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Abstract. The knowledge of program execution times is crucial for the development and the
verification of real-time software. Therefore, there is a need for methods and tools to predict the
timing behavior of pieces of program code and entire programs.

This paper presents a novel method for the analysis of program execution times. The computa-
tion of MAximum eXecution Times (MAXTSs) is mapped onto a graph-theoretical problem that is
a generalization of the computation of a maximum cost circulation in a directed graph. Programs
are represented by T-graphs, timing graphs, which are similar to flow graphs. These graphs reflect
the structure and the timing behavior of the code. Relative capacity constraints, a generalization
of capacity constraints that bound the flow in the edges, express user-supplied information about
infeasible paths. To compute MAXTSs, T-graphs are searched for those execution paths which
correspond to a maximum cost circulation. The search problem is transformed into an integer
linear programming problem. The solution of the linear programming problem yields the MAXT.

The special merits of the presented method are threefold: It uses a concise notation to char-
acterize the static structure of a program and its possible execution paths. Furthermore, the
notation allows for a description of the feasible paths through the program code that character-
izes the behavior of the code sufficiently to compute the exact maximum execution time of the
program — not just a bound thereof. Finally, linear program solving does not only yield maximum
execution times, but also produces detailed information about the execution time and the number
of executions of every single program construct in the worst case. This knowledge is valuable for
a more comprehensive analysis of the timing of a program.

Keywords: real-time systems, maximum execution time, timing analysis, performance, safety
analysis, software development, applications of graph theory, integer linear programming.

1. Introduction

Computer systems for hard real-time process control must fulfill stringent require-
ments of reliability, availability, and safety. In these real-time applications the cost
of a catastrophic system failure can exceed the initial investment in the computer
system and the controlled object by far. To prevent such catastrophies, the system
design and implementation must guarantee the specified behavior in the value and
time domain in all anticipated operational situations.

* This work has been supported by Digital Equipment Corporation under contract EERP/AU-

038.



A central parameter in the design and implementation of predictable real-time
applications is the MAximum eXecution Time (MAXT) of the tasks involved. Dur-
ing the design phase estimates of the MAXTs of tasks are used to determine the
required hardware resources, to plan the timing of interactions between tasks, and
to allocate tasks to processing units. During the implementation phase these esti-
mates become time budgets that the tasks must meet — the violation of a timing
constraint of a single task invalidates the results of the design phase. To give guar-
antees for the fulfilment of the timing constraints of tasks, the timing behavior of
all tasks must be analyzed.

MAXT computation is a complex task: It has to process knowledge about all
feasible (and infeasible) paths through the program code and the hardware char-
acteristics of the target system. In the following we concentrate on the first aspect
assuming that the execution time of every sequential piece of code is invariable over
time.

This paper presents a method which describes feasible program execution paths
through a program/code fragment. From this description the maximum execution
time of the program — not just an execution time bound — is computed: The MAXT
computation is transferred to a graph-theoretical problem resembling the problem
of the calculation of a maximum cost circulation in a directed graph. Programs
are represented by T-graphs, timing graphs, which are similar to flow graphs. A
T-graph’s structure reflects the structure of a program, the weights of the graph’s
edges stand for the execution times of sequential code fragments. Relative capacity
constraints, a generalization of the capacity constraints in flow graphs, express
user-supplied information about infeasible paths. To compute MAXTs, T-graphs
are searched for a maximum cost circulation which obeys the constraints. The
search problem is transformed into an integer linear programming problem. The
solution of the programming problem yields the MAXT and detailed information
about execution paths of maximum cost (see also [12, 16]).

Several works are related to our research. The approach taken in this paper is
mainly influenced by Kligerman and Stoyenko. In [5, 18], they discussed restric-
tions for programming languages that are necessary to allow for a computation of
execution time bounds for real-time tasks. Their programming language, called
Real-Time Euclid, prohibits the use of recursions and goto-statements. Loops are
restricted to time bounded loops and simple for-loops. For the latter the maximum
number of iterations, and thus the time maximally spent in these loops, can easily
be derived. An algorithm that calculates an execution time bound of a RT-Euclid
program, by computing the maximum duration of all possible communication and
execution sequences of the code pieces of the program, is described in detail in [19].

A more formal approach for the computation of worst case execution times is
described by Park and Shaw [17, 10]. The timing schemes described allow Park
and Shaw to compute the minimum and maximum execution times of constructs
common in most programming languages. Based on this theory a timing tool was
implemented. This tool computes execution time bounds by analysing the source
code of C programs. It interacts with the user to obtain loop bounds required for



the calculations. When the timing tool was evaluated the computed execution time
bounds were very close to the real bounds [10].

In [9], Park extended the previous work. Regular expressions are used to char-
acterize feasible paths, thus improving the quality of the computed execution time
bounds. When the analyzer tool computes execution time bounds it takes the
maximum of the execution time bounds computed for all possible path groups.

Mok and his group [8, 1, 2] produced a timing tool for assembly language pro-
grams, which are annotated by TAL scripts. These scripts contain descriptions
of the timing properties of code pieces in the form of loop bounds and additional
control flow information, which make the calculations less pessimistic. The use of
that tool is restricted to the analysis of assembly language programs.

Our method has its roots in [13]. Puschner and Koza analyzed high level language
code to compute bounds for the execution times of tasks by extending the bounded
loop concept found in [5]. New language constructs describe additional knowledge
about the control flow. This allows the developers of programs to derive significantly
tighter execution time bounds for more complex programs. The described tool
combines the source program plus the compiled code to compute the MAXT of a
program. When the authors experimented with the tool they observed that the
tool did not find the correct mapping between the two representations for all input
programs.

To avoid this problem, a new task timing analysis tool was developed [14]. It
is based on a single data structure, called timing tree [11], which contains all in-
formation needed to calculate MAXT bounds. This tool not only allows its users
to compute worst case execution time bounds of high quality; it also produces de-
tailed information about the contribution of every statement to this bound and
allows programmers to experiment with hypothetical times, i.e., the programmer
can predict how local changes in the execution time affect the global timing behavior
of a procedure/program.

