
Appeared in Proc. AAAI-96, pp 627{632Toward E�cient Default ReasoningDavid W. Etherington and James M. CrawfordComputational Intelligence Research Laboratory1269 University of OregonEugene, OR 97403-1269fether, jcg@cirl.uoregon.eduAbstractEarly work on default reasoning aimed to formalizethe notion of quickly \jumping to conclusions". Un-fortunately, the resulting formalisms have proven morecomputationally complex than classical logics. Thishas dramatically limited the applicability of formalmethods to real problems involving defaults. Thecomplexity of consistency checking is one of the twoproblems that must be addressed to reduce the com-plexity of default reasoning. We propose to approxi-mate consistency checking using a novel synthesis oflimited contexts and fast incomplete checks, and ar-gue that this combination overcomes the limitationsof its component parts. Our approach trades correct-ness for speed, but we argue that the nature of defaultreasoning makes this trade relatively inexpensive andintuitively plausible. We present a prototype imple-mentation of a default reasoner based on these ideas,and a preliminary empirical evaluation.Computation and NonmonotonicityEarly work on nonmonotonic reasoning (NMR) was of-ten motivated by the idea that defaults should makereasoning easier. For example, Reiter (1978) says\[closed-world reasoning] leads to a signi�cant reduc-tion in the complexity of both the representation andprocessing of knowledge". Winograd (1980) observesthat agents must make assumptions to act in real time:\A robot with common sense would [go] to the placewhere it expects the car to be, rather than : : : think-ing about the in�nite variety of ways in which circum-stances may have conspired for it not to be there."Paradoxically, formal theories of NMR have beenconsistently characterized by their intractability. Forexample, �rst-order default logic (Reiter 1980) is notsemi-decidable and its inference rules are not e�ective.In the propositional case, most NMR problems are�P2 or �P2 -complete (Gottlob 1992; Stillman 1992).1Even very restricted sublanguages based on proposi-tional languages with linear decision procedures remain1Arguably, this complexity is the price of increased ex-pressivity, allowing NMR formalisms to represent knowl-edge that can't be concisely expressed in monotonic logics(Cadoli, Donini, & Schaerf 1994; Gogic et al. 1995) butthis observation is little help in building practical systems.

NP-complete(Kautz & Selman 1989). Convincing ex-amples of broadly useful theories within demonstrablytractable languages for NMR have yet to appear.A nonmonotonic formalism sanctions a default con-clusion only if certain facts can be shown to be con-sistent with the rest of the system's beliefs|i.e., onlyif it can be shown that the default is not a knownexceptional case. Unfortunately, consistency is gener-ally even harder to determine than logical consequence.The need to prove consistency before drawing defaultconclusions is the �rst source of the intractability ofnonmonotonic formalisms.The second source of intractability is that the orderin which default rules are applied can e�ect the exten-sion generated. It is these two sources of intractabilitytogether that produce the �P2 (or �P2 ) time complexityof most problems in default reasoning. However, givenan oracle for consistency checking, some interestingproblems, such as �nding an extension for a normal de-fault theory, could be solved tractably. Conversely, anoracle for default ordering would produce tractabilityonly for languages with very limited expressive power.Furthermore, the ability to check consistency quickly isinteresting in its own right for many propositional rea-soning tasks. Therefore, we believe that a �rst step to-ward developing practicable nonmonotonic reasoners isto reduce their dependency on intractable consistencychecking.Our approach to approximate consistency checkingis ultimately based on limiting the search for excep-tions. This approach has the intuitive appeal that a de-fault can be applied without �rst having to discount ev-ery possible reason this case might be exceptional. Wehope to recapture the intuition that a default shouldbe applied unless its inapplicability is readily appar-ent (i.e., \at the top of your mind"). Our approachtrades accuracy for speed: \inappropriate" conclusionsmay be reached that must be retracted solely due toadditional thought, but this tradeo� accords with theoriginal arguments for default reasoning. More impor-tantly, we argue, defaults generally seem to be used inways that minimize the cost of this tradeo�.We limit our discussion to default logic (Reiter1980), but it is important to note that our ideas applydirectly to other nonmonotonic formalisms. A default1



