
1Assessment and Propagation of Model UncertaintyBy DAVID DRAPERyUniversity of Bath, UKSUMMARYIn most examples of inference and prediction, the expression of uncertaintyabout unknown quantities y on the basis of known quantities x is based on amodel M that formalizes assumptions about how x and y are related. M willtypically have two parts: structural assumptions S, such as the form of the linkfunction and the choice of error distribution in a generalized linear model, andparameters � whose meaning is speci�c to a given choice of S. It is commonin statistical theory and practice to acknowledge parametric uncertainty about� given a particular assumed structure S; it is less common to acknowledgestructural uncertainty about S itself. A widely used approach, in fact, involvesenlisting the aid of x to specify a plausible single \best" choice S� for S, andthen proceeding as if S� were known to be correct. In general this approach failsto fully assess and propagate structural uncertainty, and may lead to miscali-brated uncertainty assessments about y given x. When miscalibration occursit will often be in the direction of understatement of inferential or predictiveuncertainty about y, leading to inaccurate scienti�c summaries and overcon�-dent decisions that do not incorporate su�cient hedging against uncertainty.In this paper I discuss a Bayesian approach to solving this problem that haslong been available in principle but is only now becoming routinely feasible,by virtue of recent computational advances, and examine its implementation inexamples that involve forecasting the price of oil and estimating the chance ofcatastrophic failure of the U.S. Space Shuttle.Keywords: BAYES FACTORS; CALIBRATION; FORECASTING; HIERARCHICAL MODELS;INFERENCE; MODEL SPECIFICATION; OVER-FITTING; PREDICTION;ROBUSTNESS; SENSITIVITY ANALYSIS; UNCERTAINTY ASSESSMENT1. INTRODUCTIONThe general framework of problems in inference and prediction involves two setsof ingredients: unknown(s) y|such as the causal e�ect of a treatment in inference, orthe price of something next year in prediction|and known(s) x, which will typicallyinclude both data and context. The desire is usually to express uncertainty abouty in light of x, for instance through a probability speci�cation of the form p(yjx).Speci�cations of this type that involve conditioning only on things that are knownare rare, even in comparatively simple settings (e.g., Lindley, 1982); instead onetypically appeals to a model M that formalizes judgments about how x and y arerelated. 1.1. Structural UncertaintyThe model may be expressed (e.g., Draper et al., 1987; Hodges, 1987) in twoparts asM = (S; �), where S represents one or more sets of structural assumptions|such as a particular link function in a generalized linear model, or a particularform of heteroscedasticity or time dependence with non-IID data|and � representsparameters whose meaning is speci�c to the chosen structure(s). (It will often bepossible to express a given model M in more than one way using this notation, butthat does not a�ect the discussion that follows.) Once S is chosen, � typically followsyAddress for correspondence: Statistics Group, School of Mathematical Sciences, University ofBath, Claverton Down, Bath BA2 7AY, UK (d.draper@maths.bath.ac.uk).



2 draperfairly unambiguously, apart from technical concerns about reparameterization; buthow is S arrived at in practice?Often the design by which the data in x were gathered renders some structuralassumptions compelling. For instance, the randomization employed in designedexperiments and sample surveys may be regarded as serving the dual purpose ofpromoting comparability of treated (sampled) and untreated (unsampled) units andof supporting the assumption of a particular form of conditional exchangeability ofthe relevant outcome values (e.g., Draper et al., 1993a). But even in controlled ex-periments and randomized sample surveys, key aspects of S|such as distributionalchoices for residuals and functional forms for dose-response relationships|will usu-ally be uncertain, and this is even more true with observational studies and datagathered with nonrandom sampling plans.Thus in practice the model often contains aspects that are not known with cer-tainty: M is not necessarily a part of x. It is a routine feature of most statisticalmethods to acknowledge parametric uncertainty about � once a particular form for Sis chosen, but it is less routine to acknowledge structural uncertainty about S itself.A widely used approach, in fact, involves examining the data in x to identify a single\best" choice S� for S, and then proceeding as if S� were known to be correct inmaking inferences and predictions. The �eld of data analysis, for instance, which hasgrown considerably in the last thirty years (e.g., Hoaglin et al., 1985), is devoted tothe development of graphical and numerical methods, often based on the examina-tion of residuals from the �t of a single standard model, that facilitate a data-drivensearch for S�. The very fact of this search, however, implies structural uncertaintythat in general is not fully assessed and propagated with the S� approach, and theresult can be uncertainty assessments about y given x whose calibration is poor (e.g.,in the sense that the empirical distribution of (ŷ�yactual)=dSD(ŷ) across one or moresuch assessments is unacceptably far from (say) N(0; 1)). When such miscalibrationoccurs it is often in the direction of anti-conservatism: in retrospect one notices thatone's uncertainty bands were not wide enough.1.2. Over-FittingThis problem, which is often referred to as over-�tting the available data, is wellknown, but has yet to receive a fully satisfying treatment in statistical research andpedagogy. Most of the leading textbooks on applied statistics (e.g., Cox and Snell,1981) and regression (e.g., Weisberg, 1985) include warnings against over-�tting, butalso contain examples of empirical model-building of the S� form. Another appliedarea in which the problem has potential to arise (e.g., Chat�eld, 1993) is in timeseries modeling, where model identi�cation, �tting, and forecasting are all routinelybased on the same data.Good regression texts (e.g., Mosteller and Tukey, 1977) o�er advice on the valueof cross-validation|splitting the data into independent modeling and validationdata sets|as a partial solution to the over-�tting problem (e.g., Picard and Cook,1984), but model uncertainty will typically remain even after cross-validation. More-over, with small samples of data|precisely when structural uncertainty is greatest|cross-validation may not be feasible, because there are too few data values with whichto carry out both the modeling and validation activities in a stable way. Bootstrap-ping the modeling process (e.g., Efron and Gong, 1983)|creating bootstrap copiesof the available data, conducting independent modeling activities on each copy,and combining the results in a way that is sensitive to the modeling uncertainty