Li and Malik [6] presented a method that is similar to our work. Worst case
program execution times are computed with an integer linear programming solver.
Disjoint sets of program paths are identified and a linear programming problem is
constructed for each path set. Then, the solution of each programming problem is
computed. The maximum value of the solutions is the worst case execution time.
Li, Malik, and Wolfe extended this work to incorporate the timing characteristics
of modern processors with instruction caches and pipelines, [7]. We do not discuss
this work in detail, since the modelling of hardware features is beyond the scope of
this paper.

Several new aspects are presented in our work:

e We treat the computation of worst case execution times as a graph-theoretical
problem, a generalization of a circulation problem found in graph theory [4].

e T-graphs and relative capacity constraints are a concise notation to characterize
a program’s static structure and feasible/infeasible execution paths.



e The notation with T-graphs and relative capacity constraints characterizes feasi-
ble and infeasible program paths sufficiently to derive exact maximum program
execution times (not just execution time bounds) for computer systems in which
the execution time of every sequential piece of code is invariable. We prove this
property in the paper.

e Our method imposes only a minimum of structural restrictions on programs.
This is in constrast to most previous approaches [20, 15, 5, 13, 10] that were
very restrictive, e.g., they disallowed break, return, and other jump statements.

e The graph theoretical problem is mapped onto an integer linear programming
problem. A solution of a linear programming problem yields both the maxi-
mum execution time and valuable information about the execution times and
execution frequencies of every single program construct. Besides, we can rely
on existing tools to compute solutions and need not build our own.

Section 2 describes the assumptions on programs and system properties made in
this work. In Section 3 we show how the computation of the MAXT of a program
can be mapped to the problem of finding a maximum cost circulation in a graph,
called T-graph. Since the first solution, that bounds the flow for each edge indi-
vidually, proves to be unsatisfactory we introduce relative capacity constraints in
Section 4. We show that this problem description suits our needs: Feasible exe-
cution paths can be exactly characterized and the MAXT can be computed. In
Section 5 we illustrate how an ILP problem is constructed to compute the MAXT
for a T-graph with relative capacity constraints. Section 6 concludes the paper.

2. Assumptions

The execution time of a program is determined by two factors: the behavior of
the program, which depends both on the program structure and the application
context, as well as the characteristics of the underlying hardware. Our method for
MAXT analysis considers the first point. As for the hardware characteristics, we
assume that the execution time of every sequential piece of code is invariable. The
following list further summarizes the assumptions made in this paper.

e A program/piece of code subject to MAXT-computation has one starting point
and one end point. The end point differs from the starting point. Every exe-
cution begins or enters the code at the starting point and terminates or leaves
the code at the end point.

Note that this assumption does not limit generality. A piece of code with one
starting point and one end point can be built from every piece of code with an
arbitrary number of starting points and end points. The easiest way to do so is
to insert a conditional branch to all starting points at the beginning and to add
a new end point and jumps to this end point from all end points of the original
piece of code.



e Every execution can be described as a sequence of executions of the various
code parts (e.g., instructions, statements, blocks, ...) for which the execution
times are known. Our method also works if the execution times of code parts
are not exactly known but can be bounded. In that case it will, however, only
produce pessimistic bounds for the MAXT.

e The static structure of the code, i.e., which code parts may follow each other in
execution, is known.

e For each part of code the maximum number of repetitions is known.

e The dynamic characteristics of a program/program part, i.e., the paths that can
actually be executed in the given application context, depend on the input data
and the program state at the time of invocation. We assume that information
concerning this dynamic behavior is available and complete, i.e., all information
about feasible/infeasible paths is available to the MAXT analysis.

It is obvious that the latter assumption will not always hold in practice. It
is however beyond the scope of this paper to discuss the difficulties associated
with the provision of such execution information. In this paper we want to
concentrate on the methodological limits of our technique: Assuming that full
information about execution paths is available we investigate to which extent
this knowledge can be utilized for the MAXT-computation. In fact, we will
show, that our approach allows a complete incorporation of that knowledge
into the analysis.

3. The T-Graph Representation of Programs

In this section we discuss the representation we use for describing the problems to
be solved. This representation must describe both static and dynamic properties
of the application code under investigation. The static structure of programs/code
pieces is represented by directed graphs. The graphs are annotated with restrictions
which characterize the feasible and infeasible execution paths.

3.1. Representation of the Static Program Structure

We represent a program or a piece of code by a T-graph, a timing graph. The edges
of the T-graph stand for constituents of the code and are weighted by the execution
times of these constituents. The nodes in the graph represent points in the code
where the control flow of the program may split and/or join.

Depending on the used code description language or programming language the
edges of the T-graph may represent machine instructions, statement sequences of
high level language code, pseudo code statements, etc. T-graphs can be gener-
ated for any of these program representations provided the execution times for the



constituents (or at least bounds thereof) can be derived. Of course, it must be guar-
anteed that every part of the program source is mapped onto a corresponding part
of the T-graph. Figure 1 shows, how some typical high level language constructs
might be translated into T-graph notation.

join
lit join split
Ny condition
sequ
condition
join split return
join
Sequence Branch LoOp e Loop i Return

e node — edge <> subgraph

Figure 1. T-graph representation of typical programming language constructs.

Formally, a T-graph is a connected directed graph G = (V, E) with vertices
(nodes) V = {v; | 1 <i < |V|} and edges (arcs) E = {e; | 1 <i < |E|}, where each
edge e; can also be written as an ordered pair (vj,vg). A T-graph has the following
properties:

1. G has exactly one vertex s with no incoming edges (starting vertex).
2. @ has exactly one vertex ¢ with no outgoing edges (terminating vertez).

