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Computing Maximum Task Execution Times |A Graph-Based Approach *PETER P. PUSCHNER AND ANTON V. SCHEDL peter@vmars.tuwien.ac.atInstitut f�ur Technische Informatik, Technische Universit�at WienA-1040 Vienna, AustriaReceived May 1, 1991Editor:Abstract. The knowledge of program execution times is crucial for the development and theveri�cation of real-time software. Therefore, there is a need for methods and tools to predict thetiming behavior of pieces of program code and entire programs.This paper presents a novel method for the analysis of program execution times. The computa-tion of MAximum eXecution Times (MAXTs) is mapped onto a graph-theoretical problem that isa generalization of the computation of a maximum cost circulation in a directed graph. Programsare represented by T-graphs, timing graphs, which are similar to ow graphs. These graphs reectthe structure and the timing behavior of the code. Relative capacity constraints, a generalizationof capacity constraints that bound the ow in the edges, express user-supplied information aboutinfeasible paths. To compute MAXTs, T-graphs are searched for those execution paths whichcorrespond to a maximum cost circulation. The search problem is transformed into an integerlinear programming problem. The solution of the linear programming problem yields the MAXT.The special merits of the presented method are threefold: It uses a concise notation to char-acterize the static structure of a program and its possible execution paths. Furthermore, thenotation allows for a description of the feasible paths through the program code that character-izes the behavior of the code su�ciently to compute the exact maximum execution time of theprogram { not just a bound thereof. Finally, linear program solving does not only yield maximumexecution times, but also produces detailed information about the execution time and the numberof executions of every single program construct in the worst case. This knowledge is valuable fora more comprehensive analysis of the timing of a program.Keywords: real-time systems, maximum execution time, timing analysis, performance, safetyanalysis, software development, applications of graph theory, integer linear programming.1. IntroductionComputer systems for hard real-time process control must ful�ll stringent require-ments of reliability, availability, and safety. In these real-time applications the costof a catastrophic system failure can exceed the initial investment in the computersystem and the controlled object by far. To prevent such catastrophies, the systemdesign and implementation must guarantee the speci�ed behavior in the value andtime domain in all anticipated operational situations.* This work has been supported by Digital Equipment Corporation under contract EERP/AU-038.



2 A central parameter in the design and implementation of predictable real-timeapplications is the MAximum eXecution Time (MAXT) of the tasks involved. Dur-ing the design phase estimates of the MAXTs of tasks are used to determine therequired hardware resources, to plan the timing of interactions between tasks, andto allocate tasks to processing units. During the implementation phase these esti-mates become time budgets that the tasks must meet { the violation of a timingconstraint of a single task invalidates the results of the design phase. To give guar-antees for the ful�lment of the timing constraints of tasks, the timing behavior ofall tasks must be analyzed.MAXT computation is a complex task: It has to process knowledge about allfeasible (and infeasible) paths through the program code and the hardware char-acteristics of the target system. In the following we concentrate on the �rst aspectassuming that the execution time of every sequential piece of code is invariable overtime.This paper presents a method which describes feasible program execution pathsthrough a program/code fragment. From this description the maximum executiontime of the program { not just an execution time bound { is computed: The MAXTcomputation is transferred to a graph-theoretical problem resembling the problemof the calculation of a maximum cost circulation in a directed graph. Programsare represented by T-graphs, timing graphs, which are similar to ow graphs. AT-graph's structure reects the structure of a program, the weights of the graph'sedges stand for the execution times of sequential code fragments. Relative capacityconstraints, a generalization of the capacity constraints in ow graphs, expressuser-supplied information about infeasible paths. To compute MAXTs, T-graphsare searched for a maximum cost circulation which obeys the constraints. Thesearch problem is transformed into an integer linear programming problem. Thesolution of the programming problem yields the MAXT and detailed informationabout execution paths of maximum cost (see also [12, 16]).Several works are related to our research. The approach taken in this paper ismainly inuenced by Kligerman and Stoyenko. In [5, 18], they discussed restric-tions for programming languages that are necessary to allow for a computation ofexecution time bounds for real-time tasks. Their programming language, calledReal-Time Euclid, prohibits the use of recursions and goto-statements. Loops arerestricted to time bounded loops and simple for -loops. For the latter the maximumnumber of iterations, and thus the time maximally spent in these loops, can easilybe derived. An algorithm that calculates an execution time bound of a RT-Euclidprogram, by computing the maximum duration of all possible communication andexecution sequences of the code pieces of the program, is described in detail in [19].A more formal approach for the computation of worst case execution times isdescribed by Park and Shaw [17, 10]. The timing schemes described allow Parkand Shaw to compute the minimum and maximum execution times of constructscommon in most programming languages. Based on this theory a timing tool wasimplemented. This tool computes execution time bounds by analysing the sourcecode of C programs. It interacts with the user to obtain loop bounds required for