assessment and propagation of model uncertainty 3thus uncovered|may help, but as yet little is known about the performance of thisapproach.2. CONSEQUENCES OF UNACKNOWLEDGED STRUCTURAL UNCERTAINTYThere is a considerable recent literature on the degree of overcon�dence generatedby basing inferences and predictions on the same dataset on which the search forstructure occurred; see, e.g., Freedman et al. (1986), Hjorth (1989), Miller (1990),P�otscher (1991), and Faraway (1992). Instances may also be found in decision-making in which structural uncertainty is documented by analysts but ignored byconsumers of the analysis. Examples of each of these phenomena follow.2.1. Model Selection in RegressionAdams (1991) has conducted perhaps the most comprehensive investigation todate of the e�ects of the search for S� on inference in regression. He used simulationto estimate the combined e�ects of variable selection, transformation of outcome andpredictor variables, and deletion of outliers on the nominal observed signi�cance levelof R2. He varied the sample size from 10 to 70, the number of predictors x from 5 to30, and the degree of correlation among the predictors from 0 to .75, and simulatedrandom error and predictor values from t-distributions with degrees of freedom from1 to 1. He examined 114 regression strategies, each based on a di�erent patternof presence or absence of (a) a simple Bonferroni-based outlier rejection rule, (b)variable selection using a stepwise algorithm or Cp, (c) transformation of the x valueswith the Box-Tidwell method, and (d) transformation of the outcome y with the Box-Cox approach. Averaging over characteristics of the datasets|all in null situationsin which y was unrelated to x, so that the average p-value for judging the signi�canceof the observedR2 should have been 0.5|he found that the most opportunistic of the114 strategies produced average nominal p-values well below 0.001, and that everystrategy involving either stepwise- or Cp-based variable selection yielded averagenominal values below 0.01. The degree of similarity between some of the mostegregious strategies in Adams's experiment and standard textbook prescriptions forempirical regression model-building is disquieting.2.2. Forecasting the Price of OilIn 1980 the Energy Modeling Forum (EMF) at Stanford University assembleda 43-person working group of economists and energy experts, whose goal was toforecast world oil prices from 1981 to 2020 to aid in policy planning. The groupgenerated predictions based on each of 10 leading econometric models, under each of12 scenarios embodying a variety of assumptions about inputs to the models, such assupply, demand, and growth rates of relevant quantities. One scenario, the so-called\reference," was identi�ed as a \plausible median case" and as \representative of thegeneral trends that might be expected," although readers of the group's summaryreport (EMF, 1982) were cautioned not to interpret point predictions based on thereference scenario as \[the working group's] `forecast' of the oil future, as there aretoo many unknowns to accept any projection as a forecast." The summary reportdid conclude, however, that most of the uncertainty about future oil prices \concernsnot whether these prices will rise ... but how rapidly they will rise."One may identify three sources of uncertainty in this situation (Draper et al.,1987): scenario uncertainty about the inputs to the models; model uncertainty (con-ditional on scenario) about how to translate the inputs into forecasts; and predictiveuncertainty, conditional on scenario and model. The working group did not attempt



4 draperto assess predictive uncertainty, and their �nal report concentrated on the refer-ence scenario, which|despite their warning above|tended to informally downplayscenario uncertainty as well, but model uncertainty conditional on the reference sce-nario was evident in the report's tables and �gures. Fig. 1 below, for example, is aplot of the yearly point predictions from each of the 10 econometric models underthe reference scenario from 1980 to 1990.
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Fig. 1. Forecasts of the price of oil by each of the 10 EMF models under thereference scenario, 1980{1990; lower solid line is actual price.Averaging across models|giving them equal weight, since the EMF summaryreport treats them evenhandedly|to obtain a predicted value for 1986, for instance,would yield a �gure of about $39, with implied 90% uncertainty limits (across mod-els, conditional on the reference scenario, and ignoring predictive uncertainty) ofabout ($27,$51). This uncertainty band is consistent with those produced by othere�orts parallel to EMF's at the time (e.g., Energy Information Administration,1982); indeed, as Syme (1987) puts it, \[many] reputable institutions and indi-viduals made forecasts of 1986 oil prices in the 1970s and early 1980s, predictingprices over $40." She goes on to report that an estimated $500 billion was investedworldwide by governments and private companies in the early 1980s on the strengthof forecasts and informal uncertainty assessments like those in Fig. 1. The actual1986 world average spot price of oil (see the lower solid line in the plot) was about$13.What went wrong? It is not fair to criticize forecasters after the fact for makinga sharply inaccurate prediction|no one can see into the future|but it is fair to notethat both scenario uncertainty, which might be expected to dominate, and predictiveuncertainty were missing in uncertainty assessments like that implicit in Fig. 1. Inparticular, anyone relying only on Fig. 1 to produce predictive intervals would ine�ect be assigning zero weight to the 11 non-reference scenarios. This observationmay seem nothing more than hindsight|after all, perhaps what actually happenedbore no relation to any of the 12 scenarios EMF's working group examined, and onecan hardly be faulted for not anticipating something totally new|but in fact oneof the non-reference scenarios was rather like what actually occurred (Fig. 2). InSection 6.1 below I examine the extent to which assessing and propagating between-scenario and predictive uncertainty improves predictive calibration in this example.
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Fig. 2. Forecasts of the price of oil by each of the 10 EMF models under one of the 11non-reference scenarios, 1980{1990; lower solid line is actual price.3. A STANDARD BAYESIAN SOLUTION, REVISITEDIn theory there is a straightforward Bayesian approach to solving the problem offailure to assess and propagate structural uncertainty, namely to treat the entiremodel M = (S; �) as a nuisance parameter and integrate over uncertainty aboutboth S and �, as in the expressionp(yjx;M0) = ZM0 p(yjx;M) p(M jx)dM = Z Z p(yjx; �; S) p(�; Sjx)d�dS : (1)One forms a weighted average of the conditional inferential or predictive distributionsp(yjx;M), using as weights the posterior model probabilities p(M jx). This idea ispresent, implicitly or explicitly, in the writings of workers in at least three �elds:statistics (e.g., Box and Tiao, 1962; de Finetti, 1972; Davis, 1979; Geisser andEddy, 1979; Smith and Spiegelhalter, 1981; Stewart and Davis, 1986; Brown andLindley, 1986; Draper et al., 1987; Hodges, 1987; Lavine, 1988, 1992; Raftery, 1988;Madigan and Raftery, 1992); econometrics (e.g., Geisel, 1974; Leamer, 1978); andarti�cial intelligence (e.g., Self and Cheeseman, 1987; Mackay, 1992). In the pastthe implementation of equation (1) in practice has presented major computationalchallenges, but advances in the last ten years have greatly reduced this burden. Idiscuss computational issues in Sections 4 and 5 below. But �rst, what should onetake for the range of integration M0 in this equation?Writing the posterior model probabilities p(M jx) as p(�; Sjx) = p(Sjx)p(�jx; S),it may be seen that the S� approach described in Section 1 is a special case ofequation (1), in which acting as if the structural assumptions in S�, chosen after adata-driven search, are \correct" corresponds to conditioning on S�:p(yjx;M0) = p(yjx; S�) = Z p(yjx; ��; S�) p(��jx; S�) d��: (2)This approach correctly assesses parametric uncertainty given S�|through the inte-gration over �� with respect to the posterior distribution p(��jx; S�)|and inferentialor predictive uncertainty about y conditional onM� = (S�; ��), through the distribu-tion p(yjx; ��; S�). But the search for S� implies structural uncertainty that has notbeen fully assessed and included in the uncertainty about y contained in p(yjx; S�).



