
Probabilistic RelationsPrakash Panangaden�School of Computer ScienceMcGill UniversityMontreal, Quebec, CanadaMay 17, 1998AbstractThe notion of binary relation is fundamental in logic. What is the correct analogueof this concept in the probabilistic case? I will argue that the notion of conditionalprobability distribution (Markov kernel, stochastic kernel) is the correct generaliza-tion. One can de�ne a category based on stochastic kernels which has many of theformal properties of the ordinary category of relations. Using this concept I will showhow to de�ne iteration in this category and give a simple treatment of Kozen's lan-guage of while loops and probabilistic choice. I will use the concept of stochasticrelation to introduce some of the ongoing joint work with Edalat and Desharnais onLabeled Markov Processes. In my talk I will assume that people do not know whatpartially additive categories are but that they do know basic category theory andbasic notions like measure and probability. This work is mainly due to Kozen, Giry,Lawvere and others.1 IntroductionThe notion of binary relation and relational composition is fundamental in logical reason-ing. Probability theory is intended to be a tool for quantitative reasoning about probabil-ities. However, when seen from the viewpoint of a computer scientist, probability theorylooks like a branch of pure mathematics and one develops \probabilistic logics" for rea-soning about probability. In fact probability theory already contains the ingredients of asystem of reasoning. In particular the key ingredient - a notion analogous to the condi-tional in logic - is indeed present; it is nothing but the conditional probability distributionor conditional expectation. This construct is the key tool for revising one's probabilityestimates in the presence of new information.This is not to deny the importance of work in probabilistic logic. These logics oftenprovide \short-cuts" or \abstractions" or may be paths to algorithmic reasoning. Thereare, unfortunately, some logics which conceal the subtleties ofIn this paper we discuss a categorical construction which allows us to unify some ofthe ideas in probabilistic semantics. The fundamental idea { to look for a monad whichimitates some of the properties of the powerset monad { goes back to Lawvere [Law63] butthe detailed development is due to Giry [Gir81]. We have, however, modi�ed her de�nition�Research supported in part by NSERC and FCAR.



slightly and, in doing so, produced an example of a partially-additive category [MA86].This connection allows a simple presentation of Kozen's probabilistic semantics for a lan-guage of while loops [Koz81, Koz85]. The material in this paper is not original but liesscattered across the literature. The name SRel is an evocation of the analogy with rela-tions and �rst appears in print in [Abr96].2 Conditional Probability DistributionsConditional probabilities relate probabilistic information with de�nite information and arethe key to probabilistic reasoning. In the discrete case the conditional probability can bede�ned as follows P (AjB) def= P (A \B)P (B) :This should be read as \the probability of A being true given that B is true." Of course,this makes sense only if P (B) 6= 0. If the probability of B is zero and yet B is assertedthen the subsequent reasoning cannot be expected to give meaningful answers.There are simple examples (like the infamous problem of the King's sibling or the evenmore notorious Monty Hall problem) which show that there are pitfalls in using one'sintuitions. They tend to be incorrect. Formal probability theory was invented and re�nedover the years by these - and other much more subtle - examples. Using logics which areshortcuts or simpli�cations are dangerous if one does not have a good feel for probabilisticthinking.In the continuous case most of the probabilities are 0, so conditional probabilitiesmust be de�ned more subtly than in the discrete case. Suppose that we have a situationwhere we wish to de�ne