3the calculations. When the timing tool was evaluated the computed execution timebounds were very close to the real bounds [10].In [9], Park extended the previous work. Regular expressions are used to char-acterize feasible paths, thus improving the quality of the computed execution timebounds. When the analyzer tool computes execution time bounds it takes themaximum of the execution time bounds computed for all possible path groups.Mok and his group [8, 1, 2] produced a timing tool for assembly language pro-grams, which are annotated by TAL scripts. These scripts contain descriptionsof the timing properties of code pieces in the form of loop bounds and additionalcontrol ow information, which make the calculations less pessimistic. The use ofthat tool is restricted to the analysis of assembly language programs.Our method has its roots in [13]. Puschner and Koza analyzed high level languagecode to compute bounds for the execution times of tasks by extending the boundedloop concept found in [5]. New language constructs describe additional knowledgeabout the control ow. This allows the developers of programs to derive signi�cantlytighter execution time bounds for more complex programs. The described toolcombines the source program plus the compiled code to compute the MAXT of aprogram. When the authors experimented with the tool they observed that thetool did not �nd the correct mapping between the two representations for all inputprograms.To avoid this problem, a new task timing analysis tool was developed [14]. Itis based on a single data structure, called timing tree [11], which contains all in-formation needed to calculate MAXT bounds. This tool not only allows its usersto compute worst case execution time bounds of high quality; it also produces de-tailed information about the contribution of every statement to this bound andallows programmers to experiment with hypothetical times, i.e., the programmercan predict how local changes in the execution time a�ect the global timing behaviorof a procedure/program.Li and Malik [6] presented a method that is similar to our work. Worst caseprogram execution times are computed with an integer linear programming solver.Disjoint sets of program paths are identi�ed and a linear programming problem isconstructed for each path set. Then, the solution of each programming problem iscomputed. The maximum value of the solutions is the worst case execution time.Li, Malik, and Wolfe extended this work to incorporate the timing characteristicsof modern processors with instruction caches and pipelines, [7]. We do not discussthis work in detail, since the modelling of hardware features is beyond the scope ofthis paper.Several new aspects are presented in our work:� We treat the computation of worst case execution times as a graph-theoreticalproblem, a generalization of a circulation problem found in graph theory [4].� T-graphs and relative capacity constraints are a concise notation to characterizea program's static structure and feasible/infeasible execution paths.



4� The notation with T-graphs and relative capacity constraints characterizes feasi-ble and infeasible program paths su�ciently to derive exact maximum programexecution times (not just execution time bounds) for computer systems in whichthe execution time of every sequential piece of code is invariable. We prove thisproperty in the paper.� Our method imposes only a minimum of structural restrictions on programs.This is in constrast to most previous approaches [20, 15, 5, 13, 10] that werevery restrictive, e.g., they disallowed break, return, and other jump statements.� The graph theoretical problem is mapped onto an integer linear programmingproblem. A solution of a linear programming problem yields both the maxi-mum execution time and valuable information about the execution times andexecution frequencies of every single program construct. Besides, we can relyon existing tools to compute solutions and need not build our own.Section 2 describes the assumptions on programs and system properties made inthis work. In Section 3 we show how the computation of the MAXT of a programcan be mapped to the problem of �nding a maximum cost circulation in a graph,called T-graph. Since the �rst solution, that bounds the ow for each edge indi-vidually, proves to be unsatisfactory we introduce relative capacity constraints inSection 4. We show that this problem description suits our needs: Feasible exe-cution paths can be exactly characterized and the MAXT can be computed. InSection 5 we illustrate how an ILP problem is constructed to compute the MAXTfor a T-graph with relative capacity constraints. Section 6 concludes the paper.2. AssumptionsThe execution time of a program is determined by two factors: the behavior ofthe program, which depends both on the program structure and the applicationcontext, as well as the characteristics of the underlying hardware. Our method forMAXT analysis considers the �rst point. As for the hardware characteristics, weassume that the execution time of every sequential piece of code is invariable. Thefollowing list further summarizes the assumptions made in this paper.� A program/piece of code subject to MAXT-computation has one starting pointand one end point. The end point di�ers from the starting point. Every exe-cution begins or enters the code at the starting point and terminates or leavesthe code at the end point.Note that this assumption does not limit generality. A piece of code with onestarting point and one end point can be built from every piece of code with anarbitrary number of starting points and end points. The easiest way to do so isto insert a conditional branch to all starting points at the beginning and to adda new end point and jumps to this end point from all end points of the originalpiece of code.



5� Every execution can be described as a sequence of executions of the variouscode parts (e.g., instructions, statements, blocks, : : :) for which the executiontimes are known. Our method also works if the execution times of code partsare not exactly known but can be bounded. In that case it will, however, onlyproduce pessimistic bounds for the MAXT.� The static structure of the code, i.e., which code parts may follow each other inexecution, is known.� For each part of code the maximum number of repetitions is known.� The dynamic characteristics of a program/program part, i.e., the paths that canactually be executed in the given application context, depend on the input dataand the program state at the time of invocation. We assume that informationconcerning this dynamic behavior is available and complete, i.e., all informationabout feasible/infeasible paths is available to the MAXT analysis.It is obvious that the latter assumption will not always hold in practice. Itis however beyond the scope of this paper to discuss the di�culties associatedwith the provision of such execution information. In this paper we want toconcentrate on the methodological limits of our technique: Assuming that fullinformation about execution paths is available we investigate to which extentthis knowledge can be utilized for the MAXT-computation. In fact, we willshow, that our approach allows a complete incorporation of that knowledgeinto the analysis.3. The T-Graph Representation of ProgramsIn this section we discuss the representation we use for describing the problems tobe solved. This representation must describe both static and dynamic propertiesof the application code under investigation. The static structure of programs/codepieces is represented by directed graphs. The graphs are annotated with restrictionswhich characterize the feasible and infeasible execution paths.3.1. Representation of the Static Program StructureWe represent a program or a piece of code by a T-graph, a timing graph. The edgesof the T-graph stand for constituents of the code and are weighted by the executiontimes of these constituents. The nodes in the graph represent points in the codewhere the control ow of the program may split and/or join.Depending on the used code description language or programming language theedges of the T-graph may represent machine instructions, statement sequences ofhigh level language code, pseudo code statements, etc. T-graphs can be gener-ated for any of these program representations provided the execution times for the



6constituents (or at least bounds thereof) can be derived. Of course, it must be guar-anteed that every part of the program source is mapped onto a corresponding partof the T-graph. Figure 1 shows, how some typical high level language constructsmight be translated into T-graph notation.
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node edge subgraphFigure 1. T-graph representation of typical programming language constructs.Formally, a T-graph is a connected directed graph G = (V;E) with vertices(nodes) V = fvi j 1 � i � jV jg and edges (arcs) E = fei j 1 � i � jEjg, where eachedge ei can also be written as an ordered pair (vj ; vk). A T-graph has the followingproperties:1. G has exactly one vertex s with no incoming edges (starting vertex ).2. G has exactly one vertex t with no outgoing edges (terminating vertex ).3. For every edge ei there exists at least one sequence of edges with starting points and end point t that contains ei (no unreachable code).4. Every edge has a non-negative integer weight ti = �(ei) (execution time).Items 1 to 4 de�ne the structure of a T-graph. The semantic interpretation is asfollows. Points 1 and 2 help us to characterize the execution paths whose executiontimes we want to compute. In the T-Graph all paths start at the vertex s and endat the vertex t (see also Section 2).Point 3 guarantees that each program part is part of at least one program pathleading from s to t and point 4 assigns an execution time to each edge.



