes could easily be applied toother \type-conscious" applications such as overloadedprinting, debugging, and non-uniform data representa-tion.2 Explicit ParameterizationWe illustrate the principles of explicit parameterizationusing a simple subset of ML expressionse ::= c j x j e1e2 j �x:e1 jlet x = e1 in e2 jletrec f = �x:e1 in e2 jif e1 then e2 else e3 je1 ; e2Here x represents a variable and c represents one of acollection of built-in constants including at least unit,integers,
oats, booleans, and the usual constructorsand destructors for pairs and lists.We de�ne types as� ::= � j �1 ! �2 j �1 � �2 j � list junit j int j float j bool j : : :where � is a type variable. We de�ne type schemes as� ::= 8�1 : : : �n:�

Figure 1 gives typing rules for the expression language,which are fairly standard. Type environments TE map(ordinary) variables to type schemes. A type scheme isproduced by generalizing a type with respect to someof its type variables. We follow Tofte [17] in foldingtype generalization into the (LET) rule, and generaliz-ing on exactly those variables of the type that are notfree in the type environment; more precisely, we de-�ne ClosTE(�) as 8�1: : : :8�n:� , where f�1; : : : ; �ng =f� 2 tyvars(�)j� =2 tyvars(TE)g. Similarly, we foldtype instantiation into the (VAR) rule. A type � 0 is aninstance of � = 8�1: : : :8�n:� , written � > � 0, if thereexists a substitution S with domain f�1; : : : ; �ng suchthat S(�) = � 0.For reasons discussed more fully in the next section, wefollow Wright [20] in requiring that the de�ning expres-sion of a generic let clause be a syntactic Value, i.e.,a variable, constant, or �-expression. As usual, recur-sive de�nitions must be explicit functions, and recursivevalues cannot be used polymorphically within their ownde�nition. let-bound functions that bind type param-eters are termed generic. We term each instantiationpoint of a variable bound to a generic function a pointof mention for that function.Programs in our explicitly-typed 2nd-order language arederived from source language programs by explicitly ab-stracting over the type variables in each generalizing letand letrec (using the binding operator �), and explic-itly applying each generic function to instance types atits point of mention (using curly braces fg to surroundthe type arguments). To make the role of each typevariable clear, we also attach a type annotation to eachvariable binding. The resulting syntax is shown in Fig-ure 2. The transformed program can be obtained asa byproduct of running standard Hindley-Milner type-inferencing process on the original program. Each appli-cation of a (LET1) or (LETREC) rule results in a typeabstraction, whose parameters are exactly the boundtypes in the type scheme generated using the Clos rule.Each application of a (CONST) or (VAR) rule resultsin a type application, whose instance parameters areexactly the types in the range of the substitution thatwitnesses the > relation. We omit abstraction and ap-plication when the set of generalized variables is empty.Mitchell and Harper [9] give a formal framework andproof of equivalence between original and 2nd-order pro-grams for a similar language.Figure 3 shows a simple polymorphic program and its2nd-order translation.3 Runtime Type ParametersThe utility of the 2nd-order representation for theoreti-cal studies and compile-time optimizations such as rep-resentation analysis [12] is well-established. Our pur-pose in this paper is to execute 2nd-order programs, butusing the standard 1st-order compiler. The key idea isto treat type parameters and values as (more or less)normal parameters and values. In particular, we de�nea runtime format for type descriptions, and generatecode that builds and passes these descriptions at run-time just like normal parameters. For convenience, we

TypeOf(c) > �TE > c : � (CONST)TE (x) > �TE > x : � (VAR)TE � fx 7! � 0g > e : �TE > �x:e : � 0 ! � (ABS)TE > e1 : � 0 ! � TE > e2 : � 0TE > e1e2 : � (APP)TE > e1 : � 0 TE � fx 7! ClosTE(� 0)g > e2 : � e1 2 ValuesTE > let x = e1 in e2 : � (LET1)TE > e1 : � 0 TE � fx 7! � 0g > e2 : � e1 62 ValuesTE > let x = e1 in e2 : � (LET2)TE � ff 7! � 00 ! � 0; x 7! � 00g > e1 : � 0 TE � ff 7! ClosTE(� 00 ! � 0)g > e2 : �TE > letrec f = �x:e1 in e2 : � (LETREC)TE > e1 : bool TE > e2 : � TE > e3 : �TE > if e1 then e2 else e3 : � (IF)TE > e1 : � 0 TE > e2 : �TE > e1 ; e2 : � (SEQ)Figure 1: Typing rulese ::= cf�1; : : : ; �ng j xf�1; : : : ; �ng je1e2 j �x : �:e1 jlet x : 8�1 : : : �n:� = �(�1; : : : ; �n):e1 in e2 jletrec f : 8�1 : : : �n:� 0 ! � = �(�1; : : : ; �n):�x : � 0:e1 in e2 jif e1 then e2 else e3 je1 ; e2 Figure 2: Explicitly-typed 2nd-order language.let f = �x.(x,x)in let g = �(y,z).(f y, f z)in g (3,2.0);g (1.0,0)let f:8�:�! (�� �) = ��:�x:�.(x,x)in let g:8�,
.(��
)! ((� � �)� (
 �
)) = �(�,
).�(y:�,z:
).(f {�} y, f {
} z)in g {int,float} (3,2.0);g {float,int} (1.0,0)Figure 3: A simple polymorphic program and its 2nd-order translation.

