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Abstract

The notion of binary relation is fundamental in logic. What is the correct analogue
of this concept in the probabilistic case? I will argue that the notion of conditional
probability distribution (Markov kernel, stochastic kernel) is the correct generaliza-
tion. One can define a category based on stochastic kernels which has many of the
formal properties of the ordinary category of relations. Using this concept I will show
how to define iteration in this category and give a simple treatment of Kozen’s lan-
guage of while loops and probabilistic choice. I will use the concept of stochastic
relation to introduce some of the ongoing joint work with Edalat and Desharnais on
Labeled Markov Processes. In my talk I will assume that people do not know what
partially additive categories are but that they do know basic category theory and
basic notions like measure and probability. This work is mainly due to Kozen, Giry,
Lawvere and others.

1 Introduction

The notion of binary relation and relational composition is fundamental in logical reason-
ing. Probability theory is intended to be a tool for quantitative reasoning about probabil-
ities. However, when seen from the viewpoint of a computer scientist, probability theory
looks like a branch of pure mathematics and one develops “probabilistic logics” for rea-
soning about probability. In fact probability theory already contains the ingredients of a
system of reasoning. In particular the key ingredient - a notion analogous to the condi-
tional in logic - is indeed present; it is nothing but the conditional probability distribution
or conditional expectation. This construct is the key tool for revising one’s probability
estimates in the presence of new information.

This is not to deny the importance of work in probabilistic logic. These logics often
provide “short-cuts” or “abstractions” or may be paths to algorithmic reasoning. There
are, unfortunately, some logics which conceal the subtleties of

In this paper we discuss a categorical construction which allows us to unify some of
the ideas in probabilistic semantics. The fundamental idea  to look for a monad which
imitates some of the properties of the powerset monad — goes back to Lawvere [Law63] but
the detailed development is due to Giry [Gir81]. We have, however, modified her definition
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slightly and, in doing so, produced an example of a partially-additive category [MAS6].
This connection allows a simple presentation of Kozen’s probabilistic semantics for a lan-
guage of while loops [Koz81, Koz85]. The material in this paper is not original but lies
scattered across the literature. The name SRel is an evocation of the analogy with rela-
tions and first appears in print in [Abr96].

2 Conditional Probability Distributions

Conditional probabilities relate probabilistic information with definite information and are
the key to probabilistic reasoning. In the discrete case the conditional probability can be
defined as follows

def P(ANB)
P(A|B) = W

This should be read as “the probability of A being true given that B is true.” Of course,
this makes sense only if P(B) # 0. If the probability of B is zero and yet B is asserted
then the subsequent reasoning cannot be expected to give meaningful answers.

There are simple examples (like the infamous problem of the King’s sibling or the even
more notorious Monty Hall problem) which show that there are pitfalls in using one’s
intuitions. They tend to be incorrect. Formal probability theory was invented and refined
over the years by these - and other much more subtle - examples. Using logics which are
shortcuts or simplifications are dangerous if one does not have a good feel for probabilistic
thinking.

In the continuous case most of the probabilities are 0, so conditional probabilities
must be defined more subtly than in the discrete case. Suppose that we have a situation
where we wish to define the conditional probability of A given B but B has probability
0 according to our probability measure P. What we do is to consider a family of sets
“converging” on B from above. In other words

B12...B;D... with N; B; = B.

Now we suppose that the conditional probabilities P(A|B;) are well defined. We define
the required conditional probability as the “limit” of the P(A|B;) as ¢ tends to infinity.

This formulation is intuitive but difficult to formalize but hints at the right idea. See
my lecture notes [Pan97] for a discussion of conditional probability and how it can be
constructed in the continuous case. Of course the probability literature is the place to go
for a detailed understanding, we recommend the books of Ash [Ash72], Billingsley [Bil95]
and Dudley [Dud89].