7The de�nition of the T-graph allows that one piece of code is multiply representedby several edges as long as the T-graph correctly represents the control ow throughthe program code. This is useful when conditional jump instructions, whose execu-tion times depend on whether the jump takes place, have to be represented. Suchjump instructions can be mapped onto di�erent edges with di�erent execution timeswhose successors are the respective alternatives following the branch.Note that T-graphs can represent arbitrary valid ow graphs, even irreducibleones, with one starting point and one end point. In particular their use is notrestricted to the description of `well-structured' programs. This implies that pro-grams to be analyzed may contain arbitrary jump instructions, including goto1statements.3.2. Execution Paths and Execution TimesThe previous section introduced the representation of code pieces by T-graphs.In this section we will de�ne the terms execution path and execution time. Anexecution of a piece of code is characterized by the execution of a sequence ofactions described by that code. It starts with the �rst statement (instruction, etc.),follows the control ow as de�ned by the constructs of the language used, and leavesthe code at the end statement. For every such execution a corresponding sequenceof edges from s to t in the T-graph exists.De�nition. A sequence of edges Pi = (ei1 ; ei2 ; : : : ; eim) in a T-graph G with ei1 =(s; vj) and eim = (vk; t) is called execution path or for short path.2Every execution path consists of a �nite number of edges. Every edge is weightedby its execution time. We can, therefore, attribute every path an execution time| the sum of the execution times of its edges.De�nition. The execution time � of a path Pi = (ei1 ; ei2 ; : : : ; eim) is the sum ofthe execution times of its edges,�(Pi) = mXj=1 �(eij ): (1)The execution times of the edges of a path Pi can be summed up in any order.One can, therefore, count the number of occurrences of every edge ej 2 E on Pi,yielding fi(ej), or for short fi;j . The execution time of Pi can then be written asfollows:�(Pi) = jEjXj=1 fi(ej)�(ej) = jEjXj=1 fi;jtj : (2)For every application, the number of di�erent execution paths is �nite. Since itis possible to compute the execution time for each of these paths, it is also possibleto compute the maximum of these times, which is the maximum execution time.



8De�nition. The maximum execution time (MAXT) of a set of paths � in a T-graph G ismaxt(�) = maxPi2�(�(Pi)) = maxPi2� jEjXj=1 fi;jtj : (3)For a real implementation a full enumeration of all possible execution pathsthrough every piece of code under scrutiny is infeasible. For this reason a rep-resentation that describes, rather than enumerates, execution paths is needed.3.3. Characterization of Execution Paths { A First StepAn enumeration of all possible execution paths through a piece of code does notmake use of the information that is represented by a T-graph. The T-graph alreadycontains a lot of information about the possible order of edges in legal executionpaths. In the following this information is used as a basis for the description ofpossible paths for the MAXT computation. We extend the notion of T-graphsby introducing capacity constraints that restrict the ow in their edges. Thenwe compute the MAXT of the respective code pieces as maximum cost integercirculation in the given extended T-graphs.3.3.1. CirculationsWe �rst introduce circulations as they are de�ned in graph theory [4]. Further onwe will modify this common de�nition to suit our needs.Given a connected directed graph G, a function f : E ! R is called a circulationif it conserves the ow in every node:8v 2 V : Xe=(vj ;v) f(e) = Xe=(v;vk) f(e): (4)The capacity constraints b : E ! R and c : E ! R restrict the values of f for alledges. A circulation f is called legal if8e 2 E : b(e) � f(e) � c(e): (5)Finally, let  : E ! R be a cost function on G. The cost (f) of a circulation f isthen de�ned as follows:(f) :=Xe2E (e)f(e): (6)



93.3.2. T-Graphs and CirculationsThe aim is to compute the MAXT of a piece of code as an integer circulation ofmaximum cost in the T-graph G. For this purpose the T-graph is mapped onto thedescription of a circulation. The following steps are performed:1. A backward edge ejEj+1 = (t; s) is added to the T-graph G, yielding an extendedT-graph G0 with V 0 = V and E0 = E [ fejEj+1g. The extended T-graph allowsfor circulations which have a ow of 1 both out of s and into t. We will see,that this modi�cation is necessary to represent execution paths by circulations.2. For each edge ei the capacity constraints b(ei) and c(ei) are de�ned as follows:b(ei) := � 1 if ei = (t; s) (backward edge)0 otherwise (7)c(ei) := � 1 if ei = (t; s)fmax(ei) otherwise (8)The term fmax(ei) stands for the maximum number of executions of the edgeei in the path set �, i.e., fmax(ei) = maxPj2� fj(ei).3. The cost of the edges in the extended T-graph are:(ei) := � 0 if ei = (t; s)�(ei) otherwise (9)These transformation rules give a formal description of how a T-graph and a setof paths that describe the behavior of a piece of code can be characterized by acirculation and capacity constraints. The following properties of the transformationare worth noting:� For every execution path Pi = ((s; vi1 ); (vi1 ; vi2 ); : : : (vim ; t)) in G the closedsequence of edges P 0 = ((s; vi1 ); (vi1 ; vi2); : : : (vim ; t); (t; s)) in G0 induces aninteger circulation in G0: we de�ne that every occurrence of an edge e in theclosed sequence adds 1 to the ow in this edge. Since for every closed sequenceof edges the number of outgoing edges equals the number of incoming edges forevery node, this construction yields indeed a legal circulation.� Except for the backward edge, the minimum ow for each edge is 0. For thebackward edge both the minimum ow and the maximum ow are set to 1.This is to make sure that every valid circulation has a ow of 1 both out of sand into t and thus represents a valid execution path.3� For every edge ei that is a member of an execution path c(ei) � 1 holds. Onlyfor edges that are not part of any path (dead code) c(ei) = 0.