tuple together all the type parameters at a given gen-eralization and call the resulting vector a type environ-ment. To interpret the 2nd-order program in this way, itsu�ces to read � as �, the type variables �,�,
,: : : as or-dinary variables, and the type application curly bracesfg as a special sort of data constructor that producesa runtime representation of a type environment from alist of type expressions. We discuss concrete represen-tations in Section 4.Each generic function now takes an additional curriedinitial argument which is a (formal) type environment;each mention of a generic function is replaced by anapplication of that function to an (actual) type envi-ronment. The actual types of the parameters thus be-come available for either explicit or implicit use by thecode generated for the body. Explicit uses of type de-scriptions might include a true polymorphic printing oreval function. Garbage collection makes implicit use ofthese descriptions: the garbage collector may need toknow the value of any type parameter that appears inthe type of any heap-allocated variable or temporary.There is one major di�culty with treating � as an or-dinary abstraction: evaluation cannot proceed under it.Thus, if the body of the generic let binding performedany computation, this computation would be repeatedeach time the function name was mentioned. This is cer-tainly ine�cient; more seriously, it is unsound if evalua-tion of the body causes side-e�ects. It is for this reasonthat we adopt Wright's value restriction [20].The 2nd-order program appears to require many morefunction calls than the original, since each mention of ageneric function now is replaced by a call. Fortunately,whenever the generic function's point-of-mention is anapplication, it is possible to combine the type instanti-ation and the call; we uncurry the function, so that thetype environment parameter becomes simply anotherargument, which can be passed relatively inexpensively.In fact, many compilers already perform a suitable un-currying transformation on ordinary user code. We can-not always avoid a curried call, however. Consider thefollowing code:let f:int! (int� int) = �x:int.(x+1,x+1)in let g:8�.�! (�� �) = ��.�y:�.(y,y)in (if ... then f else g {int}) 3We cannot avoid a separate partial call to g, since, al-though it is statically clear that either function appliedto 3 takes an integer argument, only g expects a typeenvironment parameter. Fortunately, such situationsappear rare in practice. Partial calls may actually bedesirable in some circumstances; see Section 7.1.Type expressions passed to generic functions oftenthemselves contain type variables, as illustrated in Fig-ure 3. In particular, type expressions of this kind mayarise in programs of the form let f = e1 in let g =e2 in e3, where both f and g are generic. This pat-tern is common in ML, because any sequence of \top-level" declarations (in the interactive system or withina module) is type-checked as if it were syntactic sugarfor nested let expression of this form. In particular,library functions are de�ned as if they were let-boundin the scope of ordinary user code.

Under the translation scheme of the previous section,the type variables referenced in a function body are notnecessarily immediate members of that function's typeenvironment parameter. Consider the code at the top ofFigure 4, which illustrates a di�erent, rather less com-mon, way of nesting generic let expressions. Note thatthe type of x, namely �, is not present in the type envi-ronment passed to g, since g is not polymorphic in �; ine�ect � is free in g. However, if we perform �-lifting orequivalent closure conversion, it is easy to arrange thatevery type variable mentioned in a function is includedin that function's vector of formal type parameters, asillustrated in the bottom of Figure 4.It is illuminating to consider the 2nd-order represen-tation of types that cannot be reconstructed solely bystack walking. Consider this example:let f:8�:�! int! int =��:�x:�.�y:int.(x; y+1)in let g:int!int = f {bool} truein g 4At the point where the inner �-expression in f is called,the fact that x was bound to a boolean is no longerdeducible from information on the call stack, i.e., thevalue of � has been lost.1 The 2nd-order representationmakes it evident that � is itself a free variable of theinner nested abstraction (�y), and must be saved in itsclosure, just like x.4 Representing Types and Type EnvironmentsTo compile our 2nd-order language using an ordinary1st-order compiler, we must choose concrete runtimerepresentations for types and describe when and howpolymorphic types are instantiated. These represen-tations are ultimately used by the application thatrequires runtime type information|in our case, thegarbage collector; they also represent types in the type-environment vector passed to generic functions.Di�erent applications require di�erent levels of type in-formation. Debugging and overloaded printing, for ex-ample, require complete source-level type descriptions.For garbage collection, we need only a simpli�ed digestof type information for heap-allocated data, includingthe size of each allocated record and the locations and(digested) types of any pointers within that record. Thissection describes a suitable representation scheme fora language whose types include integers,
oats, func-tion types, products, and sums (discriminated unions)of products. For simplicity, we neglect the remainingessential constructor, namely arrays.Figure 5 shows a concrete ML-style de�nitions for run-time type descriptions (rttds) and type environments(tenvs). The representation of monomorphic type ex-pressions is straightforward. Integers,
oats, and point-ers to non-heap memory (such as code pointers) arerepresented by Integer, Float and Static pointer re-spectively. Type expressions corresponding to heap-allocated records have the form Record(x), where x is1Of course, x could be treated as garbage without disturbingthis computation, but in more elaborate examples the desirabil-ity of obtaining types for all variables becomes clear [8].

