
A Fast New DES Implementation in SoftwareEli BihamComputer Science DepartmentTechnion { Israel Institute of TechnologyHaifa 32000, IsraelEmail: biham@cs.technion.ac.ilWWW: http://www.cs.technion.ac.il/~biham/Abstract. In this paper we describe a fast new DES implementation.This implementation is about �ve times faster than the fastest knownDES implementation on a (64-bit) Alpha computer, and about threetimes faster than than our new optimized DES implementation on 64-bitcomputers. This implementation uses a non-standard representation, andview the processor as a SIMD computer, i.e., as 64 parallel one-bit pro-cessors computing the same instruction. We also discuss the applicationof this implementation to other ciphers. We describe a new optimizedstandard implementation of DES on 64-bit processors, which is abouttwice faster than the fastest known standard DES implementation on thesame processor. Our implementations can also be used for fast exhaustivesearch in software, which can �nd a key in only a few days or a few weekson existing parallel computers and computer networks.1 IntroductionIn this paper we describe a new implementation of DES[4], which can be verye�ciently executed in software. This implementation is best used with a non-standard order of the bits of the DES blocks. This implementation does notsu�er from high overhead of computing permutations of bits. Instead, we view aprocessor with (for example) 64-bit words, as a SIMD parallel computer whichcan compute 64 one-bit operations simultaneously, while the 64-bits of each blockare set in 64 di�erent words (of which the �rst bit is always of the �rst block,the second bit belongs to the second block, etc.).The operations that DES uses are as follows: The XOR operation: in our viewthe XOR operation of the processor computes 64 one-bit XORs. The expansionand permutation operations: these operations do not cost any operation, sinceinstead of changing the order of words (or duplicating words), we can addressthe required word directly. We remain with the S boxes. Usual implementationsof S boxes use table lookups. However, in our representation, table lookups arevery ine�cient, since we have to collect six bits, each bit from a di�erent word,

Cipher SpeedDES (Eric Young's libdes) 28Gost 8�SAFER 22�Blow�sh 34�Our DES Implementation 46Our DES Implementation { triple DES 22Our fastest DES 137Our fastest DES { Triple DES 46� Estimation, based on [9].Table 1. The speeds of our implementations and of various ciphers on a 300MHz Alpha8400 processor (in Mbps).combine them into one index to the table, and after the table lookup take the fourresultant bits and put each of them in a di�erent word.We observed that there is a much faster implementation of the S boxes in ourrepresentation: they can be represented by their logical gate circuit. In such animplementation each S box is typically represented by about 100 gates, and thuswe can implement an S box by about 100 instructions.We actually view the whole cipher by its gate circuit, and apply it in software.In this implementation we actually compute the circuit 64 times in parallel (asthe size of the processor word), and thus can gain a high speedup even thoughwe use very simple operations. In average, on 64-bit processors, each S box costsabout 1.5 instructions for each encrypted block, while each instruction takes onlyone clock cycle.The full circuit of DES contains about 16000 gates (including the key schedul-ing, which costs nothing), and thus we can compute DES 64 times in about16000 instructions on 64-bit processors. In average we result with about 260instructions for the encryption of each DES block. Conversion from and to thestandard block representation takes (together) about 40 instructions per block,and thus encryption of standard representations with our implementation takesabout 300 instructions. For comparison, our fast standard implementation ofDES, described in this paper, requires about 634 instructions for each block.Table 1 summarizes the speeds of our implementations, a standard fast DESimplementation (Eric Young's libdes), and of various fast ciphers.The same idea can be applied to other ciphers. Our implementation of theseciphers is e�cient especially when the cipher does not use all the power of themachine instructions (i.e., when each instruction mixes only a few of the bits, suchas S boxes or eight-bit additions on 32-bit processors), and when the word size ofthe processor is large (such as 64 bits, when the cipher use shorter registers). For2