6 draperWorking backwards from p(M jx) = p(Sjx) p(�jx; S) to the prior distributionson which the posterior model probabilities are based gives p(M jx) = c p(S) p(�jS) �p(xj�; S), where c is a constant of proportionality. This expression includes twofamiliar ingredients, a prior distribution p(�jS) on the parameters and the likelihoodp(xj�; S)|both speci�c to a given structural choice S|but it also includes theunfamiliar p(S), a prior distribution on the set of all possible structural assumptions.The key issue in improving upon the S� approach to modeling is how to specify p(S).In e�ect the S� approach solves this speci�cation problem by equating p(S)to point mass on S�, a choice that may be too concentrated on a single set ofstructural assumptions to lead to well-calibrated inferences and predictions. At theother extreme, one might consider specifying p(S) much more di�usely, hoping thatthe updating process from p(S) to p(Sjx) would automatically identify plausiblemodeling choices. However (e.g., Diaconis and Freedman, 1986), in even the leastcomplicated applied problems with any hint of realism, the space of all possiblemodels is too large to guarantee the success of this updating.For example, consider perhaps the simplest case of all, a �nite sequence x =(x1; : : : ; xn) of binary outcomes with no predictors. A model for these data (e.g.,Fienberg and Gilbert, 1970; Diaconis, 1977) is just a joint probability distribu-tion for the observables, i.e., a single point in the (2n � 1){dimensional simplexf(p0���0; : : : ; p1���1): 0 � pi1i2���in � 1; p0���0 + : : :+ p1���1 = 1g. Making standard struc-tural choices|such as taking the xi to have an IID, exchangeable, or Markoviancharacter|corresponds to conditioning on subspaces of this simplex of very low di-mension. With only 10 observations, for instance, an amount of data insu�cientto support any but the crudest comparisons of model plausibility, the set M ofall possible models has dimensionality more than 1000, whereas making a standardstructural assumption such as \IID Bernoulli with success probability p" correspondsto conditioning on a nonlinear subspace of dimension only 1. The problem is thatthe dimensionality of M increases exponentially with n, a rate much faster thanthat at which information about the relative plausibility of alternative structuralchoices accumulates. One cannot count on \the data to swamp the prior" whenwhat is at issue is the structural speci�cation of how known and unknown quantitiesare related.Thus the space of all models is \too big" to support a di�use p(S): the promiseof inference unconditional on a speci�c set of modeling assumptions|which appearsto be o�ered by making the range of integration in equation (1) all of M|is unre-alizable. However, although it will always be necessary to set p(S) to 0 over most ofmodel space, a single structural choice S� chosen by a data-driven search amountsto a speci�cation of p(S) that may well be \too small" to be well-calibrated. Is therea compromise between S� and all of M?A reasonable intermediate position might be based in practice on model expan-sion (e.g., Box, 1980; Smith, 1984), i.e., starting with a single structural choicesuch as S� and expanding it in directions suggested by context, by the data-analyticsearch that led to S�, or by other considerations. Good applied work already fea-tures sensitivity analyses (e.g., Skene et al., 1986), in which the assumptions in S�are challenged by qualitatively exploring how much one's conclusions would changeif an alternative set of plausible assumptions were made. Equation (1) takes thisprocess a step further, by integrating over structural uncertainty rather than simplyexamining it qualitatively.



assessment and propagation of model uncertainty 74. CONTINUOUS MODEL EXPANSIONModel expansion �ts naturally into the framework of hierarchical modeling (e.g.,Lindley and Smith, 1972; DuMouchel and Harris, 1983), by adding to the top of thehierarchy a level that corresponds to the structural uncertainty: the usual Bayesianformulation on the left of (3)8>>><>>>: � � p(�)(xj�) � p(xj�)(yjx; �) � p(yjx; �) 9>>>=>>>; isreplacedby 8>>><>>>: S � p(S)(�jS) � p(�jS)(xj�; S) � p(xj�; S)(yjx; �; S) � p(yjx; �; S) 9>>>=>>>; : (3)Two cases arise, discrete and continuous , according to whether the embedding ofS� in a larger subset of model space|by including the top level in the right sideof (3)|is indexed discretely or continuously. In the continuous case let � be theexpansion index andM� be the expanded model, of which S� = M0 (say) is a specialcase. 4.1. A Hierarchical Model for Location InferenceAn early example of continuous model expansion was given by Box and Tiao(1962), who reanalyzed Darwin's data on the heights of self- and cross-fertilizedplants. These data are in the form of a paired comparison, so that it is reasonablein modeling the pairwise di�erences x = (x1; : : : ; xn) to condition on the structuralassumptions S0 = fxi = � + � ei; ei IID symmetric about 0g, but there is no apriori reason to insist on a speci�c distributional choice for the ei. Fisher (1935)had previously analyzed these data by conditioning on the Gaussian; Box and Tiaoexpanded Fisher's model continuously, by embedding the Gaussian in the symmetricpower-exponential family p(ej�) = c expn�12 jej2=(1+�)o, which includes the doubleexponential (� = 1), Gaussian (� = 0), and uniform (� ! �1) distributions asspecial cases. Regarding Box and Tiao's structural assumptions S1 (say) as anexpansion of S0, note that the three quantities �, �, and � may be viewed as playingthree di�erent roles in this formulation: � may be thought of as indexing one aspectof the structural assumptions in S1, and �, the location parameter of interest (thequantity y in equation (1)), and �, a nuisance (scale) parameter, are components of� = (�; �). Equation (1) in this context becomesp(�jx;S1) = Z Z p(�jx; �; �) p(�;�jx)d�d�; (4)in which the integration over � may be regarded as acknowledging a form of struc-tural uncertainty unaddressed in Fisher's formulation. Interestingly, even thoughFisher's model corresponds to placing all one's prior mass on � = 0 in the Box andTiao model, so that Box and Tiao expressed greater model uncertainty than didFisher, it is possible to have less posterior uncertainty about � in Box and Tiao'sformulation than in Fisher's; see Draper (1993).Note that in model expansion applications involving parametric inference it isimportant for the quantity of interest, in this case �, to have the same meaning foreach value of � in the expanded model M�, so that for instance it would have beenproblematic in Box and Tiao's analysis to embed the Gaussian in a family includingasymmetric distributions. In predictive applications this sort of restriction doesnot arise, because the quantity of interest, a future observable y, is automaticallycommon to all models M�.