Ultimately we think of conditional probability in the following way. Suppose that there
is a space X together with a o-field X y of sets defined on it and similarly (Y, Xy ). Assume
further that X has a probability P defined on it and that f : X — Y is a measurable
function. A regular conditional probability distribution is a function b : X x 3y — [0,1]
such that for each fixed B € ¥y the function h(-, B) is measurable and for each fixed
x € X h(z,-) defines a probability measure. Furthermore if we compute the integral we
get the following equality:

/Ah(:v, B)dP(z) = P((f *(B)) N A).



Thus we can think of h as the conditional probability which gives the probability that
f(x) is in B given that z € A. In the continuous situation this type of density replaces
the usual discrete notion.

3 The Category SRel

We begin by defining the category which plays the role of stochastic relations. Essentially
they are slightly modified conditional probability distributions. The basic existence theory
for these objects is beyond the scope of the present paper but we mention in passing that
this type of object can be shown to exist in a very general class of spaces called “analytic
spaces” [Dud89].

Definition 3.1 The precategory SRel has as objects (X, X x) sets equipped with a o-field.
The morphisms are conditional probability densities or stochastic kernels. More precisely,
a morphism from (X,Xx) to (Y,Xy) is a function h : X x Xy — [0,1] such that

1. VB € YXy.Ax € X.h(x, B) is a bounded measurable function,
2. Vo € X.AB € Xy .h(x, B) is a subprobability measure on 3y .

The composition rule is as follows. Suppose that h is as above and k : (Y,Xy) — (Z,Xy).
Then we define koh : (X,Xx) — (Z,%7) by the formula (koh)(z,C) = [ k(y, C)h(z,dy).

It is clear that the composition formula really defines an object with the required proper-
ties.

This is very close to Giry’s definition except that we have a subprobability measure
rather than a probability measure. Henceforth, we write simply X for an object in SRel
rather than (X, ¥ x) unless we really need to emphasize the o-field. Before proceeding we
prove the

Proposition 3.2 With composition defined as above SRel is a category.

Proof. We use h,k as standing for generic morphisms of type X to Y and Y to Z re-
spectively. We write A, B, C for measurable subsets of X, Y, Z respectively. The identity
morphism on X is the Dirac delta “function”, §(z, A). The fact that it is the identity is
simply the equation

h(z, B) :/ hs', B)S(x, dz')
X

which we have verified before as our very first computation of a Lebesgue integral.

To verify associativity we use the monotone convergence theorem. Suppose h, k are as
above and that p: Z — W is a morphism and D is a measurable subset of W, we have
to show

/Y [ / p(z, D)k(y, dz)|h(z, dy) = / p(z. D)] /Y Ky, d2)h(z, dy)].

T he free variables in the above are x and D. Note that this is not just a Fubini type
rearrangement of order of integration, the role of the stochastic kernels change. On the left



hand side the expression in square brackets produces a measurable function of z, for a fixed
D, this measurable function is the integrand for the outer (Y') integration and the measure
for this integration is h(z,dy). On the right hand side the expression in square brackets
defines a measure on Xz which is used to integrate the measurable function p(z, D) over
Z. Now the above equation is just a special instance of the equation

[ Pt antedn = [ e Koo, )

where P(z) is an arbitrary real-valued measurable function on Z. To prove this equation
we need only verify it for the very special case of a characteristic function ¢ for some
measurable subset C' of Z. With P = x¢ we argue as follows. Recall that whenever we
integrate a characteristic function xc wrt any measure v we get v(C). Thus on the left
hand side the expression in square brackets becomes k(y,C) and the overall expression
is [y k(y, C)h(z,dy). On the right hand side the result is the measure evaluated on
C. In other words the expression in square brackets evaluated at C'. This is exactly
[y k(y,C)h(z,dy). The proof is now routinely completed by first invoking linearity to
conclude that the required equation holds for any simple function and then the monotone
convergence theorem to conclude that it holds for any measurable function. |

4 Probability Monads

In what sense are we entitled to think of the category SRel as a category of relations?
It has a peculiarly asymmetric character and lacks some of the key properties associated
with a category of relations, in particular it lacks closed structure as we discuss in the next
section. There is, however, one way in which it does resemble the category of relations.
Recall that the category of relations is the Kleisli category of the powerset functor over the
category of sets. It turns out that SRel is the Kleisli category of a functor, which resem-
bles the powerset functor, over the category Mes of measurable spaces and measurable
functions.
We define the functor II : Mes — Mes as follows. On objects

II(X) =4 {v|v is a subprobability measure onX }.