example, our implementation of Feal[11] is expected to be about 2.5{5 times fasterthan direct implementations. Both variants of Lucifer[1,12] and GOST[10] canalso be applied very e�ciently using this implementation. Our implementationof ciphers which use more complex operations (such as multiplication, or largeS boxes) requires more instructions to simulate the complex operations, and isthus less e�cient.In Section 3 we describe an optimized standard implementation on 64-bitcomputers. It uses the 64-bit registers of a 64-bit processor, and runs almosttwice faster than the fastest implementation (designed for 32-bit architectures)on the same processor. It even runs faster than fast ciphers such as GOST[10],SAFER[2], and Blow�sh[10]. The speed is gained by using the long 64-bit re-gisters e�ectively | by all other means this is a standard implementation. Wesuggest a new DES-like cipher, to which we call WDES, based on the structureof this fast implementation, but is about 2.5 times faster.In Section 4 we discuss using these fast implementations for exhaustive search,and conclude that it is applicable even today using existing general purposeparallel computers and computer networks.2 The New Non-Standard DES ImplementationThis implementation uses a non-standard representation of the data in software,and in particular it does not have any table lookup. Instead of encrypting many64-bit words, one at a time, we encrypt simultaneously 64 words, and each op-eration encrypts one bit in each of the 64 words.Actually, we view a 64-bit processor as a SIMD computer with 64 one-bitprocessors. This implementation simulates a fast DES hardware whose number ofgates is minimal,and computes each gate by a single instruction. In particular, theS boxes are computed by their gate-circuit, using the XOR, AND, OR, and NOToperations, and the permutations and expansions do not require any instruction,since they can be viewed as only changing the naming of the registers. Althoughthe S boxes are implemented in more instructions than in usual implementations,the parallelism of this implementation speeds up the implementation much morethan the S box implementation reduces it. Moreover, some of the operations canbe optimized out in some cases, such as if some parts of the S boxes are similar(same or complement).We represent the S boxes by their gate circuit using the best-known XOR,AND, OR and NOT operations, optimized to reduce the total number of gates.Although the problem of �nding the best such circuit is still open, we found thefollowing optimization which requires at most 132 gates per DES S box, andonly 100 gates in average. In the description we denote the six input bits by3

InstructionsExpansion 0Key mixing 48P 0XOR with the left half 32S boxes 8 � 100 = 800 (in average)load+store 8 � (6 + 6load + 4load + 4store) = 160Total per round: 1040Table 2. The number of instructions in each round on Alpha.Total Average per BlockIP,FP 0 016 rounds: 16 � 1040 = 16640 2604 gates per bitConversion of representation 2500 40Table 3. The number of instructions in DES on Alpha.abcdef . We compute all the 16 functions of d and e into 14 registers (excludingthe constant 0 or constant 1). It requires two NOTs (�d; �e) and 10 additionaloperations (0; 1; d; e; �d; �e are already known). This computation is done only oncefor each S box. For each output bit of the S box we compute the result using thesefunctions. We use six operations for each line of the S box and six operations tocombine the results, together 30 operations for each output bit. In total we useat most 12 + 4 � 30 = 132 gates for each S box, but in average we need onlyabout 100 gates per S box. Each combination of four values (the four values ofb; c or the four values of a; f , e.g., combining the quarters of each of the four lines((b = c = 0); (b = 0; c = 1); (b = 1; c = 0); (b = c = 1)), or combining the fourlines) are combined by (assuming the �rst case):�f00 � c � (f00 � f01)�� b � �(f00 � f10)� c � (f00 � f01 � f10 � f11)� ;where the underlined values are known constants, and fbc = S(abcdef), whered; e are the actual values of the input (fbc is one of the 16 values kept in registersabove), and a; f are the values assumed for a; f , to be instantiated in the nextstep. More accurately, in the intermediate steps we compute the combinations ofS box entries as suggested by the above equation (e.g., f00, f00 � f01, f00 � f10,f00 � f01 � f10 � f11), rather than the various values of the entries themselves.Tables 2 and 3 describe the maximum number of gates per round and for thefull DES. Therefore, we expect the speed to be about 300 � 220=4 = 75Mbps on4

