RICE UNIVERSITY

Message Passing Versus Distributed Shared
Memory on Networks of Workstations

by

Honghui Lu

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Dr. Willy Zwaenepoel, Chairman
Professor
Computer Science

Dr. Sarita Adve
Assistant Professor
Electrical and Computer Engineering

Dr. John K. Bennett
Associate Professor
Electrical and Computer Engineering

Houston, Texas

May, 1995

Abstract

Message Passing Versus Distributed Shared
Memory on Networks of Workstations

Honghui Lu

We compared the message passing library Parallel Virtual Machine (PVM) with
the distributed shared memory system TreadMarks, on networks of workstations. We
presented the performance of nine applications, including Water and Barnes-Hut from
the SPLASH benchmarks; 3-D FFT, Integer Sort and Embarrassingly Parallel from
the NAS benchmarks; ILINK, a widely used genetic analysis program; and SOR,
TSP, and QuickSort.

TreadMarks performed nearly identical to PVM on computation bound programs,
such as the Water simulation of 1728 molecules. For most of the other applications,
including ILINK, TreadMarks performed within 75% of PVM with 8 processes. The
separation of synchronization and data transfer, and additional messages to request
updates for data in the invalidate-based shared-memory protocol were two of the
reasons for TreadMarks’s lower performance. TreadMarks also suffered from extra
data communication due to false sharing. Moreover, PVM benefited from the ability

to aggregate scattered data in a single message.

Acknowledgments

I would like to express my thanks to the members of my committee, Dr. Zwaenepoel,
Dr. Adve, and Dr. Bennett. I also want to thank Sandhya, Pete, Alan, Dr. Schaffer,
and Weimin. Their knowledge and experience, together with their patience, has been
a great help to me. My thanks to Nenad and Edmar, for developing the parallel ver-
sions of the Embarrassingly Parallel benchmark and Integer Sort. We thank Dr. Lori
A. Sadler and Dr. Susan H. Blanton for contributing disease family data for ILINK.
Development of the RP data was supported by grants from the National Retinitis
Pigmentosa Foundation and the George Gund Foundation. This research was sup-
ported in part by the National Science Foundation under Grant CCR-9116343, and by
the Texas Advanced Technology Program under Grants 003604014 and 003604012.

Contents

Abstract il
Acknowledgments i
List of Tables vi
Introduction 1

Message Passing Versus DSM on Workstation Clusters 4

2.1 Different Programming Styles in Message Passing and DSM 5
2.1.1 Message Passing oL 3
2.1.2 Distributed Shared Memory 6

2.2 PVM Versus TreadMarks 9
221 PVM .. oo 13
2.2.2 TreadMarks o 16

2.3 Summary ... e 22

Application Programs 23

3.1 EP: An Embarrassingly Parallel Benchmark 23

3.2 Red-Black SOR 24

3.3 IS:Integer Sort 24

34 TSP .o 25

3.5 QuickSort 26

3.6 Water 27

3.7 Barnes-Hut 28

3.8 3-DFFT . . . oo 29

3.9 ILINKo 30

3.10 Summary e 31

Performance Results 32

4.1 EP: An Embarrassingly Parallel Benchmark 32

4.2 Red-Black SOR
4.3 Integer Sort L
4.4 TSP . . e
4.5 QuickSorto
4.6 Water e
4.7 Barnes-Hut
4.8 3-DFFT
4.9 ILINK

Conclusions

Bibliography

33
34
38
39
41
41
43
44
46

48

49

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

Tables

EP speedupo 33
EP Message and Datao oL 34
SOR-Zero speedup o 35
SOR-Zero Message and Data 35
SOR-Nonzero speedup 35
SOR-Nonzero Message and Data, 35
IS speedup, N =22 B .. =27 36
IS Message and Data, N =2% B, .. =27 37
IS speedup, N =22 B, .. =2% 37
IS Message and Data, N =22, B, .., =2% 37
TSP speedup 38
TSP Message and Data L L. 39
QSORT - Coarse-grained speedup 40
QSORT Coarse-Grained Message and Data 40
QSORT - Fine-grained speedup 40
QSORT Fine-Grained Message and Data 40
Water speedup, 288 molecules, 5 time steps. 42
Water Message and Data, 288 molecules, 5 time steps 42
Water speedup, 1728 molecules, 5 time steps 42
Water Message and Data, 1728 molecules, 5 time steps 42
Barnes-Hut speedup oo 43
Barnes-Hut Message and Data 44
3-D FFT speedup o o 44
3-D FFT Message and Data 45
ILINK speedup o o 45
ILINK Message and Data 45

Chapter 1

Introduction

Parallel computing on networks of workstations has been gaining more attention in
recent years. Because workstation clusters use “off the shelf” products, they are
cheaper than supercomputers. Furthermore, high—speed general-purpose networks
and very powerful workstation processors are narrowing the performance gap between
workstation clusters and supercomputers.