For any A € ¥x we get a function pa : II(X) — [0,1] given by pa(v) =4 v(A). The
o-field structure on I1(X) is the least o-field such that all the p4 maps are measurable. A
measurable function f : X — Y becomes II(f)(v) = vo f~!. Checking that II is a functor
is trivial. Note the sense in which one can think of Pi(X) as the collection of probabilistic
subsets (or “fuzzy” subsets) of X.

We claim that II is a monad. We define the appropriate natural transformations 7 : I
— Il and g : 11?7 — II' as follows:

nx(z) = 8z, ), ux () = AB € Lx. / .
Jrx)

The definition of 77 should be clear but the definition of 1 needs to be deconstructed. First
note that € is a measure on II(X). Recall that pp is the measurable function, defined on

'Try not to confuse p with a measure.



[1(X), which maps a measure v to v(B). The o-field on II(X) has been defined precisely
to make this a measurable function. Now the integral fr[(x)pBQ should be meaningful.
Of course one has to verify that px () is a subprobability measure. The only subtlety is
verifying that countable additivity holds, we leave this as an exercise.

Theorem 4.1 (Giry) The triple (I1,n, 1) is a monad on Mes.

Proof. We omit the verification that nx and px are morphisms. We begin by stating 4
facts that we need in the proof. Let X and Y be measurable spaces and let z,y denote
elements of X and Y respectively. Let f: X — Y be measurable, v € TI(X), € T12(X)
and P, () be bounded real-valued measurable functions on X and Y respectively.

L [y QI(f)(v) = [x(Qo flv.
2. [y Pnx(z) = P(x).

3. Given any real-valued measurable function P we define ¢p : II(X) — [0,1] by
Vv e II(X).£p(v) = [ Pr. We claim that {p is measurable.

4. With ¢p as above we have

/XPMX(Q) = /H(X) £pQd.

The first item was our very first example application of the monotone convergence theorem.
The second item is an immediate consequence of the properties of the Dirac delta function.
We leave the third item as an exercise and verify the fourth.

First note that when P is xp then £p is just pg. Let P be xp for some measurable
subset B of X. Now we have

/X Pux(9) = /B (@) = ix (9)(B) = /H Rt /H R

Thus we have the result for a characteristic function. By linearity it holds for any simple
function. Now assume that there is a family of simple functions s; T P. We have, by the
monotone convergence theorem

P Q)= 1 ; Q).
[ Puxt) = Jim [ @)

But we know that this is equal to

i [ o
where {; means ziy,. Now it is easy to see that lim;— & = &p so by the monotone
convergence theorem we get the result we want.

Now to prove that we have a monad we need to check the naturality of n and u. The
naturality of 7 is trivial from fact 2. The naturality of u follows from an easy calculation
with fact 1 used at the evident place. The verification of the triangle identity is a good
exercise, it just uses the definitions, no subtleties arise. We check the associativity equation
explicitly. Let Q' € II3(X) and B € Zx. We calculate



(1 © T (px)) () (B)
= (e (M) () (B)
from the definition of ux we get
= Jrxy P (x) ()
using fact 1 we get
= fnz yPB© px <Y
from the deﬁmtlon of £ we get

= Juex) Eon '

In the other direction we calculate as follows

(px o MH(X))(Q’)(B)
= px (px)(2))(B)
from the definition of ux
— Ju, Pt ()

using fact 4 we get
- fnZ(X) $pusY

which is exactly what we got before. | |

Now that we have that II is a monad we can investigate the Kleisli category. A map,
X — Y, in this category would be a map X — IIY in Mes. But if we recall that I1Y
is ¥y — [0,1] then by uncurrying we can write a Kleisli map as X x Xy — [0,1], i.e
precisely the type of the morphisms in SRel. Of course one has to verify that one gets
exactly the SRel morphisms. We leave this as an exercise.