10� In Point 3 of the transformation the cost of every edge is assigned its executiontime. Thus, for every path P in G with a corresponding circulation f in G0the execution time of P can be calculated as the cost of the circulation f , i.e.,(f). In particular, this implies that the maximum execution time of the validexecution paths in G can be calculated as the cost of a maximum cost circulationin G0.� The construction of legal circulations from execution paths induces an equiv-alence relation on execution paths. Two paths P and P 0 belong to the sameequivalence class if for every edge the number of occurrences in P equals thenumber of its occurrences in P 0. Since the execution time of every programpath is only dependent on how often every edge occurs, but independent fromthe order of the edges, the execution times of all paths of the same equivalenceclass are equal.For the computation of the MAXT as a circulation of maximum cost this im-plies that it is su�cient to work with equivalence classes, which reduces thecomplexity of the problem. On the other hand the solution of a MAXT prob-lem with this technique may not only yield a single execution path but the setof paths belonging to one equivalence class.3.3.3. Shortcomings of the TransformationAlthough the previous list of observations might suggest that the construction of acirculation problem allows to map the MAXT calculation onto the computation of amaximum cost circulation in the extended T-graph, this is not true in general: Onlyan upper bound for the MAXT, not necessarily the exact value, can be computedthis way. The reason is that essential information about paths get lost in thetransformation process. The transformation does not guarantee that maximumcost circulations do indeed represent execution paths. Before we discuss this inmore detail, we de�ne the term circulation subgraph.De�nition. Let G = (V;E) be an extended T-graph and f a circulation in G. Wecall the graph G = (V;E) with E = feje 2 E; f(e) > 0g the circulation subgraphof G induced by f .There are two di�erent situations in which maximum cost circulations do notrepresent valid program paths:Case 1.The circulation subgraph induced by the maximum cost circulation, G = (V;E)with E = feje 2 E; f(e) > 0 in the maximum cost circulationg, is not stronglyconnected, i.e., there is no closed sequence of edges ((s; vi1); (vi1 ; vi2); : : : ; (t; s))through the extended T-graph that contains all edges e with f(e) � 1 in the maxi-mum cost circulation.



11Figure 2 illustrates Case 1. The left side shows the structure of an extended T-graph. The table to the right lists the maximum capacity c(e) and the cost (e), i.e.,the execution time, for each edge. The minimum capacities are 1 for the backwardedge and 0 for all other edges. The last column of the table shows f(e) for eachedge in the maximum cost circulation, the thick lines in the graph the respectivecirculation subgraph.
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Figure 2. A maximum cost circulation that does not represent a valid path. Thick lines in thegraph represent the circulation subgraph of the circulation.The circulation subgraph contains at least one sequence of edges from s to t. Onthe other hand, none of these sequences contains the edges e10, e11, or e12 { there isno ow greater than zero into this subgraph. Observe that it is not even true thatthe edges of the correct worst case execution path form a subset of the edges of themarked circulation subgraph (see Figure 4, which shows the desired solution). The



12worst case execution path contains e9, e13, and e14. It does, however, not containany edge of the marked sequence (e2; : : : ; e8).The reason for this problem is that a T-graph G does not need to be acyclic.Obviously, any positive ow in a cyclic subgraph of G by itself obeys the owconservation principle. A non-zero ow can exist in such a subgraph, even if allthe edges leading into this subgraph have a ow of zero, i.e., the edges of the cyclicsubgraph are not part of a valid execution path.In order to compute ciruclations that do represent worst case execution paths,we have to make sure that the circulation subgraphs of these circulations are con-nected, i.e., we map the MAXT calculation to the computation of a maximum costcirculation which is strongly connected. In Section 4 we will generalize the capacityconstraints by introducing relative capacity constraints to cover this connectivityrequirement.Case 2.Although the maximum cost circulation corresponds to a sequence of edges froms to t in the extended T-graph, at least one edge e for every valid execution pathPi exists with fi(e) < fmc(e), where fmc(e) represents the ow through e in themaximum cost circulation, i.e., the maximum cost circulation corresponds to aninfeasible path [17].The characterization of execution paths by capacity constraints describes themaximum number of executions of every single edge of a graph separately. Itdoes not allow the description of more complex characteristics of the behavior ofa program, i.e., a certain correlation exists between the number of executions ofdi�erent edges. Therefore, only local, per-edge capacity constraints can be takeninto account when computing a maximum cost circulation. The following exampleillustrates that case.Consider the T-graph of Figure 3 which consists of two branches in sequence. Weassume that the following execution paths are possible:(e1; e2; e3; e6; e7; e8; e11);(e1; e2; e3; e6; e9; e10; e11);(e1; e4; e5; e6; e9; e10; e11):The path (e1; e4; e5; e6; e7; e8; e11) is assumed to be infeasible. We observe that thecapacity constraints c(e) do not allow to characterize this set of paths su�ciently:The computation of the maximum cost circulation yields a circulation that exactlycorresponds to the infeasible path. The cost of this circulation is 378 time units, asopposed to the desired result of 324, the maximum cost of the three feasible paths.
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Figure 3. Example for an extended T-graph.4. A Characterization of Possible Execution Paths Suited for the MAXT-ComputationIn the previous section we mapped the problem of the computation of the MAXT ofprograms onto a problem from graph theory { the computation of a maximum costcirculation in a ow network. It turned out that the description of circulations inits existing form only allows the computation of bounds for the MAXT. It does not,however, allow us to characterize program behavior in su�cient detail to enable aderivation of the worst case execution path(s) in general. In this section we extendthe description of circulations such that they can characterize arbitrary sets ofexecution paths that are both legal and possible. This way, the computation of theexact MAXT of every piece of code { not just a bound thereof { becomes possible.4.1. Relative Capacity Constraints and Connected CirculationsOne problem with the traditional representation of circulations is that the circula-tion subgraphs for maximum cost circulations might be split into several compo-nents (see Case 1 in Section 3.3.3): In every cyclic subgraph a ow greater thanzero can exist regardless whether there is any positive ow into that subgraph ornot. In the following we will use relative capcity constraints to avoid that the ow



