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2 M. C. Ferris and K. Sinapiromsaranconverting problems to the format required by a solver without modeler inter-vention. Furthermore, computational advances such as the use of automaticdi�erentiation techniques [19,18,28] to generate the �rst order derivatives ofthe nonlinear functions can be used directly in a solver implementation. Cur-rently, GAMS [3] and AMPL [14] are used in a large variety of applications.Most of the commercially available solvers for linear and nonlinear programscan be used directly from one or both of these systems.The 1980's and 1990's have generated two signi�cant algorithmic changesto the �eld. The �rst major change was the introduction of interior pointmethods for linear programming by Karmarkar [21] in 1984, as a practicalalternative to the theoretically important polynomial time ellipsoid algorithmof Khachian [23]. The idea has been considerably developed; currently itappears that primal-dual methods are the most e�ective in large scale linearprogramming settings [34].In nonlinear programming, a signi�cant improvement has been observedfor non-convex problems by using second order information. While Quasi-Newton methods can be used for problems whose feasible region lies in arelatively small dimension subspace, and limited memory methods are ef-fective for unconstrained and bound constrained problems, it is becomingincreasingly clear that methods that exploit second order information (eitherusing negative curvature within a trust region or line search framework) aremore e�cient and robust. Unfortunately, it is only recently [15] that secondorder information has become available from a modeling language, namelyAMPL.This paper is an attempt to combine some of the features of these lasttwo improvements. The idea is to use a primal-dual framework for NLP inconjunction with second order information. We �rst start with the �rst orderconditions of the original NLP model in Section 2.1, which we cast as a mixedcomplementarity problem (MCP) in Section 2.2. In Section 3, we explain thePATH solver implementation for MCP and its requirements and describethe use of a merit function to solve the MCP problem. Then we introducea new merit function associated with solving NLP's. Section 4 gives detailsof our NLP solver, PATHNLP, with the MCP function evaluation and itsJacobian being evaluated by AMPL. In particular, we show how second orderinformation of the NLP is utilized via solver link libraries in Section 4.2.Section 5 gives numerical results for our approach on a set of nonlinear testproblems extracted from the AMPL web site. Speci�cally, we test all modelsin the Hock/Schittkowski test suite [20] and compare the results of the PATHsolver with LANCELOT [4], MINOS [27], NPSOL [17] and SNOPT [16].Other large scale examples, including problems from portfolio and structuraloptimization are also tested. We believe these results indicate this is alreadya promising approach and warrants further investigation in the future.



Nonlinear programs as complementarity problems 32 Mathematical formulationIn this paper, we concentrate on the following constrained nonlinear programminimize f(x)subject to g(x) � 0; h(x) = 0; x 2 B; (1)where f : Rn 7! R; g : Rn 7! Rm and h : Rn 7! Rp are twice continuouslydi�erentiable, and B := fx 2 Rnjr � x � sg with ri 2 [�1;1] and si 2[ri;1]. Let S := fx 2 Bjg(x) � 0; h(x) = 0g denote the feasible region. Wewill focus on �nding a point that satis�es the �rst order conditions of theNLP (1).2.1 The �rst order conditions of NLPThe concept of the Lagrangian function and the Lagrange multipliers play acrucial role in de�ning a �rst order point for the NLP (1). The Lagrangianfunction is a weighted summation of the objective function and the constraintfunctions, de�ned as followsL(x; �; �) := f(x)� �T g(x)� �Th(x);where � and � denote the Lagrange multipliers (dual variables) correspondingto the inequality and equality constraints, respectively.The �rst order necessary conditions for the NLP (1) are0 2 rxL(x; �; �) +NB(x)0 � � ? g(x) � 0h(x) = 0; (2)where NB(x) = fz 2 Rnj(y � x)T z � 0;8y 2 Bg is the normal cone [32] toB at x.In the case that ri or si is �nite, the de�nition of the normal cone allowsthe �rst equation of (2), to be rewritten in the following manner. If xi = ri,then (rxL(x; �; �))i � 0;while if xi = si, then (rxL(x; �; �))i � 0and for any values of ri and si, if ri < xi < si, then(rxL(x; �; �))i = 0:These conditions coupled with the regularity condition on the point xestablish the necessary conditions for NLP which are normally called theKarush-Kuhn-Tucker (KKT) conditions [22,24]. Whenever the Hessian ma-trix of the Lagrangian function is positive de�nite at (x�; ��; ��), the �rstorder conditions are also su�cient for x� to be a strict local minimizer ofNLP.