5 The Additive Structure of SRel

We will examine the properties of the category SRel, especially the partially additive
structure [MAS6].
We begin by establishing that SRel has countable coproducts.

Proposition 5.1 The category SRel has countable coproducts.

Proof. Given a countable family {(X;,X;)|i € I} of objects in SRel we define (X, ¥) as
follows. As a set X is just the disjoint union of the X;. We write the pair (z,7) for an
element of X, where the second member of the pair is a “tag”, i.e. an element of I, which
indicates which summand the element z is drawn from. The o-field on X is generated
by the measurable sets of each summand. Thus, a generic measurable set in X will be of
the form W;crA; x {i}, where each A; is in ;. We will usually just write W;crA; with the
manipulation of tags ignored when we are talking about measurable sets.

This object will be “the” coproduct in SRel. The injections +; : X; — X are
(@, WrerAg) = 0((x,1), Wrer Ag) = 0(z, A;). Given a family f; : X; — (Y, Xy) of SRel
morphisms we construct the mediating morphism f: X — Y by f((z,4), B) = fi(z, B).
We check the required commutativity by calculating

(fOL] T]a / f €z, B T]a a / f] T, B (T], )_ f](ij )

This is clearly the only way to construct f and satisfy all the required commutativities. ll



This is very analogous to the construction inRel but there the coproduct is actually a
biproduct (since Rel is a self-dual category). This coproduct is not a biproduct. In fact it
has a kind of restricted universality property that we will explain after we have discussed
the partially additive structure of SRel.

It is easy to define a symmetric tensor product. Given (X, X x) and (Y, Xy ) we define
(X,Yx) @ (Y,Xy) as (X xY,X¥x ® Xy) where we mean the tensor product of o-fields
defined earlier and cartesian product of the sets of course. We write X ® Y to be brief.
Given f: X - X'andg: Y — Y  wedefine fg: X®Y — X'®Y' by

(f ®g)(($,y),A, X BI) = f(qul)g(va,)

where A’ and B’ are measurable subsets of X’ and Y’ respectively. Of course this defines it
only on rectangles, but this is a semi-ring and we can extend the measure to all measurable
subsets of X' x Y'. It is easy to see that one can define a symmetry.

In Rel we actually have a compact closed category in which the internal hom and the
tensor coincide, this is a very special situation. In SRel, though the tensor is exactly
the same as in Rel, we do not even get closed structure. The reader should try to
construct what seem at first sight to be the evident evaluation and coevaluation and
see what fails. Roughly speaking one gets stuck at the point where one is required to
manufacture a canonical measure on a o-field; the only obvious candidate, the counting
measure miserably fails to satisfy the required equations.

In fact there is a general phenomenon at work here. In situations coming from analysis
one finds that one has something that superficially looks like a compact-closed category but
in fact turns out to fail at some crucial stage. Typically one has no identity morphisms,
if one tries to put in the identity morphisms in some way then one loses the algebraic
structire that one is looking for. It turns out that these non-categories have a certain
structure called a nuclear ideal system; see the recent paper by Abramsky, Blute and
Panangaden [ABPYS].

5.1 Partially Additive Structure

This subsection is a summary of the definitions of partially additive structure due to Manes
and Arbib [MA86]. Their exposition concentrates on examples like partial functions. The
category SRel provides a very nice example of their theory. Given f,¢g: X — Y in SRel
we can sometimes add them by writing (f + g)(z, B) = f(z, B) + g(z, B). It may happen
that the sum exceeds 1 in which case it is not defined, but if the sum f(z,Y) +g(z,Y) is
bounded by 1 for all z then we get a well-defined subprobability measure and a natural
notion of adding morphisms. This is exactly the type of situation axiomatized in the
theory of partially additive categories.