300MHz Alpha processors. In practice, we achieve speeds of about 137Mbps,since the processor can apply more than one instruction in each clock cycle.Conversion between the standard and the non-standard representations canalso be done in about 1250 instructions. Doing this twice, before and after en-cryption, takes about 2500 instructions, which are about 40 instructions for eachencrypted block.This implementation can actually be applied to any cipher, but the e�ciencyof the implementation depends on many factors, such as the e�ciency of the ori-ginal cipher, the word size of the processor, and the complexity of the operationsthat the cipher uses. The implementation is especially attractive to ciphers whoseoperations are simple (no multiplication for example), use only small S boxes(thus their gate complexity is small), or use small register sizes (thus cannot usethe full power of modern processors). Examples of such ciphers are Lucifer[1,12],GOST[10] and Feal[11].In the case of Feal, standard implementations require about 22 instructionsfor each application of the round function (4 loads, 2 load + 2 XORs for keymixing, 2 for XOR, 2 additions (S0), 2 additions with carry (S1; each might taketwo operations), 4 rotations and 4 XORS to mix with the left half of the data).The right-round cipher takes thus about 8 � 22 = 176 instructions (not countingthe initial and �nal key mixing which can take a few additional instructions).Our implementation requires 34 or 35 instructions for an eight-bit addition(one or two for the LSB, depends whether this is S0 or S1, 1 for the carryand 2 for the second bit. We need three additional instructions for computingeach additional carry and two XORs for each additional bit: In total we need1 + (1 + 2) + 6 � (2 + 3) = 34 instructions for S0 and 35 for S1). In total the Ffunction requires 16 + 16+ 16 + 35+ 34+ 35 + 34+ 32 + 32+ 32+ 8+ 8 = 298instructions (16 XORs, 16 key loads+mixings, four S boxes, 32 loads, 32 stores,32 mixings with the left half, and 8+8 extra loads+stores if necessary). The eightround Feal can then be implemented in 8 � 298+ 64+ 64 = 2512 instructions (64for each of the initial and �nal key mixings). In average we get that only about2512=64 = 39 instructions per block, which is more than four times faster thanstandard implementations. Even if we do the conversion from/to the standardrepresentation (which costs 40 instructions per block), our implementation takesonly about 39 + 40 = 79 instructions, which is more than twice faster than thestandard implementations.Both variants of Lucifer[1,12] and GOST[10] can also be applied very e�-ciently using this implementation.This implementation can be used for fast encryption and decryption, usingthe same key in all the 64 encryptions (i.e., the key words contain only 0 or �1),or for exhaustive search using the same plaintexts but di�erent keys. We can5

also use di�erent plaintexts with di�erent keys, if it is of an advantage to theapplication.This implementation can be used in three ways:1. Encryption/decryption in standard representations, compatible to other DESimplementations.2. Encryption/decryption of large blocks, such as of disk clusters, or large com-munication packets. In this case, it is not important to use the standardrepresentation, and thus our implementation is even faster, since conversionshould not be done.3. Application to exhaustive search.It is easy to see that applications of this implementation in the ECB modeis very fast, but as usual in ECB modes, it su�ers from many disadvantages.It would be preferable to use standard CBC, CFB and OFB modes with thisimplementation, but this is impossible due to their sequential order. However, itis possible to use this implementation for standard CBC decryption, since thewhole data can be decrypted in parallel, and then each result can be mixed withthe previous ciphertext. It is also possible to apply CFB decryption in a similarway. Therefore, this implementation can be used for fast decryption in standardmodes, even when encryption is done by usual standard implementations.64 parallel CBC encryption modes can be applied in this implementation bychoosing 64 initial values for the 64 block encrypted simultaneously, and applyCBC on the full 642 = 4096-bit blocks. In this case we can also encrypt undera di�erent key in each of the 64 parallel CBC modes | it might be especiallyattractive when a server has to encrypt data to many clients in parallel.This implementation is even faster when conversion from/to standard rep-resentation is not applied. In this case, DES is applied, but with a non-standardorder of the plaintext/ciphertext bits. To protect against multiple occurrence ofthe same plaintexts (actually the 64 bits that enter one real DES in the non-standard representation) we should use new modes.The ECB mode of this implementation takes the 4096 bits of the data, andencrypts them as is. A CBC-like mode can have an initial value of 4096 bits(which can be derived from a 64-bit value), and apply CBC on the 4096-bitcipher. This mode actually applies 64 standard CBC modes in parallel, one foreach of the DES applications in the non-standard representation. An improvementof this mode can mix the bits of each register, for example by rotating registeri (containing the i'th bits of the standard blocks) by i bits after adding i tothe value of the register. A CFB-like and OFB-like modes can be designed in asimilar way. 6

