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AbstractMessage Passing Versus Distributed SharedMemory on Networks of WorkstationsHonghui LuWe compared the message passing library Parallel Virtual Machine (PVM) withthe distributed shared memory system TreadMarks, on networks of workstations. Wepresented the performance of nine applications, includingWater and Barnes-Hut fromthe SPLASH benchmarks; 3-D FFT, Integer Sort and Embarrassingly Parallel fromthe NAS benchmarks; ILINK, a widely used genetic analysis program; and SOR,TSP, and QuickSort.TreadMarks performed nearly identical to PVM on computation bound programs,such as the Water simulation of 1728 molecules. For most of the other applications,including ILINK, TreadMarks performed within 75% of PVM with 8 processes. Theseparation of synchronization and data transfer, and additional messages to requestupdates for data in the invalidate-based shared-memory protocol were two of thereasons for TreadMarks's lower performance. TreadMarks also su�ered from extradata communication due to false sharing. Moreover, PVM bene�ted from the abilityto aggregate scattered data in a single message.
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1Chapter 1IntroductionParallel computing on networks of workstations has been gaining more attention inrecent years. Because workstation clusters use \o� the shelf" products, they arecheaper than supercomputers. Furthermore, high{speed general{purpose networksand very powerful workstation processors are narrowing the performance gap betweenworkstation clusters and supercomputers.Since no physical memory is shared in workstation clusters, all communicationbetween processes in such a system must be performed by sending messages overthe network. Currently, the prevailing programming model for parallel computingon networks of workstations is message passing. Libraries such as PVM [GS92],TCGMSG [Har90] and Express [Par92] were developed at di�erent research institu-tions. A message passing standard MPI [Mes94] has also been published. With themessage passing paradigm, the distributed nature of the memory system is fully ex-posed to the application programmer. The programmer needs to keep in mind wherethe data are, decide when to communicate with other processes, whom to communi-cate with, and what to communicate. This makes programming for message passingparadigm hard, especially for large applications with complex data structures.Recent distributed shared memory(DSM) systems[Li86, BCZ90, BZ91, KDCZ94]provide a shared memory abstraction on top of message passing in workstation clus-ters. An application programmer can write the program as if it is executing in ashared memory multiprocessor and access shared data with ordinary read and writeoperations. The chore of message passing is left to the underlying DSM system tohandle. However, DSM systems are less e�cient than message passing systems. Thisis because under the message passing paradigm, communication is handled by theprogrammer, who has complete knowledge of the data usage pattern. Under theDSM paradigm, the DSM system has little knowledge of the application program,and therefore must be conservative in determining when to communicate data. Sincesending messages between workstations is very expensive, additional communicationis the major drawback resulting in poor DSM performance.



2Although much work has been done to improve the performance of DSM systemsin the past decade, DSM systems still do not have the same popularity as do themessage passing systems. Most published performance evaluations of DSM systemsonly show the results of toy programs with simple data access patterns. We needto run DSM systems on a large variety of more practical applications, and comparethem with equivalent message passing systems, both to show the potential of DSMsystems, and to determine the causes of the lower performance of DSM systems. Thisinformation can then be used to further improve current DSM systems.In this paper, we compare the message passing system PVM [GS92] with theDSM system TreadMarks [KDCZ94]. We ported nine parallel programs to bothTreadMarks and PVM, and ran them on eight DECstation-5000/240 workstationsconnected by a 100Mbits per second ATM network. The programs are Water andBarnes-Hut from the SPLASH benchmark suite [SWG92]; 3-D FFT, Integer Sort andEmbarrassingly Parallel(EP) from the NAS benchmarks [BBLS91]; ILINK, a widelyused genetic analysis program; and SOR, TSP, and QuickSort.The performance results show that TreadMarks performs well in comparison toPVM on some practical problems. In the Water simulation of 1728 molecules, Tread-Marks achieves 99% of the performance of PVM. For ILINK, with 8 processes,TreadMarks's speedup is 87% of that in PVM. In general, the TreadMarks versusPVM performance ratio is closely related to computation/communication ratio andthe granularity of shared data. For programs with a high computation/communicationratio, and large granularity of sharing, such as EP, SOR, and the Water simulationof 1728 molecules,TreadMarks and PVM have nearly identical performance. For pro-grams with little access locality and a large amount of shared data, such as Barnes-Hut, PVM performs about twice as well as TreadMarks with 8 processes. Most ofour programs lie between these two extremes. For these programs, the TreadMarksspeedup with 8 processes is 76% to 87% of that in PVM. The separation of synchro-nization and data transfer, and additional messages to request updates for data inthe invalidate based shared-memory protocol are two of the reasons for TreadMarks'slower performance. TreadMarks also su�ers from extra data communication due tofalse sharing. In addition, PVM bene�ts from the ability to aggregate scattered datain a single message, an access pattern that would result in several miss messages inthe invalidate-based TreadMarks protocol.In terms of programmability, since most of our test programs are relatively simple,it was not di�cult to port them to PVM. However, for two of the programs, namely



33 - D FFT and ILINK, the message passing versions were signi�cantly harder todevelop than the DSM versions. We will discuss our experience with the programslater in this thesis.The rest of this thesis is organized as follows. In Chapter 2 we brie
y describethe two paradigms, and give an overview of PVM and TreadMarks. The applicationprograms and their parallel versions are described in Chapter 3. The performanceresults are presented in Chapter 4. Chapter 5 presents the conclusions.



4Chapter 2Message Passing Versus DSM on WorkstationClustersMessage passing and distributed shared memory are the major paradigms for paral-lel programming on networks of workstations. With the message passing paradigm,the application programmer must keep in mind that there is no memory accessibleby multiple processes. To share data between processes, the application program-mer must write codes that explicitly exchange messages. Programming with messagepassing is hard, because the application programmer must decide when to commu-nicate with other processes, which process to communicate with, and what data tocommunicate.The distributed shared memory (DSM) systems provide the application program-mer with the image of a shared memory. An application programmer can write theprogram as if it is executing in a shared memory multiprocessor and leave the DSMsystem to handle the underlying message passing. It is easier to program with theshared memory paradigm, especially when the algorithm is very complicated, becausethe programmer can concentrate more on the algorithm side rather than on movingdata among processes.Although it is more complicated to program with message passing, message pass-ing is more e�cient than DSM. With some programmer e�ort, communication inmessage passing is less frequent than in DSM. Since it is very expensive to pass mes-sages between user level processes on di�erent workstations, DSM systems must behighly optimized to avoid additional communication. In this section, we introducetwo e�ective methods to reduce the number message in run time DSM systems {relaxed memory consistency models [AH93] and multiple-writer protocols [BCZ90].Both of them are used in TreadMarks.The rest of this chapter is organized as follows. A brief introduction to program-ming styles in the two paradigms, along with some simple examples are given in



5Section 2.1. Section 2.2 introduces the two systems analyzed in this thesis { the mes-sage passing system PVM, and the distributed shared memory system TreadMarks.2.1 Di�erent Programming Styles in Message Passing andDSM2.1.1 Message PassingWith the message passing paradigm, the only way for parallel processes to communi-cate with each other is to exchange messages via the network. The basic primitivesin the message passing paradigm are send and receive.A send is used to send a message containing data from one process to another.The send can be either blocking or nonblocking. A process executing a nonblockingsend continues processing immediately after dispatching the message. In a blockingsend, the process waits until the message has been received by the other process. Ingeneral, a blocking send is used only in the presence of unreliable communications,or when it is important to send the messages in a particular order.A receive is used to read a message sent from another process. The receive can alsobe either blocking or nonblocking. A blocking receive waits until the message arrives.A nonblocking receive returns if the message is not available. The nonblocking receivecan be used for asynchronous input, in which the process repeatedly checks for thepresence of an incoming message. Depending on the availability of the message, theprocess can either read the message or do some other work.The best way to get a feeling for what the message passing paradigm implies isto look at some simple programs. In the message passing versions of these programs,we assume that there is an initialization procedure to start up tasks on di�erent ma-chines. After the initialization, each process knows its process identi�er, proc id,and the number of processes in the system, nprocs. The variable proc id rangesfrom 0 to nprocs-1. We also assume the following syntax for send and receive:send(proc id, start address, length) and receive(proc id, start address,length). The semantics of send is to send to proc id the length elements start-ing from start address. In a receive, the process receives length elements fromproc id, and loads them into memory beginning at start address.The �rst example is Successive Over-Relaxation (SOR). It solves partial di�eren-tial equations. A simple form of SOR iterates over a two-dimensional array. Duringeach iteration, every matrix element is updated to the average of the values of its



6nearest neighbors (above, below, left and right). Two separate arrays are used. Onearray new is used to store the newly computed values, the other array old is used tostore the initial values or results from the last iteration. The array new is copied toold at the end of each iteration. The sequential SOR program is shown in Figure 2.1.The message passing version of SOR appears in Figure 2.2. Each process is assignedto work on approximately the same number of consecutive rows. At the beginning ofthe program, process 0 initializes the array old and distributes it to other processes.At the end of each iteration, a process exchanges its highest and/or lowest numberedrows with its neighbors. The send and receive here are blocking.Another example with a bit more complicated communication is integer addition,which sums an array A of 1,000,000 integers. The sequential code of integer additionis shown in Figure 2.3 . A straightforward method to parallelize this algorithm is todivide the array into equal-sized bands, assigning one to each process. Each processcomputes the sum of the sub-array into a variable LocalSum. The values of LocalSumare added together to GlobalSum at the end. The message passing version of integeraddition is in Figure 2.4. At the beginning of the program, process 0 initializes arrayA and distributes it to other processes. Each process then sums its sub-array intoLocalSum. At the end of the program, each process sends its value of LocalSum toprocess 0, and process 0 sums them up. Both send and receive in this program areblocking.2.1.2 Distributed Shared MemoryDistributed Shared Memory(DSM) provides the programmer with the abstraction ofa globally shared memory. The fact that the memory is distributed is hidden from theuser. DSM requires a set of primitives di�erent from those used in message passing.First, there is a need to distinguish data that are private to each process from thoseshared by all processes. Second, because data is shared, synchronization is requiredto prevent out-of-order accesses to shared variables. For instance, a critical sectioncontains code that can only be accessed by one process at a time. Critical sectionscan be used for reduction operations such as summing values into a global variable.A barrier is a point in the program where all processes must have arrived before anyone can proceed. Barriers are used to keep the processes working in lock step.