has the form P (�x):J(�x)C(�x) , where P; J; and C are formu-lae whose free variables are among �x = x1; :::; xn; theyare called the prerequisite, justi�cation, and consequentof the default, respectively. The default can be readas saying that things satisfying P typically satisfy Cunless known not to satisfy J:Su�cient Tests for ConsistencyConsider testing whether � is consistent with a KB.The good news is that there are fast su�cient testsfor consistency. For example, provided the theory and� are each self-consistent, it su�ces (but is not neces-sary) that no literal in :� occurs in the clausal repre-sentation of the theory. This can be tested in at worstlinear time even for non-clausal theories. Similarly, if:� occurs only in clauses with pure literals, � is consis-tent with the KB. More complicated tests derive fromtechniques in (Borgida & Etherington 1989), knowl-edge compilation (Selman & Kautz 1991) and multi-valued entailment (Cadoli & Schaerf 1992).Unfortunately, there are two serious obstacles to us-ing such fast tests. Those fast enough to check thewhole KB in real time can be expected to fail in re-alistic applications. It would be a peculiar KB that,for example, had the default \Birds usually y" withno information about non-ying birds! Representing arule as a default seems to presume knowledge (or atleast the strong expectation) of exceptions. This willcause the fast tests described above to fail, giving nouseful information. The more complicated tests, suchas knowledge compilation, are too expensive to do onthe whole KB before each default is applied. More-over, since applying defaults expressly changes what isbelieved, compilation cannot be done once in advance.Context-Limited Consistency CheckingIf computational resources are limited, it makes senseto focus our search for inconsistency on the relevantparts of the KB. For example, the default that youcan get a babysitter might fail for prom night, but isunlikely to be a�ected by the stock market; a limitedreasoner that devotes much e�ort to seeing if marketuctuations prevent hiring a sitter seems doomed.Focusing on limited contexts provides two bene�ts.First, in the propositional case, consistency check-ing can be exponential in the size of the theory (ifP 6=NP ). Clearly, if we need only check a small sub-set, e�ciency will improve signi�cantly. Second, onecan use fast consistency checks and limited contextstogether to help gain e�ciency even in �rst-order logic,where full consistency checking is undecidable.Ideally, the context should contain exactly the for-mulae relevant to determining consistency. Thenall necessary information is available, and irrelevantsearch is curtailed: consistency checking is no harderthan it must be for correctness. Of course, this idealsolves the problem by reducing it to the arguably

harder problem of determining relevance. Conversely,using a randomly-chosen context for consistency check-ing could be expected to produce very cheap consis-tency checks (since the fastest su�cient tests will belikely to succeed), and still have (marginally) better-than-random accuracy (applicable defaults won't becontradicted, and inapplicable default might be de-tected). Naturally, any realistic context-selectionmechanism will fall between these extremes. Addi-tional e�ort spent on context building can reduce theaccuracy lost in focusing on the context: like mostapproximation schemes, practical context selection in-volves balance.Just what a context should contain is an openquestion, but a rudimentary notion su�ces to illus-trate the idea (c.f. (Elgot-Drapkin, Miller, & Perlis1987)). Facts come into the context as they are at-tended to (e.g., from perception or memory), and exitas they become stale. The context should includeground facts known about the objects under discus-sion (e.g., Tweety) as well as rules whose antecedentsand consequents