the conditional probability of A given B but B has probability0 according to our probability measure P . What we do is to consider a family of sets\converging" on B from above. In other wordsB1 � : : : Bi � : : : with \i Bi = B:Now we suppose that the conditional probabilities P (AjBi) are well de�ned. We de�nethe required conditional probability as the \limit" of the P (AjBi) as i tends to in�nity.This formulation is intuitive but di�cult to formalize but hints at the right idea. Seemy lecture notes [Pan97] for a discussion of conditional probability and how it can beconstructed in the continuous case. Of course the probability literature is the place to gofor a detailed understanding, we recommend the books of Ash [Ash72], Billingsley [Bil95]and Dudley [Dud89].Ultimately we think of conditional probability in the following way. Suppose that thereis a space X together with a �-�eld �X of sets de�ned on it and similarly (Y;�Y ). Assumefurther that X has a probability P de�ned on it and that f : X ! Y is a measurablefunction. A regular conditional probability distribution is a function h : X � �Y �! [0; 1]such that for each �xed B 2 �Y the function h(�; B) is measurable and for each �xedx 2 X h(x; �) de�nes a probability measure. Furthermore if we compute the integral weget the following equality:ZA h(x;B)dP (x) = P ((f�1(B)) \A):



Thus we can think of h as the conditional probability which gives the probability thatf(x) is in B given that x 2 A. In the continuous situation this type of density replacesthe usual discrete notion.3 The Category SRelWe begin by de�ning the category which plays the role of stochastic relations. Essentiallythey are slightly modi�ed conditional probability distributions. The basic existence theoryfor these objects is beyond the scope of the present paper but we mention in passing thatthis type of object can be shown to exist in a very general class of spaces called \analyticspaces" [Dud89].De�nition 3.1 The precategory SRel has as objects (X;�X) sets equipped with a �-�eld.The morphisms are conditional probability densities or stochastic kernels. More precisely,a morphism from (X;�X) to (Y;�Y ) is a function h : X � �Y �! [0; 1] such that1. 8B 2 �Y :�x 2 X:h(x;B) is a bounded measurable function,2. 8x 2 X:�B 2 �Y :h(x;B) is a subprobability measure on �Y .The composition rule is as follows. Suppose that h is as above and k : (Y;�Y ) �! (Z;�Z).Then we de�ne k�h : (X;�X) �! (Z;�Z) by the formula (k�h)(x;C) = RY k(y;C)h(x; dy).It is clear that the composition formula really de�nes an object with the required proper-ties.This is very close to Giry's de�nition except that we have a subprobability measurerather than a probability measure. Henceforth, we write simply X for an object in SRelrather than (X;�X) unless we really need to emphasize the �-�eld. Before proceeding weprove theProposition 3.2 With composition de�ned as above SRel is a category.Proof. We use h; k as standing for generic morphisms of type X to Y and Y to Z re-spectively. We write A;B;C for measurable subsets of X;Y;Z respectively. The identitymorphism on X is the Dirac delta \function", �(x;A). The fact that it is the identity issimply the equation h(x;B) = ZX h(x0; B)�(x; dx0)which we have veri�ed before as our very �rst computation of a Lebesgue integral.To verify associativity we use the monotone convergence theorem. Suppose h; k are asabove and that p : Z �! W is a morphism and D is a measurable subset of W , we haveto show ZY [ZZ p(z;D)k(y; dz)]h(x; dy) = ZZ p(z;D)[ZY k(y; dz)h(x; dy)]:T he free variables in the above are x and D. Note that this is not just a Fubini typerearrangement of order of integration, the role of the stochastic kernels change. On the left