Definition 5.2 A partially additive monoid is a pair (M, ") where M is a nonempty
set and Y is a partial function which maps some countable subsets of M to M. We say
that {x;|i € I} is summable if ), ; x; is defined. The following axioms are obeyed.

1. Partition-Associativity: Suppose that {x;|i € I} is a countable family and {1;|j €
J} is a countable partition of I. Then {x;|i € I} is summable iff for every j € J
{z;li € I;} is summable and {Zieli x;|j € J} is summable. In this case we require

PIED D) I
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2. Unary-sum: A singleton family is always summable.

3. Limdt: If {z;|i € I} is countable and every finite subfamily is summable then the
whole family is summable.

One can think of this as axiomatising an abstract notion of convergence. However the
first axiom says, in effect, that we are working with absolute convergence and hence rear-
rangements of any kind are permitted once we know that a sum is defined. Note that one
can have some finite sums undefined and some infinite sums defined. The usual notion
of complete partial order with sup as sum gives a model of these axioms. A vector space
gives a typical nonexample, the limit axiom fails.

We state a simple proposition without proof.

Proposition 5.3 The sum of the empty family exists, call it 0. It is the identity for ..

Though this proposition is easy to prove it has important consequences as we shall see
presently.

Definition 5.4 Let C be a category. A partially additive structure on C is a par-
tially additive monoid structure on the homsets of C such that if {f; : X — Y|i € I} is
summoable, then VW, Z,g: W — X, h Y — Z we have that {ho f;|i € I} and {fijogli € 1}
are summable and, furthermore, the equations

hod fi=Y hofi,(3 f)og=) ficg

el el el el
hold.

Since any partially additive monoid has a zero element, a category with partially additive
structure will have “zero” morphisms.

Definition 5.5 A category has zero morphisms if there is a distinguished morphism
in every homset, we write Oxy for the distinguished member of hom(X,Y), such that
YW, X, Y. Z, f W — X,9g: Z — Y we have go Oz =0xy o f.

Proposition 5.6 If a category has a partially additive structure it has zero morphisms.

This follows immediately from proposition 5.3. Note that if a category has a partially ad-
ditive structure then every homset is nonempty. This immediately rules out, for example,
Set as a category that could support a partially additive structure.

Proposition 5.7 The category SRel has a partially additive structure.
Proof. A family {h; : X — Y|i € I} in SRel is summable if
Vo€ XY hi(z,Y) < 1.
We define the sum by the evident pointwise formula. Partition associativity follows imme-

diately from the fact that we are dealing with absolute convergence since all the values are
nonnegative. The unary sum axiom is immediate. To see the validity of the limit axiom



we proceed as follows. Suppose that {h; : X — Y|i € I} in SRel is summable, i.e. we
assume that

Vo € XY hi(,Y) < 1.

We define the sum by the evident pointwise formula. Partition associativity follows im-
mediately from the fact that we are dealing with absolute convergence since all the values
are nonnegative. The unary sum axiom is immediate. To see the validity of the limit
axiom we proceed as follows. Suppose that {h; : X — Y|i € N} is a countable family
and that every finite subfamily is summable. The sums )" | hij(x,Y) are bounded by 1
for all z. The sum » >, h;(z,Y") has to converge, being the limit of a bounded monotone
sequence of reals and the sum has to be also bounded by 1. Thus the entire family is
summable. One has to check that the sum of morphisms defined this way really gives a
measure but the verification of countable additivity is easily done by using the fact that
each h; is countably additive and the sums in question can be rearranged since we have
only nonnegative terms. The verification of the two distributivity equations is a routine
use of the monotone convergence theorem mantra. |

We now define some morphisms which are of great importance in the theory of par-
tially additive categories. They exist as soon as one has coproducts and a family of zero
morphisms, thus they always exist in a category with partially additive structure.