3. For every edge e; there exists at least one sequence of edges with starting point
s and end point ¢ that contains e; (no unreachable code).

4. Every edge has a non-negative integer weight t; = 7(e;) (execution time).

Ttems 1 to 4 define the structure of a T-graph. The semantic interpretation is as
follows. Points 1 and 2 help us to characterize the execution paths whose execution
times we want to compute. In the T-Graph all paths start at the vertex s and end
at the vertex t (see also Section 2).

Point 3 guarantees that each program part is part of at least one program path
leading from s to ¢ and point 4 assigns an execution time to each edge.



The definition of the T-graph allows that one piece of code is multiply represented
by several edges as long as the T-graph correctly represents the control flow through
the program code. This is useful when conditional jump instructions, whose execu-
tion times depend on whether the jump takes place, have to be represented. Such
jump instructions can be mapped onto different edges with different execution times
whose successors are the respective alternatives following the branch.

Note that T-graphs can represent arbitrary valid flow graphs, even irreducible
ones, with one starting point and one end point. In particular their use is not
restricted to the description of ‘well-structured’ programs. This implies that pro-
grams to be analyzed may contain arbitrary jump instructions, including goto!
statements.

3.2. Execution Paths and Execution Times

The previous section introduced the representation of code pieces by T-graphs.
In this section we will define the terms ezecution path and execution time. An
execution of a piece of code is characterized by the execution of a sequence of
actions described by that code. It starts with the first statement (instruction, etc.),
follows the control flow as defined by the constructs of the language used, and leaves
the code at the end statement. For every such execution a corresponding sequence
of edges from s to t in the T-graph exists.

Definition. A sequence of edges P; = (e;,,€;,,...,€;,, ) in a T-graph G with e;, =
(s,vj) and e;,, = (vg,t) is called ezecution path or for short path.>

Every execution path consists of a finite number of edges. Every edge is weighted
by its execution time. We can, therefore, attribute every path an execution time
— the sum of the execution times of its edges.

Definition. The execution time T of a path P; = (e;,,€4,,...,€;, ) is the sum of
the execution times of its edges,
m
T(F) = Zr(eij). (1)

Jj=1

The execution times of the edges of a path P; can be summed up in any order.
One can, therefore, count the number of occurrences of every edge e; € E on P;,
yielding f;(e;), or for short f; ;. The execution time of P; can then be written as
follows:

|E| |E|

T(P) = 3 filenrles) = 3 fusty: @

For every application, the number of different execution paths is finite. Since it
is possible to compute the execution time for each of these paths, it is also possible
to compute the maximum of these times, which is the maximum execution time.



Definition. The mazimum execution time (MAXT) of a set of paths 7 in a T-
graph G is

|E|

mat(x) = wax(r(P)) = max 3 i t;. (3)
i i & ],:1

For a real implementation a full enumeration of all possible execution paths
through every piece of code under scrutiny is infeasible. For this reason a rep-
resentation that describes, rather than enumerates, execution paths is needed.

3.3. Characterization of Execution Paths — A First Step

An enumeration of all possible execution paths through a piece of code does not
make use of the information that is represented by a T-graph. The T-graph already
contains a lot of information about the possible order of edges in legal execution
paths. In the following this information is used as a basis for the description of
possible paths for the MAXT computation. We extend the notion of T-graphs
by introducing capacity constraints that restrict the flow in their edges. Then
we compute the MAXT of the respective code pieces as maximum cost integer
circulation in the given extended T-graphs.

3.53.1.  Circulations

We first introduce circulations as they are defined in graph theory [4]. Further on
we will modify this common definition to suit our needs.

Given a connected directed graph G, a function f: E — R is called a circulation
if it conserves the flow in every node:

VoeV: Y fle)= Y fle). (4)

e=(v;,v) e=(v,vr)

The capacity constraints b : E — R and ¢ : E — R restrict the values of f for all
edges. A circulation f is called legal if

Ve € E :ble) < f(e) < c(e). (5)

Finally, let v : E — R be a cost function on G. The cost vy(f) of a circulation f is
then defined as follows:

V() =D () f(e). (6)

ecFE



3.3.2.  T-Graphs and Clirculations

The aim is to compute the MAXT of a piece of code as an integer circulation of
maximum cost in the T-graph G. For this purpose the T-graph is mapped onto the
description of a circulation. The following steps are performed:

1. A backward edge e+, = (t,5) is added to the T-graph G, yielding an eztended
T-graph G' with V! =V and E' = EU {e|g|4+1}. The extended T-graph allows
for circulations which have a flow of 1 both out of s and into t. We will see,
that this modification is necessary to represent execution paths by circulations.

2. For each edge e; the capacity constraints b(e;) and c(e;) are defined as follows:

N ._ J 1ife;=(ts) (backward edge)

blei) = {0 otherwise (7)
N ! if e; = (¢, )

clei) = {fmm(ei) otherwise (8)

The term fiq.(e;) stands for the maximum number of executions of the edge
e; in the path set 7, i.e., fimaaz(e;) = max f;(e;).
Pem

3. The cost of the edges in the extended T-graph are:

9)

v(ei) = { 0 if e; = (t, )

7(e;) otherwise

These transformation rules give a formal description of how a T-graph and a set
of paths that describe the behavior of a piece of code can be characterized by a
circulation and capacity constraints. The following properties of the transformation
are worth noting:

e For every execution path P; = ((s,v;,), (vi;,0i,), .- (v, ,t)) in G the closed
sequence of edges P' = ((s,v,), (Viy,Vin), .- (v, ,t), (¢, 8)) in G’ induces an
integer circulation in G': we define that every occurrence of an edge e in the
closed sequence adds 1 to the flow in this edge. Since for every closed sequence
of edges the number of outgoing edges equals the number of incoming edges for
every node, this construction yields indeed a legal circulation.

e Except for the backward edge, the minimum flow for each edge is 0. For the
backward edge both the minimum flow and the maximum flow are set to 1.
This is to make sure that every valid circulation has a flow of 1 both out of s
and into ¢ and thus represents a valid execution path.?