hand side the expression in square brackets produces a measurable function of z, for a �xedD, this measurable function is the integrand for the outer (Y ) integration and the measurefor this integration is h(x; dy). On the right hand side the expression in square bracketsde�nes a measure on �Z which is used to integrate the measurable function p(z;D) overZ. Now the above equation is just a special instance of the equationZY [ZZ P (z)k(y; dz)]h(x; dy) = ZZ P (z)[ZY k(y; dz)h(x; dy)]where P (z) is an arbitrary real-valued measurable function on Z. To prove this equationwe need only verify it for the very special case of a characteristic function �C for somemeasurable subset C of Z. With P = �C we argue as follows. Recall that whenever weintegrate a characteristic function �C wrt any measure � we get �(C). Thus on the lefthand side the expression in square brackets becomes k(y;C) and the overall expressionis RY k(y;C)h(x; dy). On the right hand side the result is the measure evaluated onC. In other words the expression in square brackets evaluated at C. This is exactlyRY k(y;C)h(x; dy). The proof is now routinely completed by �rst invoking linearity toconclude that the required equation holds for any simple function and then the monotoneconvergence theorem to conclude that it holds for any measurable function.4 Probability MonadsIn what sense are we entitled to think of the category SRel as a category of relations?It has a peculiarly asymmetric character and lacks some of the key properties associatedwith a category of relations, in particular it lacks closed structure as we discuss in the nextsection. There is, however, one way in which it does resemble the category of relations.Recall that the category of relations is the Kleisli category of the powerset functor over thecategory of sets. It turns out that SRel is the Kleisli category of a functor, which resem-bles the powerset functor, over the category Mes of measurable spaces and measurablefunctions.We de�ne the functor � :Mes �!Mes as follows. On objects�(X) =df f�j� is a subprobability measure onXg:For any A 2 �X we get a function pA : �(X) �! [0; 1] given by pA(�) =df �(A). The�-�eld structure on �(X) is the least �-�eld such that all the pA maps are measurable. Ameasurable function f : X �! Y becomes �(f)(�) = � �f�1. Checking that � is a functoris trivial. Note the sense in which one can think of Pi(X) as the collection of probabilisticsubsets (or \fuzzy" subsets) of X.We claim that � is a monad. We de�ne the appropriate natural transformations � : I�! � and � : �2 �! �1 as follows:�X(x) = �(x; �); �X (
) = �B 2 �X :Z�(X) pB
:The de�nition of � should be clear but the de�nition of � needs to be deconstructed. Firstnote that 
 is a measure on �(X). Recall that pB is the measurable function, de�ned on1Try not to confuse � with a measure.



�(X), which maps a measure � to �(B). The �-�eld on �(X) has been de�ned preciselyto make this a measurable function. Now the integral R�(X) pB
 should be meaningful.Of course one has to verify that �X(
) is a subprobability measure. The only subtlety isverifying that countable additivity holds, we leave this as an exercise.Theorem 4.1 (Giry) The triple (�; �; �) is a monad on Mes.Proof. We omit the veri�cation that �X and �X are morphisms. We begin by stating 4facts that we need in the proof. Let X and Y be measurable spaces and let x; y denoteelements of X and Y respectively. Let f : X �! Y be measurable, � 2 �(X), 
 2 �2(X)and P;Q be bounded real-valued measurable functions on X and Y respectively.1. RY Q�(f)(�) = RX(Q � f)�.2. RX P�X(x) = P (x).3. Given any real-valued measurable function P we de�ne �P : �(X) �! [0; 1] by8� 2 �(X):�P (�) = RX P�. We claim that �P is measurable.4. With �P as above we have ZX P�X(
) = Z�(X) �P
:The �rst item was our very �rst example application of the monotone convergence theorem.The second item is an immediate consequence of the properties of the Dirac delta function.We leave the third item as an exercise and verify the fourth.First note that when P is �B then �P is just pB. Let P be �B for some measurablesubset B of X. Now we haveZX P�X(
) = ZB �X(
) = �X(
)(B) = Z�(X) pB
 == Z�(X) �P
:Thus we have the result for a characteristic function. By linearity it holds for any simplefunction. Now assume that there is a family of simple functions si " P . We have, by themonotone convergence theoremZX P�X(