14in a cyclic subgraph which is not fed by a positive ow (except a cycle that containsboth s and t) can become greater than zero.De�nition. A relative capacity constraint is an inequality or equation of the formXei2E0 aif(ei) � Xei2E0 a0if(ei) + k; (10)where ai; a0i 2 Z0, k 2 N0 and � 2 f<;�;=g, that describes the relation of theow f in the edges ei of an extended T-graph G0.Note. Without restriction any relative capacity constraint of the given form canbe written in standard formXei2E0 bif(ei) � k (11)where bi = ai � a0i for all i. We will make use of both notations.The following theorem describes the minimal requirement that guarantees thata T-graph together with a set of relative capacity constraints describe only circu-lations that correspond to valid execution paths from s to t. For this theorem weneed the de�nition of implicating edges .De�nition. Let ei be an edge in E and Esub a subset of E with ei 62 Esub. Wede�ne that ei implies Esub if every execution path containing ei contains at leastone edge of Esub.Theorem 1 Let G0 = (V 0; E0) be an extended T-graph, Gcyc = (Vcyc; Ecyc) a cyclicsubgraph of G0 that contains neither s nor t, and Eimp the set of edges ei that implyEcyc.If the ow of at least one edge ec of each cyclic subgraph Gcyc is bounded by arelative capacity constraint of the formf(ec) � Xei2Eimp aif(ei); (12)where at least one ai is greater than zero, then the circulation subgraphs of all legalcirculations are strongly connected, i.e., every legal circulation corresponds to atleast one closed sequence of edges ((s; v1); : : : ; (vj ; t); (t; s)).Proof: The correspondence between closed sequences of edges and connectedcirculations has been discussed earlier. It remains to be shown that the aboveconditions imply that the subgraph of the circulation is strongly connected.Indirect proof: We assume that the circulation subgraph is not strongly connectedalthough a relative capacity constraint for each cycle exists. It follows that one cyclewith edges Ecyc0 is not reachable from s in the circulation subgraph. This implies



15that f(ec) > 0 for all edges ec 2 Ecyc0 and that f(ei) = 0 for the edges ei 2 Eimp0that imply Ecyc0 . Since the ow of at least one edge ec 2 Ecyc0 is restricted by arelative capacity constraint and since f(ei) = 0 for all ei 2 Eimp0 we get f(ec) = 0.Hence, there is no cyclic positive ow in the cycle Ecyc0 . This contradicts theassumption and proves the theorem.According to the theorem relative capacity constraints can be used as the basisfor the computation of maximum cost circulations that are strongly connected. Allone has to do is specify one relative capacity constraint for each cycle (loop) in theextended T-graph.The example shown in Figure 4 uses the T-graph used in a previous example.In contrast to the earlier description relative capacity constraints describe the owin the edges. We use one capacity constraint for the backward edge, f(e19) = 1,to specify that circulations must have a ow of one out of s and into t. Twofurther relative constraints limit the ow in the cycles (loops). Together withthe structural description of the extended T-graph and the cost of the edges thisinformation is su�cient to compute a maximum cost circulation (last column ofthe table). Implicitly we assume that f(e) � 0 for all edges. The given relativecapacity constraints replace the traditional, absolute capacity constraints c(e) whichhad been de�ned for all edges in Figure 2.4.2. Complete Description of Possible Execution Paths { Exact MAXTComputationIn the previous section we described how we can use relative capacity constraintsto meet the \connectivity requirement" for circulations that represent executionpaths of programs. In this section we show a property of the code representationby extended T-graphs and relative capacity constraints that is much stronger. Thisprogram code representation is strong enough to characterize the possible and im-possible (infeasible) paths through any piece of code in a way that the computationof the maximum execution time is possible. We formulate this important propertyin the following theorem.Theorem 2 By means of extended T-graphs and relative capacity constraints thebehavior of every piece of code can be described such, that its actual worst caseexecution time { not just a bound thereof { can be computed.Proof: Let G0 be an extended T-graph. We have already shown that an appro-priate set of constraints for capacities allows to compute an upper bound for themaximum execution time of a piece of code. It remains to be shown, that the selec-tion of an adequate set of relative capacity constraints makes it possible to computethe exact maximum execution time, not just a bound thereof. We proof that byinduction with respect to the number of paths through the extended T-graph.4
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172. In the second step of the inductive proof we assume that for a set of n paths,described by an extended T-graph and constraints, the maximum executiontime can be calculated.Claim 1 A set of n + 1 paths can also be characterized in a way that themaximum execution time can be computed.Let Rn := fPaklxl � ckg be the set of restrictions for n paths after transforma-tion into standard form.5 Rn+1 is the set of constraints which characterize thepath Pn+1. Since Pn+1 62 fP1; : : : ; Png, two cases can be distinguished: EitherPn+1 or a path out of fP1; : : : ; Png is the path with the maximum executiontime. Therefore, either the restrictions Rn or Rn+1 describe the worst case.A trick that is used in linear programming, the Big M Method [3], is applied toconstruct a disjunction of Rn and Rn+1: Let M be a new, large constant thatis greater than the right hand sides of all inequalities introduced so far. Theneither the restrictionsX aklxl � ck for all R 2 Rn and f(ej) � fn+1;j +M for all R 2 Rn+1 (15)or the restrictionsX aklxl � ck +M for all R 2 Rn and f(ej) � fn+1;j for all R 2 Rn+1 (16)hold. Using an additional, binary variable y, we build a new set of restrictionsfor the disjunction of these two sets as follows:Paklxl � ck + yM for all R 2 Rnf(ej) � fn+1;j + (1� y)M for all R 2 Rn+1y � 1 (17)Rewriting the formulas so that variables only occur on the left side and constantson the right yields the set of restrictions of the standard form for n+1 executionpaths. Hence we can write:maxt(fP1; : : : ; Pn+1g) = max(maxt(fP1; : : : ; Png;maxt(Pn+1)) =max(maxRnPjEjj=i f(ei)t(ei);maxRn+1PjEji=1 f(ei)t(ei)) =maxRn+1=Rn�Rn+1 PjEji=1 f(ei)t(ei); (18)where the � operator stands for the disjunction of restrictions as introducedabove.This result proves the claim. Thus, we have shown that for any set of paths theworst case execution time can be computed.