e For every edge e; that is a member of an execution path ¢(e;) > 1 holds. Only
for edges that are not part of any path (dead code) ¢(e;) = 0.
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e In Point 3 of the transformation the cost of every edge is assigned its execution
time. Thus, for every path P in G with a corresponding circulation f in G’
the execution time of P can be calculated as the cost of the circulation f, i.e.,
~(f). In particular, this implies that the maximum execution time of the valid
execution paths in G can be calculated as the cost of a maximum cost circulation
in G'.

e The construction of legal circulations from execution paths induces an equiv-
alence relation on execution paths. Two paths P and P’ belong to the same
equivalence class if for every edge the number of occurrences in P equals the
number of its occurrences in P’. Since the execution time of every program
path is only dependent on how often every edge occurs, but independent from
the order of the edges, the execution times of all paths of the same equivalence
class are equal.

For the computation of the MAXT as a circulation of maximum cost this im-
plies that it is sufficient to work with equivalence classes, which reduces the
complexity of the problem. On the other hand the solution of a MAXT prob-
lem with this technique may not only yield a single execution path but the set
of paths belonging to one equivalence class.

3.3.8.  Shortcomings of the Transformation

Although the previous list of observations might suggest that the construction of a
circulation problem allows to map the MAXT calculation onto the computation of a
maximum cost circulation in the extended T-graph, this is not true in general: Only
an upper bound for the MAXT, not necessarily the exact value, can be computed
this way. The reason is that essential information about paths get lost in the
transformation process. The transformation does not guarantee that maximum
cost circulations do indeed represent execution paths. Before we discuss this in
more detail, we define the term circulation subgraph.

Definition. Let G = (V, E) be an extended T-graph and f a circulation in G. We
call the graph G = (V,E) with E = {ele € E, f(e) > 0} the circulation subgraph
of G induced by f.

There are two different situations in which maximum cost circulations do not
represent valid program paths:

Case 1.

The circulation subgraph induced by the maximum cost circulation, G = (V, E)
with E = {ele € E, f(e) > 0 in the maximum cost circulation}, is not strongly
connected, i.e., there is no closed sequence of edges ((s,vi,), (Vi,,Viy)s .-, (£, 8))
through the extended T-graph that contains all edges e with f(e) > 1 in the maxi-
mum cost circulation.
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Figure 2 illustrates Case 1. The left side shows the structure of an extended T-
graph. The table to the right lists the maximum capacity c(e) and the cost y(e), i.e.,
the execution time, for each edge. The minimum capacities are 1 for the backward
edge and 0 for all other edges. The last column of the table shows f(e) for each
edge in the maximum cost circulation, the thick lines in the graph the respective
circulation subgraph.

: e cle) ~le) fle)
: er 1 36 1
: es 1 8 1
. es 1 86 1
: eq 1 8 1
: es 1 112 1
: €6 1 10 0
: ez 1 30 0
. es 1 46 1
: es 1 10 0
: €10 8 12 7
: enn 8 26 7
. €12 7 10 7
elg: €13 1 32 0
E €14 1 24 0
: €15 10 44 10
: et 10 20 10
. €17 9 10 9
: eis 1 56 1
. €19 1 0 1

Figure 2. A maximum cost circulation that does not represent a valid path. Thick lines in the
graph represent the circulation subgraph of the circulation.

The circulation subgraph contains at least one sequence of edges from s to ¢t. On
the other hand, none of these sequences contains the edges ejq, €11, or e15 — there is
no flow greater than zero into this subgraph. Observe that it is not even true that
the edges of the correct worst case execution path form a subset of the edges of the
marked circulation subgraph (see Figure 4, which shows the desired solution). The
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worst case execution path contains eg, €13, and eq4. It does, however, not contain
any edge of the marked sequence (es, ..., es).

The reason for this problem is that a T-graph G does not need to be acyclic.
Obviously, any positive flow in a cyclic subgraph of G by itself obeys the flow
conservation principle. A non-zero flow can exist in such a subgraph, even if all
the edges leading into this subgraph have a flow of zero, i.e., the edges of the cyclic
subgraph are not part of a valid execution path.

In order to compute ciruclations that do represent worst case execution paths,
we have to make sure that the circulation subgraphs of these circulations are con-
nected, i.e., we map the MAXT calculation to the computation of a maximum cost
circulation which is strongly connected. In Section 4 we will generalize the capacity
constraints by introducing relative capacity constraints to cover this connectivity
requirement.

Case 2.

Although the maximum cost circulation corresponds to a sequence of edges from
s to t in the extended T-graph, at least one edge e for every valid execution path
P; exists with fi(e) < fme(e), where fi.(€) represents the flow through e in the
maximum cost circulation, i.e., the maximum cost circulation corresponds to an
infeasible path [17].

The characterization of execution paths by capacity constraints describes the
maximum number of executions of every single edge of a graph separately. It
does not allow the description of more complex characteristics of the behavior of
a program, i.e., a certain correlation exists between the number of executions of
different edges. Therefore, only local, per-edge capacity constraints can be taken
into account when computing a maximum cost circulation. The following example
illustrates that case.

Consider the T-graph of Figure 3 which consists of two branches in sequence. We
assume that the following execution paths are possible:

(611627631667671687611):
(61,62,63,66,69,610,611),
(61,64,65,66,69,610,611).

The path (e, eq, €5, €6, €7, €5, €11) is assumed to be infeasible. We observe that the
capacity constraints c(e) do not allow to characterize this set of paths sufficiently:
The computation of the maximum cost circulation yields a circulation that exactly
corresponds to the infeasible path. The cost of this circulation is 378 time units, as
opposed to the desired result of 324, the maximum cost of the three feasible paths.
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e1 1 44 1
e 1 8 0
es 1 80 0
e4 1 10 1
es 1 132 1
e6 1 56 1
er 1 8 1
es 1 82 1
€9 1 10 0
€10 1 12 0
e11 1 46 1
€12 1 0 1

Figure 3. Example for an extended T-graph.