let f:8�:�! ((�� int)� (�� bool) = ��.�x:�.let g:8�.�! (�� �) = ��.�y:�.(x,y)in (g {int} 2, g {bool} true)in f {int} 3; f {real} 3.14let g':8�,�.�! �! (�� �) = �(�;�).�y:�.�x:�.(x,y)in let f:8�.�! ((�� int)� (�� bool)) = ��:�x:�.(g' {int,�} 2 x, g' {bool,�} true x)in f {int} 3; f {real} 3.14Figure 4: Code involving free type variables, before and after �-lifting.datatype rttd =Integer (* simple integer *)| Float (* simple float; only legal within product list *)| Static_pointer (* pointer to non-gc'ed memory (e.g., code) *)| Closure_pointer (* pointer to self-describing closure *)| Record of rtrd (* pointer to heap record *)| Type_var of int (* index into type environment *)and rtrd =Sum of rtrd vector (* list of variant types; indexed by header tag *)| Product of rttd vector (* list of record fields *)datatype type_env =Tenv of {instance:rttd vector, mentioner:type_env}| Empty_tenv Figure 5: Contents of runtime type descriptions.a runtime record description (rtrd), which details thecontents of the record. A simple product record is de-scribed by listing the rttds of its �elds, which may in-clude nested Records. For sum types, it is necessaryto describe the layout of each possible variant; the ac-tual variant at hand is determined by consulting a tagin the record. Note that this mechanism can describerecursive types. Finally, function closure records areself-describing (see Section 5.2), so they receive a spe-cial Closure pointer descriptor.The key questions are how to represent type expressionsthat contain type variables, and how to instantiate suchexpressions at runtime, after the actual values of thetype variables have become available. Polymorphic typeexpressions arise only inside generic functions, and theirtype variables become available when the function ispassed its type environment vector. In principle, there-fore, every type expression within the function bodycould be instantiated as soon as the type environmentis seen. Perhaps the simplest approach to instantiationwould be to have the compiler generate code to con-struct, at runtime, a completely fresh description of theinstantiated type, using the polymorphic type as a tem-plate and �lling in the actual type parameters in placeof the type variables. Under this approach, there wouldactually be no need to represent polymorphic types atruntime, and the rttd �elds already described wouldsu�ce.But generating such instantiated descriptions at run-time would quite time-consuming; worse, these descrip-tions would have to be heap-allocated, costing addi-

tional space and time. Moreover, only the garbage col-lector needs to examine the entirety of a type descrip-tion, and it only needs to do so for the types of variablesthat happen to be live at a collection point. Thus, muchof this instantiation work would be completely wasted.We therefore choose instead to implement a lazy form ofinstantiation. The key idea is to represent polymorphictypes in parametric form and to interpret them relativeto an instantiation vector of types. Concretely, we in-troduce an rttd constructor of the form Type var(i),where i is an integer index into an auxiliary vector instof rttds. To interpret a type description containing therttd Type var(i), one simply fetches inst[i]. Instan-tiating a description now amounts simply to formingan association between an rttd and an appropriate in-stantiation vector. Of course, whenever we transmit anrttd containing type variables, e.g., to the garbage col-lector or as a type parameter to a generic function, wemust take care to transmit the appropriate instantiationvector as well.Appropriate instantiation vectors are already at hand.Recall that after the �-lifting transform described inSection 3, each type variable mentioned in a functionappears in that function's formal type-environment vec-tor parameter. Thus we can easily assign the type vari-able a runtime description Type var(i) where i is thevariable's index in the current environment.Figure 5 shows a concrete representation for type envi-ronments, called tenvs. There is a tenv correspondingto each mention of a generic function; it is constructedby the function that contains the point-of-mention (the