8 draper4.2. Fixed- and Random-E�ects Models for Combining InformationFrom Related ExperimentsA more recent example of continuous model expansion, which arises in the com-bining of information from related experiments, is the case of so-called �xed-e�ectsand random-e�ects models in meta-analysis (e.g., Wachter and Straf, 1990). Givendata from k experiments or studies designed to measure essentially the same out-come, such as the change in mortality rate caused by a treatment in medical research,one may wish to pool the information from these k sources, to create a better sum-mary of what is known about the e�ects of the treatment in question than thatavailable from any single source. Letting �i be the underlying treatment e�ect instudy i, which may di�er from that in study i0 due to unmeasured di�erences inpatient cohorts or treatment protocols, and letting xi be the corresponding datasummary in study i, a hierarchical Gaussian random-e�ects model like the followingmay approximate one's structural judgments:M�: 8>><>>: (�; � � �2) � p(�) p(�2)(�ij�; �2) IID� N(�; �2);(xij�i) indep� N(�i; Vi); (5)where the Vi are regarded as known for convenience (typically each xi is based ona large enough sample of patients that this provides an adequate approximation).Fixed-e�ects models are a special case of equation (5) in which all of the �i areassumed equal, and correspond to random-e�ects models in which the between-study variance parameter �2 is set to zero. Expanding the model from a �xed-e�ectsformulation to one in which �2 > 0 implies a net increase in uncertainty about theunderlying e�ect of interest, arising from the between-studies component of variance;failing to adopt a random-e�ects formulation when necessary may therefore lead tomiscalibration.Model (5) has an interesting application in the physical sciences, in the deter-mination of fundamental constants such as the speed of light c. As Henrion andFischho� (1986) and others have noted, if one plots a time series of the currentlyaccepted value of c with uncertainty bands obtained from the standard �xed-e�ectsmeasurement error model, one notices that every 20 years or so a new value for cis accepted that is inconsistent with the previous uncertainty assessments, demon-strating the presence of bias in the measurement process in addition to the \ran-dom" error present in the �xed-e�ects formulation. With i indexing experiment andj indexing replication within experiment, hierarchically expanding the usual mea-surement model xij = � + eij to account for the bias, as in the two-stage modelxij = � + bi + eij ; bi = � + �i, leads to better-calibrated uncertainty assessmentsthan those obtained from the �xed-e�ects model. See, e.g., Draper et al. (1993b)for other uses of model (5) in physics and chemistry.



assessment and propagation of model uncertainty 94.3. Computation and Calibration IssuesGaussian �xed-e�ects models are easy to �t using weighted least squares, andwhen appropriate lead to particularly simple pooling rules by which informationfrom the available sources may be e�ectively combined. In contrast, even a rel-atively straightforward empirical-Bayes approach to the random-e�ects model (5)involves an iterative estimate of �2 (see, e.g., Efron and Morris, 1973). Thus prac-titioners tend to favor �xed-e�ects models when appropriate, so much so that acommon modeling approach involves performing a test of heterogeneity of the �iand only adopting the random-e�ects formulation if the test rejects the null hypoth-esis H: �2 = 0 of homogeneity (see DuMouchel, 1990, for criticisms of this strategy).This is a so-called preliminary-test method, similar in spirit to testimators some-times used in econometrics (e.g., Waikar et al., 1984). Methods of this type havebeen shown inferior in both accuracy and calibration to random-e�ects methods,such as the empirical-Bayes approach mentioned above, that deal more smoothlywith the uncertainty about �2 (see, e.g., Sclove et al., 1972; Greenland, 1993).There is a direct analogy between preliminary-test methods and the S� approachto modeling described in Section 1 : in the S� approach one searches for a single\best" structure, tests its adequacy, and adopts it unless it fails the test. Usingmodel expansion to embed S� in a larger class of models, motivated by the structuralassumptions in S� that are most in doubt, treats the modeling uncertainty moresmoothly, and|as in the case of empirical Bayes improvements to testimators|may be expected in general to yield better calibration.Computation in hierarchical models has been di�cult until recently, in most set-tings other than that treated by Lindley and Smith (1972): Gaussian linear modelswith a conjugate prior structure, in which closed-form expressions for many of thequantities of interest are available. The application of a variety of approximationmethods in the last ten years to hierarchical models|including the EM algorithm(e.g., Wong and Mason, 1985), Monte Carlo integration (e.g., Stewart, 1987), andGibbs sampling and related Markov-chain Monte Carlo (MCMC) methods (e.g.,Smith and Roberts, 1993)|promises to greatly increase the routine feasibility ofcontinuous model expansion in applied work. The hierarchical structure in the rightside of (3) is particularly well suited to MCMC; see, e.g., Seltzer (1993) for educa-tional applications. 5. DISCRETE MODEL EXPANSIONAlthough it is often preferable to perform model expansion continuously, so thatall the structural uncertainty in the expanded model formulation is accounted for,it is not always possible to index departures from a single structural choice S�smoothly. Examples include� Dynamic linear models with discrete state spaces (e.g., West and Harrison,1989). In many applications of dynamic linear models it is natural to regardthe state space as continuous, but in other problems (e.g., Smith and West,1983) it is more fruitful to view the underlying process of interest as movingover time among a �nite set of states that have direct substantive meaning;and� Discrete propagation of scenario uncertainty , as in the EMF oil example ofSection 2.2, in which 12 distinct scenarios meriting nonzero prior probabilitybut not readily indexed continuously were available.



10 draperDiscrete model expansion may also be used to approximate a continuous ex-pansion, as in Spiegelhalter's (1981) approximation of the power-exponential modelin Box and Tiao's approach in Section 4.1 by the three-point distributional familyfGaussian, uniform, double exponentialg to produce a robust location estimator.Recent applied examples of discrete model expansion include Racine et al. (1986),Taylor (1989), and Moulton (1991). For the remainder of the paper I will concentrateon the discrete case.With a �nite set S = fS1; : : : ; Smg of structural alternatives in the expandedmodel, equation (1) becomesp(yjx;S) = mXi=1 Z p(yjx; Si; �i) p(Si; �ijx) d�i = mXi=1 p(Sijx) p(yjx; Si): (6)There are thus three ingredients in the computation of p(yjx;S):� The choice, and prior plausibility, of the Si over which model uncertainty isassessed and propagated;� The conditional inferential or predictive distributions p(yjx; Si) given struc-tural choices Si; and� The posterior structural probabilities p(Sijx).Each of these components is addressed in the subsections that follow. The secondand third components are essentially technical; the �rst is substantive, and includesthe greatest possibility for a retrospective judgment of error.5.1. Alternative Structural Choices: Specifying p(S)As the examples in Section 6 below indicate, the choice of the alternative struc-tures Si in equation (6) is highly context-speci�c, but several general comments maybe made in any case.� L. J. Savage used to say that one's model should be \as big as a house." Oneway to express why this is desirable is by appeal to what Lindley (e.g., 1982)calls Cromwell's rule, which reminds us that any possibility receiving priorprobability zero must also have posterior probability zero. The main wayto avoid noticing after the fact that a set of modeling assumptions, di�erentfrom those one originally assumed, turned out to be correct is for one's modelprospectively to have been large enough to encompass the retrospective truth.This argues for the routine use of \big" models. In deciding how big is bigenough, one may undertake a kind of pre-posterior analysis of structural as-sumptions, with an eye to the avoidance of retrospective regret at not havingincluded all plausible ways in which the unknown and known quantities mightbe related.� Pmi=1 p(Sijx) p(yjx; Si) is intended to be a discrete approximation to p(yjx;M0)= RM0 p(M jx) p(yjx;M) dM . To improve on the less satisfactory approxima-tion p(yjx; S�), one can try to include structures S 0i alternative to S� satisfyingtwo criteria:{ S 0i would have high posterior probability p(S 0ijx) (if not given zero priorprobability), and



