Brown Tumor of Bone: A Potential Source of False-Positive Thallium-201 Localization

C. J. Calvin Yang, James E. Seabold and Nelson J. Gurll

This article and updated information are available at:
http://jnm.snmjournals.org/content/30/7/1264

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml
Brown Tumor of Bone: A Potential Source of False-Positive Thallium-201 Localization

C. J. Calvin Yang, James E. Seabold, and Nelson J. Gurll

Departments of Radiology and Surgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa

Brown tumor of bone (osteitis fibrosa cystica) should be included in the differential diagnosis of lesions that cause false-positive thallium-201 localization in patients with primary hyperparathyroidism. We report a case of a brown tumor of the upper sternum mimicking a superior mediastinal parathyroid neoplasm in a patient with persistent hyperparathyroidism 9 years after a negative neck exploration (with subtotal thyroidectomy and thymectomy). A 201Tl/99mTc pertechnetate subtraction scintigram demonstrated complete subtraction of this 201Tl focus.

Thallium-201 (201Tl)/technetium-99m (99mTc) pertechnetate subtraction scintigraphy is a useful technique for the detection of parathyroid neoplasms of the neck and mediastinum (1—11). Although the differential uptake of 201Tl/99mTc is a nonspecific finding, it is particularly useful for localization of parathyroid neoplasms in patients with negative neck explorations and recurrent or persistent hypercalcemia (9—12). Up to 5% of hyperfunctional parathyroid lesions are missed at the initial operation (12—15). Most of these parathyroid neoplasms are located in the neck or thymic region. Thallium-201/99mTc subtraction imaging is a useful adjunct to other imaging modalities for detection of these neoplasms (9—11). However, knowledge of potential sources of 201Tl localization may help avoid misinterpretation of focal 201Tl localization due to a vascular neoplasm. We report a case of a brown tumor involving the upper sternum mimicking a superior mediastinal parathyroid neoplasm on 201Tl images in a patient with persistent hypercalcemia 9 yr after the initial operation.

CASE REPORT

A 57-yr-old woman underwent a left thyroid lobectomy, inferior right thyroid lobe nodulectomy, thymectomy, and biopsy of two atrophic superior parathyroid glands during a negative neck exploration for primary hyperparathyroidism.

FIGURE 1
Sagittal sonogram revealing complex hypoechoic focus in the superior pole (S) and hypoechoic focus (arrows) in the inferior right lobe of the thyroid (T).
FIGURE 2
A: Thallium-201 (5-min image) of the neck and upper chest demonstrating localization in the right lobe of the thyroid (T), a focus in the superior mediastinum (B, arrows), left clavicle (c), left acromial process (a) and heart (H). B: \(^{201}\text{Tl}^{99m}\text{Tc}\) subtraction image of the neck and upper chest demonstrating two focal sites of abnormal \(^{201}\text{Tl}\) in the superior and inferior right thyroid bed (arrows). The focus in the superior mediastinum (B) and clavicle (c) are no longer visible.

in 1979. Postoperatively, she experienced persistent hypercalcemia, hypophosphatemia, and elevation of serum parathyroid hormone levels. Selective venous sampling 6 mo later failed to show a step-up in parathyroid hormone levels. The patient refused further diagnostic workup.

She returned in 1987 because of a left clavicular fracture. Sonograms of the neck revealed a hypoechoic focus in the inferior pole and a complex hypoechoic focus in the superior right lobe of the thyroid (Fig. 1). These findings were consistent with either a primary thyroid neoplasm or an intrathyroidal parathyroid neoplasm. Thallium-201 analog images (Fig. 2A) of the neck and upper chest demonstrated focal abnormalities in the superior and inferior poles of the right thyroid bed, the superior mediastinum, and the left clavicular region. A \(^{201}\text{Tl}^{99m}\text{Tc}\) subtraction image (Fig. 2B) showed residual focal activity in the region of the superior and inferior thyroid bed with "complete subtraction" of activity from the superior mediastinal and left clavicular foci. A 35° left oblique view of the neck and upper chest showed the mediastinal focus to be very anterior in location. Images of the hands demonstrated focal \(^{201}\text{Tl}\) localization in several digits (Fig. 3A), which corresponded to radiographic sites of brown tumors (Fig. 3B). A chest x-ray was negative for sternal or mediastinal abnormalities, but a pathologic fracture of the left clavicle was observed. Computed tomography of the chest demonstrated a cystic lesion of the sternum (Fig. 4), which corresponded to the mediastinal focus of abnormal \(^{201}\text{Tl}\) tracer localization.