are instantiated by either the con-text or the negation of the justi�cation to be checked(e.g., if Penguin(Tweety) is in the context, check-ing the consistency of F lies(Tweety); should draw in8x: Penguin(x) � :F lies(x)). Such a context can bebuilt quickly using good indexing techniques.This simple notion of context can be elaborated inmany ways. Limited forms of rule chaining can be pro-vided if chaining can be tightly bounded. For example,if the KB has a terminological component (c.f. (Brach-man & Schmolze 1985)), chains through the type hier-archy might be brought in by treating deductions fromterminological knowledge as single `rule' applications.Also, \obvious" related items can be retrieved usingCrawford's (1990) notion of the accessible portion ofthe KB, Levesque's (1984) notion of limited inference,or other mechanisms that guarantee cheap retrieval.The signi�cant feature of our approach is the syn-ergy between the two components: context focuses theconsistency check on the part of the KB most likely tocontain an inconsistency and, often, can be expectedto allow fast su�cient checks to succeed where theywould fail in the full KB. Such fast tests can allowcontext-limited consistency testing to be e�cient evenin large �rst-order KBs.A Simple Example: Consider the canonical defaultreasoning example:Robin(Tweety); P enguin(Opus); Emu(Edna) � � �8x: Canary(x) � Bird(x) (1)8x: Penguin(x) � Bird(x) (2)8x: Penguin(x) � :F lies(x) (3)8x: Emu(x) � Bird(x)8x: Emu(x) � :F lies(x) � � �Bird(x) : F lies(x)F lies(x)2



where the ellipses indicate axioms about many otherkinds of birds and many other individual birds.To conjecture that Tweety ies, one must proveF lies(Tweety) is consistent with the above theory|i.e., that Penguin(Tweety); Emu(Tweety); etc. aren'tprovable. This amounts to explicitly considering all theways that Tweety might be exceptional, which seemsunlike the way people use defaults.On the other hand, if recent history hasn't broughtexceptional types of birds to mind, the context mightcontain just Robin(Tweety) and (1). A fast test forconsistency of F lies(Tweety) would succeed, and soF lies(Tweety) could be assumed. Deciding if Opuscan y, however, brings Penguin(Opus) into the con-text and hence (2) and (3), so the consistency testfails. Similarly, after a long discussion about variousforms of ightless birds, facts about exceptional classesshould still be in the context. Fast consistency testsfor F lies(Tweety) would thus probably fail, and onewould have to explicitly rule out exceptions.The Mitigating Nature of DefaultsClearly context-selection is di�cult. Fortunately, thenature of defaults makes selection of a useful contextless problematic than might be expected. For a de-fault to be reasonable, we contend, (at least) two fac-tors must combine favorably: the likelihood that theconsequent holds given that the prerequisite holds andthe likelihood that if the prerequisite holds but thejusti�cations are not consistent (so the default is notapplicable), the agent will be aware of this fact. If thedefault is extremely likely to apply, one can tolerateoverlooking the odd exception. Similarly, if exceptionsare easy to spot, it may be useful to have a defaultthat rarely applies. However, if exceptions are com-mon but di�cult to detect, one is ill-advised to makeassumptions.2 Now, if we characterize a \good de-fault" as one for which the probability is low that theprerequisite holds, the justi�cation is inconsistent, andthe inconsistency will not be noticed, we are guaran-teed that a context-based system will produce accuracyas good as its defaults.3Experimental ResultsWe now turn to the results of preliminary experimentsbeginning the validation of our approach. A com-pletely convincing test would involve extensive exper-iments on large, �rst-order, real-world nonmonotonicKBs, showing signi�cant computational gains and ac-ceptable error rates. Sadly, the intractability of non-2We ignore the obvious third factor: the cost of errors.3Gricean principles of cooperative communication seemto enforce the second property above: if the speaker be-lieves the hearer may draw an inappropriate default con-clusion from her utterance, she must explicitly block it(Grice 1975), ensuring the appropriate contradiction is inthe hearer's context when the default is considered.