assessment and propagation of model uncertainty 11{ S 0i has inferential or predictive consequences p(yjx; S 0i) that di�er sub-stantially from those of S�.This was referred to in Draper et al. (1987) as \staking out the corners in modelspace." One may employ this idea to de�ne directions of departure from S�that are the most relevant for model expansion.Other possible approaches to the generation of alternative structures Si werementioned at the end of Section 1: creating cross-validation or bootstrap samplesfrom the available data and conducting parallel modeling activities on each sam-ple. Also see George and McCulloch (1993), who use Gibbs sampling to produceposterior probabilities for subsets of predictor variables in regression, and Madiganand Raftery (1992), who use ideas from expert systems, together with an implicitp(S) strongly weighted against complicated structural choices, to �nd parsimonioussubmodels of high posterior probability in large contingency tables.Once a choice is made of the set S, the numerical speci�cation of the prior proba-bilities p(Si) will also typically be context-speci�c. In situations not strongly guidedby contextual considerations, one may again proceed by pre-posterior analysis, e.g.,starting with constant p(Si) and computing forward with various possible datasetsx to see if the composite result p(yjx;S) appears to realistically assess uncertaintyabout y given x, and then varying p(Si) as needed. A form of prequential reasoning(Dawid, 1984) referred to in Draper et al. (1987) as retrospective calibration may behelpful in specifying the p(Si) in time series contexts: with enough data one may(1) choose a variety of points in the past and pretend temporarily that they arethe present, (2) make predictions into the known \future," building up a historyof forecast errors, and (3) adjust the prior weights p(Si) to bring the predictivedistributions into good calibration with the actual values.5.2. Computing the Conditional Inferential/Predictive Distributions p(yjx; Si)The second ingredient in discrete model expansion is the set of inferential orpredictive distributionsp(yjx; Si) = Z p(yjx; Si; �i) p(�ijSi; x) d�i: (7)This aspect of model expansion creates no new computational burden, since onewould have had to compute these distributions in any case as part of one's sensitivityanalysis. Closed-form expressions for the results of the (possibly high-dimensional)integration in equation (7) exist in important special cases, such as normal linearmodels (e.g., Zellner, 1971), and approximations|based, for instance, on MonteCarlo integration (e.g., Geweke, 1989)|are also available. For large n the simpleapproximation p(yjx; Si) := p(yjx; Si; �̂i); (8)where �̂i is the maximum likelihood estimate (MLE) of �i under structural choiceSi, may be su�ciently precise. For an example of a more accurate approximation ofp(yjx; Si) see equation (15) below.5.3. Computing the Posterior Structural Probabilities p(Sijx)



12 draperEvaluating the posterior structural probabilities p(Sijx) = c p(Si) p(xjSi) comesdown to computing Bayes factors p(xjSi)=p(xjSj) for structure Si against structureSj , by calculating p(xjSi) = Z p(�ijSi) p(xj�i; Si) d�i: (9)Several methods for approximating Bayes factors are available, including Gaussianquadrature and a variety of simulation methods based on importance sampling,acceptance/rejection techniques, and MCMC; see Kass and Raftery (1993) for anexcellent review. I focus here on two Laplace approximations (e.g., Lindley, 1961;Cox, 1961; Leonard, 1982; Raftery, 1993), of which the �rst isln p(xjSi) = 12 ki ln(2�)� 12 lnjÎij+ ln p(xj�̂i; Si) + ln p(�̂ijSi) +O(n�1); (10)where ki is the dimension of �i, �̂i is either the mode of the posterior distributionp(�ijx; Si) or the MLE, and Îi is the observed information matrix evaluated at �̂i.A simpler approximation that is often somewhat less accurate with small samplesis obtained by noting that for large n; ln jÎij := ki ln(n) and the prior contributionln p(�̂ijSi) becomes negligible, leading toln p(xjSi) = 12 ki ln(2�)� 12 ki ln(n) + ln p(xj�̂i; Si) +O(1): (11)The second and third terms on the right side of equation (11) are recognizable as thebasis of the Bayesian information criterion (BIC) for model selection (Schwarz, 1978;cf. Rissanen, 1986). The �rst term on the right side, 12 ki ln(2�), has been omittedin most other treatments of this approximation, but its inclusion has improved theaccuracy of expression (11) in examples I have examined involving the comparisonof structural choices Si whose �i have unequal ki (cf. Kashyap, 1982). The mainway in general to be sure when n is large enough to use equation (11) instead of(10) is to compute them both and compare, although routine experience with thisapproach will yield guidelines that over time will lessen the need for such explicitcomparisons.In small-sample situations with vague prior information about the parameters,care must be taken, if improper priors are used, to avoid the presence of unde�nedconstants in approximations (10); see, e.g., Spiegelhalter and Smith (1982) for anapproach to solving this problem. An alternative solution would involve the useof proper but relatively uninformative priors whose speci�cation is guided by pre-posterior analysis.5.4. Summary of a Large-Sample Approximation to p(yjx;S)To summarize this section, a simple large-sample approximation to p(yjx;S) =Pmi=1p(Sijx)p(yjx;Si) may be obtained by computing the MLE �̂i and maximumlog likelihood value for each model Mi = (Si; �i), and setting ki = dim(�i). Withdi�use structural and parametric prior information and large n one may then take� p(yjx; Si) := p(yjx; Si; �̂i), and



assessment and propagation of model uncertainty 13� ln p(Sijx) := 12 ki ln(2�)� 12ki ln(n) + loglikmax + c,with c chosen to permit accurate normalization of the posterior structural probabil-ities so that they sum to 1. It is also useful to note that if p(yjx; Si) has mean �iand variance �2i , and p(Sijx) = �i,E(yjx;S) = ES [E(yjx; S)] = mXi=1 �i�i � �;V (yjx;S) = ES [V (yjx; S)]+ VS [E(yjx; S)]= mXi=1 �i�2i + mXi=1 �i(�i � �)2= 0B@ within-structurevariance 1CA+ 0B@ between-structurevariance 1CA : (12)This last expression may be used as the basis of a model uncertainty audit , in whichthe overall inferential or predictive uncertainty about y is decomposed into the sumof two terms: the average conditional uncertainty given each structural choice, andthe uncertainty about y arising from structural uncertainty itself. With the S�approach of Section 1 this second term is set to 0, often inappropriately.
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Fig. 3. Scenario-speci�c forecasts obtained by averaging across models,giving them equal weight.6. EXAMPLES6.1. Predicting Oil PricesContinuing the example of Section 2.2, what may be said about the likely priceof oil in 1986 (say) from the vantage point of 1980, when scenario and predictionuncertainty are accounted for? Fig. 3 plots the s = 12 scenario-speci�c time series ofpoint predictions from 1980 to 1990 obtained by averaging across the m = 10 econo-metric models described previously, with equal weights (�1; : : : ; �m) = (:1; : : : ; :1).With i indexing scenarios and j econometric models, most 1986 forecasts ŷij rangedfrom about $30{60 per barrel, with the exception of those based on two scenarios