mentioner of the generic function) and passed as an ex-plicit argument to the mentioned function.2 A tenv con-tains a instance vector of rttds corresponding to thetype variables referenced by the function, as describedabove.An rttd listed in a tenv instance may be a Recorddescription or any simple data type that occupies oneword, i.e., Integer or Static pointer. Moreover, itmay itself be a type parameter of the form Type var(j).In this case, the parameter index j must be interpretedin the type environment of the mentioner. The simplestway to make this environment available to the genericfunction is for the the mentioner to incorporate a pointerto it into the tenv; the mentioner �eld contains exactlythis pointer. Naturally, this environment may itself con-tain type variables, necessitating the consultation of afurther type environment, and so forth. However, thisrecursion is limited by the static depth of nesting ofgeneric functions, which in practice is surely quite small.Figure 6 shows code from an earlier example re-expressed using these representations. Type annota-tions of variables show the rttd that would be passedto the garbage collector for that variable.It is tempting to believe that the mentioner �eld is dis-pensable. Often, the mentioner and caller of a functionwill be one and the same, in which case the mentioner'stenv could, in principle, be obtained via the call stack.In general, however, the mentioner may no longer existat the point of call, and no stack-based mechanism canconnect mentioner and callee appropriately.This representation of rttds and tenvs was designed tominimize the amount of dynamic allocation required tosupport runtime type resolution. Note that rttds andthe instance vectors of tenvs are completely static. Infact, only the tenv records themselves, i.e., the associ-ations of instance vector with mentioner's tenv, everneed to be allocated dynamically. Of course, care mustbe taken to scan tenvs during garbage collection!3Harper and Morrisett [10] give an abstract treatmentof a system similar to ours, intended to support a widerange of applications. They characterize type instantia-tion as normalization in simply-typed �-calculus of typeexpressions. They point out that such normal forms canbe found using a variety of strategies, including call-by-need or call-by-value. Viewed in this framework, our\lazy" approach appears to be an implementation ofcall-by-need, while the \eager" instantiation approachwe initially considered but rejected is call-by-value.There are many other possible representations for typeenvironments, which we have not fully explored. Onealternative approach is based on the observation thata polymorphic program can be \unfolded" into amonomorphic one by making a separate copy of eachgeneric function each time it is mentioned. If we gen-erated, type-checked, and executed the unfolded pro-gram, each function code address would uniquely de-termine a (monomorphic) type for all the function'svariables. The resulting environment descriptions could2In some cases, the mentioner can reuse an existing tenvrather than constructing a new one; see Section 5.3.3The rttd for a tenv is a constant known to the collector; itis similar to that of an integer list.

be stored in a table indexed by function code address.Of course, actually unfolding the program would prob-ably increase code size unacceptably (although recentresults of Jones [11] suggest otherwise). Moreover, do-ing so might be impractical in a separate compilationenvironment, where the \whole program" is never seenat once. But we could generate code in the ordinary,folded-up program to keep track of which \copy" of afunction we would be executing, were we running the un-folded program [18]. This tracking could use essentiallythe same dynamic list technique as the one describedabove. It could also be done using nested lookup tables,or perhaps a single table with some form of hashing.Moreover, we can certainly generate an appropriate ta-ble containing fully instantiated type environments foreach function and \copy." Conveniently, the type infor-mation can be digested to an appropriate form for dif-ferent applications (e.g., full user-level descriptions fordebugging, record layout information for garbage collec-tion, etc.) without changing the copy-tracking code.Some \two-�nger" garbage collectors have been im-plemented by passing type-speci�c traversal functionsrather than type descriptions that must be interpretedby a universal collector function [8]. Such approachesmake elegant use of �rst-class functions, but we suspectthat the costs of applying the general closure construc-tion mechanism for these functions will outweigh thebene�ts of avoiding interpretation.5 Implementation5.1 GalliumThese ideas have been implemented by extending XavierLeroy's Gallium compiler [12] for the Caml Light dialectof ML [13]. The compiler has two main parts: the frontend generates an intermediate language called \C{ {";the back end generates native code for a MIPS proces-sor, using a direct-style, stack-based compilation model.The front end was originally designed to support rep-resentation analysis based on compile-time type infor-mation. Gallium was chosen for this experiment pri-marily because C{ { already annotates identi�ers andtemporaries with crude type descriptions, namely in-teger,
oat, and pointer (to anything). The back enduses this information to type registers and stack framelocations.Ordinarily, Gallium uses a simple, non-generational,depth-�rst copying collector. Records are self-describing: at allocation, each record is given a headerthat points to a static record layout description, whichis generated from the record constructor de�nition. Thelayout description classi�es each record �eld as integer,
oat, or pointer; it also contains a tag to distinguishvariants of concrete types. Values in polymorphic �eldsare always boxed, even if they are integers; the corre-sponding �eld description is thus always \pointer." Thistechnique obviates the need for tag bits to distinguishintegers from pointers, at the cost of storing integersine�ciently. Live roots are passed to the garbage col-lector via frame descriptors, which are embedded in thecode stream at each function call site, and can be ac-cessed by the collector via the function's return address.