Definition 5.8 Let C be a category with countable coproducts and zero morphisms and let
{X;li € I} be a countable family of objects of C.

1. For any J C I we define the quasi-projection PR; : [[;,c; X; — []

_PRJOLZ':{(L)Z S

jeJ X by

igJ

2. We write I - X for the coproduct of |I| copies of X. We define the diagonal-
injection A by couniversality:

A
[Txilien —1-TJ(xilien
1 i

1N
J
X

H(Xi|i €1I)

3. We have a morphism o from I - X to X given by:

X




These are all very simple maps to describe explicitly. In Set we cannot have a map which
behaves like PR because we do not have zero morphisms. In SRel we have

5(z,Ap) kel

PR;((z,k),Yjcs) = {0 k¢ J’

The A morphism in SRel is
Al(, k), Bier (We147)) = o, Af).
The analogous map in Set is A((z,k)) = ((x, k), k). Finally
o((z, k), A) = é(x, A)

in SRel while in Set we have o((z,k)) = x.
We are finally ready to define a partially additive category.

Definition 5.9 A partially additive category, C is a category with countable coproducts
and a partially additive structure satisfying the following two azioms.

1. Compatible sum axiom: If {f;|i € I} is a countable set of morphisms in C(X,Y)
and there is a morphism f : X — I-Y with PRiof = f; then {f;|i € 1} is summable.

2. Untying axiom: If f,g: X — Y are summable then t10 f and 1909 are summable
as morphisms from X toY +Y.

The first axiom says that if a family of morphisms can be “bundled together as a mor-
phism into the copower” then the family is summable. The reverse direction is an easy
consequence of the definition of partially additive structure so this is really an if and only
if statement in a partially additive category.

Proposition 5.10 The category SRel is a partially additive category.

Proof. We already know that SRel has a partially additive structure and has countable
coproducts. Suppose that we have the morphisms f; and f as described in the compatible
sum axiom. We verify that the f; form a summable family. For fixed z € X and B € Xy
we have

Zz’el fi(=TaB) = ZieI(PRi o f)(:r,B)
=D ier fI_Y PR;(u, B) f(z,du)
= Zie[ YXB(U)f(xadU)

(in the previous line the integral is over the ith summand of the disjoint union only)

= Yier f(@,0i(B)) = f(x, I - B).

In the last line 7- B means the disjoint union of || many copies of B. From this calculation
and the fact that f is a morphism in SRel we see that the sum is indeed defined. To
verify untying is a very easy exercise. [ |



6 Kozen semantics and duality

In this short section we explain the point of defining partially additive categories. Briefly,
the point is to support a notion of iteration. We give a simple presentation of Kozen’s
probabilistic semantics for a language of while loops using the fact that SRel supports
iteration simply by being a partially additive category. We first prove that there is an
iteration operation whenever we have a partially additive category and then give the
semantics. Kozen’s first presentation was much more elaborate, but in a later paper he
sketched essentially this semantics and described a very nice duality theory which gives a
notion of probabilistic predicate transformer.

Theorem 6.1 (Arbib-Manes) Given f: X — X +Y in a partially additive category,
we can find a unique fr : X — X and fo : X — Y such that f = 11 0o f1 4+ 19 0 fo.
Furthermore there is a morphism tf =g Y00 foo f{' : X — Y. The morphism {f is
called the iterate of f.