4 M. C. Ferris and K. Sinapiromsaran2.2 Primal-dual formulation of NLPThe standard mixed complementarity problem (MCP) is de�ned as the prob-lem of �nding a point z 2 Rn inside the box B = fzj�1 � l < z < u �1gthat is complementary to a nonlinear function F : Rn ! Rn. We assumewithout loss of generality that li < ui for all i = 1; 2; : : : ; n.The point z is complementarity to F (z) wheneither zi = li and Fi(z) � 0or zi = ui and Fi(z) � 0 for i = 1; : : : ; nor li < zi < ui and Fi(z) = 0:If l � �1 and u � 1, MCP becomes the problem of �nding a zero ofa system of nonlinear equations, that is to �nd z 2 Rn such that F (z) = 0,while if l = 0 and u � 1, the problem is the Nonlinear Complementar-ity Problem (NCP) of �nding z 2 Rn such that zi � 0; Fi(z) � 0 andziFi(z) = 0, for all i = 1; : : : ; n. The latter property ziFi(z) = 0 is oftencalled complementarity between zi and Fi(z).Let z be composed of the primal variable x and the dual variables � and� of the NLP (1). The nonlinear MCP function can be written as a vectorfunction of the �rst order derivative evaluation of the Lagrangian functionwith respect to the corresponding primal and dual variables that isF (z) := 24 rxL(z)�r�L(z)�r�L(z)35 :The nonlinear MCP model is to �nd z = (x; �; �) 2 Rq where q = n+m+pthat is complementary to the nonlinear vector function F from Rq 7! Rqgiven above along with lower bounds l and upper bounds uF (z) = 24rxL(z)g(x)h(x) 35 ; l := 24 r�1�135 ; u := 24 s0135 : (3)Here rxL(z) = rxf(x)� �Trxg(x)� �Trxh(x)= rxf(x)�Pmi=1 �irxgi(x) �Ppj=1 �jrxhj(x).By comparing the MCP (3) to the KKT conditions (2), it is clear thatthis formulation is equivalent to the �rst order conditions of the NLP (1).This simple observation allows us to solve the NLP problem using an MCPsolver, which is the subject of Section 4.3 The PATH solver and merit functionsThe PATH solver [6] is a nonsmooth Newton type algorithm [31] which �ndsa zero of the normal map [30]F+(x) := F (�(x)) + x� �(x);



Nonlinear programs as complementarity problems 5where �(x) is the closest point in B to the variable x in the Euclidean norm.It is well known [30] that �nding a zero of this normal map is equivalent tosolving MCP. In particular if x is a zero of the normal map, then �(x) solvesMCP, while if z solves MCP then z � F (z) is a zero of the normal map.3.1 Overview of the algorithmThe essential idea of the code is to linearize the normal map F+(x) about thecurrent iterate to obtain a piecewise linear map whose zero is sought usinga homotopy approach [7]. To monitor progress in the nonlinear model, anonmonotone path-search is used [29]. Recent extensions [9] have introduceda function 	 to be used in conjunction with the code, both as a residual anda merit function.The following pseudo code shows the main algorithm steps of the PATHsolver to �nd a KKT pointLoop until 	(x) is less than a convergence tolerance {Solve the linearization of the MCP problem to obtainthe Newton point;Search the path between the current point and the New-ton point.If the new point gives rise to a better value for the meritfunction then accept it.Otherwise use the merit function to �nd a descent di-rection and search along this direction for a new point.}Details on the solution of linearization and the path-search mechanismcan be found in [6,10]. In this paper, we just indicate the changes speci�cto solving NLP's. The Newton-type PATH solver uses the Jacobian matrixof the MCP function (3) to �nd its path-searching direction. In the abovecontext, the Jacobian matrix is computed by �nding the derivative of theMCP function. It uses the �rst and second order derivatives of the originalNLP objective function and constraints asrzF (z) := 24r2xxL(x; �; �) �rTx g(x) �rTxh(x)rxg(x) 0 0rxh(x) 0 0 35 ;where r2xxL(x; �; �) = r2xxf(x)�Pmi=1 �ir2xxgi(x)�Ppj=1 �jr2xxhj(x).