let f = �ftenv.�x:Type_var(0).(x,x)in let g = �gtenv.�(y:Type_var(0),z:Type_var(1)).(f Tenv{instance=[|Type_var(0)|],mentioner=gtenv} y,f Tenv{instance=[|Type_var(1)|],mentioner=gtenv} z)in g Tenv{instance=[|Integer,Float|],mentioner=Empty_tenv} (3,2.0);g Tenv{instance=[|Float,Integer|],mentioner=Empty_tenv} (1.0,0)Figure 6: Representing explicit type parameters using the example of Figure 3. The symbols [| and |] construct avector from the expressions listed between them.Each frame descriptor consists of a list of pointers (inregisters or the stack frame) that are live at the givenfunction invocation. To trace all local roots, the garbagecollector must walk the call stack, tracing all pointersin each active frame descriptor. There is also a staticlist of global roots. The collector is coded in C.5.2 Adding Type DescriptionsFor these experiments, we made signi�cant changes tothe garbage collector's method for tracing data. Lay-out information is no longer obtained from record head-ers; indeed, record headers are no longer present exceptwhen necessary to distinguish variants in sum types.4Instead, the frame descriptors are expanded to includea tenv for the function and an rttd for each live registeror frame slot that might contain a pointer. The collectortraverses type information in parallel with data.The C representation of an rttd �ts in a single word, asfollows: Type var(i) is represented simply by i, whichis certain to be small (say < 0x100); Record(rtrd) isrepresented by the address of the rtrd, which is certainto be large (say >= 0x1000); the remaining constructorsare represented by constants in the intervening range.An rtrd is represented as a C union in a straightforwardway.Each rttd is statically allocated; if it corresponds toa polymorphic variable, it will contain one or moreType vars that reference the function's tenv. The backend arranges to store the current tenv at a �xed o�setin the stack frame before each procedure call or invo-cation of the allocator. The C representation of a tenvis just a two-word pair; each �eld of the pair points toa statically generated record, so the pairs themselvesare the only components in the type description schemethat are dynamically allocated.Closures introduce considerable complications. Even inmonomorphic type system, it is impossible to deter-mine the number and type of a function's free variablesfrom the function's type, so closure records must beself-describing. Gallium uses simple
at closures; thefunction's code address is always in the �rst �eld.5 Toavoid a header �eld within the closure itself, we embedan rtrd describing the closure record in the code streamat a �xed o�set before the function's starting address.Polymorphism opens the possibility that a closure's4They are also used to store length information for arrays,which we do not discuss further.5Mutually recursive functions share a closure, as describedin [4, Section 10.2].

rtrd contains type variable �elds. If so, the closurerecord must contain the tenv current when the closureis built and its rtrd generated. In some cases this tenvwill already be present in the closure as a free variable inits own right; in other cases, it must be forced into theclosure explicitly. In either case, the o�set of the tenvwithin the closure record varies from one closure to an-other, so this value is also embedded in the code streamat a (second) �xed o�set before the function's startingaddress. Note that the closure may also contain other,di�erent, tenv values needed as free variables, e.g., toset the current tenv value within the function itself. In-deed, a given free variable value in the closure may betraced at di�erent times by the garbage collector usingtwo completely di�erent descriptions and tenvs.5.3 Compiler ChangesThe original C{ { attaches crude type descriptions (in-teger,
oat, or pointer) to the results of loads, functionarguments, and function return values. We re�ne thedescription of pointer-valued data by including the ad-dress of an rttd describing what is pointed to. Theback end now picks up this address for use in framedescriptors; it required no other signi�cant changes.The front end required more substantial revisions. Typeannotations for generic functions and their mentions areextracted during the type-checking phase and storedin the abstract syntax tree. A newly-added process-ing phase inserts formal and actual parameters repre-senting type environments and code for building tenvpairs where needed. The compiler avoids constructinga new tenv when the environment of the mentionedand mentioning function are the same. This is quitecommon because recursive functions always call them-selves with the same tenv they were passed by the ini-tial, non-recursive call. As another optimization, if thementioner�eld is empty, the tenv can be statically allo-cated; this circumstance arises naturally when the men-tioning function's tenv is empty, and can be forced arti-�cially if the instance vector contains no type variable�elds.This phase precedes the existing uncurrying optimiza-tion phase, so that the latter can remove type instanti-ation calls where possible; no changes to the uncurryingphase were required except minor modi�cations to keepmore precise track of type information in the uncurriedcode.The closure construction phase has been modi�ed totreat free type variables like ordinary free variables, and