14 draper(numbered 7 and 9 in Table 1 below) incorporating a large and sudden drop in oilproduction capacity by the Organization of Petroleum Exporting Countries (OPEC)in the mid-1980s.Table 1 gives the scenario-speci�c means �yi = Pmj=1 �jŷij and standard devi-ations (�̂i = [Pmj=1 �j(ŷij � �yi)2]1=2) for 1986, together with scenario descriptorsand a probability assessment (�1; : : : ; �s) based on how many nonstandard con-ditions (relative to the \reference" scenario) must occur simultaneously to pro-duce each scenario. Other probability speci�cations I examined, ranging as faraway from that in Table 1 as � = (:2; :1; :05; :05; :1; :1; :05; :1; :05; :1; :05; :05) and(:49; :06; :06; :03; :06; :06; :03; :06; :03; :03; :03; :06), yielded conclusions qualitativelysimilar to those presented here. TABLE 1Scenario-speci�c summaries of the oil price data.Scenario (i) Mean (�yi) SD (�̂i) Probability (�i)1. Reference $39 $8 .322. Oil demand reduction 33 8 .083. Low demand elasticity 54 22 .084. Combination of 2 and 3 42 16 .045. Low economic growth 34 7 .086. Restricted backstop 41 9 .087. Drop in OPEC production 82 44 .048. Technological breakthrough 38 7 .089. Combination of 3 and 7 121 67 .0410. Optimistic 29 5 .0411. Combination of 2 and 7 48 11 .0412. High oil price 59 12 .08Notes: Restricted backstop = slow growth of alternative energy sources;\Optimistic" combines scenarios 2 and 8, plus the assumption of expanded OPEC capacity.Attempting to go beyond the implied uncertainty assessment in Figs. 1 and2 requires acknowledging three levels of uncertainty: (1) between scenarios, (2)between models within scenarios, and (3) between predictions within models andscenarios. With y as the actual 1986 oil price, x as the means and SDs in Table 1,and �2ij as the predictive variance conditional on scenario and model, the analogueof equation (12) in this case (with M standing for econometric model and S forscenario) isE(yjx;S) = ESfEM [E(yjx;M; S)]g= sXi=1 �i�yi � �y;V (yjx;S) = (1) + (2) + (3)= VSfEM [E(yjx;M; S)]g+ESfVM [E(yjx;M; S)]g+ESfEM [V (yjx;M; S)]g= sXi=1 �i(�yi � �y)2 + sXi=1 �i�̂2i + sXi=1 �i mXj=1�j�2ij : (13)EMF made no attempt to assess the predictive SDs �ij . I have chosen valuesof the form �ij = c ŷij for small to moderate c, in the range (.05,.3). To obtain a



assessment and propagation of model uncertainty 15composite predictive distribution for y I simulated nij = 100000 �i�j Gaussian ran-dom variates with mean ŷij and SD �ij and merged the resulting sample of 100,000values together. The solid curve in Fig. 4 is a density trace for a typical result withc = 0:25; this may be compared with the density (dotted line) implied by an analy-sis of the type examined in Section 2.2, which conditions on the reference scenarioand ignores predictive uncertainty. The mean of the solid curve in Fig. 4 is about$46, with an SD of about $30, and the (.01,.05,.5,.95,.99) quantiles are approxi-mately ($14,$20,$39,$92,$187). The variance of this distribution (895) decomposesinto the three terms (scenario;model; prediction) = (354; 363; 178), so that a modeluncertainty audit on the variance scale would attribute about 40% of the overall un-certainty to variation across scenarios, 40% to variation across econometric modelsgiven scenario, and 20% to predictive uncertainty given model and scenario. Onlythe second of these terms is present in Figs. 1 and 2.
Crude Oil Price (1981 Dollars per Barrel)
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$13Fig. 4. Density of simulated predictive distribution for 1986 oil price, includingscenario, model, and prediction uncertainty (solid curve). Dotted density conditionson the reference scenario and ignores predictive uncertainty.The actual 1986 oil price of about $13 is unlikely given the assessment presentedhere|for example, the ratio of the predictive density at $13 to its maximum value(at about $37) is about 1/18. But $13 is by no means out of the question in thecontext of this assessment, as it was in the informal assessments of those makingdecisions on the basis of an implied uncertainty band of ($27,$51). If decision-makershad been basing their policies and business choices on something like Fig. 4 insteadof Fig. 1, a great deal more hedging against uncertainty would have been built intotheir actions, and there was nothing to prevent this retrospectively happier outcome:all of the information needed to carry out this analysis was available in 1980.6.2. The Challenger Space Shuttle DisasterOn January 28, 1986, the U.S. space shuttle Challenger exploded shortly af-ter takeo�, leading to an intensive investigation of the reliability of the shuttle'spropulsion system. The explosion was eventually traced to the failure of one of thethree �eld joints on one of the two solid booster rockets. Each of these six �eldjoints includes two O-rings , designated as primary and secondary, which fail whenphenomena called erosion and blowby both occur.



16 draperThe night before the launch a decision had to be made regarding launch safety.The discussion among engineers and managers leading to this decision includedconcern that the probability of failure of the O-rings depended on the temperature tat launch, which was forecast to be 31�F. There are strong engineering reasons basedon the composition of O-rings, which are made of rubber, to support the judgmentthat failure probability may rise monotonically as temperature drops. One othervariable, the pressure s at which safety testing for �eld joint leaks was performed,was available, but its relevance to the failure process was unclear.Dalal, Fowlkes, and Hoadley (1989, hereafter DFH) performed an extensive riskanalysis of the Challenger 's �eld joint system, restricting themselves to data avail-able on the night before the launch. A key step in that analysis was the assessmentof the probability pat of primary O-ring erosion at t = 31�. Fig. 5 is a plot of thenumber of �eld joints experiencing primary O-ring erosion, as a function of launchtemperature, on each of the 23 shuttle 
ights previous to the Challenger 's. It maybe seen that the shuttle had never 
own at a temperature lower than 53�, so thatthe assessment of the unknown y = pa31 requires considerable extrapolation from thebody of existing data. DFH presented a lucid analysis of the data relevant to patemploying the S� modeling approach of Section 1, and concluded|after relating pa31to the overall probability of catastrophic failure of the shuttle|that it should havebeen possible from the available data to foresee the unacceptably high risk createdby launching at 31�. Here I o�er a reanalysis of these data that focuses on modeluncertainty, without (for reasons of space) bringing in the important ingredient ofutility. For related alternative analyses see Lavine (1991), who does touch on utility,and Martz and Zimmer (1992).
x

x

xxx x xx

x x x

xx

x

x
xx xx xx x

x

Temperature (Degrees F)