Operations Number of Instructionskey XOR 1 load+XOR 2EPS 8 table lookups 8 � 3 = 24 (extbl, add, lookup)XORing L with the S boxes 8 XORs 8Total 34Table 4. The number of instructions in each round on Alpha.Operations Number of InstructionsIP 5 times (3 XORs, 2 shifts, 1 AND) 5 � 6 = 30E Initial Expansion 2616 rounds each 34 instructions 16 � 34 = 544Removal of expansion 4FP Final permutation 30Total 634Table 5. The number of instructions in DES on Alpha.3 A Fast Standard DES Implementation on 64-bitProcessorsDES can be applied very e�ciently on 64-bit processors. Unlike on 32-bit pro-cessors, on 64-bit processors, the right half expanded to 48 bits can be stored inone word. Moreover, by substituting every group of six bits entering into the Sboxes in a separate byte, we can directly access the S box table by referencingvia a single byte.We apply the initial and �nal permutations by lookup tables from each byteto 64-bits, and XORing the results of the various table lookups.We apply each round by XORing the right half (represented as eight bytes,in each six bits are used) by a subkey (represented in the same way). Then, eighttable lookups apply the eight S boxes, and the results are XORed. Each S boxalready includes the P permutation and the E expansion in its 64-bit result. Notethat due to this representation, several (duplicated) bits of the two halves shouldbe omitted by the �nal permutation.Tables 4 and 5 describe the number of operations required by this implement-ation, with the number of instructions on an Alpha processor. We implementedthis code in C on a 300MHz Alpha and got encryption speed of 46Mbps. TripleDES runs at 22Mbps (since some IP, FP's can be discarded). On the same pro-cessor, Eric Young's libdes (single-DES) runs at 28Mbps.7

Some comments on this implementation:1. The eight S boxes are applied in parallel, and thus pipelining can use itwithout pipeline stalls. In other ciphers and hash functions, like Feal[11],Khufu[3], Khafre[3], and MD4[7], MD5[8], SHA-1[5,6], each operation de-pends on the output of the previous operation, and thus might result withpipeline stalls, especially on newer or future processors which can computeseveral instructions simultaneously.2. All the tables and the variables take together about 4Kbytes, and enter easilyinto the cache.3. Still in DES the input of the next round depends on the output of the pre-ceding one. Although in practice this does not slow the execution, we haveanother solution. In DES, the input of each S box depends only on the outputof only six S boxes in the previous round. Thus, the code can be optimizedto start computing the next round while still computing the preceding one.This can speed up implementations on pipelined processors, where we cancompute several instances in parallel.4. Unlike some (although not all) DES implementations, we implement each Sbox as one table lookup, rather than combining pairs of S boxes into onelookup. The latter is more than twice slower, since the tables become largerthan the size of the on-chip cache1.3.1 WDESWe can use this fast code to design a new, even faster, and more secure cipher,to which we callWDES. We convert the code by removing IP, FP, and changingthe EPS operations (S boxes followed by P followed by E, as used in this im-plementation) into S boxes from 8 bits to 64 bits. These S boxes can be muchbetter than the original, since each S box a�ects all the bits of all the S boxes inthe next round (rather than one bit in only six S boxes).WDES has 128-bit blocks, and it runs much faster than DES, with the samenumber of rounds (since the blocksize is larger, and the slow initial and �nalpermutations are discarded): its speed is 106Mbps on the same processor as inTable 1.4 Exhaustive Search on Powerful Computers andNetworksIn this section we study the possibilities of exhaustive search on several kinds ofmachines and networks. We assume using the fast implementation described in1 On Pentium, however, the latter is twice faster using the same C code8