to install tenvs in closures where needed and not al-ready present. The free type variables of a function arecalculated as the type variables that appear in the or-dinary free (value) variables of that function. Since atenv may itself be a source of free variables, processingorder within this function is delicate.The �nal front end phase, which emits C{ {, is enhancedto generate data segments containing static rtrd recordsand tenv instance vectors; the addresses of these seg-ments are associated with pointer-typed values in C{ {.A memoization mechanism is used to avoid generatingmultiple identical rtrds from a single source �le; a sim-ilar mechanism at link time would clearly be desirable.5.4 Garbage Collector ChangesThe garbage collector is substantially revised to copewithout record headers. Some records, e.g., membersof variant types, still have header �elds, but these aretreated as ordinary data �elds by the collector. Theprincipal change is that type information is now takenfrom frame descriptors and, on recursive traversals, fromrtrds, rather than from headers. The collector's innercopy loop is now parameterized by an rttd and tenv inaddition to source address and contents.We make fundamental use of the collector's depth-�rsttraversal strategy here, since there is no convenientplace to queue typing information that a breadth-�rstcollector would require. Of course, we could use the in-formation available at record creation time to store apointer to a monomorphic type description within therecord. This approach would e�ectively require us toreintroduce headers, though it would still permit us toavoid integer vs. pointer tags. A slightly more at-tractive possibility is to avoid attaching a header un-til the record is actually copied at collection time6 buteven this option seems likely to cut signi�cantly into thespace savings we hope to achieve.Ordinarily, Gallium uses headers to store forwarding ad-dresses during copying collection. Since not all bits areneeded for tagging, it is easy to distinguish forwardingpointers from unforwarded headers. In the new scheme,forwarding pointers must be placed in data �elds. Sinceforwarding pointers cannot, in general, be distinguishedfrom integers or real numbers, they can only be placed inpointer �elds. The �rst �eld guaranteed to be a pointer(if any) is used for forwarding; its o�set is stored ineach rtrd. Either heap or static pointer �elds can beused, as forwarding pointers can be distinguished bya range check or by setting otherwise unused low-orderbits in the pointer. For simplicity, abstract �elds, whichmight or might not contain pointers depending on howthey are instantiated, are not used. Records contain-ing only numbers (e.g., pairs of integers) are forwardedby recording them in an auxiliary hash table and usingthe �rst �eld to store the forwarding pointer.7 Otherpossible approaches include using a bit map in place ofa hash table, or forcing all-numeric records to have anextra �eld for forwarding purposes.6Greg Morrisett suggested this idea.7John Reppy suggested this technique.

6 Assessment6.1 PerformanceWe have only preliminary performance information. Ta-ble 1 shows the relative performance of the new sys-tem vs. ordinary Gallium on a number of syntheticbenchmarks, intended to exercise the allocator and thetype representation mechanism. Benchmarks were con-ducted on a Decstation 5000/240. sieve is a primenumber generator. sumlist sums a list of integers andsumlistf sums a list of
oats. pair repeatedly appliesa function similar to repair in Figure 7 to integers andpairf applies it to
oats; each call to pair builds afresh dynamic closure. pclist constructs and evalu-ates a list of polymorphic closures. Ratios of run times(total cpu times) are presented for three di�erent heapsizes selected independently for each benchmark: SmallHeap is close to the smallest heap in which the bench-mark would run, with frequent collections; Large Heapis large enough that no collections occurred; MediumHeap is a size somewhere in between with a \comfort-able" number of collections.The �gures presented are encouraging. Total alloca-tion decreased for all benchmarks but pairf, becausethe new system's occasional need to heap-allocate tenvswas more than o�set by its use of unboxed integers andlack of need for headers. In fact, both ordinary Galliumand our new system use a very naive representation forsum types which requires each list cell to have a tag�eld; if this were �xed, the improvement in the newsystem would be even more marked for list-based pro-grams like sumlist. The poor behavior of pairf couldbe addressed by the hoisting optimization described inSection 7.1. Moreover, execution times in the absence ofgarbage collection (Large Heap) also decreased (exceptfor pairf) in line with decreased allocation, suggestingthat passing type parameters need not be a signi�cantcost.Comparing performance when collections occurred isdi�cult because the percentage of live data at a col-lection can vary enormously depending on the precisepoint where the collection occurs. However, we can con-clude that the new system behaves about as well as theold at moderate collection rates (Medium Heap), butthat some benchmarks behave signi�cantly worse underthe new system when garbage collection is very frequent(Small Heap). We believe that this behavior is due inpart to increased amounts of live data (holding tenvparameters and values), but also to poor engineering ofthe collector code, which can be improved. For example,nearly 25% of sumlistf's execution time was devotedto managing the hash table for forwarding
oats, whichsuggests that other forwarding mechanisms should beinvestigated. We also expect the recursion optimizationdescribed in Section 7.1 to be useful.6.2 ExperienceImplementing support for explicit type parameteriza-tion for a full-featured language turned out to be some-what more complex than we had expected, particu-larly in the front end. All told, at least 20% of the