4. A Characterization of Possible Execution Paths Suited for the MAXT-
Computation

In the previous section we mapped the problem of the computation of the MAXT of
programs onto a problem from graph theory — the computation of a maximum cost
circulation in a flow network. It turned out that the description of circulations in
its existing form only allows the computation of bounds for the MAXT. It does not,
however, allow us to characterize program behavior in sufficient detail to enable a
derivation of the worst case execution path(s) in general. In this section we extend
the description of circulations such that they can characterize arbitrary sets of
execution paths that are both legal and possible. This way, the computation of the
exact MAXT of every piece of code — not just a bound thereof — becomes possible.

4.1. Relative Capacity Constraints and Connected Circulations

One problem with the traditional representation of circulations is that the circula-
tion subgraphs for maximum cost circulations might be split into several compo-
nents (see Case 1 in Section 3.3.3): In every cyclic subgraph a flow greater than
zero can exist regardless whether there is any positive flow into that subgraph or
not. In the following we will use relative capcity constraints to avoid that the flow
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in a cyclic subgraph which is not fed by a positive flow (except a cycle that contains
both s and t) can become greater than zero.

Definition. A relative capacity constraint is an inequality or equation of the form

Y aif(e)e Y aif(e) +k, (10)

e;ER' e;€EE’

where a;,a; € Zg, k € Ng and o € {<,<,=}, that describes the relation of the
flow f in the edges e; of an extended T-graph G'.

Note. Without restriction any relative capacity constraint of the given form can
be written in standard form

> bif(ei) ok (11)

e;€EE’
where b; = a; — a} for all i. We will make use of both notations.

The following theorem describes the minimal requirement that guarantees that
a T-graph together with a set of relative capacity constraints describe only circu-
lations that correspond to valid execution paths from s to ¢. For this theorem we
need the definition of implicating edges.

Definition. Let e; be an edge in E and FEy,;, a subset of E with e; € Fgyup. We
define that e; implies Egy if every execution path containing e; contains at least
one edge of Egyp.

THEOREM 1 Let G' = (V',E') be an extended T-graph, Geye = (Veye, Ecye) a cyclic
subgraph of G' that contains neither s nort, and E;n,), the set of edges e; that imply
E ye.

If the flow of at least one edge e. of each cyclic subgraph Gy, is bounded by a
relative capacity constraint of the form

f(ec) < Z aif(ei)a (12)

€ €EEimp

where at least one a; is greater than zero, then the circulation subgraphs of all legal
circulations are strongly connected, i.e., every legal circulation corresponds to at
least one closed sequence of edges ((s,v1),. .., (vj,t),(¢,3)).

Proof: The correspondence between closed sequences of edges and connected
circulations has been discussed earlier. It remains to be shown that the above
conditions imply that the subgraph of the circulation is strongly connected.
Indirect proof: We assume that the circulation subgraph is not strongly connected
although a relative capacity constraint for each cycle exists. It follows that one cycle
with edges E.y. is not reachable from s in the circulation subgraph. This implies
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that f(e.) > 0 for all edges e. € E . and that f(e;) = 0 for the edges e; € Ejpyy
that imply F.,». Since the flow of at least one edge e, € E . is restricted by a
relative capacity constraint and since f(e;) = 0 for all e; € Ejpy we get f(e.) = 0.
Hence, there is no cyclic positive flow in the cycle E.y. This contradicts the
assumption and proves the theorem. [ |

According to the theorem relative capacity constraints can be used as the basis
for the computation of maximum cost circulations that are strongly connected. All
one has to do is specify one relative capacity constraint for each cycle (loop) in the
extended T-graph.

The example shown in Figure 4 uses the T-graph used in a previous example.
In contrast to the earlier description relative capacity constraints describe the flow
in the edges. We use one capacity constraint for the backward edge, f(e19) = 1,
to specify that circulations must have a flow of one out of s and into t. Two
further relative constraints limit the flow in the cycles (loops). Together with
the structural description of the extended T-graph and the cost of the edges this
information is sufficient to compute a maximum cost circulation (last column of
the table). Implicitly we assume that f(e) > 0 for all edges. The given relative
capacity constraints replace the traditional, absolute capacity constraints ¢(e) which
had been defined for all edges in Figure 2.

4.2. Complete Description of Possible Execution Paths — Exact MAXT
Computation

In the previous section we described how we can use relative capacity constraints
to meet the “connectivity requirement” for circulations that represent execution
paths of programs. In this section we show a property of the code representation
by extended T-graphs and relative capacity constraints that is much stronger. This
program code representation is strong enough to characterize the possible and im-
possible (infeasible) paths through any piece of code in a way that the computation
of the maximum execution time is possible. We formulate this important property
in the following theorem.

THEOREM 2 By means of extended T-graphs and relative capacity constraints the
behavior of every piece of code can be described such, that its actual worst case
execution time — not just a bound thereof — can be computed.

Proof: Let G' be an extended T-graph. We have already shown that an appro-
priate set of constraints for capacities allows to compute an upper bound for the
maximum execution time of a piece of code. It remains to be shown, that the selec-
tion of an adequate set of relative capacity constraints makes it possible to compute
the exact maximum execution time, not just a bound thereof. We proof that by
induction with respect to the number of paths through the extended T-graph.*
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. e e fe)
‘-. €1 36 1
: es 8 0
. e3 86 0
: €4 8 0
: es 112 0
. €6 10 0
: er 30 0
. es 46 0
: eg 10 1
: €10 12 8
E €11 26 8
: e12 10 7
: €13 32 1
E €14 24 1
: €15 44 10

elgi €16 20 10
: eir 10 9
E €18 56 1
H €19 0 1
flero) =1
: f(ewo) < 8f(es)

: fleis) <10f(es) +10f(e14)

Figure 4. Maximum cost circulation of an extended T-graph with relative flow constraints.