At neck exploration, an intrathyroidal parathyroid adenoma in the inferior right lobe and a follicular adenoma in the superior right lobe of the thyroid were removed by right thyroid lobectomy. The patient developed extremely low serum calcium, phosphate, and magnesium levels ("hungry bone syndrome") (16), which ultimately responded to calcium, magnesium, and 1,25-dihydroxy vitamin D3 replacement. She is currently eucalcemic without medication.

DISCUSSION

Recurrent or persistent hyperparathyroidism is a difficult clinical problem. The success of a second operation is highly dependent upon accurate localization of the hyperfunctioning tissue. Knowledge of potential sources for \(^{201}\text{Tl}\) localization is important for accurate interpretation. Common causes for false-positive \(^{201}\text{Tl}^{99m}\text{Tc}\) subtraction images include thyroid neoplasms, colloid goiter, and focal Hashimoto's thyroiditis. Less common causes include metastatic carcinomas, lymphoma, and sarcoidosis (17).

Brown tumors of bone are highly vascular, lytic bone cysts that occur in patients with hyperparathyroidism (18,19). These tumors occur less frequently than in the past, because of earlier detection of hypercalcemia by automated blood chemistry analysis. The incidence of osteitis fibrosa cystica is <10% in most current series (20). It is likely these tumors show \(^{201}\text{Tl}\) localization because of their marked vascularity. This is supported by the absence of a residual \(^{201}\text{Tl}\) focus on the \(^{201}\text{Tl}^{99m}\text{Tc}\) subtraction image (Fig. 2B). When this tumor arises in the sternum, it could be mistaken for aberrant parathyroid tissue in the thymus or superior mediastinum particularly on nonsubtracted or only partially subtracted \(^{201}\text{Tl}\) images (Fig. 2A).
FIGURE 3
A: Thallium-201 image of the hands shows sites of varying amounts of focal tracer localization (arrows) in the proximal phalanx of the left thumb and several digits at sites of brown tumors. B: Plain film of the hands demonstrating osteitis fibrosa cystica (arrows). Not all lesions are well visualized on this view.

In our patient, the chest radiograph failed to reveal a lesion in the sternum, and the superior mediastinal focus was initially considered to be a possible ectopic parathyroid neoplasm. Computed tomography demonstrated a cystic lesion in the upper sternum. The acute left clavicular fracture also demonstrated 201Tl localization, presumably on the basis of hyperemia secondary to increased bone remodeling. Residual 201Tl localization was not identified at this site on the subtracted image (Fig. 2B).

The intrathyroidal parathyroid adenoma located in the inferior pole of the right lobe did not cause a focal "cold" defect on the 99mTc thyroid images, but did cause a positive 201Tl/99mTc subtraction image (Fig. 2B). This neoplasm had probably been missed during the initial neck exploration 9 yr previously. A follicular adenoma in the upper right lobe of the thyroid also concentrated sufficient 201Tl to cause a positive 201Tl/99mTc subtraction image (2,21). However, primary thyroid neoplasms usually cause a focal "cold" defect on 99mTc images (2, 20–23). Although high-resolution ultrasonography demonstrated hypoechoic intrathyroidal neoplasms, this finding did not differentiate between parathyroid and thyroid origin.

Thallium-201/99mTc subtraction imaging was helpful in localizing the parathyroid adenoma in the inferior right lobe of the thyroid. Although the 201Tl focus in the upper chest "subtracted out" on the 201Tl/99mTc subtraction image, it was initially thought to be the result of a mediastinal parathyroid neoplasm until CT demonstrated a cystic lesion within the sternum. Focal 201Tl localization corresponding to sites of osteitis fi-
REFERENCES

