
Simple and E�ective Link-Time Optimization
of Modula-3 Programs

Mary F. Fernandez

November 7, 1994

1 Introduction

Object-oriented languages have features that help develop modular programs and libraries of reusable soft-

ware. Opaque types and methods, two such features in Modula-3, incur a runtime cost, because to implement

them, the Modula-3 compiler must generate code for various runtime computations and checks. Incomplete

information at compile time necessitates these computations; their runtime overhead, however, can be re-

duced at link time when the entire program and its type hierarchy become available.

Opaque objects and methods are invaluable for developing libraries of reusable software. Opaque typing

separates a type T 's interface from its implementation and guarantees that clients that declare subtypes of T

can be compiled even when the source that de�nes T 's representation is unavailable, as is often the case for

libraries. Opaque typing also supports smart recompilation: T 's clients don't have to be recompiled when

T 's representation is changed. Modula-3 also supports overriding of methods, which permits a subtype of

T to rede�ne any method inherited from T . The standard implementations of both features incur runtime

costs. Accessing the �eld of an opaque type requires two loads: one to determine the �eld's runtime o�set

and a second to access the �eld. To support overriding, methods are implemented as indirect calls. The

indirect call may be inexpensive | it might cost only one extra load to fetch the procedure's address | but

it precludes other promising optimizations, such as procedure inlining and specialization.

One way to recover these runtime costs is to eliminate the features. The resulting design is similar

to C++. The concrete representation of a C++ type T is revealed at compile time to T 's clients. This

revelation makes accessing a �eld of an object as e�cient as accessing a �eld of a structure, but it increases

recompilations because clients of T must be recompiled whenever T 's representation changes. Also, C++

has both virtual methods, which may be overridden, and nonvirtual methods, which may not. Nonvirtual

methods are implemented with direct calls, which saves a load and permits the compiler to inline methods in

their clients. Inlining of nonvirtual methods also increases recompilations: if the source of a method changes,

all clients that inline the method must be recompiled.

In this paper, we describe the opportunities for link-time optimization of Modula-3 and present two

link-time optimization techniques. Data-driven simpli�cation is a new technique. It uses a program's type

1

hierarchy to recover completely the cost of opaque types and to reduce the runtime overhead of methods.

It also reveals other opportunities for optimization, such as constant and type propagation and procedure

inlining and cloning. Pro�le-driven optimization uses pro�le data to identify and transform those proce-

dures that can bene�t most from optimizations made possible by data-driven simpli�cation. Moreover, our

techniques make it as easy to optimize procedures in libraries as to optimize those in applications.

Data-driven simpli�cation and pro�le-driven optimization di�er from other link-time optimizations be-

cause they require high-level data, e.g., the types of objects and expressions, that are necessary for applying

our techniques but often missing from object code. Both optimizations require the entire program to be

available and therefore cannot be applied at compile time. They are also machine independent and therefore

are best applied to an intermediate representation before code generation. An intermediate representation

also simpli�es recognition of idiomatic expressions generated by the Modula-3 compiler. The compiler gen-

erates intermediate-code idioms to create objects, to access �elds of opaque objects, and to invoke methods.

Often, these idioms can be recognized and simpli�ed. Identifying idiomatic expressions would be di�cult

for a traditional linker presented with object code that has been reordered by instruction scheduling or that

does not carry enough type information.

Our optimization techniques are implemented in mld, a retargetable linker for the MIPS and SPARC.

mld links mill, a machine-independent intermediate code that is suitable for link-time optimization and

code generation. To evaluate the e�ectiveness of our techniques, we used m3, the DEC SRC Modula-3 v2.11

compiler [17], to compile �ve Modula-3 benchmarks. m3 is not a native compiler: it generates C and invokes

a C compiler to generate object code. To produce our results, m3 invokes mlcc, an ANSI C compiler that

generates mill. The benchmarks are non-trivial: they and the Modula-3 runtime system contain more than

170,000 lines of code. Although mld links Modula-3 programs, its implementation has few dependencies on

Modula-3 itself and required only modest changes to the m3 compiler (87 lines of new code) to produce the

information needed by mld. mld could be used to evaluate link-time optimization of C++, for example, by

using mlcc to compile C code generated by a C++ front end.

mld's optimizations are simple and e�ective. Data-driven simpli�cation is a local transformation and

is inexpensive. The global optimizations applied during pro�le-driven optimization include constant and

type propagation and procedure inlining and cloning, all simple and well-understood code transformations.

Data-driven simpli�cation reduces the total number of instructions executed by up to 11%, and it converts

as many as 78% of the indirect calls executed to direct calls. Pro�le-driven optimization reduces the total

number of instructions executed by up to 14% and the number of loads executed by up to 19%.

2 Opportunities for Link-time Optimization

An example best illustrates the opportunities for link-time optimization. A Modula-3 module is composed of

an interface, which is included by clients of the module, and an implementation, which includes the module's

2

INTERFACE Hash; MODULE Symbol; MODULE Hash;

TYPE HashT = OBJECT FROM Hash IMPORT HashTab; REVEAL HashTab = HashT BRANDED OBJECT

METHODS TYPE SymbolTab = HashTab OBJECT contents: ARRAY [1..101] OF REFANY

lookup(key: TEXT): REFANY; level: INTEGER OVERRIDES

insert(key: TEXT; METHODS lookup := Lookup;

value: REFANY); enterscope():= Enter; insert := Insert;

delete(key: TEXT) exitscope() := Exit delete := Delete

END; OVERRIDES END;

HashTab <: HashT insert := SymInsert ...