1. A single execution path P; = (e;,,...,€;, ) can be assigned an n-tuple F(P;) =
(fi1s-++5f1,)p)) where fi ; is the number of occurrences of e; on P;. One can
construct a set of constraints R; that characterize the path,

Ry = {f(e;) < fisl1 < j <|E|}. (13)

Maximizing the cost of all possible circulations under these constraints yields:

|E| |E|

maxt(P) = 7(Py) = Z,fl,jtj = Hll%aiXZf(e]’)t]’. (14)
j=1 j=1

Hence the theorem holds if exactly one path is feasible.
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In the second step of the inductive proof we assume that for a set of n paths,
described by an extended T-graph and constraints, the maximum execution
time can be calculated.

CrLAM 1 A set of n + 1 paths can also be characterized in a way that the
mazimum execution time can be computed.

Let R, := {>_ apiz; < ci} be the set of restrictions for n paths after transforma-
tion into standard form.® Rn+1 is the set of constraints which characterize the
path P,4;. Since P41 & {P1,...,P,}, two cases can be distinguished: Either
P,41 or a path out of {Py,..., P,} is the path with the maximum execution
time. Therefore, either the restrictions R,, or R,y describe the worst case.

A trick that is used in linear programming, the Big M Method [3], is applied to
construct a disjunction of R, and R, 1: Let M be a new, large constant that
is greater than the right hand sides of all inequalities introduced so far. Then
either the restrictions

Zakla:l <c¢g forall R € R, and f(ej) < fnt1,; + M forall R € R,y (15)

or the restrictions

> apz < cp+ Mforall R€ Ry, and f(e;) < for1, for all R € Rpyr (16)

hold. Using an additional, binary variable y, we build a new set of restrictions
for the disjunction of these two sets as follows:

Sapz; < cp +yM for all R € E"
flej) < fay1;+(1—y)M forall R € Rpqq (17)
y <1

Rewriting the formulas so that variables only occur on the left side and constants
on the right yields the set of restrictions of the standard form for n+1 execution
paths. Hence we can write:

maxt({Py,..., Pyy1}) = max(mazt({Pi,..., Py}, maxt(Pyy1)) =
max(maxg, 32, f(ei)t(e;), maxg | SUEL flen)t(es)) = (18)

E
maxg | _poam,, Loy flent(e),

where the @& operator stands for the disjunction of restrictions as introduced
above.

This result proves the claim. Thus, we have shown that for any set of paths the

worst case execution time can be computed. [ |
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Table 1. Examples of inequalities and equations describing the dynamic execution behavior of
code.

Inequalities Semantics

fles)>1 e; appears at least once on every execution path.
flei) = f(ej) e; and e; are executed the same number of times.
flei) = 3f(ej) e; is executed three times more often than e;.

flei) + f(ej) + fler) < K The sum of the number of executions of e;, e;, and ey,

is bounded by K.

fei) < Mf(ej) 1) Every execution of e; enables M executions of e;.
If e; is part of a loop that is preceeded by e; the in-
equality resembles a marker [13]. 2) Assuming that M
is a “very large” constant this can be understood as
kind of an implication. Every path with at least one
occurrence of e; must also include e;.

f(ei) < My, Occurrences of e; and e; exclude each other (Big M

fle;) < M — My, Method).

y<1

3f(e;) + f(ej) <9, For every execution of e; (max. 2) the maximum num-

fles) <2 ber of executions for e; decreases by 3. The total
number of executions of both parts together is also
bounded.

4.3. Describing Software Behavior Concisely

Relative capacity constraints are means to describe software behavior. Using them
we can avoid that the computation of the maximum execution time for a piece of
code yields the execution time of a path set that consists solely of infeasible paths.
Hence, the use of relative capacity constraints provides a solution to the problem
Case 2 encountered with the original representation.

The above proof was conducted on a single path basis. A large number of con-
straints are needed to describe all feasible paths. For practical use, representing
code behavior by extended T-graphs and relative capacity constraints — as we did
before — is more adequate. In most cases an extended T-graph and a few relative
capacity constraints are sufficient to exactly characterize the possible behavior of
a piece of code. Note that relative capacity constraints are not restricted to the
description of loop bounds but may characterize any relation between the number
of executions of different code statements (see Table 1).

We use our second example (Figure 3) to illustrate the use of relative capacity
constraints for the exclusion of infeasible paths from the analysis. In this exam-
ple we have two branching statements with two branches in sequence, potentially
allowing four different paths. One execution path, however, is assumed infeasible.
In order to characterize the set of possible paths exactly we state which behavior
is not allowed, i.e., which edges must never occur on the same path. Here, the
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edges e4 and e5 on the one hand and e; and eg, on the other hand, must never be
executed in a single execution. Due to flow conservation it is sufficient to say that
es (e5) and e; (es) are exclusive. If the flow in e4 equals 1 the flow in e; must be
0 and vice versa. The sum of the flows can maximally assume 1. We express this
by the relative constraint f(es4) + f(e7) < 1. Together with the extended T-graph
and the minimal constraint set f(ej2) =1 and f(e;) > 0 for all ¢ this inequality is
already sufficient to completely describe the behavior of the code.

Table 1 gives further examples on how some common dependencies can be de-
scribed by relative capacity constraints. This list is by far not complete — as we
showed before, any dependency can be expressed with such constraints. It gives,
however, an impression how relative capacity constraints can be used.

While constructing a set of capacity constraints for a specific application might
not be too hard, reading and understanding the meaning of a given set of con-
straints can be quite demanding. The use of an appropriate language to describe
characteristics of execution paths, as, e.g., used in [9], is certainly advantageous
in practice. Note, that in this work we do not discuss description languages. We
rather emphasize that it is possible to describe how often the parts of a program are
executed on the feasible execution paths and to compute the maximum execution
times from that knowledge as shown above.