6 M. C. Ferris and K. Sinapiromsaran3.2 The merit function for the PATH solverThe most recent version of the PATH solver [9] does not use the residual of thenormal map for a merit function. Instead, it utilizes the Fischer-Burmeisterfunction [13] de�ned as the mapping � : R2 ! R,�(p; q) :=pp2 + q2 � p� q;where p and q are scalar variables. This function exhibits the complementarityproperty when the function value is zero, that is�(p; q) = 0 if and only if p � 0; q � 0 and pq = 0:For the MCP problem, the residual and merit function used is 	 : Rn ! R,	(x) := 12 (x)T (x);where  (x) is the Fischer operator [1] de�ned in (4) fromRn toRn that mapsxi and Fi(x) as parameters to the Fischer-Burmeister function component-wise as follows: i(x) := 8>><>>:�(xi � li; Fi(x)) if �1 < li � xi <1;��(ui � xi;�Fi(x)) if �1 < xi � ui <1;�(xi � li; �(ui � xi;�Fi(x))) if �1 < li � xi � ui <1;�Fi(x) if �1 < xi <1: (4)This function is nonnegative and is zero at the solution point. A key featurefor its use as a merit function is its continuously di�erentiability. It allowsgradient steps to be used when the path-searching direction does not lead toa descent direction.The nonlinear MCP function (3) from Section 2.2 contains only the �rstorder derivatives of the objective function and constraints. The formulationexhibits the de�ciency of �nding KKT points for NLP. In an e�ort to avoidthis de�ciency, we introduce a new merit function for the PATH solver thatexplicitly incorporates the objective function. We now describe the imple-mentation of the new merit function and give some computational results inSection 5.The PATH solver uses a merit function to �nd a gradient descent directionwhen its Newton direction fails to �nd a descent direction. It uses the residualfunction 	(x) to identify the stopping criteria. We de�ne a new merit functionfor the PATH solver applied to NLP's which is a weighted average of theresidual function 	 and the objective function f as'(x) = (1� 
)	(x) + 
f(x);where 
 2 [0; 1].



Nonlinear programs as complementarity problems 7When 
 is equal to zero, '(x) = 	(x) entreating the original PATHsolver to satisfy the �rst order conditions of the NLP problem. For 
 > 0,the objective function a�ects the search direction. However, if the weightedvalue of the objective function reaches 1, then a solution is not guaranteed tosatisfy the �rst order conditions. With appropriate choice of 
, our new meritfunction guides the path-searching algorithm to escape KKT points that arenot local minimizers of the original NLP. After our experimentation with thevalue of 
, we decided to take a �xed value of 
 = 0:3 for the purposes of theresults given in Section 5.In the next section, we show how the NLP model in AMPL is automati-cally modi�ed and transformed into the MCP formulation. The MCP function(3) and its Jacobian evaluation are speci�ed in more detail.4 The PATHNLP solver for AMPL nonlinear programsTo solve the NLP problem in AMPL, a user could specify the complemen-tarity formulation directly using the AMPL language [8]. This would requirea modeler to write down explicitly the �rst order conditions as detailed inSection 2.2. This process is very cumbersome and prone to error. In this pa-per, we propose to use the AMPL solver library to take an NLP speci�eddirectly in AMPL and form the required F and its Jacobian matrix for thePATH solver automatically within the solver link. This means that a modelersimply has to change the solver name in order to use the approach outlinedin this paper.4.1 MCP formulation from AMPLThe NLP problem passed to a solver from the AMPL environment is de�nedas minimize f(x)subject to a � c(x) � b; r � x � s;where f : Rn 7! R; c : Rn 7! Rm with a; b 2 Rm and x; r; s 2 Rn.We now show how to recover the NLP format (1) as described in Section 2from the data given above. We de�ne �ve mutually exclusive index subsetsof an index set I = f1; 2; : : : ;mg of the constraint function c asL := fi 2 I j �1 < ai and bi � 1gU := fi 2 I jai � �1 and bi <1gE := fi 2 I j �1 < ai = bi <1gR := fi 2 I j �1 < ai < bi <1gF := fi 2 I jai � �1 and bi � 1g;