) = limi�!1ZX si�X(
):But we know that this is equal to limi�!1Z�(X) �i
where �i means xisi . Now it is easy to see that limi�!1 �i = �P so by the monotoneconvergence theorem we get the result we want.Now to prove that we have a monad we need to check the naturality of � and �. Thenaturality of � is trivial from fact 2. The naturality of � follows from an easy calculationwith fact 1 used at the evident place. The veri�cation of the triangle identity is a goodexercise, it just uses the de�nitions, no subtleties arise. We check the associativity equationexplicitly. Let 
0 2 �3(X) and B 2 �X . We calculate



(�X ��(�X))(
0)(B)= (�X(�(�X)(
0)))(B)from the de�nition of �X we get= R�(X) pB�(�X)(
0)using fact 1 we get= R�2(X) pB � �X
0from the de�nition of � we get= R�2(X) �pB
0.In the other direction we calculate as follows(�X � ��(X))(
0)(B)= �X(��(X)(
0))(B)from the de�nition of �X= R�(X) pB��(X)(
0)using fact 4 we get= R�2(X) �pB
0which is exactly what we got before.Now that we have that � is a monad we can investigate the Kleisli category. A map,X �! Y , in this category would be a map X �! �Y in Mes. But if we recall that �Yis �Y �! [0; 1] then by uncurrying we can write a Kleisli map as X � �Y �! [0; 1], i.e.precisely the type of the morphisms in SRel. Of course one has to verify that one getsexactly the SRel morphisms. We leave this as an exercise.5 The Additive Structure of SRelWe will examine the properties of the category SRel, especially the partially additivestructure [MA86].We begin by establishing that SRel has countable coproducts.Proposition 5.1 The category SRel has countable coproducts.Proof. Given a countable family f(Xi;�I)ji 2 Ig of objects in SRel we de�ne (X;�) asfollows. As a set X is just the disjoint union of the Xi. We write the pair (x; i) for anelement of X, where the second member of the pair is a \tag", i.e. an element of I, whichindicates which summand the element x is drawn from. The �-�eld on X is generatedby the measurable sets of each summand. Thus, a generic measurable set in X will be ofthe form ]i2IAi � fig, where each Ai is in �i. We will usually just write ]i2IAi with themanipulation of tags ignored when we are talking about measurable sets.This object will be \the" coproduct in SRel. The injections �i : Xi �! X are�i(x;]k2IAk) = �((x; i);]k2IAk) = �(x;Ai). Given a family fj : Xj �! (Y;�Y ) of SRelmorphisms we construct the mediating morphism f : X �! Y by f((x; i); B) = fi(x;B).We check the required commutativity by calculating(f � �j)(xj ; B) = ZX f(x;B)�((xj ; j); �) = ZXj fj(x;B)�(xj ; �) = fj(xj ; B):This is clearly the only way to construct f and satisfy all the required commutativities.



This is very analogous to the construction inRel but there the coproduct is actually abiproduct (since Rel is a self-dual category). This coproduct is not a biproduct. In fact ithas a kind of restricted universality property that we will explain after we have discussedthe partially additive structure of SRel.It is easy to de�ne a symmetric tensor product. Given (X;�X) and (Y;�Y ) we de�ne(X;�X) 
 (Y;�Y ) as (X � Y;�X 
 �Y ) where we mean the tensor product of �-�eldsde�ned earlier and cartesian product of the sets of course. We write X 
 Y to be brief.Given f : X �! X 0 and g : Y �! Y 0 we de�ne f 
 g : X 
 Y �! X 0 
 Y 0 by(f 
 g)((x; y); A0 �B0) = f(x;A0)g(y;B0)where A0 and B0 are measurable subsets of X 0 and Y 0 respectively. Of course this de�nes itonly on rectangles, but this is a semi-ring and we can extend the measure to all measurablesubsets of X 0 � Y 0. It is easy to see that one can de�ne a symmetry.In Rel we actually have a compact closed category in which the internal hom and thetensor coincide, this is a very special situation. In SRel, though the tensor is exactlythe same as in Rel, we do not even get closed structure. The reader should try toconstruct what seem at �rst sight to be the evident evaluation and coevaluation