Nu
mb

er
 of

 F
iel

d J
oin

ts 
W

ith
 P

rim
ar

y O
-R

ing
 E

ro
sio

n

30 40 50 60 70 80

0
1

2
3

4
5

6

Fig. 5. Scatterplot of number of �eld joints with primary O-ring erosion versuslaunch temperature for the 23 shuttle 
ights prior to the Challenger .In DFH's model �eld joint failures were independent, both between and withinshuttle 
ights, so that one may regard the data x as consisting of n = 6 � 23 = 138binary failure observations, together with the associated values of temperature tand leak-check pressure s (see Table 1 in DFH for the raw data values). DFH noted(a) that failure probability did not seem to be strongly related to s and (b) that alogistic regression of primary O-ring erosion against temperature t, entered linearlyin the model, �ts the observed data of Fig. 5 well. After a thorough sensitivityanalysis examining alternative models, DFH conditioned on the logistic structural



assessment and propagation of model uncertainty 17choice (with linear t and no s) to estimate pat , and assessed uncertainty at 31� witha parametric bootstrap. They obtained a posterior distribution for pa31 given x (seeFig. 8 below) that was well approximated by a beta distribution with parameters� = 2:52 and � = 0:36.This distribution has a median of .95, a mean of .88, and a variance of .028, andis equivalent in information content to � + � = 2:52 + 0:36 := 3 binary �eld-jointfailure observations at 31�, an assessment that seems to understate extrapolationuncertainty. Lavine (1991) arrived at a similar judgment; by examining the ex-trapolated estimates of pa31 based on link functions other than the logit, and byusing a nonparametric method that assumes little more than independence of thebinary failure outcomes and monotonicity of the relationship between temperatureand failure probability, he obtained much wider implied uncertainty bands for pa31than those produced by DFH's logistic formulation.An examination of DFH's sensitivity analysis reveals that the following structuralvariations Si are good candidates for inclusion in a discrete model expansion:� Three link functions|logit, probit, and complementary log-log;� Three functional forms for the temperature variable t|linear, quadratic, andno temperature e�ect at all, which was a conclusion favored by some involvedin the Challenger decision-making process; and� Two functional forms for leak-check pressure s|linear or no e�ect.The m = 6 structures S = fcloglog-t, logit-t, probit-t, logit-(t; s), logit-(t; t2), no ef-fectg span most of the model uncertainty implied by this list of structural variations.I will use this set of Si in what follows. Continuous model expansion from DFH'sS� logit-t choice|by embedding the logit in a parametric family of link functions(e.g., Taylor, 1988)|yields results similar to those presented here.The models in S all have the same generalized-linear-model structure,(xj j�i; Si) indep� B(pj); F�1i (pj) = t0ij�i; j = 1; : : : ; n; (14)where tij is the vector of predictor values for observation j assuming structure Si.With di�use prior information about the �i, Zellner and Rossi (1984) have shownthat the required conditional posterior distributions p(yjx; Si) in this case are givenapproximately byp(pat jx; Si) := (2��̂2i )�1=2e� 12�̂2i [F�1i (pat )�t0i�̂i]2 ���� ddpat F�1i (pat )���� ; (15)where �̂i and Îi are the MLE and observed information matrix for structure Si,�̂2i = t0iÎ�1i ti, and ti is the vector of predictors corresponding, under structural choiceSi, to a new temperature t. These conditional densities are well approximated bybeta distributions obtained by equating moments. Fig. 6 plots the six densitiesfp(pa31jx; Si); Si 2 Sg, which di�er substantially in both center and spread.Table 2 presents the results of a discrete model expansion, using equal priorprobabilities on the Si and employing approximation (11) to compute the posteriorstructural probabilities p(Sijx). (Changing from approximation (10) to (11), with



18 draperand without the 12 ki ln(2�) term, produces di�erences in the composite posteriordistribution of the same order of magnitude as variations in the prior on S di�eringfrom constant p(Si) multiplicatively by a factor of 2 in any component, and all ofthese choices yield conclusions qualitatively similar to those given below.) Fig. 7plots the expected number of �eld joints with primary O-ring erosion, conditionalon each of the structural choices in S (cf. Fig. 1 in Lavine, 1991, which motivatedthe model uncertainty analysis presented here). It may be seen that, with the ex-ception of the no-e�ect horizontal line, the expected-value traces in Fig. 7 all �tthe data well in the observed range|in fact they are virtually coincidental through-out that range|but the various structural assumptions in S lead to quite di�erentextrapolations at 31�.
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Fig. 6. Conditional posterior distributions p(pa31jx; Si) for the six structural choices in S.TABLE 2Discrete model expansion results for the Challenger data.p(pa31jx; Si)Si � � Mean Median Variance p(Sijx)cloglog-t 2.0 .06 .971 1.0 .009 .282logit-t 2.66 .294 .900 .96 .0227 .286probit-t 2.40 .410 .854 .93 .0327 .300logit-(t; s) 2.17 .302 .878 .95 .0307 .064logit-(t; t2) .116 .1 .537 .69 .204 .063no e�ect 7.0 131. .051 .05 .0003 .005composite 1.11 .155 .88 .98 .0473 |The posterior structural distribution (the last column in Table 2) di�ers consid-erably from fpoint mass on logit-tg, the implicit result of DFH's S�-style analysis:the assumption of no temperature e�ect is sharply discredited by the evidence, butall �ve of the other structural choices are su�ciently plausible in light of the datato deserve inclusion in the overall uncertainty assessment for pa31. The compositeposterior distribution p(pa31jx;S) (see Fig. 8) is well approximated by a beta distri-bution with parameters 1.11 and 0.155; this distribution has median .98, mean .88,and variance Vwithin-structure +Vbetween-structure = :0338+ :0135 = :0473, more than



assessment and propagation of model uncertainty 19twice the value conditional on the logit-t model (here Vbetween-structure is about 30%of the total). The resulting assessment of pa31 has about the same mean as DFH'sresult but includes considerably more uncertainty: p(pa31jx;S) is equivalent to onlyabout 1 binary observation at 31�, an implied information content 56% smaller thanDFH's value, and the 90% central interval for pa31 based on the discrete model ex-pansion runs from .33 to 1, as compared with DFH's interval (.5,1).
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logit-(t,t  )2Fig. 7. Expected number of �eld joints with primary O-ring erosion,conditional on each of the structural choices in S.The model uncertainty audit presented here is not the only possible analysis ofthese data; for instance, V (pa31jx;S) could easily increase somewhat more if morestructures Si were to receive nonzero prior probability. This possibility raises thefollowing question: In the limit as more and more model uncertainty is acknowl-edged, won't the composite posterior distribution degenerate to beta(0,0), i.e., noinformation at all at 31�? The answer is no; the available engineering judgmenton the monotonicity of pat in t, and the data in Fig. 5 that support this judgment,would together imply an informative distribution like the one presented here if othervariations on the monotone theme were included in the model expansion (cf. Lavine,1991, whose analysis conditioning only on independence and monotonicity resultedin a nonparametric MLE for pa31 of (.33,1)).
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Fig. 8. Posterior distributions p(pa31jx;S): dashed line is DFH result, solid line is exactresult from discrete model expansion (eqn. (6)), dotted line is beta approximation to (6).