7float new[M][N], old[M][N];main()f Initialize old;for C iterations ffor (i=1; i++; i<M)for (j=1; j++; i<N)new[i][j] = (old[i-1][j]+old[i+1][j]+old[i][j-1]+old[j][i+1])/4;for (i=0; i++; i<M)for (j=0; j++; i<N)old[i][j] = new[i][j];gg /* End of main */ Figure 2.1 Sequential SORConsider again the examples in the previous section. Besides the routine to startup processes, suppose we have barrier(), begin critical(i)and end critical(i).The last two functions specify a critical section.The DSM version of SOR appears in Figure 2.5. In the DSM version, the array oldis shared, new is private. There are three barriers in the program. The �rst barrier isright before the start of computation. This barrier is used in order to make sure thatdata have been initialized by process 0 before other processes start computation. Thesecond barrier occurs before copying new to old. Because old is shared, a processcan not update its part of old until all its neighbors have �nished the computation.The third barrier is at the end of each iteration. It is there to make sure that eachprocess has �nished updating its part of the shared array old before any of them cango on to the next iteration.The DSM version of integer addition is shown in Figure 2.6. In the DSM version,the array A and the variable GlobalSum are shared. At the beginning of the program,process 0 initializes A, while the other processes are blocked waiting at a barrier.After the barrier, every process sums its part of the array into a private LocalSum.Finally, all the LocalSum variables are added to the shared variable GlobalSum. Thisoperation must be serialized, i.e., protected by a critical section.



8float new[M][N], old[M][N];main()f int len;Initialization();len = M/nprocs;if (proc id == 0) fInitialize old;for (i=1; i<nprocs; i++) fsend(i, &len, 1);send(i, new[len�i], len�N); ggelse freceive(0, &len, 1);receive(0, new[len�proc id], len�N); g/* All processes *//* Low and high are the lower and upper bounds of a process's rows */for C iterations ffor (i=low; i<=high; i++)for (j=1; j<N; j++)new[i][j] = (old[i-1][j]+old[i+1][j]+old[i][j-1]+old[j][i+1])/4;for (i=low; i<=high; i++)for (j=0; j++; i<N)old[i][j] = new[i][j];send(proc id-1, old[low], N);send(proc id+1, old[high], N);receive(proc id-1, old[low-1], N);receive(proc id+1, old[high+1], N); gg /* End of main */Figure 2.2 Message Passing Version of SOR



9#define N 1000000int A[N];main()f int GlobalSum;Initialize A;GlobalSum = SumSub(A, N);gint SumSub(array, len)int *array, len;f int LocalSum, i;LocalSum = 0;for (i = 0; i < len; i++)LocalSum = LocalSum + array[i];return(LocalSum);g Figure 2.3 Sequential Integer Add2.2 PVM Versus TreadMarksIn this thesis, we compare the performance of Parallel Virtual Machine (PVM [GS92])with TreadMarks [KDCZ94]. PVM is a message passing system originally developedat Oak Ridge National Laboratory. It runs on Unix, and provides the programmerwith a set of user level library routines. Although there exist other message passingsystems such as TCGMSG [Har90], which provide higher bandwidth than PVM, wechose PVM because of its popularity. PVM version 3.2.6 is used in our experiments.TreadMarks is a software DSM system built at Rice University. Although many DSMimplementations have been reported in literature [NL91], none of them is widelyavailable. One reason is that many of them run on experimental operating systems,rather than general available operating systems, or require kernel modi�cations. EarlyDSM systems also su�er from performance problems. TreadMarks overcomes mostof these problems. It is an e�cient user level DSM system that runs on commonlyavailable Unix systems.



10
#define N 1000000int A[N];main()f int SUM, len, i, LocalSum;Initialization();len = N/nprocs;if (proc id == 0)fInitialize A;for (i = 1; i < nprocs; i++)send(i, &A[len�i], len); gelsereceive(0, A, len);LocalSum = SumSub(A, len);if (proc id == 0) fSUM = LocalSum;for (i = 1; i < nprocs; i++) freceive(i, &LocalSum, 1);SUM = SUM + LocalSum; g gelsesend(0, &LocalSum, 1);g Figure 2.4 Message Passing Version of Integer Addition



11
shared floatold[M][N];float new[M][N];main()f Initialization();if (proc id == 0)initialize old;barrier();for C iterations ffor (i=low; i<=high; i++)for (j=1; j<N; j++)new[i][j] = (old[i-1][j]+old[i+1][j]+old[i][j-1]+old[j][i+1])/4;barrier();for (i=low; i<=high; i++)for (j=0; j++; i<N)old[i][j] = new[i][j];barrier(); gg /* End of main(). */Figure 2.5 DSM Version of SOR



12
#define N 1000000shared int A[N];shared int GlobalSum;main()f int len, i, LocalSum;Initialization();GlobalSum = 0;if (proc id == 0)initialize A;/* All processes */barrier();len = N/nprocs;LocalSum = SumSub(&A[proc id � len], len);begin critical();GlobalSum = GlobalSum + LocalSum;end critical();barrier(); gg /* End of main() */Figure 2.6 DSM Version of Integer Addition



132.2.1 PVMPVM Interface PVM allows heterogeneous computers in a network to appear asa single concurrent computational resource. It provides data type abstraction andbu�ers for messages. PVM assigns a unique task identi�er to every process in avirtual machine. There are both send and receive bu�ers. A send dispatches thecontents of the send bu�er to its destination. A receive places an incoming messagein a receive bu�er. User data are packed into the send bu�er before sending andunpacked from the receive bu�er after receiving. Data types are speci�ed at thesetimes. PVM has both C and FORTRAN libraries. We focus on C because that is thelanguage we used in application programs.In PVM, the parent process uses pvm spawn() to start children on di�erent ma-chines. The format is: int numt = pvm spawn(char *task, char **argv, intflag, char *where, int ntask, int *tids). The routine pvm spawn() starts upntask copies of an executable �le task on the virtual machine. The parameters flagand where are used together to specify what architectures and machines to use. Eachprocess is assigned a unique task identi�er in the virtual machine, tid. The tids areused to specify source and destination of a message in message passing. The list oftids are returned in tids. The number of processes created is returned in numt.PVM provides the routine pvm initsend() to clear the old send bu�er and createa new one: int bufid = pvm initsend(int encoding). The new bu�er identi�eris returned in bufid. The variable encoding speci�es the encoding scheme, whichwill be discussed in the implementation of PVM.The routines pvm pkType() are used to pack data into the send bu�er. TheType can either be byte for characters, int for integers, or float for 
oating pointnumbers, etc. They all have the same syntax: int info = pvm pkType(Type *ptr,int nitem, int stride). The variable ptr is a pointer to the �rst element to bepacked, and nitem is the total number of items to be packed. The variable strideis the stride to use when packing.The routines pvm send() and pvm mcast() send messages. Their formats are: intinfo = pvm send(int tid, int msgtag) and int info = pvm mcast(int *tids,int ntask, int msgtag). The routine pvm send() labels the message with an in-teger identi�er msgtag and sends it to the process tid. The routine pvm mcast()multicasts the message to all processes speci�ed in the integer array tids except



14itself. The tids array is of length ntask. Both pvm send and pvm mcast are non-blocking.There are both blocking and nonblocking receives in PVM. They are pvm recv()and pvm nrecv() respectively:int bufid = pvm recv(int tid, int msgtag), int bufid = pvm nrecv(int tid,int msgtag). The routine pvm recv() waits until a message with label msgtag hasarrived from tid. A value of -1 in msgtag or tid will match any tag value or anyprocess identi�er, respectively. It then clears the previous receive bu�er, places themessage in the newly created receive bu�er, and returns the receive bu�er identi�erin bufid. The nonblocking pvm nrecv() returns 0 in bufid if the expected messagehas not arrived. The routine pvm nrecv() does the same thing as pvm recv() if amessage with label msgtag has arrived from tid. This routine can be called multipletimes to check the presence of the same message, while performing other work be-tween calls. When there is no useful work to do, pvm recv() can be called for thesame message.Data in the receive bu�er are unpacked into a user data structure by usingpvm upkType(). The routines pvm upkType() are similar to pvm pkType(): int info= pvm upkType( Type *ptr, int nitem, int stride). The variable ptr pointsto the address of the �rst element to be unpacked. The unpack should match thecorresponding pack calls in types and number of items.The PVM version of SOR appears in Figure 2.7. Because the entire programis too long to �t in a simple example, details of the initialization subroutine andcomputation are omitted. During initialization, after the master process spawns theslaves, it broadcasts the number of processes started and an array containing taskidenti�ers of the processes. Then the master process initializes the array old anddistributes it to the other processes.PVM Implementation PVM consists of two parts: a daemon process on eachhost and a set of library routines. The daemons connect with each other by UDP,and a user process connects with its local daemon using TCP. If a user process p1 onhost H1 wants to send a message to another user process p2 on host H2, the usualway to do this is through the daemons on their hosts. However, p1 and p2 can set upa direct TCP connection between them in order to reduce overhead. We use directconnections between the user processes in our experiments, because it gives betterperformance.