8 M. C. Ferris and K. Sinapiromsaranwhere L is the index set of lower bound constraints, U is the index set ofupper bound constraints, E is the index set of equality constraints, R is theindex set of range constraints, and F is the index set of free constraints.The NLP model from AMPL is therefore rewritten asminimize f(x)subject to ai � ci(x) i 2 Lci(x) � bi i 2 Uci(x) = ai i 2 Eai � ci(x) � bi i 2 Rci(x) is free i 2 Fr � x � s:De�ne y 2 RjRj as arti�cial variables for each range constraint, where jRjis the number of range constraints. Then by dropping the free constraints,the model is equivalent tominimize f(x)subject to ai � ci(x) � 0 i 2 Lci(x) � bi � 0 i 2 Uci(x) � ai = 0 i 2 Eci(x)� yji = 0 i 2 Rai � yji � bi i 2 Rr � x � s;where ji is the index from 1 to jRj, corresponding to the order of index i 2 R.We write the constraint function g and h of the NLP (1) asg(x) = �ai � ci(x) if i 2 Lci(x) � bi if i 2 Uand h(x) = � ci(x)� ai if i 2 Eci(x)� yji if i 2 R:The new Lagrangian function for this model isrlL(x; �; �; y) = f(x)� �TL(aL � cL(x)) � �TU (cU (x)� bU )��TE (cE(x) � aE)� �TR(cR(x)� y):De�ning � = (�L; �U ) and � = (�E ; �R), the corresponding MCP model is to�nd z = (x; �; �; y) 2 Rq ( where q = n+m+ jRj) that is complementary toa nonlinear vector function F from Rq ! Rq de�ned asF (z) := 26666664 rxL(z)aL � cL(x)cU (x)� bUcE(x)� aEcR(x) � y�R
37777775 ;



Nonlinear programs as complementarity problems 9where rxL(z) = rxf(x)� �Trxg(x)� �Trxh(x), and2664 r�1�1aR 3775 � z = 2664x��y 3775 � 2664 s01bR3775 :4.2 Solver links in AMPLAMPL executes the NLP solver as a separate program and communicateswith it using the �le system. Files with extension .nl contain a descriptionof the model whereas �les with extension .sol contain a termination mes-sage and the �nal solution written by the solver. The AMPL system usesinformation from these �les to allocate space, generate the ASL structureand set global variable values. These values are used to identify the problemdimension, the value of objective function at the current point, the gradientevaluation, the constraint evaluation and its derivatives in sparse format.Useful global variables aren_var the total number of variables,n_obj the total number of objective functions,n_con the total number of constraints,nzc the number of nonzeros in the Jacobian matrix andnzo the number of nonzeros of the objective gradient.The ASL structure is made up of two main components, Edagpars andEdaginfo. The Edagpars contains information to evaluate the objective func-tion, constraint functions and their �rst and second order derivatives. TheEdaginfo contains the upper and lower bounds, the initial point, the com-pressed column structure of the Jacobian matrix of the constraint functions,the pointer structure of the �rst order derivatives of the objective functionand constraints, and information about the NLP problem. For a complete list-ing of all global variables and the ASL structure, the reader should consultthe AMPL manual [15].A detailed description of our implementation, called pathnlp, now follows.After the solve command is invoked in AMPL, the AMPL system generatesassociated NLP problem �les and communicates to the pathnlp solver. Thissolver, written in the C language, automatically constructs the primal-dualformulation of the original NLP problem. It calls the PATH solver with ad-ditional options if necessary. The PATH solver runs and returns the status ofthe solution point via the Path_Solved variable and the �nal solution z us-ing the Path_FinalZ(p) routine. The link returns these results to the AMPLsystem by calling write_sol. AMPL reports the solution back to the userwho further analyzes and manipulates the model.We now give details of how F and rzF are evaluated in the link.



10 M. C. Ferris and K. Sinapiromsaran� Our program allocates the ASL structure by calling ASL_alloc with pa-rameter ASL_read_pfgh which requests the AMPL to generate all �rstorder and second order derivatives of the objective function and con-straints. In addition, the 
ag, want_xpi0 = 1 is set to 1 to request theinitial point. The 
ag, want_deriv = 1 is set to 1 to request Jacobianevaluations and Hessian evaluations.� Our program initializes all NLP variables by calling getstub. It callsjacdim to obtain information about the Jacobian and Hessian of theobjective function and constraints.� Our program de�nes the MCP variable z as (x; �; �; y) and sets up thelower bound as (r;�1;�1; aR) and the upper bound as (s; 0;1; bR).� The function evaluation of the MCP model is de�ned asF (z) := 26666664 rxL(z)aL � cL(x)cU(x) � bUcE(x) � aEcR(x)� y�R
37777775 :The value of this function at the current point is kept in the vector F .To compute rxL(z) = rxf(x) � �Trxg(x) � �Trxh(x), the program�rst evaluates rxf(x) at the current point by calling objgrd. It retrievesthe sparse Jacobian matrix of c by calling jacval and uses Cgrad as thesparse matrix structures. This produces values of c(x). Then it multipliesthe sparse Jacobian matrix with the corresponding Lagrange multipliersand subtracts these from rxf(x). The rest of the vector is computedby calling conval and using the appropriate multipliers of 1, -1 or 0 togenerate the vector F . Then it copies the values of �R for the last jRjelements.� The Jacobian evaluation of the MCP (3) is given as26666664 r2xxL(z) +rxcL(x) �rxcU (x) �rxcE(x) �rxcR(x) 0�rxcL(x) 0 0 0 0 0+rxcU (x) 0 0 0 0 0+rxcE(x) 0 0 0 0 0+rxcR(x) 0 0 0 0 �I0 0 0 I 0 0