let pair:8�.�! (�� �) = ��.�x:�.(x,x) inlet repair:8�.�! ((� � �)� (� � �)) = ��.�y.pair {(� � �)} (y,y) inlet doit n = if n = 0 then () else repair {int} n; doit (n-1)Figure 7: Worst-case example for dynamic tenv creation.Benchmark Ratios (New Collector/Ordinary Gallium)Records Bytes Execution TimeAllocated Allocated Small Heap Medium Heap Large Heapsieve 0.8 0.8 1.0 1.0 1.0sumlist 0.5 0.6 0.4 0.6 0.6sumlistf 1.0 0.8 2.6 1.0 0.9pair 1.0 1.0 1.1 1.0 1.0pairf 1.2 1.1 0.7 0.8 1.2pclist 1.0 0.9 1.9 1.1 1.0Table 1: Benchmark Resultsfront-end code (which totals about 10,000 lines of ML)required modi�cation, and even more radical changeswould probably improve the reliability of the code.The collector itself was not too di�cult to implement.One essential aid was was provision of a debuggingmode, in which the allocator stores a fully instanti-ated type description for each record in a separate ta-ble. Whenever the collector scans a record it can com-pare the stored type with the parametric type it be-lieves to be correct. A formal proof that the collectorviews record types correctly at all times would certainlystrengthen our work.7 Future WorkWe will continue to explore our collector's performanceon a range of more realistic programs. Since Galliumis a stack-based system, many programs will allocatemuch less rapidly than our benchmarks, so we expectperformance di�erences in heap management will be lesssigni�cant.7.1 Implementation OptimizationsAnalysis of our preliminary performance results sug-gests a number of useful optimizations that we have notyet implemented.It is fairly inexpensive to pass tenvs as parameters orstoring them in the stack frame, but constructing newtenvs dynamically is expensive because it requires heapallocation. We already avoid generating a new tenvin certain common cases, e.g., when the tenvs of men-tioned and mentioning function are the same, but otheroptimizations are possible. For example, if the tenvof the mentioned function is a subset of the mention-ing function, possibly permuted, the type variables ofthe mentioned function could be renumbered to referdirectly to slots in the mentioning function's tenv. Ofcourse, in general this cannot be done for all mentionsof a function, but constructing a tenv can be avoided

at one mention at least. This optimization is analo-gous with choosing argument registers for calls to knownfunctions so as to avoid register moves [4, p. 159].If a function's mentioner and caller are the same, as isusually the case, it is possible for the garbage collector toobtain the mentioner's tenv via the stack frame ratherthan from the called function's tenv mentioner �eld.The mentioner �eld could take on a special constantvalue to signal this situation, allowing the tenv to bebuilt statically. The resulting scheme might resembleAditya's use of \hints" [1, 2].As noted in Section 5.3, the tenv passed to the �rst,non-recursive call of a recursive function is retransmit-ted to each recursive call of the function. If this tenvis heap-allocated, it would be desirable to avoid pass-ing it repeatedly in this manner. This is because, inaddition to the usual costs of passing and storing a pa-rameter, each copy of the tenv must itself be scannedby the garbage collector, so it will appear as an extralocal root in the function's frame. If a collection occursduring a deep recursion, the addition of a single extraroot to each recursive frame can considerably increaseits cost, even if the tenv structure itself is trivial to scan.A solution would be to maintain the current tenv in aglobal location rather than in the stack frame. Ordinar-ily, the code to call a function would store the currenttenv into the stack frame before the call and restore itafter the return; the start-up code within the functionwould set a new current tenv. Calls to recursive func-tions (and any other calls statically known not to alterthe tenv) would simply leave the current tenv unal-tered, storing an appropriate mark into the stack frameto advise the garbage collector to continue using thecurrent tenv when processing this frame.Consider again the code in Figure 7, in which the recur-sive function doit repeatedly invokes the generic func-tion pair indirectly via repair. The optimization justdescribed won't prevent repair from building n identi-cal dynamic tenvs for pair, one on each call. This prob-lem could be solved by taking advantage of the fact that