15float old[M][N], new[M][N];main() {Initialization();/* All processes */for C iterations {msgtag = C ;for my rows of matrix {compute values of new;copy new to old; }/* Send to upper neighbor */if (proc_id != 0) {pvm_initsend(PvmDataRaw);pvm_pkfloat(&old[my_start_row][0], N, 1);pvm_send(tids[proc_id-1], msgtag++); }/* Send to lower neighbor */if (proc_id != nprocs-1) {pvm_initsend(PvmDataRaw);pvm_pkfloat(&old[my_end_row][0], N, 1);pvm_send(tids[proc_id+1], msgtag); }/* Receive from lower neighbor */if (proc_id != 0) {pvm_recv(tids[proc_id+1], msgtag);pvm_upkfloat(&old[my_end_row+1][0], N, 1);}/* Receive from upper neighbor */if (proc_id != nprocs-1) {pvm_recv(tids[proc_id-1], msgtag);pvm_upkfloat(&old[my_start_row-1][0], N, 1);}}} /* End of main */Figure 2.7 PVM version Version of SOR



16Because PVM is designed to work on a set of heterogeneous machines connected bythe network, it provides conversion to and from external data representation (XDR).This conversion is avoided if all machines in the PVM are identical.In PVM, data are usually packed into a message bu�er and remain there until theyare dispatched. At the receiving end, the entire message is bu�ered until a receivecall accepts it. There exists in-place packing in the newest version of PVM, but itis restricted to data with a stride of 1. The new version is not very stable on oursystem, so we decided to use message bu�ers instead.2.2.2 TreadMarksTreadMarks Interface TreadMarks is a software distributed shared memory sys-tem that allows shared memory programs to run on a cluster of workstations con-nected by general{purpose networks such as the Ethernet. The fact that the memoryin the system is physically distributed is transparent to the user.TreadMarks provides the user with two variables, Tmk nprocs and Tmk proc id.The variable Tmk nprocs speci�es the number of processes in this system. The vari-able Tmk proc id is unique for each process, it ranges from 0 to Tmk nprocs-1.The routine Tmk startup() starts up processes and initializes TreadMarks datastructures. A call to this routine must precede all other TreadMarks calls. AfterTmk startup(), the contents of both private and shared memory are identical acrossall processes in the system, except that the values in Tmk proc id are di�erent foreach process. The function Tmk startup takes no parameters. However, the numberof processes and host names can be speci�ed on the command line.There is no statically allocated shared memory segments in TreadMarks, sharedmemory must be allocated dynamically. The routines char *Tmk malloc(int size)and char *Tmk sbrk(int size) allocate memory on shared memory. If the pointersto shared memory structures are in private memory, the user can use Tmk distributeto distribute values of these pointers to all the other processes in the system. Theroutine Tmk distribute(char *addr, int size) sends size bytes of private mem-ory at address addr to all processes in the system, so that they all have the samevalue at this address in private memory.Application threads synchronize via two primitives: barriers and exclusive locks.Barriers are used to synchronize all processes. Exclusive locks are used to controlaccesses to critical sections. The routine Tmk barrier(int num) stalls the calling



17process until all processes in the system have arrived at the same barrier. Barrierindices num are integers in a certain range. Locks are used to control access to criticalsections. A lock is acquired before entering a critical section and released after thecritical section is �nished. The routine Tmk lock acquire(int num) acquires a lockfor the calling process, and the routine Tmk lock release(int num) releases it. Noprocess can acquire a lock if another process is holding it. Integer num is a lock indexassigned by the programmer.TreadMarks guarantees memory consistency only at certain synchronization pointsin order to reduce communication among processes. It is imperative to use built-insynchronizations in TreadMarks rather than rolling your own. In particular, neitherspin locks nor setting and checking 
ags in shared memory works, because data isonly moved from node to node in response to explicit TreadMarks synchronizations.Furthermore, TreadMarks features a variant of release consistent(RC) shared mem-ory model [GLL+90]. With this programming abstraction, memory accesses are di-vided into normal accesses and synchronization accesses. Synchronization accessesare further divided into acquires and releases. The basic idea is that shared memorymodi�cations by a process p1 only need to become visible to another process p2 whena subsequent release of p1 becomes visible at p2 via some chain of mutual synchro-nizations. This programming abstraction is slightly di�erent from that of a sharedmemory multiprocessor, because changes to the shared memory do not go anywhereuntil a release is performed.In TreadMarks, lock acquires and barrier departures are modeled as acquires, lockreleases and barrier arrivals are modeled as releases. In barriers, shared memorymodi�cations by a process before a barrier are guaranteed to be visible to otherprocesses only after the barrier. For example, in Figure 2.8 the second read in p2returns 4. The �rst read does not return 4 even if in \wall clock time" the writeprecedes that read. For locks, look at the example in Figure 2.9. The read by p2after the lock acquire will return a value of 4. However, if either p1's release or p2'sacquire is not present, the value returned by the read may not be 4 even though in\wall clock time" the write precedes the read.The TreadMarks version of SOR is given in Figure 2.10. The array old is allocatedon shared memory. The explicit message passing at the end of each iteration in thePVM version is replaced by a call to Tmk barrier().



18P1 P2w(x) 4 r(x) ?Tmk_barrier(l) Tmk_barrier(l)r(x) 4Figure 2.8 Release Consistency With BarriersP1 P2w(x) 4lock_release(l) r(x) ?lock_acquire(l)r(x) 4Figure 2.9 Release Consistency With Locksfloat *old[M], new[M][N];main(){ Tmk_startup();/* Master process initializes A1 */if (Tmk_proc_id == 0)for (i = 0; i<N; i++) {old[i] = (float *)Tmk_malloc(sizeof(float)*N);Tmk_distribute(old[i], sizeof(float*));initialize old; }Tmk_barrier(1);for C iterations {for my rows of matrix {Compute values of new;Tmk_barrier(2);copy new to old; }Tmk_barrier(3); }} Figure 2.10 TreadMarks Version of SOR



19TreadMarks Implementation TreadMarks relies on the operating system's vir-tual memory page protection mechanism to detect accesses to the shared pages. InTreadMarks, processes communicate either through UDP on an Ethernet or an ATMLAN, or through AAL3/4 on an ATM LAN. Because sending message between twoprocesses is very expensive, TreadMarks takes great e�ort to minimize synchroniza-tion messages.Release Consistency and Multiple-Writer ProtocolTreadMarks provides the user with the illusion of a globally shared memory anddoes the underlying message passing to keep the shared memory consistent. It isTreadMarks's responsibility to decide when to send messages, what to send, and whomto send to. In order to keep the shared memory consistent, one way would be sendingout messages whenever writing to a shared variable that is also remotely cached. Thismethod is implemented by most snoopy-cache, bus-based multiprocessors, but DSMsystems cannot a�ord such a high communication rate because of the high overheadper message.As mentioned before, TreadMarks features a release consistent (RC) [DKCZ93,AH93] shared memory model. In the RC model, shared memory accesses are cat-egorized either as ordinary or as synchronization accesses, with the latter categoryfurther divided into acquire and release accesses. RC requires ordinary shared memoryupdates by a process p to become visible to another process q only when a subse-quent release by p becomes visible to q via some chain of mutual synchronizations.In practice, this model allows a process to bu�er multiple writes to shared data in itsprivate memory until the release. In TreadMarks, Tmk lock acquire(i) is modeledas an acquire, and Tmk lock release(i) is modeled as a release. Tmk barrier(i)is modeled as a release followed by an acquire, where each process releases at barrierarrival, and acquires at barrier departure.False sharing also causes frequent communication. False sharing occurs when twoor more processes access di�erent variables within the same page, with at least oneof the accesses being a write. If only one process is allowed to write to the page, theshared page will ping-pong back and forth among processes, because a write to anyvariable of a page causes the entire page to become invalid on all other processes thatcache the page. A subsequent access by any of these processes incurs an access missand causes the modi�ed copy to be brought in over the network. The original copy of



20the page may su�ce in this case, because the write was to a variable di�erent from theone that was accessed locally. This problem occurs in snoopy-cache multiprocessorsas well, but it is more prevalent in software DSM because the consistency protocoloperates on pages that are much larger than cache blocks.TreadMarks uses a multiple-writer protocol to address this problem. With themultiple-writer protocol, two or more processes can simultaneously modify their owncopy of the shared page. Their modi�cations are merged at the next synchronizationoperation in accordance with the de�nition of RC, thereby reducing the e�ect of falsesharing. In order to distinguish changes made by di�erent processes, at the timethe process sends out update to the shared page, instead of sending the whole page,only the modi�ed values are sent. Those modi�ed values are called di�s, meaningdi�erence between the modi�ed page and the page before the modi�cation.A Lazy Invalidate Implementation of Release ConsistencyTreadMarks implements a lazy invalidate version of release consistency [KCZ92]. Thepropagation of modi�cations is postponed until the time of the acquire. The releaseris lazy, it does not propagate modi�cations to the shared pages. Furthermore, insteadof sending new data to the acquirer, the releaser noti�es the acquirer of which pageshave been modi�ed, causing the acquirer to invalidate its local copies of these pages.A process has an page fault on the �rst access to an invalidated page, and gets di�sfor that page from previous releasers.The acquiring process determines which modi�cations it needs to see according tothe de�nition of RC. To do so, the execution of each process is divided into intervals.A new interval begins every time a process executes a release or an acquire. Eachprocess has an interval index, which is incremented every time a new interval startson this process. Intervals on di�erent processes are partially ordered [AH93]: (i)intervals on a single process are totally ordered by program order, (ii) an interval onprocess p precedes an interval on process q if the interval of q begins with the acquirecorresponding to the release that concluded the interval of p, and (iii) an intervalprecedes another interval by transitive closure. In locks, the interval correspondingto the release of a lock directly precedes the interval beginning with a subsequentacquire to the same lock. In barriers, any interval corresponding to the barrier arrivalprecedes all intervals corresponding to the subsequent barrier departures. However,no ordering exist among the barrier arrivals, or among the barrier departures.