monotonic formalisms seems to have stied construc-tion of large KBs with defaults; we hope that the thiswork will be a step toward their construction.Meanwhile, the goal of these experiments is moremodest: preliminary determination of the e�ect of con-text limitations on the accuracy and cost of consis-tency checking for randomly-generated propositionaltheories. Such theories are generally characterized bytwo parameters: the number of variables and the num-ber of clauses (the length of all clauses is generallytaken to be three). For low clause-to-variable ratios,almost all problems are satis�able, and most problemsare computationally easy. At high ratios, almost allproblems are unsatis�able and most problems are easy.In between, in the so-called \transition region", lies amixture of satis�able and unsatis�able problems, andmany quite hard problems (Cheeseman, Kanefsky &Taylor 1991; Mitchell, Selman & Levesque 1992; Craw-ford & Auton 1993).Our experiments are primarily in the undercon-strained region. In the overconstrained region, almostall theories are inconsistent, so no defaults are appli-cable. Solving problems in the transition region gen-erally seems to require intricate case-splitting of thekind found more in logic puzzles than in commonsensereasoning. Also, an agent's world knowledge is likelyto be fairly underconstrained|we generally know suf-�ciently little about the world that there are manymodels that are consistent with what we know.4Working in the underconstrained region, we face aproblem: it is likely that a random literal chosen tobe our \default" will be consistent with a random the-ory, and consistency checking in any limited context(even the empty context!) will give the right answer.To solve this problem, we add a randomly generatedset of literals to our theories. Intuitively, the clausescorrespond to general knowledge about the world andthese literals correspond to a set of facts.The experiments presented below investigate thesuccess of context-limited consistency checking asproblem size (# variables, V ), degree of constraint (#clauses, C), and number of facts (# literals, L) vary.We �nd that context limitations are useful in muchof the underconstrained region, but their utility dropssharply as we approach the transition region. This isconsistent with the generally held belief that, in thetransition region, clauses throughout the theory inter-act with each other in complex ways. Context-limitedconsistency checking also becomes less useful as L be-comes more than about V=2; in these cases unit prop-agation makes full consistency checking so easy thatcontext-limitations become superuous.4Of course, commonsense knowledge no doubt clustersand some of these clusters may be locally quite constrain-ing. Ideally in these cases one would want to choose thecontext to include the entire cluster, but this goes beyondthe scope of the current experiments.3
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VariablesFigure 1: Accuracy, run time), context size, and searchtree size, vs V; at L = 0:4V: r = 0; 1; 2; 3; and 1 aremarked �, +, 2, � and 4, respectively.Experimental SetupWe generate random 3-SAT theories using Mitchell etal's (1992) method|each clause is generated by pick-ing three di�erent variables at random and negatingeach with probability 0.5. There is no check for re-peated clauses. Inconsistent theories are discarded.We then randomly select a series of L literals consis-tent with the theory built so far. Consistency checksare done using tableau (Crawford & Auton 1993).We select a random literal d to be the \default",and construct a series of concentric contexts aroundd: Cr;d denotes the context around d with radius r:Intuitively, the radius measures how many clauses thecontext extends out from d:More formally, the contextis the subset of the input theory, T; de�ned as follows:Cl;0 is :l if :l 2 T; and f g otherwise. For r > 0;Cr;l = Cr�1;l [[x _ y _ :l 2 T(fx _ y _ :lg [ C:x;r�1 [ C:y;r�1)(e.g., the r = 3 context around l contains the r = 2 con-texts around l; and around l's neighbors). Tableauis used to test satis�ability. For these tests we modi-�ed it to halt the search whenever the current partialassignment satis�es all the clauses in the theory.Experiment 1: The �rst experiment tests how thee�cacy of context limitation varies with problem size.We varied V from 100 to 600 incrementing by 100. Weset C to 2V (roughly centered in the underconstrainedregion), and L to 0:4V; generated 200 theories, andtested 10 defaults per theory. Each check was doneagainst contexts with radius 0 to 3, and then againstthe entire theory. The results appear in Figure 1.The limited growth of the context size is not sur-prising. A simple probabilistic argument shows thatfor large problems the expected context size dependson r and C=V (not V ). Further, since the number ofbranches in the search tree depends primarily on thesize of the context, it makes sense that the numberof branches does not increase appreciably with prob-