the explicitly typed form of repair is curried. We couldarrange to construct pair's tenv just once, by hoistingthe code to generate it above repair's inner abstrac-tion, and hoisting the partial application of repair (tofintg) out of the recursion in doit. Evidently, this opti-mization would need to be applied in lieu of uncurrying.7.2 Alternative GC MethodsFor completeness, we could also compare performanceof our collector with a reconstruction-based collector inthe style of Goldberg [7, 8] or Aditya [2], possibly usingspecialized collector functions. It would also be inter-esting to try producing completely specialized versionsof polymorphic functions, as Jones does for overloadedfunctions in Gofer [11]. Finally, we should compare ourapproach with that of conservative collection [6].7.3 Other ApplicationsWe also hope to extend our results beyond garbage col-lection. If manipulating explicit type information is suf-�ciently cheap, there are many other potential applica-tions. These include providing better type informationfor debugging; providing an eval-like capability; useof more e�cient and specialized data formats; and im-plementing more sophisticated forms of representationanalysis, e.g., coding parametric polymorphic functionsto behave di�erently according to the size of their argu-ments.AcknowledgementsXavier Leroy graciously provided access to the code forhis Gallium system, and permission to modify it forthese experiments. Robert Harper provided useful com-ments on an earlier version of this paper.References[1] S. Aditya and A. Caro. Compiler-directed type re-construction for polymorphic languages. In FPCA'93 Conference on Functional Programming Lan-guages and Computer Architecture, pages 74{82,June 1993.[2] S. Aditya and C. H. Flood. Garbage collection forstrongly-typed languages using run-time type re-construction. In Proc. 1994 ACM Conference onLisp and Functional Programming, June 1994.[3] A. W. Appel. Runtime tags aren't necessary. Lispand Symbolic Computation, 2:153{62, 1989.[4] A. W. Appel. Compiling with Continuations. Cam-bridge University Press, 1992.[5] L. Augustsson. Implementing haskell overloading.In FPCA '93 Conference on Functional Program-ming Languages and Computer Architecture, pages65{73, June 1993.

[6] H.-J. Boehm and M. Weiser. Garbage collection inan uncooperative environment. Software|Practiceand Experience, 18(9):807{820, Sept. 1988.[7] B. Goldberg. Tag-free garbage collection forstrongly typed polymorphic languages. In ProcACM SIGPLAN '91 Conf. on Prog. Lang. Designand Implementation, pages 165{176. ACM Press,1991.[8] B. Goldberg and M. Gloger. Polymorphic type re-construction for garbage collection without tags. InProc. 1992 ACM Converence on Lisp and Func-tional Programming, pages 53{65, June 1992.[9] R. Harper and J. C. Mitchell. On the type structureof standard ml. ACM Trans. Prog. Lang. Syst.,15:211{252, Apr. 1993.[10] R. Harper and G. Morrisett. Compiling with non-paramteric polymorphism (preliminary report).Technical Report CMU-CS-94-122, Carnegie Mel-lon University School of Computer Science, Feb.1994.[11] M. P. Jones. Partial evaluation for dictionary-freeoverloading. Technical Report YALEU/DCS/RR-959, Yale University Dept. of Computer Scinece,Apr. 1993.[12] X. Leroy. Unboxed objects and polymorphic typ-ing. In Proc. Nineteenth Annual ACM Symp. onPrinciples of Programming Languages, pages 177{188, New York, January 1992. ACM Press.[13] X. Leroy and M. Mauny. The Caml Light system,Release 0.6, Documentation and User's Manual,1993.[14] R. Morrison, A. Dearle, R. Connor, and A. L.Brown. An ad hoc approach to the implementa-tion of polymorphism. ACM Trans. Prog. Lang.Syst., 13(3):342{371, July 1991.[15] J. Peterson and M. Jones. Implementing typeclasses. In Proc. ACM SIGPLAN '93 Conferenceon Programming Language Design and Implemen-tation, pages 227{236, June 1993.[16] S. L. Peyton Jones, C. Hall, K. Hammond, W. Par-tain, and P.Wadler. The Glasgow Haskell compiler:a technical overview. In Proc. UK Joint Frameworkfor Information Technology (JFIT) Technical Con-ference, Keele, 1993.[17] M. Tofte. Operational Semantics and PolymorphicType Inference. PhD thesis, Edinburgh University,1988. CST-52-88.[18] A. P. Tolmach. Debugging Standard ML. PhD the-sis, Princeton University, Oct. 1992. Also Prince-ton Univ. Dept. of Computer Science Tech. Rep.CS-TR-378-92.[19] P. Wadler and S. Blott. How to make ad-hoc poly-morphism less ad hoc. In Proc. Sixteenth AnnualACM Symp. on Principles of Programming Lan-guages, pages 60{76, January 1989.

[20] A. K. Wright. Polymorphism for imperative lan-guages without imperative types. Technical ReportTR93-200, Rice University Dept. of Computer Sci-ence, Feb. 1993.