Proof. The first assertion is trivial. We have fi = PRx o f and fy9 = PRy o f where the
PR maps are the ones associated with the coproduct X +Y . The second assertion is about
the specific family {fo o f{*|n > 0} being summable. We first prove by induction on £ that
the finite families { fo o f{'|k > n > 0} are summable and the result then follows from the
limit axiom. The base case is just the unary sum axiom applied to fy. For the inductive
step we claim that if g : X — Y is any morphism then g o f; and fs are summable. The
induction step then follows immediately from the claim by using ZZ:O fao f* for g. To
prove the claim we note

9, Iy]o f=1[g,Iy]o(t10 f1 + 120 f2)
=lg,Iy]otio fi+[g,Iy]otz0 fo
=go fi+ f

Thus the claim is proved. [ |

More can be said about the iteration construct, in fact Bloom and Esik have written
a monumental treatise on this topic and compared various axiomatisations of iteration.
Iteration is closely linked to the notion of trace and is also the dual of a fixed-point
combinator. We will not discuss the various equational properties of iteration except to
note the fixed point property: given any g : X — X we have {([g, Iy]o f) = 1(f o g).

6.1 While Loops in a Probabilistic Framework

We define the syntax as follows:
S ==, := f(Z)|S1; Salif B then S else So|while B do S.

We use the following conventions. We assume that the program has a fixed set of variables
Z, say there are n distinct variables, and that they each take values in some measure space
(X,%). The space (X", X") is the product space where the vector of variables takes
its values. We assume that the function f is a measurable function of type (X", %")
— (X,X) and that B defines a measurable subset of (X", £"). We can thus suppress



syntactic details about expressions and boolean expressions. It is easy to extend what
follows to cover variables of different sorts and to add random assignment.

We model statements in this programming language as SRel morphisms of type
(X™,X") — (X™,X"). We write A for the product Ay x ... x A4,
Assignment: z := f(%)

[2i = £(@)](@ A) = 6(z1, A1) ... 6(wir, Ai1)0(f(F), A)S(Titr, Aigr) - - 0(n, An)
Sequential Composition: S5i; 55

[$:5:] = [S:] o [5]

where the composition on the right-hand side is the composition in SRel.
Conditionals: if B then S else Sy

[if B then Sy else S5 (%, A) = 6(z,B)[S1] (7, A) + 4(Z,B)[ S2 ] (7, A)

where B denotes the complement of B.
While Loops: while B do S

lwhile B do S] = h'

where we are using the { in SRel and the morphism A : (X", ¥") — (X", X") 4+ (X", X")
is given by

(@, A v Ay) = §(2,B)[S](Z, A1) + 6(Z, B)(Z, A).

The opposite category can be used as the basis for a “predicate transformer” semantics.
We sketch the ideas briefly, a detailed exposition would require an excusion into Banach
spaces and the topology of these spaces. This part is not self-contained but the reader
can still get a good idea of how the construction works without following the details about
Banach spaces.

Definition 6.2 The category SPT has as objects sets equipped with a o-field. Given a
o-field we obtain the Banach space of bounded, real-valued, measurable functions defined
on X and denoted F(X). The sup defines the norm. A morphism « : X — Y in the
category is a linear, continuous function o : F(X) — F(Y).

Theorem 6.3 (Kozen)
SRel’” = SPT.
Proof(sketch). Given h: X — Y in SRel we construct oy, : F(Y) — F(X) as follows:
ap=Ag € F(Y).\x € X. /Yg(y)h(x,dy).
One has to check that this is linear (clear) and continuous.

Given @ : X — Y in SPT we construct h : Y — X in SRel as follows: h(y, A) =
a(xa)(y)-



We check that these maps are really inverses. Suppose that we start with an SRel
morphism h : X — Y and we construct «;, and then go back to SRel obtaining a stochastc
kernel k. We have k(z, B) = ap(xp)(z) but by definition of oy, this is [, xp(y)h(z, dy) =
h(xz, B). Thus we get back our original morphism. The other direction is not quite so
trivial. Suppose that we start with an «, construct an h and then ap. We have to show
that for any f € F(X) that a(f) = ax(f). Now we take the special case of a characteristic
function x4 for f. We have then oy, (xa)(y) = [ xah(y.dz) = h(y, A) = a(xa)(y). Thus
the required equality holds for characteristic functions. Now we invoke the monotone
convergence theorem mantra and see that it works for any measurable function. |

In the dual view being adopted here, a bounded, measurable function is the analogue
of a predicate on the set of states. An SRel morphism is a state transformer while an
SPT morphism is a predicate transformer. The role of a state is played by a measure on
the set of traditional states. The satisfaction relation of ordinary predicates and states is
replaced by the integral. Thus the measurable function (predicate) f (¢) is “satisfied” by
the measure (state) p (s) written [ fu (s = ¢) giving a value in [0, 1] ({0,1}).