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LiteralsFigure 2: Accuracy, run time, search tree size, andcontext size, vs L; at V = 200, C = 400. r = 0; 1; 2; 3;and 1 are marked �, +, 2, � and 4, respectively.lem size. Run time depends on the number of branchesand on the time spent at each node. However, the timetableau spends at each node depends linearly on Veven when reasoning in a restricted context. This isan artifact of the design of tableau (and the context-building mechanism) that could be removed with somerecoding. If this artifact were removed, run time forreasoning within the limited contexts would presum-ably not increase appreciably with problem size. In anycase, run time in the contexts increases more slowlythan run time for consistency checking in the entiretheory. Accuracy (the percentage of correct answersfrom the consistency check) also seems relatively unaf-fected by problem size. We conjecture that, for largeproblems, accuracy is a function of r; C=V and L=V:Combining these e�ects, we conclude that the ef-fectiveness of context-limited consistency checking in-creases with problem size. The size of a radius r con-text, and thus the complexity of the consistency check,is essentially unchanged as V increases, but the accu-racy of the consistency check does not seem to fall.This attractive property is due to the fact that, atleast for underconstrained, random theories, the aver-age length of the inference chains that might lead usto conclude :d depends on C=V rather than on V: Ifthis same e�ect occurs in realistic KBs then contextlimitation should be quite e�ective for large problems.Experiment 2: The second experiment measures thee�ect of changing L on the e�ectiveness of context lim-itation. We �xed V at 200 and C at 400. We variedL from 20 to 180 by 20, generating 100 theories andtesting 10 defaults per theory. Results are shown inFigure 2.The most interesting result is the accuracy, whichgenerally falls to a minimum at around L = 0:4V; andincreases on either side of this point. We believe thatthe rise in accuracy below 0:4V is due not to any realincrease in the e�ectiveness of the context-limited con-sistency check; below this point more defaults are con-sistent, and context-limited checks only make mistakes4
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ClausesFigure 3: Accuracy, run time, context size, and searchtree size, vs C; at V = 200, L = 20. r = 0; 1; 2; 3; and1 are marked �, +, 2, � and 4, respectively.when defaults are inconsistent. However, note that asL falls, the di�erence in run time (and search tree size)between the context-limited check and the full checkrises dramatically. Thus the results in Experiment 1would have been even more favorable had we chosena lower L=V ratio. Above L = 0:5V; the accuracy ofthe context-limited checks rises again. However, thisregion is not particularly interesting because so manyliterals are set by the input theory that full consistencychecking becomes trivial.Experiment 3: The �nal experiment measures howthe e�ectiveness of context limitation changes with C:We �xed V at 200 and L at 20, and varied C from200 to 800 by 100. This takes us from quite under-constrained to the edge of the transition region. Wegenerated 100 theories and tested 10 defaults per the-ory, at each point. The results appear in Figure 3.Here again Accuracy is the most interesting graph.Starting at about 600 clauses, or C=V about 3, theaccuracy falls dramatically. We believe this is becausenear the transition region the interactions between theclauses in the theory become more global and any lim-ited context is likely to miss some of them and so failto detect inconsistencies. Our hope, of course, is thatrealistic theories of commonsense knowledge do not in-teract in this way (or do so only within local clustersthat can be entirely included within the context).One surprise is that starting at about 500 clauses, ora ratio of about 2.5, the cost of the consistency checkin the radius 3 context rises above the cost of the fullcheck. We believe this is due to of a kind of \edgee�ect" in the context. Consider a clause x _ y _ z inthe context. In some cases, there may be sets of clausesand literals in the full theory (e.g., :x_ a_ b; :a; and:b) but not in the context, that force the value of x:If this happens, the full check may actually be easierdue to unit resolution. One way to test this hypothesiswould be to unit resolve the input theory (this can bedone in linear time) before any other reasoning is done.