37777775 :This computation uses the Hessian of the Lagrangian evaluation imple-mented in AMPL using the following formr2xxL(x) = r2xx "n obj�1Xi=0 OW [i]fi(x) + � n con�1Xi=0 Y [i]ci(x)# ;where fi is the objective function, ci is the constraint function, � is ascaling factor commonly set to +1 or -1, OW [i] is a scaling factor for



Nonlinear programs as complementarity problems 11objective function fi, and Y [i] is Lagrange multiplier for each ci andequals to zero when ci is a free constraint.To call this routine, our program sets up the scale multiplier to be 1,OW [0] = 1, and the scale multiplier for the sum of constraints to benegative one, � = �1. It copies the appropriate Lagrange multipliersto Y and calls the function sphes. The result returns in the structurevariable named sputinfo which is already in the compressed columnvector format used by PATH. The matrix is stored as the top left cornerof the MCP Jacobian matrix. The rest of the matrix is constructed usingjacval and put it in an appropriate place in the MCP Jacobian matrix.Note that our program uses FORTRAN indices, which is a requirementfor the PATH solver.5 Results using the PATHNLP solverWe assume that a user has created a nonlinear problem using the AMPLsyntax and solves it by issuing the following commands:option solver pathnlp;solve;A user can guide the PATH solver using an option �le, path.opt identi�edbyoptions pathnlp_options "optfile=path.opt";Alternatively, the user can specify the options directly using the followingsyntaxoptions pathnlp_options "option_name=option_value";Note that option_namemust be a valid option of the PATH solver (see [10]).For example, to see the warning messages and current option settings of thePATH solver, a user can specify the following:options pathnlp_options "output_warn=yes output_options=yes";To increase the number of iterations, a user can specifyoptions pathnlp_options"major_iteration_limit=1000 minor_iteration_limit=10000";To decrease the convergence tolerance from 1� 10�6 to 1� 10�8, a user canspecifyoptions pathnlp_options "convergence_tolerance=1E-8";Consult [10,11] for details on these and other options.



12 M. C. Ferris and K. Sinapiromsaran5.1 The Hock/Schittkowski test suiteWe tested pathnlp with and without the new merit function using theHock/Schittkowski [20] test suite. This test used 113 NLP problems, sincetwo of the suite are incompletely speci�ed. All problems are retrieved fromthe AMPL web site, http://www.ampl.com/ampl. The Hock/Schittkowskitest suite was implemented in AMPL by Professor Robert Vanderbei.From the 113 NLP problems, 59 problems are unconstrained nonlinearprogram, 48 problems have only equality constraints, while 3 problems con-tain range constraints and 3 problems have both equality and range con-straints. We compare our results with four di�erent NLP solvers availablein AMPL, LANCELOT [4], MINOS [27], NPSOL [17] and SNOPT [16]. Allsolvers run using their default options. The PATH solver with the new meritfunction uses the weight 
 = 0:30.Table 1 shows details of these test runs on the Hock/Schittkowski testsuite. Table 1. Number of �nal solutions reported from each solverSolver Fail Infea No prog Iter Local Optimal KKTLANCELOT 1 2 9 8 2 91 93MINOS 0 1 0 7 11 94 105NPSOL 7 0 2 0 8 96 104PATH 0 0 10 0 21 82 103PATH (merit) 0 0 5 0 20 88 108SNOPT 0 0 2 12 4 95 99Total 8 3 28 27 66 546Here Fail identi�es the number of errors that occur because of an unex-pected break from the solver, Infea identi�es the number of solutions thatare termed by the solver to be infeasible, No prog identi�es the number ofsolutions that cannot be improved upon the current point by the solver, Iteridenti�es the number of solutions that the solver reached its default iterationlimits, Local indicates the number of solutions that the solver found solu-tions that are di�erent from reported global solutions, Optimal identi�es thenumber of optimal solutions that are the same as reported optimal solutions,and KKT identi�es the sum of Local and Optimal, which are KKT solutions.The PATHNLP solver with the new merit function is very e�ective forsolving this problem suite, solving 108 out of 113 problems. It is certainlycomparable to the other NLP solvers listed here. Furthermore, the new meritfunction improves the robustness of the PATH code over the default version.The test suite provides an indication of the global solution for each ofthe problems. Comparing these values to those found by our algorithms, thecolumns labeled Local and Optimal can be generated. As one can see from