END Hash. END; END Hash.

...

END Symbol.

Figure 1: Modula-3 Hash and Symbol Modules.

source code [19]. Fig. 1 gives the exported interface for the module Hash and the �rst few lines of the modules

Symbol and Hash. The Hash interface (Fig. 1, left) exports HashTab, an opaque subtype of HashT; X <: Y

declares X to be a subtype of Y . Because HashTab is a subtype of HashT, it has at least the same method

suite as HashT: lookup, insert, and delete. Only these methods are accessible to its clients. The subtype

relation does not reveal any more information about HashTab to clients or to the compiler; its private data

and methods are hidden, and thus its underlying, or concrete, representation is unknown.

Symbol (Fig. 1, center) is a client of Hash. It declares SymbolTab as a subtype of HashTab, extending

the de�nition of HashTab by de�ning the �eld level and the methods enterscope and exitscope. Even

though SymbolTab is declared as a subtype of HashTab in Symbol, it is not necessary to recompile Symbol

if HashTab's representation changes, because HashTab is an opaque type. SymbolTab overrides HashTab's

de�nition of insert. Any invocation of insert by a SymbolTab object calls SymInsert instead of HashTab's

insert. Hash (Fig. 1, right) reveals the concrete representation of HashTab (but only within the Hash

module). The revelation includes the declaration of HashTab's private data (contents) and de�nes the

values of its methods.

2.1 Implementation choices

Fig. 2 shows the runtime representation of Modula-3 types and objects. A type is represented at run time

by a type descriptor, a C structure of type TYPE. In this paper, the runtime representation of HashTab is

denoted by HashTab TC. Objects are represented at run time by the type code of their type descriptor, their

methods, and their data. Fig. 2 depicts an object o of type t. o contains a pointer to the methods �eld of its

type descriptor (t->methods) and its own data area. t's typecode is duplicated in the type descriptor and

its methods; t's methods are shared because they are immutable. After type initialization, the methods for

every object of type t are the same, and all such objects share t's methods.

Link time is the earliest time at which the entire type hierarchy of a program is known. Without

3

o

t typedef struct TC {

 ...

} TYPE;

 int typecode;

 int dataOffset;

 int dataSize;

 int methodOffset;

 int methodSize;

 ADDRESS methods;

typecode

dataOffset

dataSize

methodOffset

methodSize

data area

typecode

typecode

methods

Figure 2: Object and Type Representations.

typecode

HashTab’s

private methods

lookup

insert

delete

enterscope

exitscope

ss

level

HashTab’s

typecode

private data

methodOffset

HashT_TC->

methodOffset

SymbolTab_TC->

levelmethodOffset

HashTab_TC->
dataOffset

HashTab_TC->

SymbolTab_TC->
dataOffset

typecode

Hash.Lookup

Symbol.SymInsert

Hash.Delete

Symbol.Enter

Symbol.Exit

typecode

contents

Figure 3: Compile-time and Run-time Representations of the SymbolTab Object s.

a linker that can use this information, program startup is the earliest point at which attributes of the

concrete representations of all types, e.g., their sizes and the o�sets to �elds and methods, can be computed.

Once initialized, these sizes and o�sets remain constant. Fig. 3 depicts the compile-time and runtime

representations (left and right pictures, respectively) of a SymbolTab object, s, in the module Symbol. The

dotted lines in the compile-time picture indicate that the o�sets to s's �elds and methods are unknown

because s's complete representation depends on the sizes of HashTab's private �elds and methods; the

compiler knows nothing about the structure of the shaded areas. The values of s's methods are also unknown

at compile-time. These o�sets and values are computed at program startup and are stored in the type

descriptor. At run time, SymbolTab objects are represented as shown in the diagram on the right.

There are two sources of runtime overhead in the implementations of opaque typing and method invoca-

tion. To access �elds and methods of opaque types, m3 emits code to fetch the appropriate o�set at run time.

For example, in the expression s.level, the o�set of level is unknown at compile time, so m3 generates

((SymbolTab_fields *)(s + SymbolTab_TC->dataOffset))->level

where SymbolTab_fields is a C structure representing the private �elds of SymbolTab. Similarly, the values

4

of SymbolTab's methods are unknown, so the method invocation s.lookup(key) is compiled into

((HashT_methods *)((*s) + HashT_TC->methodOffset))->lookup(key);

where (*s) accesses the methods of s, and HashT methods represents the public methods of HashTab.

m3 implements method invocations as indirect calls to support overriding. In the last example, the invo-

cation s.lookup(key) is compiled into an indirect call because the compiler does not know if lookup will be

overridden in a subtype of SymbolTab. If lookup is overridden, then the runtime type of s determines which

procedure is bound to lookup, i.e., SymbolTab's lookup value or that of its subtype. Often this indirection is

unnecessary. In this example, lookup is not overridden; it can only be bound to Hash.Lookup. The indirect

call may be inexpensive: it might cost only two loads to fetch the procedure's address. It precludes other

promising optimizations, however, such as procedure inlining and specialization, and performance may su�er

on highly pipelined architectures where unpredictable branch targets stall the pipeline [22].

3 Data-Driven Simpli�cation

mld uses data-driven simpli�cation to simplify expressions that refer to variables whose values are known

to be constant after linking. This technique is similar to partial evaluation and lets the linker simplify

expressions that would otherwise be evaluated at run time. mld obtains the bindings between variables

and their link-time values from a binding �le, the contents of which resemble C assignments. A binding

�le contains assignments of values to globals. A value may be an integer,
oating-point number, string, the

contents of a structure or union, the value of another global variable, or an untyped block of initialized bytes.