21Each interval has a vector timestamp to record its knowledge of intervals in otherprocesses that precede it. A timestamp contains an entry for each process. Forexample, in the timestamp of the ith interval of process p, the entry for process p isequal to i. The entry for process q other than p denotes the most recent interval ofprocess q that precedes interval i of process p according to the partial order.RC requires that before a process p may continue past an acquire, the updatesof all intervals preceding the current interval must be visible at p. Therefore, atan acquire, p sends its current interval timestamp to the previous releaser q. Thereleaser then compares the corresponding entries of both timestamps, and sends amessage to p including write notices for all intervals named in q's current intervaltimestamp but not in the timestamp it received from p. Process p computes a newvector timestamp according to the pair-wise maximum of its previous timestamp andthe releaser's timestamp. A write notice is an indication that a page has been modi�edin a particular interval.Implementation DetailsTreadMarks uses di�s to record modi�cations to a page made by di�erent processes.In order to capture the modi�cations to a shared page, it is initially write protected.At the �rst write, a protection violation occurs. The TreadMarks makes a copy ofthe page (a twin), and removes the write protection so that further writes to the pagecan occur without any TreadMarks intervention. The twin and the current copy canlater be compared to create a di�. At a release, a write notice is created for eachpage that was twinned since the last remote synchronization.In TreadMarks, each lock has a statically assigned manager. The manager recordswhich process has most recently requested the lock. All lock acquire requests are di-rected to the manager, and, if necessary, forwarded to the process that last requestedthe lock. A lock acquire request contains the current timestamp of the acquiringprocess. When the lock is released, the releaser informs the acquirer of all intervalsbetween the vector timestamp in the acquirer's lock request message, and the re-leaser's current vector timestamp. The acquiring process then invalidates all pagesfor which write notices were received. A lock acquire takes up to 3 messages. A lockrelease does not incur any message in this lazy implementation.Barriers have a centralized manager. At the barrier arrival, each client informsthe barrier manager of its timestamp and all write notices created since the last time



22that the client and the manager synchronized. The manager sets its new timestampaccording to the pair-wise maximum of its previous timestamp and the timestampsof the clients. When all processes have arrived at the barrier, the manager theninforms all clients of write notices of all intervals between their vector timestamp andthe manager's new timestamp. The clients then invalidate the pages for which writenotices were received. The number of messages sent in a barrier is 2(n� 1), where nis the number of processes.On an access miss, if the faulting process does not have a copy of the page, itrequests a copy from a member of the page's approximate copyset. The approximatecopyset for each page is initialized to contain process 0. If write notices are presentfor the page, the faulting process obtains the missing di�s and applies them to thepage in increasing timestamp order. It is usually unnecessary to send di� requests toall the processes who have modi�ed the page, because if a process has modi�ed a pageduring an interval, it must have all the di�s of all intervals that precede it, includingthose from other processes. In TreadMarks, all write notices without correspondingdi�s are examined. TreadMarks then sends di� requests to the subset of processesfor which their most recent interval is not preceded by the most recent interval ofanother process.2.3 SummaryThis chapter introduced two programming paradigms for parallel computing on net-works of workstations, namelymessage passing and distributed shared memory(DSM).In message passing, messages are exchanged explicitly in application programs. TheDSM systems provide a shared memory abstraction on top of message passing. TheDSM paradigm is easier to program with than the message passing paradigm, butalso incur more overhead than the latter.We discussed user interface and implementation of the message passing systemPVM [GS92] and the DSM system TreadMarks [KDCZ94]. They are both user levellibraries running on commonly available Unix systems. PVM allows heterogeneouscomputers in a network to appear as a single concurrent computational resource.It provides data type abstraction and bu�ering for messages. TreadMarks featuresrelease consistency and multiple-writer protocol to reduce communication in DSMsystems.



23Chapter 3Application ProgramsIn this chapter, we present both the PVM and the TreadMarks versions of nine pro-grams. The programs are Successive Over-Relaxation (SOR), Traveling SalesmanProblem (TSP), and QuickSort (QSORT); Water and Barnes-Hut from the SPLASHbenchmarks [SWG92]; Embarrassingly Parallel (EP), Integer Sort (IS) and three di-mensional FFT (3-D FFT) from the NAS benchmarks [BBLS91]; and ILINK, whichis a widely used genetic linkage analysis program. For each program, we tried toachieve the best performance for each paradigm.3.1 EP: An Embarrassingly Parallel BenchmarkEP [BBLS91] is a heavily computation bound benchmark. EP generates pairs ofGaussian random deviates according to a speci�c scheme and tabulates the numberof pairs in successive square annuli. This problem is typical of many Monte-Carlosimulation applications.The program �rst generates 2n (n = 224 in our test) pseudo random 
oating pointvalues ri in the interval (0; 1) for 1 � i � 2n. Then for 1 � j � n, set xj = 2r2j�1�1and yj = 2r2j � 1. Next set k = 0, and beginning with j = 1, test if tj = x2j +x2j � 1.If not, reject this pair and proceed to the next j. If this inequality holds, then setk = k + 1, Xk = xjq(�2 log tj)=tj and Yk = yjq(�2 log tj)=tj. Approximately n�=4pairs will be constructed in this manner. Finally, for 0 � l � 9, tabulate Ql as thecount of the pairs (Xk; Yk) that lie in the square annulus l � max(jXkj ; jYkj) � l+1,and output the ten Ql counts.Because separate sections of the uniform pseudo random numbers can be indepen-dently generated by each process, this program can be parallelized so that the onlyrequirement for communication is the combination of the ten Ql sums from variousprocesses at the end.In the TreadMarks version of EP, there is a shared array of Ql sums, and eachprocess also has a private array of Ql. The Ql sums are accumulated locally and added



24to the shared array only at the end of the program. Updates to the shared sum areprotected by a lock, and the processes wait at a barrier after the modi�cation. Afterthe barrier, the master prints out the result.In the PVM version, each process has a Ql sum in its private memory. At the endof program, each process sends its Ql array to the master. The master process addsthem together and outputs the result.3.2 Red-Black SORSuccessive Over-Relaxation (SOR) is a method of solving partial di�erential equa-tions. Our test program iterates over a two dimensional array. During each iteration,every matrix element is updated to the average of its nearest neighbors (above, below,left and right).In red-black SOR, the elements are painted either red or black, such that allthe nearest neighbors of a red element are black and vice versa. Each iterationis divided into two phases. The red elements are updated in the �rst phase, andthe black elements are updated in the second phase. In practice, each row in thearray is split into two adjacent rows, with one containing all the red elements andanother containing all the black elements in the row. We have described a naive SORalgorithm in chapter 2. Compared to the naive algorithm, red{black SOR does notneed a scratch array, and converges faster. In the second phase, all the red neighborsof a black point contain new values from the �rst phase, unlike in the naive algorithm,where only the old values from the last iteration are used.SOR is parallelized by dividing the matrix into roughly equal size bands of rows,assigning each band to di�erent process. During an iteration, every process workson its own band and synchronizes with others by a barrier at the end of each phase.In the TreadMarks version, the matrix is allocated in shared memory, and processessynchronize with barriers at the end of each phase. With PVM, each process allocatesits band of rows in its private memory and explicitly sends the shared row to itsneighbor at the end of each phase.3.3 IS: Integer SortInteger Sort (IS) [BBLS91] requires ranking an unsorted sequence of N keys. Therank of a key in a sequence is the index value i that the key would have if the sequence



25of keys were sorted. All the keys are integers in the range 0 � x � Bmax and themethod used is counting, or bucket sort.The parallel version of IS divides up the keys among processes. First, each processcounts its keys and writes the result in the private bucket. Then, the values in theprivate buckets are summed up. At last, the processes read the sum and rank theirkeys. The amount of computation required for this benchmark is relatively small {linear in the size of the array. The amount of communication is proportional to thesize of the key range, because the bucket is passed around among processes.In the TreadMarks version of IS, the only shared structure is a bucket. Besides theshared bucket, each process also has a private bucket and a private array containingkeys owned by this process. After counting locally, a process locks the shared bucket,adds the values of its private bucket to the shared bucket, releases the lock, and waitsat a barrier until all others have �nished their updates. Each process then reads the�nal result in shared bucket and ranks its keys.In the PVM version of IS, each process has a bucket and its part of the keys inprivate memory. After counting locally, the processes form a chain, in which process0 sends its local bucket to process 1, process 1 adds the values in its local bucket tothe values in the bucket it receives and forwards the result to the next process, etc.The last process in the chain calculates the �nal result and broadcasts it to all theother processes.3.4 TSPThe Traveling Salesman Problem (TSP) �nds the shortest path that starts at a desig-nated node, passes through every other node exactly once and returns to the originalnode. A complete path is known as a tour.A brute force algorithm would try all possible path permutations and select theshortest one, but the time to check all possible permutations is prohibitive. A simpleoptimization is to use a branch-and-bound algorithm. In this solution, if the lengthof a partial tour plus a lower bound of the remaining portion of the path is longerthan the current shortest tour, the partial tour will not be explored further, becauseit cannot lead to a shorter tour than the current minimum length tour.The version of TSP used in the evaluation maintains a priority queue of par-tially evaluated tours, with the one having the shortest lower bound on its length atthe head. The evaluation of a partial tour is composed mainly of two procedures,