Related WorkThe idea of restricting the scope of consistency check-ing to a subset of the KB is not new. Our ideas arethe logical result of a long tradition of context-limitedAI reasoning systems dating back to conniver (c.f.(McDermott & Sussman 1972; Fahlman 1979)). Thisline of work limits deductive e�ort, resulting in incom-pleteness. Limiting consistency checking in default rea-soning, however, results in unsoundness|unwarrantedconclusions may be reached due to lack of deliberation.More directly related is Perlis' suggestion to limitconsistency checking to about seven formulae deter-mined by immediate experience. Perlis argues thatanything more is too expensive (Perlis 1984; Elgot-Drapkin, Miller, & Perlis 1987). He suggests thatagents will have to simply adopt default conclusionsand retract them later when further reasoning revealscontradictions. There are problems with Perlis' ap-proach, however. First, consistency-checking can beundecidable even in such tiny theories. More impor-tantly, though, the errors this approach produces donot seem justi�able, since defaults are applied with es-sentially no reection. Our analysis can be seen asexplaining why (and when) such context-limited con-sistency checking can be expected to have a high prob-ability of correctness. Furthermore, we believe that thenotion of applying fast consistency tests in limited con-texts provides signi�cant leverage, allowing contexts tobe larger while still achieving tractability.Theorist (Poole 1989) is also related in that it useslimited consistency checking to determine default ap-plicability. However, theorist does not maintain anotion of context, so its errors are based on the useof incomplete reasoning mechanisms, rather than re-stricted focus of attention. Also, theorist has no no-tion of fast su�cient consistency checking.Conclusions and Open ProblemsWe have described, and presented a preliminary ex-perimental evaluation of, a practical way to trade ac-curacy for speed in consistency checking, that we ex-pect to have applications to NMR (as well as to othercommonsense reasoning problems that involve verify-ing consistency). We argue that restricting the consis-tency check to a focused context, combined with fasttests for consistency, can improve expected e�ciency,at an acceptable and motivatable cost in accuracy.The techniques we have outlined are not universallyapplicable|any gains from our approach hinge on thenature of the theories and defaults involved. It is easyto construct pathological theories in which any restric-tion of the context will falsely indicate consistency. Ingeneral, our approach will su�er if there are too manyexceptions and those exceptions are hard to detect.We conjecture, however, that commonsense reasoningin general, and default reasoning in particular, is wellbehaved, in that complex interactions between distantparts of the KB are rare, and inconsistent defaults are5



generally readily apparent. In addition, we achieve\asymptotic correctness": if the agent has time to re-trieve more formulae and reason with them, the prob-ability of correctness increases. Thus, we can achievea favorable trade of correctness for e�ciency, withoutabandoning the semantic foundation provided by non-monotonic logic. Also, since by their very nature, de-faults may be wrong despite being consistent with allone knows, agents should be prepared to accept errorsin default conclusions, and deal with the resulting in-consistencies, as Perlis (1984) and many others haveargued. An increase in the error rate should thus beless problematic to a default reasoner than it might beto a purely deductive system.The e�cacy of our approach depends on the designof both the context-generalization and consistency-checking mechanisms. These choices can only be basedon, and ultimately veri�ed by, extensive experimentswith realistic commonsense KBs. Here we o�ered, andexperimentally examined, only some simple �rst-cutmechanisms. In particular, our experiments use com-plete consistency checking in the context. In the propo-sitional case, this appears to be su�cient; we believethat su�cient tests for consistency will be importantprimarily for �rst-order theories.We reiterate that consistency checking is only onesource of combinatorial complexity in default reason-ing; for many problems of interest, default orderingpresents another. We conjecture that limited contextscan also serve to limit the search of default order-ings (e.g., by considering only defaults in the context),which may allow a tractable approximation of the over-all default reasoning problem.AcknowledgmentsThis work was supported in part by NSF grant IRI-94-12205, and ARPA/Rome Labs contracts F30602-93-C-0031 and F30602-95-1-0023. These ideas were re�nedover several years in discussions with many people, es-pecially Alex Borgida and Bob Mercer. We are in-debted to them and to Matt Ginsberg, Henry Kautz,David Poole, Bart Selman and anonymous referees, forfruitful discussions and criticisms. The remaining awsare our responsibility, of course.ReferencesBorgida, A., and Etherington, D. 1989. Hierarch-ical knowledge bases and tractable disjunction. InProc. KR'89, 33{43.Brachman, R., and Schmolze, J. 1985. An overviewof the kl-one knowledge representation system. Cog-nitive Science 9(2):171{216.Cadoli, M., and Schaerf, M. 1992. Approximate infer-ence in default logic and circumscription. In Proc.4thInt'l Workshop on Nonmonotonic Reasoning.
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