For a Modula-3 program, the binding �le is generated automatically by mldpp, a mill-code preprocessor,

and contains the representation of the program's type hierarchy.1 mldpp executes an initialization procedure

similar to the one executed by the Modula-3 runtime system, but instead of initializing the type hierarchy

in memory, it emits a binding �le that describes the initialized type hierarchy.2

Fig. 4 gives part of the binding �le produced by mldpp for the program in Fig. 1. The �rst assignment

to *HashT TC illustrates how mld uses binding statements. At link time, mld symbolically simpli�es mill

expressions that refer to variables de�ned in the binding �le. For example, HashT TC->dataOffset and

HashT TC->methodSize are replaced by 4 and 16, respectively. Even though the runtime addresses of the

type descriptors are unknown, the binding �le speci�es the contents of these structures. Initializing the

type hierarchy at link time completely recovers the cost of referencing the �elds of opaque objects. Every

expression of the form o + t->const�eld + o�set where o is an object address, t is the address of o's type

descriptor, and const�eld is a �eld of t bound to a constant at link time, is simpli�ed to o + C where C is

t->const�eld+ o�set. The simpli�ed expression is as inexpensive as a structure �eld reference.

1 A binding �le is not restricted to type information; any \write-once" data is permissible, e.g., an array after initialization.
2 A pre-processing step to compute the binding �le is not necessary but helped in debugging; mld could compute this

information on the
y before applying optimizations.

5

*HashT_TC = { *HashTab_TC = { *SymbolTab_TC = {

typecode = 3; typecode = 4; typecode = 5;

dataSize = 4; dataSize = 408; dataSize = 412;

dataOffset = 4; dataOffset = 4; dataOffset = 408;

methodSize= 16; methodSize= 16; methodSize= 24;

methodOffset = 4; methodOffset = 16; methodOffset = 16;

*defaultMethods = [*defaultMethods = [*defaultMethods = [

4: overridden by subtype 4: Hash__Lookup; 4: Hash__Lookup;

8: overridden by subtype # 8: overridden by subtype 8: Symbol__SymInsert;

12: overridden by subtype 12: Hash__Delete; 12: Hash__Delete;

];]; 16: Symbol__Enter;

... ... 20: Symbol__Exit;

}; };];

...

};

Figure 4: Example Binding File (# introduces comments).

The mill idioms for accessing �elds of opaque types are generated by mlcc at compile time. mld uses

iburg [10] to match and rewrite mill idioms at link time. The following two iburg rules match and rewrite

the mill idioms for accessing �elds of opaque types.

cfield: INDIRI(ADDP(tc, const)) link_time_value(tc, const)

fieldaddr: ADDP(ADDP(obj, const), cfield) ADDP(obj, const + cfield)

Nonterminals are in lower case; mill operators are in uppercase. tc and obj match type descriptors and

objects, respectively. link time value searches the binding �le for the value at o�set const in tc. cfield

matches an expression whose constant value is bound at link time. mill's intermediate code is based on the

intermediate code used in lcc [9]. Of the 148 rules used by mld to simplify mill expressions, only 15 are

speci�c to Modula-3. The others specify rules for constant folding, strength reduction, and for simplifying

addressing expressions.3

3.1 Converting method invocations to direct calls.

The overhead of method invocation can be reduced by replacing method invocations with direct calls at link

time. mldpp executes a conservative algorithm to identify methods that may be converted safely to direct

calls. A method invocation o:m, where o is an object of type t, is convertible if t initializes method m's value

to some procedure p or it inherits m's value from a supertype, and if m's value is not overridden in any

subtype of t. If m is overridden, then it is impossible to convert conservatively an invocation of m because

its procedure binding depends on the runtime type of the object that invokes m. If m is de�ned and not

overridden, however, then exactly one procedure is bound to m in t and in all subtypes of t; any invocation

3Both mlcc and mld use the same set of simpli�cation rules; most of them are never used by mld because mlcc simpli�es

most expressions at compile time. mld only uses the rules speci�c to Modula-3 and those for folding constants.

6

o:m is guaranteed to invoke the same procedure.

The predicate convertible(t;m) states the conditions for method conversion:

convertible(t;m) = has-method(t;m) ^ :overridden(t;m)

has-method(t;m) = initializes-method(t;m; p) _ �9u s:t: subtype(t; u) ^ initializes-method(u;m; p)
�

initializes-method(t;m; p) = m is initialized to procedure p in the type declaration for t

overridden(t;m) = 9s s:t: subtype(s; t) ^ initializes-method(s;m; p)

In these de�nitions, t is a type; m is a method in the method suite of t; and subtype(s; t) holds if s is a subtype

of t. In addition to determining whether a method is convertible, mldpp computes its value; binding(t;m),

the procedure binding of m in t, is de�ned as

binding(t;m) = if initializes-method(t;m; p) then p

else if has-method(t;m) then binding(parent(t);m)

else Unde�ned

where parent(t) is the immediate supertype of t. For each type t and method m such that convertible(t;m)

holds and binding(t;m) = p, mldpp emits a statement in the binding �le assigning p to the o�set of method

m in t's methods. This assignment tells mld that an invocation of m may be converted to a direct call to

p. For example, SymbolTab is a leaf type (it has no subtypes), so none of its methods are overridden. Each

of its methods is also initialized, either via inheritance or in its type declaration, so each of SymbolTab's

methods is convertible. In Fig. 4, SymbolTab's methods are initialized with the appropriate procedure value

binding(t;m); mld will convert invocations of these methods to direct calls to the corresponding procedures.