5. MAXT Calculation with Linear Programming

The previous section introduced a representation for the analysis of maximum ex-
ecution times of programs. Programs are described by extended T-graphs and a
set of constraints which describe the set of possible paths through the graphs. The
problem of calculating the MAXT now corresponds to the problem of finding the
circulation with maximum cost in the graph. To find that circulation, either a
new calculation method has to be developed or the problem must be transformed
in a way that existing methods can be applied. We decided to use Integer Linear
Programming (ILP), a well known method in the field of Operations Research. We
realized that the basic structure of an ILP problem is well suited for our needs. In
fact we developed the T-graph with regard to how such a T-graph can be trans-
formed into an ILP problem.

The following steps must be performed to compute the MAXT of a code fragment:

1. Build an extended T-graph and the corresponding circulation model from the
structure of the program and from the knowledge about feasible and infeasible
paths.

2. Transform the T-graph and the circulation model into a Linear Programming
problem.

3. Solve the Linear Programming problem with existing standard tools.
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5.1.

Setting Up the Linear Programming Problem

The aim of ILP is to find the maximum value of an objective function subject to the
assumption that a set of functional constraints hold. The standard ILP problem
can be characterized with the following determinants:

n decision variables z1, za, ..., p,

n
the objective function Z = Z c;x;, which has to be maximized,
i=1
n
m functional constraints Z a;jx; < b; for all i € [1,m], and
j=1

nonnegativity constraints z; > 0 for all j € [1,n].

We now show the construction of the ILP problem from the T-graph and the
circulation model.

1.

The execution time of a path through the whole program is the weighted sum of
the execution frequencies of the edges, where the weights of the edges are their
execution times. The objective function of the ILP problem is constructed by
using the cost function of the circulation:

|E'|

Z =Y fiti. (19)
i=1

For each ¢ the constant value ¢; is the execution time of the code represented
by edge e; (t; = 7(e;)). The decision variables f; represent the execution fre-
quencies of the edges e;. The goal is to find the set of frequencies f;, for which
the function Z yields the maximum value.

The frequency of each edge e; underlies a set of restrictions due to the control
flow of the program and data dependent implications between program parts.
These restrictions are derived from the structure of the T-graph and the relative
capacity constraints of the circulation.

e A set of functional constraints describe the structure of the T-graph. For
each node v; an equation of the following form is built:

em=(Vi,v;) en=(v;,Vk)

The flow in the edges going into v; equals the flow in the edges leaving node
v;j (flow conservation).
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e The capacity constraints of the circulation model are directly transformed
into the functional constraints of the ILP problem:

Y aifieo Y alifi+k, (21)

e;EE' e;EE’

where a;j, aj; € Zo, k € Ng and o € {<, <,=}. These constraints describe
restrictions for loops and other dependencies between execution frequen-
cies of program parts. An additional constraint, f/g| = 1, restricts the
backward edge.

e For each edge the nonnegativity constraint f; > 0 is built. This completes
our problem. In most software packages the nonnegativity constraints are
formed automatically.

Figure 5 and Figure 6 illustrate the transformation of a circulation model into an
ILP problem. They show an extended T-graph with constraints for all edges and
the corresponding ILP problem. The objective function is the sum of the execution
frequencies (f;) of all edges weighted by their execution times. The ILP problem
contains one equation for each node to describe the flow conservation. Additionally,
the flow in the two loops is restricted by two inequalities which are easily derived
from the restrictions of the T-graph. A further equation, f19 = 1, restricts the flow
in the whole T-graph. The nonnegativity constraints for all edges complete our ILP
problem.

The ILP problem can be solved with standard off-the-shelf tools. The solution
yields the MAXT of a program (solution of the ILP problem) as well as the execution
frequencies of its constituents (settings of the decision variables), see Figure 6.

5.2. Benefits of the Approach

The previous section described, how integer linear programming can be used to
derive the maximum execution times of programs. The solution of an ILP problem
gives us valuable additional and extensive information about the timing of the code.
This section lists the information we get from a solution of the ILP problem.

1. The maximum execution time of a program, i.e., the maximum time of all paths
through the T-graph obeying the restrictions.

2. The set of paths with maximal execution time (worst case paths). The solu-
tion shows, which program parts belong to the paths that are the most time-
consuming. The set of execution paths is characterized by the values of the
decision variables greater than zero.

3. The contribution of each program part: The MAXT of any program part can
easily be derived using the values of the decision variables weighted by their
execution times. So it is also possible to calculate the MAXT of program parts.
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e t(e)
el 36
€2 8
€3 86
€4 8
es 112
€g 10
er 30
eg 46
€9 10
€10 12
€11 26
€12 10
€13 32
€14 24
€15 44
€16 20
e17 10
€18 56
€19 0
flew) =1
f(e10) < 8f(e9)
flews) < 10f(es) + 10f(e14)

Figure 5. Example of an extended T-graph with constraints for each edge.
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Objective function of the ILP problem:

Z = 36f1 +8f2+86f3+8fs+ 112f5 + 10f + 30f7 + 46 fs + 10f9 + 12 f10+
26 f11 + 10f12 + 32 f13 + 24f14 + 44 f15 + 20 f16 + 10f17 + 56 f15.

Graph description:

s: fio = f

v fi = fo+ fo
vy fo = f3

v3: f3 = fi+ fe
Vit fa = fs

vs : fo = fr

ve: f5+ fr = fs

vr: fo+ fi2 = fio

vg 1 fio = fn

vg : ful = fi2 + fi3

vio : f13 = fua

vir: fs+ fiu+ fir = fis

vi2 : fis = fis

viz : fie = fir+ fis
t: fis = fio.

Backward edge and loops:

fio < 8fy

fis < 10fs + 1014

fio = L

Nonnegativity constraints:

fi > 0for1<i<19.