Nonlinear programs as complementarity problems 13the local solution column, the PATHNLP solver is more likely to �nd �rstorder points that are not globally optimal for this given test problems. Amore complete breakdown of the failures is given in Table 2.Table 2. Number of nonoptimal solutions reported from each solver.Solver Unconstrained Equalities Ranges Both TotalLANCELOT 19 3 0 0 22MINOS 9 10 0 0 19NPSOL 11 5 0 0 16PATH 23 8 0 0 31PATH (merit) 16 6 3 0 25SNOPT 15 3 0 0 18Total 59 48 3 3It is clear that for �nding globally optimal solutions, the NPSOL solveris the most e�ective solver, failing only 16 times.Table 3 reports the total timing of nonoptimal and optimal solutions fromeach solver in seconds. Results were tested on the Sparc machine with 64 MBRAM running SunOS version 5.6.Table 3. Total timing of nonoptimal and optimal solutions from each solver inseconds. Solver Nonoptimal Optimal TotalLANCELOT 127.52 123.24 250.76MINOS 352.47 39.66 392.13NPSOL 130.91 60.10 191.01PATH 107.15 100.30 207.45PATH (merit) 63.43 78.95 142.38SNOPT 9.23 34.83 44.06Total 790.71 437.08 1227.79Table 3 shows that SNOPT uses less time to solve this problem suite.It spends only 20.95% of the total times to detect nonoptimal solutions orfailures. MINOS consumes the largest times to �nd nonoptimal solutions butcomparable to SNOPT for �nding globally optimal solutions. Our PATHNLPsolver with the merit function reduces the total time by 31.36% from thedefault version of PATH. Clearly, these problems are too small to derivemany de�nitive conclusions on speed.



14 M. C. Ferris and K. Sinapiromsaran5.2 Large nonlinear programsWe selected 4 other problems as representative large scale examples fromportfolio optimization, minimal surface design, nonnegative least squares andstructural optimization. All problems were retrieved from the AMPL web site,http://www.ampl.com/ampl. Some information regarding size and numbersof (equality) constraints is given in Table 4.Table 4. Problem dimension statistics.Problem Variables Constraints Optimal ValueMarkowitz 1200 201 -0.526165Minimal 1681 0 7.611023NonnegLS 543 393 32.644706Structural 13448 13488 1039.825620Table 5 summarizes the result of our test runs on large problem sets.Results were tested on Sparc machine with 245 MB RAM running SunOSversion 5.5.1. Table 5. Total timing from each solver in seconds.Solver Markowitz Minimal Nonnegative StructuralLANCELOT 503 106 3 memMINOS sup sup sup infNPSOL 538 657 191 memPATH 84 333 2 resPATH (merit) 123 221 4 18,375SNOPT itr sup sup iniHere a keyword in the table identi�es that the solver has di�culty solvingthis problem, where mem identi�es that the solver could not allocate enoughspaces, sup identi�es that the solver reported the superbasics limit is toosmall, itr identi�es that the solver reached its iteration limits, inf identi-�es that the solver reported problem is unbounded, res identi�es that thesolver exceeded the resource limits and ini identi�es that the solver foundthe problem is infeasible due to a bad starting point. Optimal solution val-ues from all successfully solved problems are the same for all solvers, andare reported in Table 4. Note that MINOS and SNOPT failed to solve eachof these large problems, while PATHNLP with merit function solved all ofthem. This shows the ability of our code for handle large problem sets whichis essential for solving the real world models.
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