HashTab's insert method is not convertible because SymbolTab overrides the de�nition of insert; thus its

value (at o�set 8) is uninitialized.

Our technique for converting methods is largely language independent, but it does require that the linker

recognize an idiom that depends on the language and on the speci�c implementation. For Modula-3, the

idiom is �o + t->methodOffset + o�set. Other object-oriented languages and other implementations of

Modula-3 might generate di�erent idioms. The language dependencies in mld for recognizing method idioms

are few: of mld's 155 iburg rules for simplifying expressions, only 8 are speci�c to Modula-3.

3.2 Results

Table 1 summarizes the results of applying data-driven simpli�cation to our benchmarks. Although there

are only a few programs in our benchmark suite, none is trivial: they range from 3,000 to 81,000 lines of

Modula-3.4 The Modula-3 runtime system is more than 61,000 lines. Each program and the runtime system

4It is di�cult to �nd non-proprietary applications in Modula-3 that use objects and libraries. We would like to �nd more

such applications. Send mail if you have one.

7

Dynamic counts
% decrease

% decrease % decrease indirect
Benchmark Description (Lines) instructions loads calls
interp A PostScript interpreter (19000) 4.0 6.8 13.5
m3fe Analysis program in the m3 toolkit (81543) 11.4 16.8 56.5
prover A theorem prover (4536) 4.0 6.0 79.0
pspec A program performance speci�cation checker (9789) 2.6 3.8 21.4
m3pp A Modula-3 pretty printer (3072) 3.0 4.0 1.7

Table 1: Results of applying data-driven simpli�cation.

were compiled into mill with m3 and mlcc and linked with mld. All measurements were taken on an unloaded

DEC 5000, Model 240 running Ultrix V4.3 with 112 MB memory, a 64 KB direct-mapped instruction cache,

a 64 KB data cache, and a local disk.

Data-driven simpli�cation and method conversion are e�ective. Data-driven simpli�cation reduces the

number of instructions executed by 3{11%, the number of loads executed by 4{17%, and converts from 2{79%

of the dynamic indirect calls to direct calls. We report exact instruction counts instead of elapsed execution

times because instruction counts re
ect precisely the e�ects of each transformation. Elapsed execution times

are discussed in Section 4.

4 Pro�le-Driven Optimization

Data-driven simpli�cation is a local transformation; it simpli�es or eliminates expressions within a basic

block. It reveals other opportunities for optimization, such as propagation of newly identi�ed constants

| e.g., the values of the �elds typecode, dataSize, and dataOffset | and the type descriptors them-

selves. Revealing the complete type hierarchy also permits type expressions to be simpli�ed. For example,

issubtype(o; t) can be reduced to a constant boolean if the runtime type of object o can be propagated from

its creation point to its uses. Because mld links the complete program, it could apply global transformations

to every procedure, but dynamic program statistics indicate that this is unnecessary.

4.1 Dynamic program statistics.

Execution pro�les of the benchmarks reveal that 2% or fewer of all procedures called execute at least 50%

of all instructions executed. These procedures are the programs' \hot spots." In addition, more than 30%

of all hot procedures are in libraries. Table 2 summarizes several dynamic statistics for the benchmarks.

The second column gives the number of test inputs over which the data was acquired; the third gives the

total number of procedures that were called during execution; and the fourth gives the smallest number of

procedures that together account for at least 50% of the total execution time. The number of hot procedures

8

Procs Hot procs % calls to
Benchmark Inputs called (lib) hot procs
interp 42 1201 18 (6) 27.2
m3fe 197 4100 19 (8) 31.1
prover 3 915 13 (5) 31.7
pspec 2 1169 16 (5) 15.8
m3pp 56 624 11 (5) 26.5

Table 2: Dynamic statistics.

in libraries are parenthesized. Last, calls to the hot procedures account for a large percentage of total calls;

the last column gives these percentages.

We must minimize the cost of global optimizations, because mld already pays for generating code for the

entire program. These measurements indicate that broad application of global optimizations is unnecessary;

applying global optimizations only to hot procedures and at frequently executed call sites will be both

e�ective and inexpensive. To test this hypothesis, mld uses pro�ling data generated by QPT [2] to select

hot procedures and then applies constant and type propagation to them. Our implementation of constant

and type propagation uses standard iterative, data-
ow analysis algorithms [1] applied to mill code. Many

global optimizations could be e�ective when applied to the selected procedures; we chose constant and type

propagation for two reasons. First, data-driven simpli�cation reveals constant-valued expressions, which can

be propagated, and the complete type hierarchy, which can be used to simplify type expressions. Second, our

goal is not to introduce new global optimizations but rather to demonstrate the value of existing optimizations

using information that is unavailable before link time.

4.2 Targeted inlining and cloning

Constant and type propagation often reveal useful information about procedures' calling contexts, e.g.,

constant-valued arguments or arguments whose runtime type is known. We apply targeted inlining and

targeted cloning to procedures when their calling contexts are known. Targeted inlining attempts to inline

the procedures at frequently executed call sites in hot procedures, then applies constant and type propagation

in the caller and its inlined callees. mld chooses candidate sites using information gathered from pro�les

of the program's execution; a description of the technique is given below. Inlining is limited to those sites

where it will not create too many locals, which is an approximate measure of register pressure.