26get tour and recursive solve. The subroutine get tour deletes the most promis-ing path from the queue. If the path contains more than a threshold number of cities,it returns this path. Otherwise, get tour extends the path by one node, puts thepromising ones generated by the extension back on the priority queue, and calls itselfrecursively. The subroutine get tour returns either when the most promising path islonger than a threshold, or when the priority queue becomes empty. The procedurerecursive solve takes the path returned by get tour, and tries all permutations ofremaining nodes recursively.In the TreadMarks version, the major shared data structures are the global mini-mum tour and its length, a tour array of structures describing both partially evaluatedand unused tours, a priority queue containing pointers to partly evaluated tours, anda stack of pointers to unused tour structures. The get tour is guarded by a lockto guarantee exclusive access to the priority queue and the stack. At the end ofrecursive solve, if the process �nds a shorter tour than the global minimum tour,it acquires the lock for global minimum tour and sets the new minimum value.In the PVM version, the processes are divided into master and slaves. The mas-ter executes get tour and keeps track of the optimal solution. The slaves executerecursive solve. The slaves send requests to the master either to request solvabletours, or to update the shortest tour.3.5 QuickSortQuickSort (QSORT) is a recursive sorting algorithm that operates by repeatedlypartitioning an unsorted input list into a pair of unsorted sublists, such that allelements in one of the lists are strictly greater than those in the other, and thenrecursively invokes itself on the two sublists. In the implementation used in ourevaluation, the base case of the recursion happens when a list is su�ciently small, atwhich time it is sorted directly using bubble-sort. The QSORT is parallelized using awork queue that contains descriptions of unsorted sublists, from which worker threadcontinuously removes the lists.In the TreadMarks version of QSORT, the major data structures are: an array tobe sorted, a task queue that contains range indices of the unsorted sub-array, and acount of the number of worker threads blocked waiting for work. The TreadMarksversion of QSORT di�ers from the TreadMarks version of TSP in that the QSORTworker releases the task queue without subdividing the sub-array it remove from the



27queue. The QSORT worker may further divide the sub-array. It then reacquirescontrol of the task queue and places the newly generated sub-arrays back into thetask queue. In contrast, TSP workers do not relinquish control of the task queue untilthey have removed a partial tour that can be solved directly. As a consequence, thetask queue in QSORT is accessed more frequently per unit of computation.In the PVM version, the master maintains the work queue and performs thepartitioning on demand. The slaves send request messages to the master, whichresponds either with a sublist to be sorted directly or an indication that there is nomore work. The slaves ship the sorted sublist along with the next request.3.6 WaterWater [SWG92] is an N-body molecular dynamics application that evaluates forcesand potentials in a system of water molecules in the liquid state. The computationis performed over a number of user-speci�ed time steps. Both intramolecular andintermolecular potentials are computed in each iteration. In order to avoid computingall the n2=2 pairwise interactions among molecules, a spherical cuto� range is used.The main data structure used in water is an one-dimensional array of moleculescalled VAR. The structure of a molecule contains the center of mass of the molecule,plus for each of its three atoms the forces acting on them, their displacements, and the�rst six derivatives of the displacements. In order to make sure that each interaction iscomputed only once, only the interactions between a molecule and the n=2 moleculesahead of it in the VAR (wrapped around) are computed.Water is parallelized by dividing VAR into equal segments, assigning one to eachprocess, regardless of the possible load imbalance caused by cuto� radius. Most ofthe communication happens at the intermolecular force computation. At this time, aprocess reads the center of mass and the displacement of two molecules, computes theintermolecular force, and updates the force acting on each of the molecules. Only thecenter of mass, the displacement and the force in the molecule structure are accessedby multiple processes.In the TreadMarks version of Water, the center of mass, the displacement andthe force of the VAR are allocated in shared memory, the other variables in VAR areallocated in private memory. Each process also maintains a private copy of the forces.There is a lock associated with each process. At the time of intermolecular forcecomputation, each process �rst zeros its private copy of the forces, and subsequent



28changes to forces are accumulated locally into the private copy. Forces in the sharedVAR are updated after all processes have �nished their computation. If a processhas updated molecules belonged to process i in the private copy, it acquires lock iand adds all modi�cations to molecules owned by process i. In the PVM version, theprocesses must exchange displacement and mass of molecules explicitly. The forcesare also accumulated locally.3.7 Barnes-HutBarnes-Hut [SWG92] simulates the evolution of a system of bodies under the in
uenceof gravitational forces. It is a classical gravitational N-body simulation, in which everybody is modeled as a point mass and exerts forces on all other bodies in the system.If all pairwise forces are calculated directly, this has a complexity of O(n2) in thenumber of bodies, which is impractical for simulating large systems. Barnes-Hut is ahierarchical tree-based method that reduces the complexity to O(n log n).The Barnes-Hut algorithm is based on a hierarchical octree representation of spacein three dimensions. The root of the tree represents a space cell containing all bodiesin the system. The tree is built by adding particles into the initially empty root cell,and subdividing a cell into its eight children as soon as it contains more than a singlebody. The result is a tree whose internal nodes are cells and leaves are individualbodies. The tree is therefore adaptive in that it extends to more levels in regions thathave high particle densities. The tree is traversed once per body to compute the netforce acting on that body. The force calculation algorithm starts at the root of thetree and conducts the following test recursively for every cell it visits: If the center ofmass of the cell is far enough away from the body, the entire subtree under that cellis approximated by a single particle at the center of mass of the cell, and the forcethis center of mass exerts on the body is computed. However, if the center of mass isnot far enough away, the cell must be opened and each of its sub-cells visited.The major data structures used in this algorithm are two arrays, one is the arrayof bodies that are leaves of the tree, the other is an array of internal cells in the tree.Load balance is achieved using the cost-zone method, where the cost of each body isde�ned by the work associated with it, and the cost of a cell is the sum of the costs ofthe bodies in the subtree rooted at this cell. The total work in the system is dividedamong processes so that every process has a contiguous, equal zone of work.



29There are �ve major phases in each time step. In the sequential version, most ofthe time is spent in step 4.1. MakeTree : Construct Barnes-Hut tree.2. C OF M : Compute center of mass for each cell.3. Get my bodies: Partition bodies among processes.4. Force Computation: Compute forces on my own bodies.5. Update: Update position and velocities of my bodies.In the TreadMarks version, both body and cell arrays are shared. The subroutinesMakeTree and C OF M are executed only by the master process, because these incura lot of tra�c if executed in parallel. There are barriers after C OF M and forcecomputation. No synchronization is necessary during the force computation.The PVM version looks much like the TreadMarks version. The MakeTree andC OF M are sequential, which means every process obtains all the bodies and createsa complete tree. Then each process goes on to do the next three steps on its privatecopy of the Barnes-Hut tree. At the end of each iteration, the processes broadcasttheir bodies.3.8 3-D FFT3-D FFT [BBLS91] numerically solves a partial di�erential equation using three di-mensional forward and inverse FFT's. After initializing an array U of size n1�n2�n3with pseudo random numbers, we need toCompute forward 3-D FFT of U , and call the result V .Adjust V to obtain XDO for some �xed number of iterations:Compute an inverse 3-D FFT on X.Output the checksum of X.The 3-D FFT applies one dimensional FFT on each of the three dimensions.The parallel 3-D FFT algorithm we used is as follows. Assuming the input arrayAn1�n2�n3 is organized in row-major order. We distribute the array elements alongthe �rst dimension of A, so that for any i, all elements of the complex matrix Ai;j;k,0 � j < n2; 0 � k < n3 are contained within a single process. The 3-D FFT �rst



30performs a n3-point 1-D FFT on each of these n1n2 complex vectors. Then it performsa n2-point 1-D FFT on each of the n1n3 vectors. No communication is needed up tonow, because each of the n3-point vector or the n2-point vector is owned by a singleprocess. Last, it transposes the resulting array into an n2� n3�n1 complex array Band applies a n1-point 1-D FFT on each of the n2n3 complex vectors. The processescommunicate with each other at the transpose, because each process owns a di�erentset of elements after it.In the TreadMarks version, both the original array A and the resulting array Bare allocated in shared memory. Since the original array has been modi�ed beforethe transpose, a barrier is called before each transpose to make sure that the newvalues can be propagated to other processes. In the PVM version, messages are sentexplicitly at transpose. This includes �guring out where each part of the result arraycomes from, where each part of the original array goes to, and sending messagescorrespondingly. This index calculation on a 3-dimensional array is much more error-prone than simply swapping the indices.3.9 ILINKThe sequential version of ILINK is a program from version 1.0 of the FASTLINK ver-sion [CIS93, SGSC94] of the LINKAGE [LLJO84] package for genetic linkage analysis.The LINKAGE/FASTLINK package contains programs used by geneticists aroundthe world to �nd the approximate location of disease genes. ILINK is one program inthe package. ILINK's input is one or more family trees showing phenotypes at somegenes and the disease status for those individuals where it is known. It iterativelyestimates a vector which represents a maximum likelihood estimate of how close thedisease gene lies to the other speci�ed genes on the genome.Given a set of pedigrees and a �xed value of the probability, the outer loop ofthe likelihood evaluation iterates over all the pedigrees calculating the likelihood foreach one. Within a pedigree, the program visits each nuclear family and updatesthe probability of each genotype for each individual. The update to each individual'sprobability is parallelized. The TreadMarks version of ILINK comes from [DSC+94],and we base our message passing version on it.The main data structure in ILINK is a pool of genarrays, where each genarrayis indexed by genotype numbers. The genarray is sparse, and an index array isassociated with each one of them. Each update to an individual's genarray either