andsee what fails. Roughly speaking one gets stuck at the point where one is required tomanufacture a canonical measure on a �-�eld; the only obvious candidate, the countingmeasure miserably fails to satisfy the required equations.In fact there is a general phenomenon at work here. In situations coming from analysisone �nds that one has something that super�cially looks like a compact-closed category butin fact turns out to fail at some crucial stage. Typically one has no identity morphisms,if one tries to put in the identity morphisms in some way then one loses the algebraicstructire that one is looking for. It turns out that these non-categories have a certainstructure called a nuclear ideal system; see the recent paper by Abramsky, Blute andPanangaden [ABP98].5.1 Partially Additive StructureThis subsection is a summary of the de�nitions of partially additive structure due to Manesand Arbib [MA86]. Their exposition concentrates on examples like partial functions. Thecategory SRel provides a very nice example of their theory. Given f; g : X �! Y in SRelwe can sometimes add them by writing (f + g)(x;B) = f(x;B) + g(x;B). It may happenthat the sum exceeds 1 in which case it is not de�ned, but if the sum f(x; Y ) + g(x; Y ) isbounded by 1 for all x then we get a well-de�ned subprobability measure and a naturalnotion of adding morphisms. This is exactly the type of situation axiomatized in thetheory of partially additive categories.De�nition 5.2 A partially additive monoid is a pair (M;P) where M is a nonemptyset and P is a partial function which maps some countable subsets of M to M . We saythat fxiji 2 Ig is summable if Pi2I xi is de�ned. The following axioms are obeyed.1. Partition-Associativity: Suppose that fxiji 2 Ig is a countable family and fIj jj 2Jg is a countable partition of I. Then fxiji 2 Ig is summable i� for every j 2 Jfxiji 2 Ijg is summable and fPi2Ij xijj 2 Jg is summable. In this case we requireXi2I xi =Xj2JXi2Ij xi:



2. Unary-sum: A singleton family is always summable.3. Limit: If fxiji 2 Ig is countable and every �nite subfamily is summable then thewhole family is summable.One can think of this as axiomatising an abstract notion of convergence. However the�rst axiom says, in e�ect, that we are working with absolute convergence and hence rear-rangements of any kind are permitted once we know that a sum is de�ned. Note that onecan have some �nite sums unde�ned and some in�nite sums de�ned. The usual notionof complete partial order with sup as sum gives a model of these axioms. A vector spacegives a typical nonexample, the limit axiom fails.We state a simple proposition without proof.Proposition 5.3 The sum of the empty family exists, call it 0. It is the identity for P.Though this proposition is easy to prove it has important consequences as we shall seepresently.De�nition 5.4 Let C be a category. A partially additive structure on C is a par-tially additive monoid structure on the homsets of C such that if ffi : X �! Y ji 2 Ig issummable, then 8W;Z; g :W �! X;h : Y �! Z we have that fh�fiji 2 Ig and ffi�gji 2 Igare summable and, furthermore, the equationsh �Xi2I fi =Xi2I h � fi; (Xi2I fi) � g =Xi2I fi � ghold.Since any partially additive monoid has a zero element, a category with partially additivestructure will have \zero" morphisms.De�nition 5.5 A category has zero morphisms if there is a distinguished morphismin every homset, we write 0XY for the distinguished member of hom(X;Y ), such that8W;X; Y; Z; f :W �! X; g : Z �! Y we have g � 0WZ = 0XY � f .Proposition 5.6 If a category has a partially additive structure it has zero morphisms.This follows immediately from proposition 5.3. Note that if a category has a partially ad-ditive structure then every homset is nonempty. This immediately rules out, for example,Set as a category that could support a partially additive structure.Proposition 5.7 The category SRel has a partially additive structure.Proof. A family fhi : X �! Y ji 2 Ig in SRel is summable if8x 2 X:X hi(x; Y ) � 1:We de�ne the sum by the evident pointwise formula. Partition associativity follows imme-diately from the fact that we are dealing with absolute convergence since all the values arenonnegative. The unary sum axiom is immediate. To see the validity of the limit axiom