Targeted cloning relies on the observation that procedures are often invoked with the same arguments

frommultiple sites. Instead of inlining and specializing a procedure at multiple sites, a copy of the procedure's

text is made; the copy is specialized using the information about its arguments; and the clone is called in lieu

of the original method. Targeted cloning applies constant and type propagation in hot procedures and their

callers; if a call to a hot procedure or one of its callees has constant-valued arguments, the procedure is cloned

9

and is called in lieu of the original. The calling context of the original procedure is used to specialize the

cloned version. Method cloning and specialization is a technique used in dynamically typed, object-oriented

languages [5]; it improves run time at a small cost in space.

mld applies inlining at link time and chooses candidate sites using information gathered from pro�les

of the program's execution. Link-time inlining avoids many of the problems of source-to-source inlining:

inter-module inlining does not create arti�cial dependencies between source modules, and library procedures

can be inlined. mld initially chose call sites heuristically, but the inlined benchmark programs exhibited

some of the typical problems programs with heuristically inlined callees: a few programs ran slower and

link time increased signi�cantly. mld now uses targeted inlining, a pro�le-driven technique that inlines at

the program's most frequently executed call sites. Pro�le-driven inlining chooses call sites that are executed

frequently and have the greatest chance of improving run time. Inlining is limited to those sites where it

will not create too many locals, which is an approximate measure of register pressure. Other pro�le-guided

inliners are used at compile-time and thus su�er the same problems as source-to-source inlining [6].

It is not e�ective to inline all calls to hot procedures or all calls in hot procedures because the same

problems caused by heuristically guided inlining will occur. Instead, sites must be ordered according to a

metric that indicates when inlining will be bene�cial at the given site. Inlining ceases when the costs of

negative secondary e�ects exceed the bene�ts of inlining. mld uses an inlining factor to determine where

inlining might yield the greatest bene�ts. The inlining factor is a measure of the relative value of applying

inlining to a particular call site and is computed from a summary of pro�les generated by QPT.

mld reads a summary that consists of (caller, callee, call site) triples in decreasing order by inlining

factor. For each call site, QPT reports the number of calls executed at the site (C) and the total number of

instructions attributed to the callee when called from the given site (I). P is the number of instructions per

call attributed to procedure call overhead. We assign P a machine-independent value of 1 instruction/call,

which is conservative; the actual overhead depends on the architecture and the calling conventions. P �C=I
measures the ratio of call overhead to useful instructions executed by the callee. For example, if a site is

called 5000 times and the callee executes 100,000 instructions when called from that site, a ratio of 0.05 is

assigned to the site. The inlining factor (P �C=I)�C weights each site by its overhead ratio and the number

of times the call is executed. The metric favors those sites that have higher overhead-to-callee instruction

ratios and are called more frequently than other sites. An arbitrary threshold limits the number of inlined

sites: those sites with an inlining factor greater than 5000 are candidates. We have not yet evaluated the

relative bene�ts and costs of choosing a particular threshold because they are machine-dependent. Not all

candidates are inlined: if there are multiple candidates in a single caller, inlining is applied to the sites in

decreasing order by inlining factor .

10

4.3 Results

Table 3 summarizes the results of applying both data-driven simpli�cation and pro�le-driven optimization to

our benchmarks. The static information provided in the table shows that application of global optimizations

is limited: the maximum number of call sites inlined is 50; the maximum number of clones created is 200.

The third column gives the number of call sites at which a clone is called and indicates that clones can be

reused often, i.e., the calling context for a procedure is the same at multiple call sites. The italicized cases

execute the fewest instructions.

Pro�le-driven optimization reduces the number of instructions executed by 4{14%, an additional 1{5%

over data-driven simpli�cation alone. At best, an additional 1.8% of the loads were eliminated. These im-

provements are more modest than we expected. One obstacle to producing better results is lossiness in mill.

mill does not preserve as much type information as can be used by mld, because mlcc's front end is based

on that of lcc, which is designed for C, not Modula-3, and it discards some type information early in compi-

lation. For example, the Modula-3 types for expressions that compute the addresses of elements in aggregate

data structures (e.g., arrays and records) are not preserved. This prevents mld from propagating the types of

objects in aggregate data structures and limits mld's ability to simplify type expressions. A second obstacle

is mld's register allocator, which was not designed to handle procedures with inlined callees. mld's code

generators are based on those in lcc; lcc's register allocator is machine independent and does not allocate

across basic blocks, which can help reduce spills in frequently executed blocks. Both problems are limitations

of our implementation and are not inherent to link-time optimization. Nonetheless, our results show that

link-time optimization reduces the cost of methods and recovers the costs of opaque types. In addition, our

techniques complement compile-time optimizations, because they leverage information unavailable before

link time.

4.4 Elapsed execution times

Reductions in the number of instructions and loads executed are not re
ected by comparable reductions

in elapsed execution time. Elapsed execution times range from 8% slower to 20% faster than the baseline

case, but there is no correlation between the number of instructions executed and run time. For the prover

benchmark, one optimized version executes 9% fewer instructions than the baseline case but runs 3% slower;

for the pspec benchmark, a version that executes only 3% fewer instructions runs 16% faster. We have

determined that procedure placement is the cause of this anomaly. Both virtual-memory performance [25]

and instruction and TLB miss ratios [21, 18] are known to be a�ected by procedure placement. For our

benchmarks, poor (or better) instruction cache usage or an increase (or decrease) in TLB misses are possible

explanations. We discount page faults and disk operations because their respective counts for the baseline

and optimized versions of each benchmark are similar.

Appendix A gives elapsed execution times for various procedure layouts: execution times range from 9%

11

Name Description
baseline No transformations are applied.
data driven Data-driven simpli�cation applied using binding �le.