31updates one parent conditioned on the spouse and all children, or updates one childconditioned on both parents and all the other siblings. Before each update, themaster allocates a genarray from the pool of genarrays and initializes it for eachperson in the family. Then, the master assigns the nonzero elements in the parent'sgenarray to available processes in round robin fashion. Each process works on itsshare of nonzero values, and updates the individual's genarray accordingly. Themaster process summarizes the modi�cations made by each process at the end ofeach update.In the PVM version of ILINK, each process has a local copy of genarray, and mes-sages are passed explicitly between the master and the slaves at the beginning and theend of each update. Since the genarray is sparse, only the nonzero elements are sent.In TreadMarks, genarray is allocated in shared memory, and barriers synchronize theprocesses at the beginning and the end of the update to each person. The sparsityof genarray is addressed automatically by the TreadMarks system. Since only thenonzero elements are modi�ed in each update, when the master collects updates atthe end, the di�s it receives only contain the nonzero elements.3.10 SummaryFrom our experience with PVM and TreadMarks, we conclude that it is easier toprogram using TreadMarks than using PVM. Although there is little di�erence inprogrammability for simple programs, for programs with complicated communicationpatterns, such as ILINK and 3-D FFT, it takes a lot of e�ort to �gure out what tosend and whom to send to.



32Chapter 4Performance ResultsIn this chapter, we present and analyze the performance results of both the PVM andthe TreadMarks versions of the programs discussed in Chapter 3. The system usedto evaluate PVM and TreadMarks consists of 8 DECstation-5000/240 workstations,each with a 40MHz MIPS R3000 processor and 24Mbytes of main memory. The work-stations are connected to a high-speed ATM network using a Fore Systems TCA-100network adapter card supporting communication at 100Mbits/second. The ATM in-terface connects point-to-point to a Fore Systems ASX-100 ATM switch, providing ahigh aggregate bandwidth because of the capability for simultaneous full-speed com-munication between disjoint workstation pairs. In TreadMarks, the user processesconnect with each other with UDP. In PVM, processes set up direct TCP connec-tions with each other. Both UDP and TCP are built on top of IP, with UDP beingconnectionless and TCP being connection oriented. TCP is a reliable protocol whileUDP does not ensure reliable delivery. Using UDP for TreadMarks has the advantageof the ability to use light-weight, operation-speci�c, user-level protocols to ensure re-liable delivery. For PVM, since the type of communication is not known, there is nosigni�cant disadvantage in using TCP over UDP.Some of the runtime statistics are given. For the PVM versions, we counted thenumber of user level messages and amount of user level data. For the TreadMarksversions, we counted the total number of UDP messages, the total amount of datasent in these messages, and the amount of data sent for transferring di�s and pages.4.1 EP: An Embarrassingly Parallel BenchmarkEP is completely compute-bound, so the overhead added by TreadMarks has littleimpact on performance. In our test, the program generates 224 pairs of randomnumbers. This is much smaller than the 228 pairs suggested in the NAS benchmarksuites. The results are shown in Table 4.1 and Table 4.2. The TreadMarks versionsends out much more data than the PVM version, because on the �rst access to



33the shared Ql, a process faults and brings in the whole page, rather than simplyinitializing the local array as is done by the PVM version. The additional messagesin TreadMarks come from barriers, lock acquires, page and di� requests. In PVM,communication only happens at the end of the program, when all processes sendtheir 40 byte Ql to process 0. However, compared to the overall execution time,the communication overhead is negligible. With 8 processes, the program runs for36 seconds, and only 7 messages, a total of 308 bytes are sent in PVM. AlthoughTreadMarks sends more messages than PVM, the number of messages is still small at86, and the total amount of data is only 33 Kbytes. Consequently, both TreadMarksand PVM achieve a speedup of 7.9 with 8 processes.4.2 Red-Black SORWe ran red-black SOR on a 512 � 2048 matrix of 
oating point numbers for 101iterations. The �rst iteration is excluded from timing and statistics so as to eliminatecold start e�ect on our results. With this matrix size, the red or black elements of arow occupy exactly one page, so at the beginning of each phase, only one page faultis needed to get the red or black elements of the shared row.In the �rst test, the elements in the middle of the array are initialized to zeroes,and those on the edges are ones. The results are shown in Table 4.3 and Table 4.4.Because of load imbalance, neither PVM nor TreadMarks achieves good speedupwith 8 processes. The load imbalance happens because 
oating point computationinvolving zeroes takes longer time than others. The TreadMarks version performswithin 2% of the PVM version. This is a consequence of the low communicationrate in SOR, and the use of lazy release consistency in TreadMarks. Because of lazyrelease consistency, although the processes keep writing to the shared pages betweentwo barriers, the number of messages sent in TreadMarks is always three times ofnprocs 2 4 6 8Tmk 1.99 3.97 5.96 7.94PVM 1.99 3.99 5.96 7.92Tmk/PVM 1.0 1.0 1.0 1.0Sequential time: 286 secTable 4.1 EP speedup



34nprocs 2 4 6 8Messages 9 33 62 86Tmk Total Bytes 4K 13K 23K 33KUser Bytes 4K 13K 22K 31KPVM Messages 1 3 5 7Bytes 44 132 220 308Table 4.2 EP Message and Datathat in PVM. Assume there are n processes, the number of shared rows is 2(n � 1).In PVM, 2(n� 1) messages are sent in each phase, because processes send the sharedrows directly to their neighbors. In TreadMarks, since a request is sent to get the di�of a row, a total of 4(n� 1) messages are sent to obtain the data. Besides, there are2(n � 1) messages sent in the barrier at the end of each phase. Altogether, 6(n � 1)messages are sent in each phase, which is three times of those sent in PVM.Notice that the amount of data sent in TreadMarks is much less than that inPVM. This is a result of multiple-writer protocol. Since all elements in the middle ofthe array are zeroes, changes are propagated from the edge to the center of the array.In TreadMarks, only the di�s are sent, compared to PVM, where the whole sharedrow is transferred. However, this has little e�ect on the performance, because wiretime is negligible compared to the time to initiate a message.We have also run SOR with all values in the matrix initialized to nonzero, suchthat all elements in the matrix are changed in each iteration. The results are shownin Table 4.5 and Table 4.6. The TreadMarks version and the PVM version sendthe same amount of data, and the number of messages sent in each version remainsunchanged from the �rst test. Because the numbers are nonzero, the single processtime drops from 279 seconds to 122 seconds. Due to better load balance, this test alsohas higher speedup than the �rst one. Consequently, communication rate has largerin
uence on performance. The TreadMarks version achieves 91% of the speedup ofthe PVM version with 8 processes, compared to 99% in the �rst test.4.3 Integer SortWe tested IS on two sets of parameters. In the �rst test, we sorted 220 keys rangingfrom 0 to 27 for 10 iterations. In the second test, the keys range from 0 to 215, and



35nprocs 2 4 6 8Tmk 1.98 2.80 2.94 3.32PVM 1.98 2.85 3.01 3.36Tmk/PVM 0.99 0.98 0.98 0.99Sequential time: 279 secTable 4.3 SOR-Zero speedupnprocs 2 4 6 8Messages(K) 1.2 3.6 6.0 8.4Tmk Total Bytes(KB) 157 801 2482 3613User Bytes(KB) 137 713 2292 3285PVM Messages(K) 0.4 1.2 2.0 2.8Bytes(KB) 1640 4920 8200 11480Table 4.4 SOR-Zero Message and Datanprocs 2 4 6 8Tmk 1.88 3.52 5.05 6.30PVM 1.97 3.77 5.48 6.91Tmk/PVM 0.95 0.93 0.92 0.91Sequential time: 122secTable 4.5 SOR-Nonzero speedupnprocs 2 4 6 8Messages(K) 1.2 3.6 6.0 8.4Tmk Total Bytes(KB) 1660 5008 8390 11808User Bytes(KB) 1640 4920 8200 11480PVM Messages(K) 0.4 1.2 2.0 2.8Bytes(KB) 1640 4920 8200 11480Table 4.6 SOR-Nonzero Message and Data



36we measured 5 iterations. The results are shown in tables 4.7 to 4.10. We did nottry the 223 keys, and 220 buckets as suggested in NAS, because the extremely lowcomputation/communication ratio is not suitable for workstation clusters.The results show the potential performance degradation caused by di� accumu-lation in the current TreadMarks implementation. Assuming the bucket size is b, inPVM, the amount of data sent in each iteration is 2(n � 1)b. In TreadMarks, sinceupdates to the shared bucket are protected by a lock, each process that modi�es theshared bucket must get all the di�s created by previous modi�ers in this iteration.The same thing happens after the barrier, where every process reads the �nal values inthe shared bucket. At this time, each process gets all the di�s made by the processeswho modi�ed the shared bucket after it. These add up to n(n � 1)b in each itera-tion. We call this phenomenon di� accumulation. Although in each case, the processcan obtain all the di�s from one process, this accumulation causes more messagesto be sent when the sum of the di�s exceeds the maximum size of a UDP message.These results indicate that the di�ng mechanism is not suitable for migratory data.Coalescing the di�s before sending them out would eliminate this problem.Di� accumulation is not a serious problem when the bucket size is 27 integers,because 8 di�s of the bucket can be sent in one message. The overheads in the �rst testcome mainly from synchronization messages and di� requests. Consequently, with 8processes, the TreadMarks version sends out 4 timesmore data, 8 timesmore messagesthan the PVM version, and achieves 86% of the speedup in PVM. In the second test,since the bucket of 215 integers is much larger than the message size, sending moredi�s means sending more messages. Because of the high communication/computationratio, with 8 processes, PVM achieves a speedup of 1.12, and TreadMarks achieves48% of the speedup of PVM.nprocs 2 4 6 8Tmk 1.94 3.6 4.7 5.2PVM 1.94 3.7 5.1 6.1Tmk/PVM 1.0 0.98 0.93 0.86Sequential time: 10 secTable 4.7 IS speedup, N = 220, Bmax = 27