18Table 1. Examples of inequalities and equations describing the dynamic execution behavior ofcode.Inequalities Semanticsf(ei) � 1 ei appears at least once on every execution path.f(ei) = f(ej) ei and ej are executed the same number of times.f(ei) = 3f(ej) ei is executed three times more often than ej .f(ei) + f(ej) + f(ek) � K The sum of the number of executions of ei, ej , and ekis bounded by K.f(ei) �Mf(ej) 1) Every execution of ej enables M executions of ei.If ei is part of a loop that is preceeded by ej the in-equality resembles a marker [13]. 2) Assuming that Mis a \very large" constant this can be understood askind of an implication. Every path with at least oneoccurrence of ei must also include ej .f(ei) �My,f(ej) �M �My,y � 1 Occurrences of ei and ej exclude each other (Big MMethod).3f(ei) + f(ej) � 9,f(ei) � 2 For every execution of ei (max. 2) the maximum num-ber of executions for ej decreases by 3. The totalnumber of executions of both parts together is alsobounded.4.3. Describing Software Behavior ConciselyRelative capacity constraints are means to describe software behavior. Using themwe can avoid that the computation of the maximum execution time for a piece ofcode yields the execution time of a path set that consists solely of infeasible paths.Hence, the use of relative capacity constraints provides a solution to the problemCase 2 encountered with the original representation.The above proof was conducted on a single path basis. A large number of con-straints are needed to describe all feasible paths. For practical use, representingcode behavior by extended T-graphs and relative capacity constraints { as we didbefore { is more adequate. In most cases an extended T-graph and a few relativecapacity constraints are su�cient to exactly characterize the possible behavior ofa piece of code. Note that relative capacity constraints are not restricted to thedescription of loop bounds but may characterize any relation between the numberof executions of di�erent code statements (see Table 1).We use our second example (Figure 3) to illustrate the use of relative capacityconstraints for the exclusion of infeasible paths from the analysis. In this exam-ple we have two branching statements with two branches in sequence, potentiallyallowing four di�erent paths. One execution path, however, is assumed infeasible.In order to characterize the set of possible paths exactly we state which behavioris not allowed, i.e., which edges must never occur on the same path. Here, the



19edges e4 and e5 on the one hand and e7 and e8, on the other hand, must never beexecuted in a single execution. Due to ow conservation it is su�cient to say thate4 (e5) and e7 (e8) are exclusive. If the ow in e4 equals 1 the ow in e7 must be0 and vice versa. The sum of the ows can maximally assume 1. We express thisby the relative constraint f(e4) + f(e7) � 1. Together with the extended T-graphand the minimal constraint set f(e12) = 1 and f(ei) � 0 for all i this inequality isalready su�cient to completely describe the behavior of the code.Table 1 gives further examples on how some common dependencies can be de-scribed by relative capacity constraints. This list is by far not complete { as weshowed before, any dependency can be expressed with such constraints. It gives,however, an impression how relative capacity constraints can be used.While constructing a set of capacity constraints for a speci�c application mightnot be too hard, reading and understanding the meaning of a given set of con-straints can be quite demanding. The use of an appropriate language to describecharacteristics of execution paths, as, e.g., used in [9], is certainly advantageousin practice. Note, that in this work we do not discuss description languages. Werather emphasize that it is possible to describe how often the parts of a program areexecuted on the feasible execution paths and to compute the maximum executiontimes from that knowledge as shown above.5. MAXT Calculation with Linear ProgrammingThe previous section introduced a representation for the analysis of maximum ex-ecution times of programs. Programs are described by extended T-graphs and aset of constraints which describe the set of possible paths through the graphs. Theproblem of calculating the MAXT now corresponds to the problem of �nding thecirculation with maximum cost in the graph. To �nd that circulation, either anew calculation method has to be developed or the problem must be transformedin a way that existing methods can be applied. We decided to use Integer LinearProgramming (ILP), a well known method in the �eld of Operations Research. Werealized that the basic structure of an ILP problem is well suited for our needs. Infact we developed the T-graph with regard to how such a T-graph can be trans-formed into an ILP problem.The following steps must be performed to compute the MAXT of a code fragment:1. Build an extended T-graph and the corresponding circulation model from thestructure of the program and from the knowledge about feasible and infeasiblepaths.2. Transform the T-graph and the circulation model into a Linear Programmingproblem.3. Solve the Linear Programming problem with existing standard tools.