Data-driven simpli�cation also applied in the following four cases.
inlining only Applies inlining at active call sites, but does not apply global optimizations to the caller

or its callees.
inlining+opts Applies inlining at active call sites and global optimizations in the caller and inlined callees.
targeted cloning Applies global optimizations to hot procedures, clones callees for which a calling context

is known, but does not apply inlining.
all Applies both \inlining+opts" and \targeted cloning".

Static info Dynamic info
Inlined Clone Total % Total % Total %

Benchmark sites Clones Sites instructions dec. loads dec. indir. calls dec.
interp

baseline 2,246,285,742 507,198,591 1,432,113
data driven 2,155,521,196 4.0 472,765,679 6.8 1,238,835 13.5
inlining only 14 2,144,169,236 4.5 472,690,613 6.8 1,253,883 12.4
inlining+opts 14 2,136,445,167 4.9 471,296,993 7.1 1,249,592 12.7
targeted cloning 169 573 2,124,071,374 5.4 466,899,362 7.9 1,252,011 12.6
all 14 169 573 2,107,786,224 6.2 465,692,190 8.2 1,251,042 12.6
m3fe

baseline 2,535,895,585 610,953,616 13,313,427
data driven 2,247,994,707 11.4 508,081,278 16.8 5,787,760 56.5
inlining only 48 2,226,672,253 12,2 510,913,066 16.4 5,923,380 55.5
inlining+opts 48 2,224,026,335 12.3 509,093,838 16.7 5,928,671 55.5
targeted cloning 200 249 2,258,355,977 10.9 508,871,310 16.7 5,832,841 56.2
all 48 200 249 2,182,901,982 13.9 497,026,556 18.6 5,926,296 55.5
prover

baseline 8,121,473,330 1,963,773,588 32,906,442
data driven 7,796,928,277 4.0 1,845,354,851 6.0 6,906,463 79.0
inlining only 50 7,647,396,740 5.8 1,886,217,768 3.9 7,052,044 78.6
inlining+opts 50 7,580,044,906 6.7 1,893,356,427 3.6 6,960,740 78.8
targeted cloning 83 189 7,632,711,649 6.0 1,827,666,254 6.9 6,623,814 79.9
all 50 82 187 7,367,7293,86 9.3 1,848,698,243 5.9 6,692,476 79.7
pspec

baseline 2,722,464,467 629,504,534 6,180,460
data driven 2,652,447,345 2.6 605,755,797 3.8 4,859,839 21.4
inlining only 25 2,634,074,120 3.2 606,397,824 3.7 4,868,735 21.2
inlining+opts 25 2,626,013,632 3.5 604,426,754 4.0 4,818,071 22.0
targeted cloning 200 350 2,630,568,052 3.4 601,933,186 4.4 4,851,010 21.5
all 25 200 370 2,608,473,865 4.2 600,776,809 4.6 4,805,486 22.2
m3pp

baseline 4,061,743,307 952,579,428 1,682,745
data driven 3,939,194,472 3.0 914,111,621 4.0 1,658,992 1.7
inlining only 13 3,907,929,083 3.8 906,139,063 4.4 1,660,352 1.3
inlining+opts 13 3,895,297,753 4.1 906,697,230 4.9 1,657,298 1.5
targeted cloning 13 33 3,943,512,006 2.3 918,263,452 3.6 1,670,491 0.7
all 13 15 44 3,849,834,430 5.2 897,923,673 5.7 1,641,631 2.4

Table 3: Static and dynamic statistics

12

Modula-3 SPEC
Benchmark Link time Text size Benchmark Link time Text size
m3pp 29 281 eqntott 3.4 46
prover 50 454 li 6.5 99
pspec 46 563 espresso 13.6 232
interp 103 933 gcc 51.4 992
m3fe 185 1366

Table 4: Link time in seconds and text size in KB

slower to 15% faster. Comparable variations in elapsed times due to code and data placement have been mea-

sured for Self [15] when executing on a SPARCstation-2 with a uni�ed, direct-mapped cache. Traditional

linkers emit procedures in the order that they occur in modules; we rediscovered the e�ects of procedure

placement because mld can emit procedures in various layouts, depending on the optimizations it applies.

For our Modula-3 benchmarks, procedure positioning has even greater e�ects | both positive and negative

| on run time than have been previously reported. Although this indicates that total instructions and loads

executed are poor predictors of runtime performance for our benchmarks, the value of our techniques are

simply masked, not invalidated, by the elapsed execution times.

5 System Performance

Linking intermediate code is slower than traditional linking because object code is generated for all modules

every time they are linked. mld compensates by using BURS-based code generators [12, 20], which can

select locally optimal code in as few as 50 instructions per tree node [11]. Nonetheless, code generation

requires approximately 130�sec per generated instruction on a DEC 5000 and dominates mld's total link

time. Table 4 gives the time to link the Modula-3 benchmarks and four of the SPEC benchmarks. When

linking the SPEC benchmarks on a DEC 5000, code generation accounts for 42{80% of the link time; for the

Modula-3 benchmarks, it accounts for 48{58%. Seeking in large libraries and reading modules from them

account for another 10%{35% of link time for the Modula-3 programs.

Fast compilation o�sets slow linking. Because mlcc emits mill instead of assembly code, mlcc generates

object code 1.5{3 times faster than the compiler on which it is based, lcc, and the MIPS assembler. Although

mlcc's speed cannot compensate for slower linking in an edit-compile-link cycle of only a few modules, it

does compensate when every module is compiled and linked. For example, when compiling and linking all

modules of the four integer SPEC benchmark programs, mlcc and mld are 1.2{1.5 times faster on a SPARC-

station-2 and 1.1{1.9 times faster on the MIPS than lcc and ld; avoiding the assembler yields most of this

improvement.5

5This comparison is unfair to the MIPS assembler, because the MIPS assembler schedules instructions but mld does not.