37nprocs 2 4 6 8Messages 165 483 823 1141Tmk Total Bytes(KB) 16 81 217 378User Bytes(KB) 14 72 197 348PVM Messages 20 60 100 140Bytes(KB) 10 31 51 71Table 4.8 IS Message and Data, N = 220, Bmax = 27nprocs 2 4 6 8Tmk 1.43 1.26 0.83 0.53PVM 1.54 1.85 1.56 1.12Tmk/PVM 0.93 0.68 0.54 0.48Sequential time: 10 secTable 4.9 IS speedup, N = 220, Bmax = 215nprocs 2 4 6 8Messages 705 2491 4981 8355Tmk Total Bytes(MB) 1.3 7.4 18.8 35.4User Bytes(MB) 1.3 7.4 18.7 35.2PVM Messages 10 30 50 70Bytes(MB) 1.3 3.9 6.6 9.2Table 4.10 IS Message and Data, N = 220, Bmax = 215



384.4 TSPWe solved a 18 city problem. The results are shown in Table 4.11 and Table 4.12.With 8 processes, TreadMarks sends 5 times more messages and 72 times more datathan PVM, and achieves 84% of the speedup of PVM. The performance gap comesfrom the cost of accessing the priority queue.In the PVM version of TSP, only the solvable tours and the minimum tour areexchanged between the slave and the masters. It takes 2 messages each for a slaveto obtain a solvable tour, or to update the global minimum tour. The number ofmessages and the amount data sent in PVM changes little with increasing numbersof process, because the total amount of work remains stable.The additional messages in TreadMarks come from both lock acquires and di�requests. Furthermore, in get tour, it takes 3 page faults to obtain the priorityqueue, because it is composed of 3 distinct data structures, each of which takes morethan one page. Overall, TreadMarks should send 4.5 times more messages than PVM,provided that every lock acquirer gets the lock from a remote process. This is not truewith 2 processes, where 90 of the 165 locks are remote. Consequently, TreadMarksonly sends 3 times more messages than PVM. With 8 processes, since 170 of the 200locks are remote, PVM sends 5 times more messages than PVM. As for the amountof data, in TreadMarks, besides the additional data movement to get the shared tourstructures, because accesses to the shared data are protected by a lock, on each accessmiss, a process gets all the di�s created since its last release of the lock. On average,this means getting di�s created by all the other processes.nprocs 2 4 6 8Tmk 1.73 3.07 4.03 4.74PVM 2.01 3.6 4.82 5.63Tmk/PVM 0.86 0.85 0.84 0.84Sequential time: 27.1 secTable 4.11 TSP speedup



39nprocs 2 4 6 8Messages(K) 0.7 1.3 1.9 2.3Tmk Total Bytes(KB) 76 241 531 802User Bytes(KB) 67 217 492 748PVM Messages(K) 0.3 0.4 0.4 0.4Bytes(KB) 10 11 11 11Table 4.12 TSP Message and Data4.5 QuickSortWe used two sets of parameters, where the array size is 256K, and the bubble sortthresholds are 1024 and 512 respectively. The results are shown in Tables 4.13 to 4.16.Because the coarse-grained version runs for a longer amount of time, and sends lessmessages than the �ne-grained version, it allows for better speedup than the latter. Inthe �ne-grained version, although both PVM and TreadMarks get lower speedup, with8 processes, TreadMarks only achieves 50% of the performance of PVM, compared to78% in the coarse-grained version. Most of the performance dropo� comes from thedi�erent ways that work is distributed in each version.In the PVM version, the only data sent are sublists that can be bubble sorted,and each sublist is sent exactly twice. Consequently, the amount of data transferredis always twice the size of the total array, and the number of messages is twice the sizeof the array divided by the bubble sort threshold. For example, in the coarse-grainedversion, 2,103 Kbytes of data are sent in 1K messages, compared to the �ne-grainedversion, where 2,110 Kbytes of data are sent in 2K messages.TreadMarks sends more data than PVM, because the intermediate sub-arraysand the task queue are also shifted among processes. As with TSP, due to di�accumulation, the amount of data sent increases with the number of processes. Theadditional messages come from lock acquires and di� requests. Because the processescontinually re-acquire the task queue as they divides the array until it is smaller thanthe threshold, the lock acquires are more frequent than the message passing in PVM.Since the size of the sublists is not an integral of a page, extra messages are sent dueto false sharing.



40nprocs 2 4 6 8Tmk 1.84 3.37 4.32 5.33PVM 1.92 3.66 5.32 6.79Tmk/PVM 0.96 0.92 0.81 0.78Sequential time: 81.33 secTable 4.13 QSORT - Coarse-grained speedupnprocs 2 4 6 8Messages(K) 2.9 5.6 8.9 10.0Tmk Total Bytes(KB) 2,709 7,251 12,121 13,969User Bytes(KB) 2,671 7,136 11,890 13,632PVM Messages(K) 1 1 1 1Bytes(KB) 2,103 2,103 2,103 2,103Table 4.14 QSORT Coarse-Grained Message and Datanprocs 2 4 6 8Tmk 1.60 2.43 2.58 2.81PVM 1.73 3.2 4.49 5.58Tmk/PVM 0.92 0.76 0.57 0.50Sequential time: 41.31 secTable 4.15 QSORT - Fine-grained speedupnprocs 2 4 6 8Messages(K) 4.9 12.4 18.7 18.9Tmk Total Bytes(KB) 3,216 10,594 19,163 20,950User Bytes(KB) 3,147 10,321 18,636 20,245PVM Messages(K) 2.1 2.1 2.1 2.1Bytes(KB) 2,110 2,110 2,110 2,110Table 4.16 QSORT Fine-Grained Message and Data



414.6 WaterWe used two data set sizes, 288 molecules and 1728 molecules, and ran for 5 timesteps. The 288 molecule simulation is used in the SPLASH. The results are shown intables 4.17 to 4.20.With 288 molecules, TreadMarks achieves 76% of the speedup of PVM with 8processes. In addition to synchronization messages and repeated page faults, falsesharing causes extra messages in TreadMarks. In PVM, two user level messages aresent for each pair of processes that interact with each other. In TreadMarks, if aprocess computes the forces between its molecules and the molecules belonging toprocess i, it sends di� requests when reading the displacements, and when updatingthe forces of molecules belonging to process i. When process i reads the new valuesof its molecules after the barrier synchronizing these updates, it may fault again ifprocess i is not the last one to update these molecules before the barrier. At thispoint, false sharing causes the faulting process to send di� requests to two di�erentprocesses, because molecules belonging to di�erent processes are protected by di�erentlocks. With 8 processes, since each process owns 1.48 pages, false sharing occurs on 7of the 11.8 pages of the VAR array. Consequently, TreadMarks sends 5977 messagescompared to 620 messages in PVM.False-sharing also causes the TreadMarks version to send more data than the PVMversion. Another cause of the additional data sent in TreadMarks is di� accumulation.Because updates to the shared array are protected by locks, di� accumulation causesTreadMarks to send (n=2 + 1)=2 times more data than the PVM, where n is thenumber of processes. Adding the two factors, with 8 processes, TreadMarks sends 3.4times more data than PVM.With 1728 molecules, TreadMarks achieves 99% of the speedup in PVM with8 processes. This is the results of increased computation/communication ratio andreduced false-sharing in TreadMarks. Because the reduced false-sharing, with 8 pro-cesses, TreadMarks sends 2.8 times more data than PVM, compared to 3.4 timesmore with 288 molecules.4.7 Barnes-HutWe ran Barnes-Hut with 4096 bodies for 5 steps, and fcell = 0:8, � = 0:6. The resultsare shown in Table 4.21 and Table 4.22. TreadMarks achieves 90% of the speedup in



42nprocs 2 4 6 8Tmk 1.8 3.4 4.6 5.3PVM 1.9 3.6 5.4 6.9Tmk/PVM 0.98 0.93 0.85 0.76Sequential time: 42.9 secTable 4.17 Water speedup, 288 molecules, 5 time stepsnprocs 2 4 6 8Messages 727 2295 3938 5977Tmk Total Bytes(KB) 668 1935 3397 5195User Bytes(KB) 659 1894 3311 5039PVM Messages 50 180 370 620Bytes(KB) 379 759 1139 1520Table 4.18 Water Message and Data, 288 molecules, 5 time stepsnprocs 2 4 6 8Tmk 1.94 3.80 5.64 7.47PVM 1.98 3.82 5.73 7.55Tmk/PVM 0.99 0.99 0.99 0.99Sequential time: 1568 secTable 4.19 Water speedup, 1728 molecules, 5 time stepsnprocs 2 4 6 8Messages 2805 6074 9779 14399Tmk Total Bytes(MB) 4.01 9.66 16.98 26.05User Bytes(MB) 3.98 9.58 16.83 25.79PVM Messages 50 180 370 620Bytes(MB) 2.28 4.56 6.84 9.12Table 4.20 Water Message and Data, 1728 molecules, 5 time steps