Solution of the ILP problem:

Z =1262

Settings of the decision variables:

f1:1: f2:0: f3:0: f4ZOa fSZOa fﬁZOa f7ZOa
fs=0, fo=1 fio=8, fii=8, fiu=7 fiz=1, fiu=1,
fis =10, fi6 =10, fir=9, fis=1, fig=1.

Figure 6. Description of a MAXT-problem as a linear programming problem.
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4. The number of executions of every single edge in the computed worst case: Af-
ter having solved the ILP problem, the decision variables contain the execution
frequencies for all edges. This information helps to find program parts where
improvements have substantial influence on the quality of the MAXT. An opti-
mizing compiler can use this information to concentrate on program parts that
have a big temporal influence.

Apart from the above-mentioned advantages, our approach gives the user the abil-
ity to manipulate parameters of the derived ILP problem to get more information
on the timing behavior of the program:

e Manipulating the coefficients of the decision variables: The coefficients of the
variables correspond to the execution times of the respective edges. A variation
of these coefficients can help the user to learn about the global effects of local
improvements within a piece of code. The effects on the MAXT can be analyzed
before the improvements are really implemented. This helps the user to find
program parts, where improvements reduce the maximum execution time of the
overall program.

¢ Adding new functional constraints: If new dependencies between program parts
are found after having calculated the MAXT, new constraints describing these
dependencies can be added to the ILP problem. If the old solution fulfills
each of the new restrictions, no improvements can be derived by adding these
restrictions. The old solution is also valid for the new problem. If, on the other
hand, the solution does not fulfill the added constraints, a new solution has to
be calculated. This new solution is better than or equal to the former MAXT.

6. Conclusion

This paper presented a new method for calculating the maximum execution times
of programs. The method is derived from a graph-theoretical problem, the com-
putation of a maximum cost circulation in a graph. In that problem, capacity
constraints bound the minimum and maximum flow for every edge. We showed
that the characterization of the flow on a per-edge basis is not sufficient to describe
all feasible/infeasible paths through a program. Hence, we introduced relative ca-
pacity constraints. Relative capacity constraints allow us to relate the flows through
edges to each other. We proved that a program description in the form of a T-graph
and a set of relative capacity constraints allows us to characterize feasible execution
paths sufficiently to compute exact MAXTs of programs, not just execution time
bounds.

Our method is not restricted to programs of a specific structure. In contrast, it
can also deal with programs which contain jumps, like break or return statements,
and whose flow graph is irreducible. As a minimum requirement, however, the flow
in all circles of those T-graphs has to be bounded by relative capacity constraints.



25

To obtain the MAXT for a program given in our description with T-graphs and
relative capacity constraints we translate the description into an ILP problem.
This ILP problem can be solved with standard tools available on the market. The
solution of the ILP problem yields the MAXT of a program and produces detailed
information about the execution times and execution frequencies of all program
constructs.
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Appendix
A.1. Terminology in Graph Theory

In the literature relevant to graph theory some terms are used with different mean-
ings. This appendix describes the term semantics used in this paper and mentions
variations to other terminologies in literature.

A (directed) graph G = (V, E) consists of a finite set V = {v1,v2,...,v,} of ele-
ments called vertices, and a set E = {(vi,,v;,), (Vig;Vjs), -y (Vi » vj, )} Of ordered®
pairs of members of V' called edges.

A subgraph S of a graph G = (V,E) is a graph S = (V', E') such that V' is
contained in V', E’ is contained in E, and the endpoints of any edge in E’ are also
in V'.

A path P = ((vi,,0iy), (Vig; Vig)y-ors (Vi _y,0i,,)) 18 & finite sequence of edges in
which the terminal vertex of each edge coincides with the initial vertex of the
following edge.”

A graph is said to be connected if there is at least one chain joining every pair of
distict vertices.

A circulation in a graph G is a vector f = [f1, fa, ..., fa] of n non-negative integral®
numbers, where f; represents the flow through edge e;. This vector must comply
with the flow conservation condition at each vertex, i.e., for every vertex v; of G
the sum of the flows in edges incident to v; is equal to the sum of the flows in edges
incident from v;:

Yo fm= > fa

em=(vi,v;) en=(v;,x)

The capacity of an edge e; is a non-negative integer c(e;) which denotes the
maximum permissible value of the flow in the edge e;.

A circulation is feasible or legal if and only if b(e;) < f; < c¢(e;) for each edge e;,
where b(e;) is the lower bound of flow through e; and c¢(e;) is the capacity of e;.



26

The weight w; of an edge e; is a real® number assigned to e;. In our paper
this weight belongs to the execution time (¢;) of the corresponding piece of code
represented by the edge e;.

Notes

. We do not want to advertise the use of gotos in a high level programming language. Nevertheless

there are other instructions with similar semantics, e.g. exit of loops. Apart from that, assembly
language programs with arbitrary jumps are analyzable with our method as well.

Note that an execution path is a special case of a path as defined in graph theory, see Ap-
pendix A.1.

We assume that every piece of code to be analyzed has at least one valid execution path.

Note that if we applied the inductive steps of the proof to really compute the MAXT, we

would rather use the equivalence classes of paths introduced earlier than single paths in every
inductive step. We feel, however, that the reader can follow the proof more easily if we handle
one path in one step.
Standard form means that the restrictions are rewritten such that variables only occur on the
left side and the right side contains only one constant. For each f(e;) in the original form
there is a corresponding z; in the standard form of the restriction; the exact mapping from
f(e;) to x; is unimportant for our proof and thus omitted.

In literature this definition often belongs to the term directed graph or digraph, while edges
of a graph consist of unordered pairs of members of V.

In literature this definition sometimes corresponds to the term walk while path is defined as
a sequence of edges where all vertices and edges are distinct.

In graph theory the flow through an edge is defined as a vector of real numbers instead of
integers.

In the examples in this paper all weights are integral numbers since we are used to specify the
execution times of pieces of code in CPU cycles.
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