7 Conclusions

In this survey we have given an exposition of (a part of) the work of Giry and have ex-
pounded the view that conditional probability distributions play the role of probabilistic
relations. This lends some justification to the idea that one can view the Kozen seman-
tics [Koz81] as a state-transformation semantics and its dual [Koz85] as a “predicate-
transformer” semantics. The predicate-transformer viewpoint has been pushed to a great
extent by the Oxford group [Pro].

In going to continuous state spaces [BDEPY7, JDP98] one needs a generalization of
the notion of probabilistic transition relation and the concept of conditional probability
distribution serves ideally for this purpose. I hope that the exposition of the present paper
brings out why this is the correct generalization.

Acknowledgments

This paper is a condensation of part of the notes for a course taught at Aarhus in the
Fall of 1996 and at an EATCS Summer school in the Fall of 1997 in Udine. I am very
grateful to Glynn Winskel, Mogens Nielsen and BRICS for their hospitality during the
year 1996-97 and to Catuscia Palamidessi for inviting me to the EATCS Summer school. 1
have benefited from conversations with Samson Abramsky, Richard Blute, Luca Cattani,
Luc Devroye, Josee Desharnais, Devdatt Dubhashi, Abbas Edalat, Ian Stark and Glynn
Winskel. The author is funded by a grant from NSERC (Canada).

A Compact Closed Categories

We assume the reader is familiar with the notion of a symmetric monoidal category. A
suitable reference is [Lan71]. We now review some of the different closed structures such
a category could have.



Definition A.1 A symmetric monoidal category is closed or autonomous if, for all objects
A and B, there is an object A —o B and an adjointness relation:

Hom(A® B,C) = Hom(B,A — C)

The unit and counit of this adjunction are the familiar morphisms:

ev: AQ (A—oB)=B coev: A= B —o (A® B)

Examples of autonomous categories include the category of vector spaces and the
category of relations.

Definition A.2 A compact closed category is a symmetric monoidal category such that
for each object A there exists a dual object A*, and canonical morphisms:

v:l - AR A*
P AY®A =T

such that the usual adjunction triangles commute:

v id id Qv

AZTIRA ARA* R A A2 A R]T ATQAR A"

id id QY id P ® id
AQI = A IR A* =2 A*

It is easy to see that a compact closed category is indeed closed and that A —o B =
A*® B.

Compact categories could also be defined as *-autonomous categories [Bar80, RBS93]
with the additional isomorphism A* ® B* = (A ® B)*.
We briefly describe the prototypical example, the category of relations.

Definition A.3 The category of relations, Rel, has sets as objects, a morphism from X
to Y will be a relation on X x Y, with the usual relational composition.

In what follows, X,Y,Z will denote sets, and z,y, z will denote elements. A binary
relation on X x Y will be denoted zRy. The identity relation will be denoted ZD, and is
defined as #ZDz, for all z € X. Given a relation R: X = Y, we let R: Y = X denote
the converse relation.

We verify that Rel is compact. The tensor product ® is given by taking the products
of sets, and on morphisms, we have:

R: X=Y S: X'=Y'



(z,2" )R ® S(y,y') if and only if 2Ry and z'Sy’

The unit for the tensor is given by any one point set. We define the functor ()~ : Rel =
Rel by:

X =X R =R

The relation v: I — X ® X~ is given by xv(x,z) for all x € X and similarly for .
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