the previous section.Note that results similar to the ones described here hold also for breakingUNIX passwords, which are chosen from up to eight printable characters. In thiscase the password space has 968 passwords, while each password trial requires25 encryptions (the salt should not be taken into account, since it is known tothe attacker, and the encryption code can be justi�ed to the speci�c value of thesalt). Therefore, about 25 � 968 � 257 passwords should be tried, or about 256 inaverage.4.1 Special Purpose ComputersWe can build a special purpose computer with very long registers, without theexpensive operations (such as multiplication and
oating point operations), andonly with simple instructions, such as XOR, AND, OR, NOT. Assume that in aPentium processor we remove the expensive operations, and use the extra chipspace to increase the size of the registers to 1000 bits. Then, we need only 150processors to search the keys exhaustively in one year in average (or six monthsin average using the attack based on the complementation property).It is possible theoretically to build a machine with million-bit registers. Unex-pectedly, we now know that such a machine was actually built with the support ofthe NSA: Cray Computers had announced in March 1995 about such a computerthat can apply 245 bit operations every second on a million one-bit processors (seeFigure 1). This computer can compute 245 bit-operations every second, and thuscan compute about 245=16000 = 245=214 = 231 DES encryptions every second.Therefore, we can apply the searches on this machine with the following results:Search of Time Notes40 bits 512 sec=8.5 min, 4.25 min in av. Exportable ciphers43 bits 4096 sec=an hour, 1/2 an hour in av. Linear Cryptanalysis47 bits 216 sec=a day, 12 hours in av. Di�erential Cryptanalysis56 bits 225 sec=a year, 1/2 an year in av. Full key searchCray Computers has bankrupted, since nobody had bought this computer.Probably the NSA had a faster machine.4.2 General Purpose Parallel ComputersIt is known that Sandia National Labs has a parallel computer of 9000 200MHzPentium-Pro processors. This parallel computer can compute about 9000�200�220�32 = 246 bit operations every second. Thus, it can compute about 246=16000 =9

246=214 = 232 DES encryptions in each second. Therefore, we can apply thesearches on this machine with the following results:Search of Time Notes40 bits 256 sec=4 min, 2 min in av. Exportable ciphers43 bits 2048 sec=1/2 an hour, 15 min in av. Linear Cryptanalysis47 bits 215 sec=12 hours, 6 hours in av. Di�erential Cryptanalysis56 bits 224 sec=6 months, 3 months in av. Full key searchWhen we apply the attack using the complementation property, exhaustive searchof the full key space takes in average only about six weeks.4.3 Internet and the DES WormWe can use the Internet for our exhaustive search, just as RSA factorizationteams are doing. Assume that an average computer on the Internet is a single32-bit 133MHz RISC processor. Such a processor can encrypt about 218 blocksevery second. Therefore,{ Searching 40 bits takes about 240=218=2 = 221 seconds in average, which areabout three weeks on a single processor. 1000 computers can do it in abouthalf an hours.{ Searching 43 bits takes about six months in average. 1000 computers can doit in six hours.{ Searching 47 bits takes about 8 years in average on a single processor. 1000computers can do it in four days, and 4000 computers can do it in one day.{ Searching all the 56 bits takes about 4000 years in average on a single pro-cessor. 4000 computers can do it in a year (or in six months using the com-plementation property). It is practical to have this number of computersparticipating legally over the Internet: this is about the same number of com-puters as the RSA factorizations use. Million computers can do it in two daysin average (or in one day using the complementation property).At this point it is possible in practice to achieve participation of severalthousands computers legally over the Internet. However, it is simpler, and fasterto do it illegally2. A worm, for which we call the DES worm, can break into manycomputers over the Internet, and use their idle cycles for exhaustive search. Theworm veri�es that only one copy of it is executed on each computer (of courseon computers with several processors it can execute several copies to increaseperformance). The DES worm makes sure it cannot be easily noticed: it does not2 The Author does not recommend to do it, but we should always be aware that sucha threat exists. 10