20 draperNote that in this problem the results of the discrete model expansion only serveto reinforce DFH's overall conclusion: it turns out that for any acceptably small riskr, the posterior distribution for p31, the probability of overall catastrophic failure(not just primary O-ring erosion), concentrates even more of its mass on the interval(r; 1) when the extra structural uncertainty is taken into account. This need nothave been so: as the oil price example shows, one may arrive at di�erent substantiveconclusions about what constitutes a sensible decision after model expansion thanbefore. Note also that the good �t of the logit-t model did not imply that modelexpansion was not needed|the identi�cation of a single model that �ts well doesnot preclude the possibility of other models, with di�erent inferential or predictiveconsequences, �tting equally well or better.7. DISCUSSIONAccuracy and Calibration. Much of statistical theory and practice empha-sizes the value of accurate inferences and predictions, where accurate means \likelyto be close to the truth" in some sense. However, as Dawid (1984, 1985), Hodges(1987), and others have noted, to be fully useful an inference or prediction must alsohave an uncertainty assessment attached to it, and it is also important for this \give-or-take" to be accurate, because otherwise choices are made that incorporate toolittle or too much hedging against one's actual uncertainty. Thus calibration is alsoa goal in successful inference and prediction. These two goals compete: by makingsu�ciently strong modeling assumptions one may easily produce narrow intervalsthat look good on accuracy grounds, but of what use are they if they consistentlymiss the truth?The majority of statistical theory has focused on a kind of conditional calibration,in which one makes a set of modeling assumptions M and then �gures out how tomaximize accuracy subject to calibration constraints given M . This approach ispurely deductive: if M is true then the interval (A;B) (say) is the best answer onecan obtain. The problem is that if the particular set of modeling assumptions chosento produce one's intervals turns out in retrospect not to have been correct, it doesnot necessarily help much to have veri�ed that one's inferences assuming M is truewere conditionally accurate and well calibrated. This makes choosing a single Mupon which to condition seem like a bad idea.As the discussion in Section 3 indicates, however, the space M of all possiblemodels relating knowns x to unknowns y is too big to avoid conditioning on a subsetM0 of it. The inability of the data|when the prior distribution on M is speci�edtoo di�usely|to reliably identify which modeling assumptions will retrospectivelybe seen to be correct argues for making this subset small, but too small runs the riskof poor calibration (e.g., Lindley, 1982). In the oil price example of Sections 2.2 and6.1, for instance, what decision-makers wanted was the likely price of oil taking allrelevant forms of uncertainty into account, not the likely price of oil given that thereference scenario would come to pass. Model expansion permits additional formsof structural uncertainty, whose qualitative treatment in the past has not alwaysled to good decision-making, to enter the probabilistic calculations quantitatively,in e�ect by permitting more realistic choices ofM0. This can lead to decisions basedon better-calibrated uncertainty assessments.Alternative Approaches. There are a variety of techniques for dealing withmodel uncertainty that di�er in spirit or implementation from the approach pre-sented here, for instance robustness methods based on solving a minimax problem



assessment and propagation of model uncertainty 21over a neighborhood of S� in model space rather than integrating over such a neigh-borhood (e.g., Huber, 1981), or Bayesian sensitivity analyses examining the mappingfrom prior to posterior across a class of prior distributions or likelihoods (e.g., Bergerand Berliner, 1986); nonparametric methods (e.g., Lehmann, 1975; Friedman, 1991);data-analytic methods based on transformations and diagnostics (e.g., Carroll andRuppert, 1988); and other approaches, including empirical forecast error distribu-tions (Williams and Goodman, 1971). I have argued here that the S� approach,which may be thought of as a naive data-analytic method, is often inferior to modelexpansion, but beyond remarks of this type|and theoretical criticism of most of theother methods on, e.g., coherence grounds|little is known about the comparativemerits of these various strategies empirically. Theory and case studies closing thisgap would have important practical implications.The Value of Calibration Assessment. The proportion of inferential andpredictive applications in which an attempt is actually made to assess calibration,by direct comparison of one's uncertainty assessment for the unknown y with theactual value of y, appears to be fairly low (a notable exception is in weather fore-casting; see, e.g., Dawid, 1986). In some applications the actual value is di�cult orimpossible to observe, making such comparisons problematic, but in many cases itis both possible and desirable to check one's calibration in this way. The ease withwhich instances of understated uncertainty like those in Section 6 may be found,particularly in situations where substantial extrapolation from the body of availabledata is necessary for decision-making, makes plausible the speculation that empiricalwork of a statistical nature would be improved by an increase in calibration activity(see, e.g., Shlyakhter and Kammen, 1992, for a catalogue of appallingly bad un-certainty assessments in physics, energy policy, and demography). Such an increasewould be nontrivial, requiring the explicit setting aside of study resources that wouldhave been used in some other way, but it would seem that the long-term bene�ts ofinvestment in calibration-monitoring would often outweigh the costs. Examples inwhich this cost-bene�t tradeo� is formalized would be useful.Presentation of Structural Uncertainty. At a minimum consumers of anal-yses like those in Section 6 need to be able to examine the conditional inferen-tial/predictive distributions (e.g., Fig. 6) and the posterior structural probabilities(e.g., Table 2), so that they may decide for themselves if the composite result issensible. The already pressing need for a software system that encourages the real-time exploration of the mapping from assumptions to conclusions (e.g., Dickey, 1973;Smith et al., 1987) is only heightened by the acknowledgment of structural uncer-tainty in addition to parametric and predictive uncertainty. One possible solution isprovided by xlispstat (Tierney, 1990), which supports graphical displays in whichthe prior structural probabilities and prior distributions on the parameters may besmoothly varied and the composite result is updated smoothly.Combining Forecasts. Model expansion may be thought of as a kind of com-bining of information from the structures over which model uncertainty is propa-gated. When the goal is prediction this amounts to combining forecasts, an activitywith a large literature (e.g., Clemen, 1989; Palm and Zellner, 1992). Much of thiswork is devoted to constructing a weighted average composite forecast in the hopethat the result will have smaller uncertainty than any input forecast. Such an out-come would contrast with the �ndings of Section 6, where overall uncertainty wasgreater than that implied by any single structural choice. It is worth noting thatthe uncertainty of the composite forecast will be smaller than that of the inputs
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