13

6 Related Work

We are not aware of any other linkers that link intermediate code to reduce the costs of high-level language

features. There are other optimizing linkers, but they are intended for a family of related architectures [13, 27]

or use machine-level representations such as register transfers [3, 23]. Their link-time optimizations tend

to be architecture speci�c, e.g., rewriting object code to convert two-instruction address loads into one

instruction loads on a 64-bit architecture [24].

Inlining is important for programs in which method invocations are calls. For dynamically compiled,

object-oriented languages, such as Self, inlining is essential for achieving acceptable runtime performance [5].

Even in statically typed languages, inlining is important enough to warrant explicit linguistic support. C++'s

nonvirtual functions and the inline declaration [8] and Modula-3's <*INLINE*> directive are examples.

When inlining is applied and how candidate sites are chosen most in
uence the bene�ts of inlining. For

statically typed languages, inlining is often implemented as source-to-source transformations. Candidate

call sites are chosen either explicitly by program directives or heuristically. Source-to-source inlining has

disadvantages: inter-module inlining increases dependencies between source modules, and library procedures

whose source is unavailable cannot be inlined. Choosing call sites heuristically also has disadvantages:

aggressive heuristics may trigger inlining at numerous sites and increase compilation time signi�cantly [7];

the number of local variables in a caller can increase signi�cantly, which increases register pressure and

spilling and hence execution time [7, 14]; and the heuristics are usually applied before the entire program is

available, without knowing the execution frequencies of the inlined sites. Pro�le-guided inliners exist [6] but

are used at compile-time and thus su�er the same problems as source-to-source inlining.

Converting method invocations to direct calls not only enables inlining but also may improve performance

on highly pipelined architectures on which mispredicted or unpredictable branch targets stall the pipeline [22].

Accurately predicting the targets of indirect calls in C++ programs reduces pipeline stalls and is estimated

to improve run times by 2{24% on an architecture similar to the DEC Alpha [4]. Eliminating indirect

calls is even better, because identifying the target procedure requires no architecture-speci�c prediction

mechanisms. A promising technique for converting method invocations is used in Self [16]. At run time,

the types of methods (\dynamically-dispatched calls") are fed back to the compiler to help it optimize call

sites, e.g., by using type tests and direct calls for the most common cases and by inlining common targets.

Self is compiled on-the-
y, but the authors suggest that type feedback also could be e�ective for statically

compiled languages. Link time might be a better target point for type feedback: type tests can be added

and inlining applied without recompilation, and methods in libraries, for which source is often unavailable,

can be optimized as well.

14

7 Discussion

High-level language features often incur costs that can be reduced or recovered when information about

the type hierarchy becomes available. In C++, the concrete representation of a type is revealed to clients at

compile time. This inclusion helps the compiler generate e�cient code for accessing object �elds and methods,

but it reduces program modularity and complicates library maintenance by requiring recompilation of every

client when the type's representation changes. In Modula-3, opaque typing enforces a strict separation

between a type's interface and its implementation, which promotes program modularity and permits smart

recompilation, but it incurs a runtime cost, because the compiler has insu�cient information to generate

e�cient �eld-access code. Even though the representations of Modula-3 types are revealed at link time when

the complete type hierarchy is known, traditional linkers are not designed to use this information and are

unable to reduce the runtime overhead of these language features.

Our results show that link-time optimization of an intermediate code recovers the cost of opaque types

and reduces the cost of methods while preserving the bene�ts of these features. Although we use mld to

evaluate the e�ectiveness of link-time optimizations for Modula-3, little of its implementation is dependent

on Modula-3, and the techniques themselves are language independent. mld could be used to evaluate link-

time optimizations for C++; for example, data-driven simpli�cation could provide C++ with the bene�ts of

opaque types for no additional runtime cost, and link-time inlining of convertible methods could improve

program modularity by reducing dependencies between source modules.

Intermediate-code linking is probably too expensive to use during edit-compile-test cycles because object

code must be generated for the entire program, so fast turn-around is almost impossible. In its purest

form, intermediate-code linking is too slow for use in development, but our results show that even some

optimization at link time is valuable. Moreover, our techniques complement compile-time and other link-time

optimizations because they leverage information unavailable to other optimizing tools. Possible techniques

for reducing the cost of whole-program code generation include incremental linking of intermediate code

or linking hybrid modules and libraries that contain some procedures in intermediate code and others in

object code. Dynamic linking is even possible under certain conditions: for example, conservative method

conversion is possible as long as no methods de�ned in dynamically linked modules override ones de�ned

in statically linked modules. In future work, we plan to investigate techniques for making retargetable,

optimizing linking a viable alternative to traditional linking during software development.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers { Principles, Techniques and Tools. Addison Wesley, 1986.

[2] T. Ball and J. R. Larus. Optimally pro�ling and tracing programs. In Conference Record of the ACM Symposium
on Principles of Programming Languages, pages 59{70, Albuquerque, NM, Jan. 1992.

[3] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. Proceedings of the SIGPLAN'88
Conference on Programming Language Design and Implementation, SIGPLAN Notices, 23(7):329{338, July
1988.

15

[4] B. Calder and D. Grunwald. Call prediction in object-oriented languages. In Conference Record of the ACM
Symposium on Principles of Programming Languages, pages 397{408, 1994.