need much memory anyway, and it is executed at the lowest possible priority, soit does not disturb other applications on the same computer.If the DES worm can get hold of about a million computers over the Internet,and assuming that it get at least half of their cycles (people are usually notworking over nights), the DES worm can �nd a key in four days in average (or intwo days using the complementation property). Moreover, since most computersover the Internet are not used in weekends (which last over 60 hours from Fridayevening to Monday morning), the DES worm can use all the cycles and �nd akey in one weekend.5 AcknowledgementsWe are grateful to Adi Shamir, Ross Anderson and the referees for their variousremarks and suggestions that improved the results and exposition of this paper.Some of this work has been done while the author was visiting the computerlaboratory at the university of Cambridge, and in particular using their Alphacomputer. This research was supported by the fund for the promotion of researchat the Technion.References1. H. Feistel, Cryptography and Data Security, Scienti�c American, Vol. 228, No. 5,pp. 15{23, May 1973.2. James L. Massey, SAFER-K64: A Byte Oriented Block Ciphering Algorithm,proceedings of Fast Software Encryption, Cambridge, Lecture Notes in ComputerScience, pp. 1{17, 1993.3. Ralph C. Merkle, Fast Software Encryption Functions, Lecture Notes in ComputerScience, Advances in Cryptology, proceedings of CRYPTO'90, pp. 476{501, 1990.4. National Bureau of Standards, Data Encryption Standard, U.S. Department ofCommerce, FIPS pub. 46, January 1977.5. National Institute of Standard Technology, Secure Hash Standard, U.S. Departmentof Commerce, FIPS pub. 180, May 1993.6. National Institute of Standard Technology, Secure Hash Standard, U.S. Departmentof Commerce, FIPS pub. 180-1, April 1995.7. Ronald L. Rivest, The MD4 Message Digest Algorithm, Lecture Notes in ComputerScience, Advances in Cryptology, proceedings of CRYPTO'90, pp. 303-311, 1990.8. Ronald L. Rivest, The MD5 Message Digest Algorithm, Internet Request forComments, RFC 1321, April 1992.9. Michael Roe, Performence of Block Ciphers and Hash Functions { One Year Later,proceedings of Fast Software Encryption, Leuven, Lecture Notes in ComputerScience, pp. 359{362, 1994.10. Bruce Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code inC, second edition, John Willey & Sons, 1996.11

11. Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm FEAL,Lecture Notes in Computer Science, Advances in Cryptology, proceedings ofEUROCRYPT'87, pp. 267{278, 1987.12. Arthur Sorkin, Lucifer, a Cryptographic Algorithm, Cryptologia, Vol. 8, No. 1,pp. 22{41, January 1984.

12

OTC 03/07 1942 CRAY COMPUTER CORP. COMPLETES INITIAL TESTINGCOLORADO SPRINGS, Colo., March 7 /PRNewswire/ { Cray Computer Corp. (Nas-daq: CRAY) reported today the successful test and demonstration on March 2, 1995,of an array of 256,000 single bit processors packaged using the company's multi-chip-module technology. This array is a major technical component of the CRAY-3/SuperScalable System (CRAY-3/SSS) that is being jointly developed by the company,the National Security Agency and the Supercomputing Research Center (SRC)which was originally announced on August 17, 1994. This test and demonstration com-pletes the �rst of a number of major tasks required under the Development Contract.Researchers from the SRC veri�ed correctness of operation of the 256, 000 single bitprocessor array (approximately 4,000 individual Integrated Circuits), which is the �rsthalf of a 512,000 singe bit processor array called for in the development contract. Thisarray is coupled to a CRAY-3. The CRAY-3/SSS utilizes the Processor-In-Memory(PIM) chips, developed by the SRC. Both NSA and SRC are providing signi�canttechnical assistance in both the software and hardware aspects of the system.Once completed, the high performance system will consist of a dual processor 2,048million byte CRAY-3 and a 512,000 single bit processor Single Instruction Multiple Data(SIMD) array with a 128 million byte memory. This CRAY-3/Super Scalable Systemwill provide high-performance vector parallel processing, scalable parallel processingand the combination of both in a hybrid mode featuring extremely high bandwidthbetween the PIM processor array and the CRAY-3. The current schedule for completionof the Development Contract is the end of July 1995 including a 90 day public Internetaccess demonstration.For suitable applications, a SIMD processor array of 1 million processors would provideup to 32 Trillion Bit Operations per Second and price/performance unavailable todayon any other high-performance platform. The CRAY-3 system with the SSS optionwill be o�ered as an application speci�c product. The joint development contract ispart of the Federal Government's High Performance Computing and Communicationsprogram.Charles Breckenridge, executive vice president of Marketing at Cray Computer Corp.said, "The CRAY-3/SSS will provide unparalleled performance for many promisingapplications. We are pleased to participate in this transfer of government techno-logy, and we are eager to help potential customers explore and develop appropriateapplications."Cray Computer Corp. is engaged in the design, development, manufacture and market-ing of the CRAY-3, CRAY-3/SSS and CRAY-4 high- performance computer systems.CONTACT: Charles Breckenridge, executive VP of Marketing, or Terry Willkom, pres-ident, of Cray Computer, 719-579-6464; or David Gould of Chip Shots Inc., 408-541-8706 Fig. 1. Cray Computer Corp. press release of March 1995.13