we proceed as follows. Suppose that fhi : X �! Y ji 2 Ig in SRel is summable, i.e. weassume that 8x 2 X:X hi(x; Y ) � 1:We de�ne the sum by the evident pointwise formula. Partition associativity follows im-mediately from the fact that we are dealing with absolute convergence since all the valuesare nonnegative. The unary sum axiom is immediate. To see the validity of the limitaxiom we proceed as follows. Suppose that fhi : X �! Y ji 2 Ng is a countable familyand that every �nite subfamily is summable. The sums Pni=1 hi(x; Y ) are bounded by 1for all x. The sumP1i=1 hi(x; Y ) has to converge, being the limit of a bounded monotonesequence of reals and the sum has to be also bounded by 1. Thus the entire family issummable. One has to check that the sum of morphisms de�ned this way really gives ameasure but the veri�cation of countable additivity is easily done by using the fact thateach hi is countably additive and the sums in question can be rearranged since we haveonly nonnegative terms. The veri�cation of the two distributivity equations is a routineuse of the monotone convergence theorem mantra.We now de�ne some morphisms which are of great importance in the theory of par-tially additive categories. They exist as soon as one has coproducts and a family of zeromorphisms, thus they always exist in a category with partially additive structure.De�nition 5.8 Let C be a category with countable coproducts and zero morphisms and letfXiji 2 Ig be a countable family of objects of C.1. For any J � I we de�ne the quasi-projection PRJ : `i2I Xi �!`j2J Xj byPRJ � �i = (�i i 2 J0 i 62 J2. We write I � X for the coproduct of jIj copies of X. We de�ne the diagonal-injection � by couniversality:a(Xiji 2 I) �- I �a(Xiji 2 I)
Xj6inj inj-a(Xiji 2 I)6inj3. We have a morphism � from I �X to X given by:I �X � - X�����idX�Xinj6



These are all very simple maps to describe explicitly. In Set we cannot have a map whichbehaves like PRJ because we do not have zero morphisms. In SRel we havePRJ((x; k);]j2J ) = (�(x;Ak) k 2 J0 k 62 J :The � morphism in SRel is�((x; k);]i2I(]j2IAij)) = �(x;Akk):The analogous map in Set is �((x; k)) = ((x; k); k). Finally�((x; k); A) = �(x;A)in SRel while in Set we have �((x; k)) = x.We are �nally ready to de�ne a partially additive category.De�nition 5.9 A partially additive category, C is a category with countable coproductsand a partially additive structure satisfying the following two axioms.1. Compatible sum axiom: If ffiji 2 Ig is a countable set of morphisms in C(X;Y )and there is a morphism f : X �! I �Y with PRi�f = fi then ffiji 2 Ig is summable.2. Untying axiom: If f; g : X �! Y are summable then �1 �f and �2 � g are summableas morphisms from X to Y + Y .The �rst axiom says that if a family of morphisms can be \bundled together as a mor-phism into the copower" then the family is summable. The reverse direction is an easyconsequence of the de�nition of partially additive structure so this is really an if and onlyif statement in a partially additive category.Proposition 5.10 The category SRel is a partially additive category.Proof. We already know that SRel has a partially additive structure and has countablecoproducts. Suppose that we have the morphisms fi and f as described in the compatiblesum axiom. We verify that the fi form a summable family. For �xed x 2 X and B 2 �Ywe havePi2I fi(x;B) =Pi2I(PRi � f)(x;B)=Pi2I RI�Y PRi(u;B)f(x; du)=Pi2I RY �B(u)f(x; du)(in the previous line the integral is over the ith summand of the disjoint union only)=Pi2I f(x; �i(B)) = f(x; I � B).In the last line I �B means the disjoint union of jIj many copies of B. From this calculationand the fact that f is a morphism in SRel we see that the sum is indeed de�ned. Toverify untying is a very easy exercise.