205.1. Setting Up the Linear Programming ProblemThe aim of ILP is to �nd the maximum value of an objective function subject to theassumption that a set of functional constraints hold. The standard ILP problemcan be characterized with the following determinants:� n decision variables x1, x2, : : : , xn,� the objective function Z = nXi=1 cixi, which has to be maximized,� m functional constraints nXj=1 aijxj � bi for all i 2 [1;m], and� nonnegativity constraints xj � 0 for all j 2 [1; n].We now show the construction of the ILP problem from the T-graph and thecirculation model.1. The execution time of a path through the whole program is the weighted sum ofthe execution frequencies of the edges, where the weights of the edges are theirexecution times. The objective function of the ILP problem is constructed byusing the cost function of the circulation:Z = jE0jXi=1 fiti: (19)For each i the constant value ti is the execution time of the code representedby edge ei (ti = �(ei)). The decision variables fi represent the execution fre-quencies of the edges ei. The goal is to �nd the set of frequencies fi, for whichthe function Z yields the maximum value.2. The frequency of each edge ei underlies a set of restrictions due to the controlow of the program and data dependent implications between program parts.These restrictions are derived from the structure of the T-graph and the relativecapacity constraints of the circulation.� A set of functional constraints describe the structure of the T-graph. Foreach node vj an equation of the following form is built:Xem=(vi;vj) fm = Xen=(vj ;vk) fn (20)The ow in the edges going into vj equals the ow in the edges leaving nodevj (ow conservation).



21� The capacity constraints of the circulation model are directly transformedinto the functional constraints of the ILP problem:Xej2E0 aijfj � Xej2E0 a0ijfj + k; (21)where aij , a0ij 2 Z0, k 2 N0 and � 2 f�; <;=g. These constraints describerestrictions for loops and other dependencies between execution frequen-cies of program parts. An additional constraint, fjE0j = 1, restricts thebackward edge.� For each edge the nonnegativity constraint fi � 0 is built. This completesour problem. In most software packages the nonnegativity constraints areformed automatically.Figure 5 and Figure 6 illustrate the transformation of a circulation model into anILP problem. They show an extended T-graph with constraints for all edges andthe corresponding ILP problem. The objective function is the sum of the executionfrequencies (fi) of all edges weighted by their execution times. The ILP problemcontains one equation for each node to describe the ow conservation. Additionally,the ow in the two loops is restricted by two inequalities which are easily derivedfrom the restrictions of the T-graph. A further equation, f19 = 1, restricts the owin the whole T-graph. The nonnegativity constraints for all edges complete our ILPproblem.The ILP problem can be solved with standard o�-the-shelf tools. The solutionyields the MAXT of a program (solution of the ILP problem) as well as the executionfrequencies of its constituents (settings of the decision variables), see Figure 6.5.2. Bene�ts of the ApproachThe previous section described, how integer linear programming can be used toderive the maximum execution times of programs. The solution of an ILP problemgives us valuable additional and extensive information about the timing of the code.This section lists the information we get from a solution of the ILP problem.1. The maximum execution time of a program, i.e., the maximum time of all pathsthrough the T-graph obeying the restrictions.2. The set of paths with maximal execution time (worst case paths). The solu-tion shows, which program parts belong to the paths that are the most time-consuming. The set of execution paths is characterized by the values of thedecision variables greater than zero.3. The contribution of each program part: The MAXT of any program part caneasily be derived using the values of the decision variables weighted by theirexecution times. So it is also possible to calculate the MAXT of program parts .
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23Objective function of the ILP problem:Z = 36f1 + 8f2 + 86f3 + 8f4 + 112f5 + 10f6 + 30f7 + 46f8 + 10f9 + 12f10+26f11 + 10f12 + 32f13 + 24f14 + 44f15 + 20f16 + 10f17 + 56f18:Graph description:s : f19 = f1v1 : f1 = f2 + f9v2 : f2 = f3v3 : f3 = f4 + f6v4 : f4 = f5v5 : f6 = f7v6 : f5 + f7 = f8v7 : f9 + f12 = f10v8 : f10 = f11v9 : f11 = f12 + f13v10 : f13 = f14v11 : f8 + f14 + f17 = f15v12 : f15 = f16v13 : f16 = f17 + f18t : f18 = f19:Backward edge and loops:f10 � 8f9f15 � 10f8 + 10f14f19 = 1:Nonnegativity constraints:fi � 0 for 1 � i � 19:Solution of the ILP problem:Z = 1262Settings of the decision variables:f1 = 1; f2 = 0; f3 = 0; f4 = 0; f5 = 0; f6 = 0; f7 = 0;f8 = 0; f9 = 1; f10 = 8; f11 = 8; f12 = 7; f13 = 1; f14 = 1;f15 = 10; f16 = 10; f17 = 9; f18 = 1; f19 = 1:Figure 6. Description of a MAXT-problem as a linear programming problem.



244. The number of executions of every single edge in the computed worst case: Af-ter having solved the ILP problem, the decision variables contain the executionfrequencies for all edges. This information helps to �nd program parts whereimprovements have substantial inuence on the quality of the MAXT. An opti-mizing compiler can use this information to concentrate on program parts thathave a big temporal inuence.Apart from the above-mentioned advantages, our approach gives the user the abil-ity to manipulate parameters of the derived ILP problem to get more informationon the timing behavior of the program:� Manipulating the coe�cients of the decision variables: The coe�cients of thevariables correspond to the execution times of the respective edges. A variationof these coe�cients can help the user to learn about the global e�ects of localimprovements within a piece of code. The e�ects on the MAXT can be analyzedbefore the improvements are really implemented. This helps the user to �ndprogram parts, where improvements reduce the maximum execution time of theoverall program.� Adding new functional constraints: If new dependencies between program partsare found after having calculated the MAXT, new constraints describing thesedependencies can be added to the ILP problem. If the old solution ful�llseach of the new restrictions, no improvements can be derived by adding theserestrictions. The old solution is also valid for the new problem. If, on the otherhand, the solution does not ful�ll the added constraints, a new solution has tobe calculated. This new solution is better than or equal to the former MAXT.6. ConclusionThis paper presented a new method for calculating the maximum execution timesof programs. The method is derived from a graph-theoretical problem, the com-putation of a maximum cost circulation in a graph. In that problem, capacityconstraints bound the minimum and maximum ow for every edge. We showedthat the characterization of the ow on a per-edge basis is not su�cient to describeall feasible/infeasible paths through a program. Hence, we introduced relative ca-pacity constraints. Relative capacity constraints allow us to relate the ows throughedges to each other. We proved that a program description in the form of a T-graphand a set of relative capacity constraints allows us to characterize feasible executionpaths su�ciently to compute exact MAXTs of programs, not just execution timebounds.Our method is not restricted to programs of a speci�c structure. In contrast, itcan also deal with programs which contain jumps, like break or return statements,and whose ow graph is irreducible. As a minimum requirement, however, the owin all circles of those T-graphs has to be bounded by relative capacity constraints.