43PVM with 2 processes, and 58% of that in PVM with 8 processes. With 8 processes,TreadMarks sends 70% more data and about 200 times more messages than PVM.The di�erence in the amount of data is due to the di�erent programming stylesin TreadMarks and PVM. In the PVM version, each process broadcasts its bodiesat the end of the iteration. With 8 processes, this takes 56 user level messages, andthe total amount of data sent is 7 times the size of the array of bodies. However, inTreadMarks, the master process �rst collects bodies from all the others and buildsthe tree. Then the whole tree is sent to each of the processes, where the size of thetree is about half of the size of the array of bodies. Moreover, during the computationstep, each process reads most of the bodies. Overall, the data sent in the TreadMarksversion is about 50% more than that in the PVM version.As for the number of messages, TreadMarks sends a lot more messages than PVM,mostly because the large data size and false-sharing. Since the size of the array ofbodies is 147K bytes, it takes a lot of page faults to get the bodies and the Barnes-Hut tree. Furthermore, although the set of bodies owned by a process are adjacent inphysical space, they are not adjacent in memory, which causes false-sharing. Becauseof the false-sharing, in MakeTree, each page fault causes the process to send outdi� requests to several processes. All these add up to about 1400 messages in eachiteration.4.8 3-D FFTThe results are obtained by running on a 32 � 64 � 64 array of double precisioncomplex numbers for 6 iterations, excluding the time for distributing the initial valueat the beginning of program. This matrix size if one fourth of that used in the NASbenchmark. The statistics are shown in Table 4.23 and Table 4.24. TreadMarksnprocs 2 4 6 8Tmk 1.63 2.44 2.73 2.78PVM 1.82 3.21 4.06 4.83Tmk/PVM 0.9 0.76 0.67 0.58Sequential time: 69.1 secTable 4.21 Barnes-Hut speedup



44nprocs 2 4 6 8Messages(K) 4.7 17.7 32.6 52.5Tmk Total Bytes(KB) 3,493 9,766 14,576 19,555User Bytes(KB) 3,449 9,593 14,249 19,020PVM Messages(K) 0.01 0.06 0.15 0.28Bytes(KB) 1,805 5,426 9,059 12,704Table 4.22 Barnes-Hut Message and Dataachieves 98% and 76% of the speedup in PVM with 2 processes and 8 processesrespectively.Because of release consistency, TreadMarks almost sends the same amount ofdata as PVM, with the exception of 6 processes. However, because of di� requests,many more messages are sent in TreadMarks than in PVM. These di� requests playa more important role with increasing number of processes, both because the com-putation/communication ratio is lower, and because more data are transferred intransposition with the increase of the number of processes.An abnormally happens with 6 processes. We attribute this to false-sharing.During the transposition in inverse 3-D FFT, each page modi�ed by one process isread by two other processes. Although the two processes read disjoint parts in thepage, the same di� is sent to both of them. Since this happens only when runningwith 6 processes, in TreadMarks, 36% more messages and 45% more data are sentwith 6 processes than with 8 processes. Consequently, TreadMarks only achieves 71%of the speedup in PVM, compared to 76% with 8 processes.4.9 ILINK nprocs 2 4 6 8Tmk 1.48 2.40 2.54 3.88PVM 1.51 2.63 3.58 5.08Tmk/PVM 0.98 0.91 0.71 0.76Sequential time: 39.6 secTable 4.23 3-D FFT speedup



45nprocs 2 4 6 8Messages 3639 6363 11569 8505Tmk Total Bytes(MB) 7.39 12.68 22.92 15.76User Bytes(MB) 7.35 12.60 22.78 15.63PVM Messages 230 1362 2130 3178Bytes(MB) 7.34 11.01 12.23 12.85Table 4.24 3-D FFT Message and Datanprocs 2 4 6 8Tmk 1.69 2.72 3.20 3.33PVM 1.73 2.85 3.67 3.84Tmk/PVM 0.98 0.96 0.87 0.87Sequential time: 910 secTable 4.25 ILINK speedupnprocs 2 4 6 8Messages(K) 40 161 331 545Tmk Total Bytes(MB) 20.9 65.4 111.6 158.0User Bytes(KB) 20.5 63.7 107.1 152.1PVM Messages(K) 2.1 6.3 10.5 19.6Bytes(MB) 18.8 47.9 75.1 101.9Table 4.26 ILINK Message and Data



46In this test, we use the data set RP01-3 [BHC+91], with an allele product 2�6�6.The results are shown in Table 4.25 and Table 4.26. With 8 processes, TreadMarkssends 55% more data and 27 times more messages than PVM, and achieves 87% ofthe speedup of PVM.Sparsity of the genarray is the main reason that makes TreadMarks send moremessages than PVM. In our test, the size of the genarray is about 16 pages. In PVM,the processes send the nonzero values in one message, which is much smaller than 16pages. Because the nonzero elements are scattered on 16 pages, TreadMarks sends32 messages in respond to the 16 page faults.One source of the additional data sent in TreadMarks is false sharing. Falsesharing happens because the nonzero values in the parent's genarrays are assigned toprocesses in round robin fashion. When the parent's genarrays are distributed to theslaves, in PVM, each slave receives only its part of the genarray, but in TreadMarks,a slave gets all the nonzero elements in the page, including those belonging to otherprocesses. False sharing has a large e�ect when there is only one child in the family,where among the three genarrays of the family members to be distributed, both ofthe parent's genarrays are assigned in round robin fashion. With more children in thefamily, more genarrays are distributed, and only one parent's genarray is partitioned.We assume that for 50% of the families, there is only one child in the family.Another source of additional data in TreadMarks is di� accumulation. Sincethe genarrays are initialized at the beginning of computation for each nuclear fam-ily. Although it is correct for the processes to get newly initialized data only, inTreadMarks, they also get the di�s created during previous computations.4.10 SummaryOur results show that because of the use of release consistency and the multiple-writer protocol, TreadMarks performs comparable with PVM on a large variety ofproblems. For example, in SOR-zero, the Water simulation of 1728 molecules, andEP, TreadMarks performs within 2% of PVM. In most of the other tests, TreadMarksperforms within 76% to 91% of PVM with 8 processes. In three of the thirteentests, PVM performs about twice as well as TreadMarks with 8 processes. These areBarnes-Hut, the �ne-grained QuickSort, and the Integer Sort with a bucket size of 215.In Integer Sort, PVM achieves a speedup of 1.12 with 8 processes. We do not thinkthis is a great advantage compared to the speedup of 0.53 achieved by TreadMarks.



47The separation of synchronization and data transfer, and the additional di� re-quests in TreadMarks are two of the causes of its lower performance for all the pro-grams. In PVM, data communication and synchronization are integrated together.The send and receive operations not only exchange data, but also regulate the progressof the processes. In TreadMarks, synchronization is through locks/barriers, which donot communicate data. Data movement is triggered by expensive page faults, anddi� requests are sent out in order to get the modi�cations.Although the multiple-writer protocol addresses the problem of simultaneouswrites to the same page, false sharing still a�ects the performance of TreadMarks.This occurs in QuickSort, 3-D FFT, the Water run of 288 molecules, and Barnes-Hut.Although multiple processes write to disjoint parts of the same page without interfer-ing with each other, when a process reads the data written by one of the writers, di�requests are sent to all the writers, which causes a lot of redundant communication.In addition, PVM also bene�ts from the ability to aggregate scattered data in asingle message, an access pattern that would result in several miss messages in theinvalidate-based TreadMarks protocol. This occurs in Barnes-Hut and ILINK.In the current implementation of TreadMarks, di� accumulation causes additionalcommunication. Di� accumulation is the problem of transmitting multiple overlap-ping di�s as a result of several processes modifying the same data. This occurs inmigratory data, and in data that are reinitialized, such as Integer Sort, QuickSort,TSP, Water, and ILINK.



48Chapter 5ConclusionsThis thesis presents two contributions. First, our results show that, on a large varietyof programs, the performance of a well optimized DSM system is comparable to amessage passing system. Especially for practical problems, such as ILINK and theWater simulation of 1728 molecules, TreadMarks performs within 15% of PVM.Second, we summarize four main causes for the lower performance of TreadMarkscompared to PVM. The �rst is the separation of synchronization and data transfer inTreadMarks, the second is additional access misses in the invalidate based TreadMarksprotocol, the third is false sharing in TreadMarks, and �nally, PVM bene�ts fromthe ability to aggregate scattered data in a single message, an access pattern thatwould result in several miss messages in the invalidate-based TreadMarks protocol.To alleviate these problems, we suggest a combination of performance analysis toolsand compiler annotation. To avoid expensive page faults, we can use the compiler todetermine the data that will be accessed in an interval. The runtime system can thenprefetch this data with the acquires. We can also use the compiler to detect datamigration and re-initialization, so that we can use more e�cient runtime protocols inthese cases. For numerical computations with static shared memory access patterns,such as 3-D FFT, we can use the compiler to detect sharing patterns, and avoidfalse sharing. Finally, if the application is programmed with poor locality, compileroptimization may not be possible. In this case, a performance analysis tool couldassist the user in improving the parallel program.In terms of programmability, our experience indicates that it is easier to programusing TreadMarks than using PVM. Although there is little di�erence in programma-bility for simple programs, for programs with complicated communication patterns,such as ILINK and 3-D FFT, a lot of e�ort is required to determine what data to sendand whom to send the data to. Distributed shared memory, on the other hand, pro-vides an easier path to developing parallel programs on networks of workstations.
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