6 Kozen semantics and dualityIn this short section we explain the point of de�ning partially additive categories. Brie
y,the point is to support a notion of iteration. We give a simple presentation of Kozen'sprobabilistic semantics for a language of while loops using the fact that SRel supportsiteration simply by being a partially additive category. We �rst prove that there is aniteration operation whenever we have a partially additive category and then give thesemantics. Kozen's �rst presentation was much more elaborate, but in a later paper hesketched essentially this semantics and described a very nice duality theory which gives anotion of probabilistic predicate transformer.Theorem 6.1 (Arbib-Manes) Given f : X �! X + Y in a partially additive category,we can �nd a unique f1 : X �! X and f2 : X �! Y such that f = �1 � f1 + �2 � f2.Furthermore there is a morphism yf =df P1n=0 f2 � fn1 : X �! Y . The morphism yf iscalled the iterate of f .Proof. The �rst assertion is trivial. We have f1 = PRX � f and f2 = PRY � f where thePR maps are the ones associated with the coproduct X+Y . The second assertion is aboutthe speci�c family ff2 � fn1 jn � 0g being summable. We �rst prove by induction on k thatthe �nite families ff2 � fn1 jk � n � 0g are summable and the result then follows from thelimit axiom. The base case is just the unary sum axiom applied to f2. For the inductivestep we claim that if g : X �! Y is any morphism then g � f1 and f2 are summable. Theinduction step then follows immediately from the claim by using Pkn=0 f2 � fn1 for g. Toprove the claim we note[g; IY ] � f = [g; IY ] � (�1 � f1 + �2 � f2)= [g; IY ] � �1 � f1 + [g; IY ] � �2 � f2= g � f1 + f2Thus the claim is proved.More can be said about the iteration construct, in fact Bloom and Esik have writtena monumental treatise on this topic and compared various axiomatisations of iteration.Iteration is closely linked to the notion of trace and is also the dual of a �xed-pointcombinator. We will not discuss the various equational properties of iteration except tonote the �xed point property: given any g : X �! X we have y([g; IY ] � f) = y(f � g).6.1 While Loops in a Probabilistic FrameworkWe de�ne the syntax as follows:S ::== xi := f(~x)jS1;S2jif B then S1 else S2jwhile B do S:We use the following conventions. We assume that the program has a �xed set of variables~x, say there are n distinct variables, and that they each take values in some measure space(X;�). The space (Xn;�n) is the product space where the vector of variables takesits values. We assume that the function f is a measurable function of type (Xn;�n)�! (X;�) and that B de�nes a measurable subset of (Xn;�n). We can thus suppress



syntactic details about expressions and boolean expressions. It is easy to extend whatfollows to cover variables of di�erent sorts and to add random assignment.We model statements in this programming language as SRel morphisms of type(Xn;�n) �! (Xn;�n). We write ~A for the product A1 � : : :�AnAssignment: x := f(~x)xi := f(~x) (~x; ~A) = �(x1; A1) : : : �(xi�1; Ai�1)�(f(~x); Ai)�(xi+1; Ai+1) : : : �(xn; An)Sequential Composition: S1;S2S1;S2 = S2 � S1where the composition on the right-hand side is the composition in SRel.Conditionals: if B then S1 else S2if B then S1 else S2 (~x; ~A) = �(~x;B) S1 (~x; ~A) + �(~x;B) S2 (~x; ~A)where B denotes the complement of B.While Loops: while B do S while B do S = hywhere we are using the y in SRel and the morphism h : (Xn;�n) �! (Xn;�n)+ (Xn;�n)is given by h(~x; ~A1 ] ~A2) = �(~x;B) S (~x; ~A1) + �(~x;Bc)�(~x; ~A2):The opposite category can be used as the basis for a \predicate transformer" semantics.We sketch the ideas brie
y, a detailed exposition would require an excusion into Banachspaces and the topology of these spaces. This part is not self-contained but the readercan still get a good idea of how the construction works without following the details aboutBanach spaces.De�nition 6.2 The category SPT has as objects sets equipped with a �-�eld. Given a�-�eld we obtain the Banach space of bounded, real-valued, measurable functions de�nedon X and denoted F(X). The sup de�nes the norm. A morphism � : X �! Y in thecategory is a linear, continuous function � : F(X) �! F(Y ).Theorem 6.3 (Kozen) SRelop � SPT:Proof(sketch). Given h : X �! Y in SRel we construct �h : F(Y ) �! F(X) as follows:�h = �g 2 F(Y ):�x 2 X:ZY g(y)h(x; dy):One has to check that this is linear (clear) and continuous.Given � : X �! Y in SPT we construct h : Y �! X in SRel as follows: h(y;A) =�(�A)(y).