25To obtain the MAXT for a program given in our description with T-graphs andrelative capacity constraints we translate the description into an ILP problem.This ILP problem can be solved with standard tools available on the market. Thesolution of the ILP problem yields the MAXT of a program and produces detailedinformation about the execution times and execution frequencies of all programconstructs.AcknowledgmentsWe are grateful to Emmerich Fuchs, Christopher Temple, and Alexander Vrchotickyfor their valuable comments on earlier versions of this article. We also thank theanonymous reviewers for their constructive criticism and helpful suggestions.AppendixA.1. Terminology in Graph TheoryIn the literature relevant to graph theory some terms are used with di�erent mean-ings. This appendix describes the term semantics used in this paper and mentionsvariations to other terminologies in literature.A (directed) graph G = (V;E) consists of a �nite set V = fv1; v2; :::; vng of ele-ments called vertices, and a set E = f(vi1 ; vj1); (vi2 ; vj2); :::; (vim ; vjm)g of ordered6pairs of members of V called edges.A subgraph S of a graph G = (V;E) is a graph S = (V 0; E0) such that V 0 iscontained in V , E0 is contained in E, and the endpoints of any edge in E0 are alsoin V 0.A path P = ((vi1 ; vi2); (vi2 ; vi3); :::; (vin�1 ; vin)) is a �nite sequence of edges inwhich the terminal vertex of each edge coincides with the initial vertex of thefollowing edge.7A graph is said to be connected if there is at least one chain joining every pair ofdistict vertices.A circulation in a graphG is a vector f = [f1; f2; :::; fn] of n non-negative integral8numbers, where fi represents the ow through edge ei. This vector must complywith the ow conservation condition at each vertex, i.e., for every vertex vj of Gthe sum of the ows in edges incident to vj is equal to the sum of the ows in edgesincident from vj :Xem=(vi;vj) fm = Xen=(vj ;vk) fnThe capacity of an edge ei is a non-negative integer c(ei) which denotes themaximum permissible value of the ow in the edge ei.A circulation is feasible or legal if and only if b(ei) � fi � c(ei) for each edge ei,where b(ei) is the lower bound of ow through ei and c(ei) is the capacity of ei.



26The weight wi of an edge ei is a real9 number assigned to ei. In our paperthis weight belongs to the execution time (ti) of the corresponding piece of coderepresented by the edge ei.Notes1. We do not want to advertise the use of gotos in a high level programming language. Neverthelessthere are other instructions with similar semantics, e.g. exit of loops. Apart from that, assemblylanguage programs with arbitrary jumps are analyzable with our method as well.2. Note that an execution path is a special case of a path as de�ned in graph theory, see Ap-pendix A.1.3. We assume that every piece of code to be analyzed has at least one valid execution path.4. Note that if we applied the inductive steps of the proof to really compute the MAXT, wewould rather use the equivalence classes of paths introduced earlier than single paths in everyinductive step. We feel, however, that the reader can follow the proof more easily if we handleone path in one step.5. Standard form means that the restrictions are rewritten such that variables only occur on theleft side and the right side contains only one constant. For each f(ej) in the original formthere is a corresponding xl in the standard form of the restriction; the exact mapping fromf(ej) to xl is unimportant for our proof and thus omitted.6. In literature this de�nition often belongs to the term directed graph or digraph, while edgesof a graph consist of unordered pairs of members of V .7. In literature this de�nition sometimes corresponds to the term walk while path is de�ned asa sequence of edges where all vertices and edges are distinct.8. In graph theory the ow through an edge is de�ned as a vector of real numbers instead ofintegers.9. In the examples in this paper all weights are integral numbers since we are used to specify theexecution times of pieces of code in CPU cycles.References1. P. Amerasinghe. A Universal Hardware Simulator. Undergraduate Honors Thesis, Dept. ofComputer Sciences, University of Texas, Austin, TX, USA, Dec. 1985.2. M. Chen. A Timing Analysis Language { (TAL). Programmer's Manual, Dept. of ComputerSciences, University of Texas, Austin, TX, USA, 1987.3. F. S. Hillier and G. J. Lieberman. Operations Research. Internationale Standardlehrb�ucherder Wirtschafts- und Sozialwissenschaften. R. Oldenbourg; Wien, M�unchen, 1988.4. D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI-Wissenschaftsverlag, Mannheim,Wien, Z�urich, 2nd edition, 1990.5. E. Kligerman and A. Stoyenko. Real-time euclid: A language for reliable real-time systems.IEEE Transactions on Software Engineering, SE-12(9):941{949, Sep. 1986.6. Y. S. Li and S. Malik. Performance analysis of embedded software using implicit pathenumeration. In Proc. of the ACM SIGPLAN Workshop on Languages, Compilers, andTools for Real-Time Systems, pages 95{105, La Jolla, CA, USA, June 1995.7. Y. S. Li, S. Malik, and A. Wolfe. E�cient microarchitecture modeling and path analysis forreal-time software. In Proc. 16th Real-Time Systems Symposium, pages 198{307, Pisa, Italy,Dec. 1995.8. A. K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating tight execution timebounds of programs by annotations. In Proc. 6th IEEE Workshop on Real-Time OperatingSystems and Software, pages 74{80, Pittsburgh, PA, USA, May 1989.
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