[5] C. Chambers and D. Ungar. Making pure object-oriented languages practical. In Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 1{15, 1991. Published as SIGPLAN Notices, 26(11),
1991.

[6] P. Chang, S. Mahlke, and W. Chen. Pro�le-guided automatic inline expansion for C programs. Software|
Practice & Experience, 22(5):349{369, 1992.

[7] K. D. Cooper, M. W. Hall, and L. Torczon. Unexpected side e�ects of inline substitution: A case study. ACM
Letters on Programming Languages and Systems, 1(1):22{32, 1992.

[8] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison Wesley, Reading, MA, 1990.

[9] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design and Implementation. Benjamin/Cummings,
Redwood City, CA, 1995. ISBN 0-8053-1670-1.

[10] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a simple, e�cient code-generator generator.
ACM Letters on Programming Languages and Systems, 1(3):213{226, Sept. 1992.

[11] C. W. Fraser and R. R. Henry. Hard-coding bottom-up code generation tables to save time and space. Software|
Practice and Experience, 21(1):1{12, Jan. 1991.

[12] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG|Fast optimal instruction selection and tree parsing.
SIGPLAN Notices, 27(4):68{76, Apr. 1992.

[13] M. I. Himelstein, F. C. Chow, and K. Enderby. Cross-module optimizations: Its implementation and bene�ts.
In Proceedings of the Summer USENIX Technical Conference, pages 347{356, Phoenix, AZ, June 1987.

[14] A. M. Holler. A Study of the E�ects of Subprogram Inlining. PhD thesis, Department of Computer Science,
University of Virginia, March 1991.

[15] U. Holzle. Adaptive optimization for Self: Reconciling High Performance with Exploratory Programming. PhD
thesis, Stanford University, August 1994.

[16] U. Holzle. Optimizing dynamically-dispatched calls with run-time type feedback. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 326{335, 1994.

[17] B. Kalsow and E. Muller. SRC Modula-3 Version 2.11. Digital Equipment Corporation Systems Research Center,
January 1992.

[18] S. McFarling. Procedure merging with instruction caches. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 71{79, Toronto, Ontario, Canada, 1991.

[19] G. Nelson, editor. Systems Programming with Modula{3. Prentice Hall, 1991.

[20] E. Pelegr�i-Llopart and S. L. Graham. Optimal code generation for expression trees: An application of BURS
theory. In Conference Record of the ACM Symposium on Principles of Programming Languages, pages 294{308,
San Diego, CA, Jan. 1988.

[21] K. Pettis and R. Hansen. Pro�le guided code positioning. In SIGPLAN Conference on Programming Language
Design and Implementation, 1990. Also in SIGPLAN Notices, Vol. 25, No. 6, June, 1990.

[22] R. L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, 1992.

[23] A. Srivastava and D. W. Wall. A practical system for intermodule code optimization at link-time. Journal of
Programming Languages, pages 1{18, March 1993.

[24] A. Srivastava and D. W. Wall. Link-time optimization of address calculation on a 64-bit architecture. In
SIGPLAN Conference on Programming Language Design and Implementation, pages 49{60, 1994.

[25] J. W. Stamos. Static grouping of small objects to enhance performance of a paged virtual memory. ACM
Transactions on Computer Systems, 2(2), 1984.

[26] Standards Performance Evaluation Corp. SPEC Benchmark Suite Release 1.0, Oct. 1989.

[27] D. W. Wall. Experience with a software-de�ned machine architecture. ACM Transactions on Programming
Languages and Systems, 14(3):299{338, 1992.

16

A Procedure placement

We expected that the reductions in the number of instructions and loads executed would be re
ected by

comparable reductions in elapsed execution time, but there is little correlation between the two. To determine

if procedure placement is the cause of this anomaly, we emitted procedures for the baseline cases in three

orders: as they occur in each module, by a pre-order traversal of the program's call graph, and by a post-order

traversal. Pro�ling indicates that each version of each benchmark executes the same number and the same

distribution of instructions, but elapsed execution times vary, ranging from 9% slower to 15% faster than the

baseline. The table below gives the elapsed execution times of each benchmark in the three layouts. Each

version of each benchmark had the same number of page faults and disk operations, and each run exceeded

90% CPU usage. For comparison, we compiled four of the SPEC [26] benchmarks with mlcc and used mld

to produce the same three layouts of each benchmark. Here, procedure placement had little or no e�ect

(0{2%) on the run times of the SPEC programs, which suggests that the e�ects of procedure placement are

program speci�c.

Benchmark By module Post-order Pre-order
interp 74.0 79.1 74.4
m3fe 105.1 113.2 114.4
prover 245.6 259.1 251.9
pspec 121.4 103.3 106.2
m3pp 112.8 115.2 109.0

Pettis and Hansen evaluated a number of pro�le-guided strategies for positioning code in executables.

They found that a combination of positioning techniques result in runtime improvements of 2{26% and can

be attributed to improved use of the instruction cache and reduced TLB misses. Procedure positioning was

the least e�ective, improving run time by 0{10%; however, when procedure positioning was combined with

basic-block positioning (moving the targets of frequently executed branches into fall-through positions) and

procedure splitting (clustering frequently executed basic blocks on consecutive pages), signi�cant improve-

ments were measured. For our Modula-3 benchmarks, procedure positioning has even greater e�ects | both

positive and negative | on run time. mld already uses pro�ling data to drive other optimizations, and it

could be modi�ed to do aggressive code positioning, but that would require some target-speci�c information

to guide placement, e.g., cache and page characteristics.

17