We check that these maps are really inverses. Suppose that we start with an SRelmorphism h : X �! Y and we construct �h and then go back to SRel obtaining a stochastckernel k. We have k(x;B) = �h(�B)(x) but by de�nition of �h this is RY �B(y)h(x; dy) =h(x;B). Thus we get back our original morphism. The other direction is not quite sotrivial. Suppose that we start with an �, construct an h and then �h. We have to showthat for any f 2 F(X) that �(f) = �h(f). Now we take the special case of a characteristicfunction �A for f . We have then �h(�A)(y) = RX �Ah(y; dx) = h(y;A) = �(�A)(y). Thusthe required equality holds for characteristic functions. Now we invoke the monotoneconvergence theorem mantra and see that it works for any measurable function.In the dual view being adopted here, a bounded, measurable function is the analogueof a predicate on the set of states. An SRel morphism is a state transformer while anSPT morphism is a predicate transformer. The role of a state is played by a measure onthe set of traditional states. The satisfaction relation of ordinary predicates and states isreplaced by the integral. Thus the measurable function (predicate) f (�) is \satis�ed" bythe measure (state) � (s) written R f� (s j= �) giving a value in [0; 1] (f0; 1g).7 ConclusionsIn this survey we have given an exposition of (a part of) the work of Giry and have ex-pounded the view that conditional probability distributions play the role of probabilisticrelations. This lends some justi�cation to the idea that one can view the Kozen seman-tics [Koz81] as a state-transformation semantics and its dual [Koz85] as a \predicate-transformer" semantics. The predicate-transformer viewpoint has been pushed to a greatextent by the Oxford group [Pro].In going to continuous state spaces [BDEP97, JDP98] one needs a generalization ofthe notion of probabilistic transition relation and the concept of conditional probabilitydistribution serves ideally for this purpose. I hope that the exposition of the present paperbrings out why this is the correct generalization.AcknowledgmentsThis paper is a condensation of part of the notes for a course taught at Aarhus in theFall of 1996 and at an EATCS Summer school in the Fall of 1997 in Udine. I am verygrateful to Glynn Winskel, Mogens Nielsen and BRICS for their hospitality during theyear 1996-97 and to Catuscia Palamidessi for inviting me to the EATCS Summer school. Ihave bene�ted from conversations with Samson Abramsky, Richard Blute, Luca Cattani,Luc Devroye, Josee Desharnais, Devdatt Dubhashi, Abbas Edalat, Ian Stark and GlynnWinskel. The author is funded by a grant from NSERC (Canada).A Compact Closed CategoriesWe assume the reader is familiar with the notion of a symmetric monoidal category. Asuitable reference is [Lan71]. We now review some of the di�erent closed structures sucha category could have.



De�nition A.1 A symmetric monoidal category is closed or autonomous if, for all objectsA and B, there is an object A �� B and an adjointness relation:Hom(A
B;C) �= Hom(B;A �� C)The unit and counit of this adjunction are the familiar morphisms:ev : A
 (A �� B)) B coev : A) B �� (A
B)Examples of autonomous categories include the category of vector spaces and thecategory of relations.De�nition A.2 A compact closed category is a symmetric monoidal category such thatfor each object A there exists a dual object A�, and canonical morphisms:� : I ! A
A� : A� 
A! Isuch that the usual adjunction triangles commute:A �= I 
A � 
 id - A
A� 
A A� �= A� 
 I id
 � - A� 
A
A�@@@@@id R 	�����id
  @@@@@id R 	����� 
 idA
 I �= A I 
A� �= A�It is easy to see that a compact closed category is indeed closed and that A �� B �=A� 
B.Compact categories could also be de�ned as �-autonomous categories [Bar80, RBS93]with the additional isomorphism A� 
B� �= (A
B)�.We brie
y describe the prototypical example, the category of relations.De�nition A.3 The category of relations, Rel, has sets as objects, a morphism from Xto Y will be a relation on X � Y , with the usual relational composition.In what follows, X;Y;Z will denote sets, and x; y; z will denote elements. A binaryrelation on X � Y will be denoted xRy. The identity relation will be denoted ID, and isde�ned as xIDx, for all x 2 X. Given a relation R : X ) Y , we let R : Y ) X denotethe converse relation.We verify that Rel is compact. The tensor product 
 is given by taking the productsof sets, and on morphisms, we have:R : X ) Y S : X 0 ) Y 0



(x; x0)R
 S(y; y0) if and only if xRy and x0Sy0The unit for the tensor is given by any one point set. We de�ne the functor ( )? : Rel)Rel by: X? = X R? = RThe relation � : I ! X 
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