Since no physical memory is shared in workstation clusters, all communication
between processes in such a system must be performed by sending messages over
the network. Currently, the prevailing programming model for parallel computing
on networks of workstations is message passing. Libraries such as PVM [GS92],
TCGMSG [Har90] and Express [Par92] were developed at different research institu-
tions. A message passing standard MPI [Mes94] has also been published. With the
message passing paradigm, the distributed nature of the memory system is fully ex-
posed to the application programmer. The programmer needs to keep in mind where
the data are, decide when to communicate with other processes, whom to communi-
cate with, and what to communicate. This makes programming for message passing
paradigm hard, especially for large applications with complex data structures.

Recent distributed shared memory(DSM) systems[Li86, BCZ90, BZ91, KDCZ94]
provide a shared memory abstraction on top of message passing in workstation clus-
ters. An application programmer can write the program as if it is executing in a
shared memory multiprocessor and access shared data with ordinary read and write
operations. The chore of message passing is left to the underlying DSM system to
handle. However, DSM systems are less efficient than message passing systems. This
is because under the message passing paradigm, communication is handled by the
programmer, who has complete knowledge of the data usage pattern. Under the
DSM paradigm, the DSM system has little knowledge of the application program,
and therefore must be conservative in determining when to communicate data. Since
sending messages between workstations is very expensive, additional communication

is the major drawback resulting in poor DSM performance.

Although much work has been done to improve the performance of DSM systems
in the past decade, DSM systems still do not have the same popularity as do the
message passing systems. Most published performance evaluations of DSM systems
only show the results of toy programs with simple data access patterns. We need
to run DSM systems on a large variety of more practical applications, and compare
them with equivalent message passing systems, both to show the potential of DSM
systems, and to determine the causes of the lower performance of DSM systems. This
information can then be used to further improve current DSM systems.

In this paper, we compare the message passing system PVM [GS92] with the
DSM system TreadMarks [KDCZ94]. We ported nine parallel programs to both
TreadMarks and PVM, and ran them on eight DECstation-5000/240 workstations
connected by a 100Mbits per second ATM network. The programs are Water and
Barnes-Hut from the SPLASH benchmark suite [SWG92]; 3-D FFT, Integer Sort and
Embarrassingly Parallel(EP) from the NAS benchmarks [BBLS91]; ILINK, a widely
used genetic analysis program; and SOR, TSP, and QuickSort.

The performance results show that TreadMarks performs well in comparison to
PVM on some practical problems. In the Water simulation of 1728 molecules, Tread-
Marks achieves 99% of the performance of PVM. For ILINK, with 8 processes,
TreadMarks’s speedup is 87% of that in PVM. In general, the TreadMarks versus
PVM performance ratio is closely related to computation/communication ratio and
the granularity of shared data. For programs with a high computation/communication
ratio, and large granularity of sharing, such as EP, SOR, and the Water simulation
of 1728 molecules, TreadMarks and PVM have nearly identical performance. For pro-
grams with little access locality and a large amount of shared data, such as Barnes-
Hut, PVM performs about twice as well as TreadMarks with 8 processes. Most of
our programs lie between these two extremes. For these programs, the TreadMarks
speedup with 8 processes is 76% to 87% of that in PVM. The separation of synchro-
nization and data transfer, and additional messages to request updates for data in
the invalidate based shared-memory protocol are two of the reasons for TreadMarks’s
lower performance. TreadMarks also suffers from extra data communication due to
false sharing. In addition, PVM benefits from the ability to aggregate scattered data
in a single message, an access pattern that would result in several miss messages in
the invalidate-based TreadMarks protocol.

In terms of programmability, since most of our test programs are relatively simple,

it was not difficult to port them to PVM. However, for two of the programs, namely

3 - D FFT and ILINK, the message passing versions were significantly harder to
develop than the DSM versions. We will discuss our experience with the programs
later in this thesis.

The rest of this thesis is organized as follows. In Chapter 2 we briefly describe
the two paradigms, and give an overview of PVM and TreadMarks. The application
programs and their parallel versions are described in Chapter 3. The performance

results are presented in Chapter 4. Chapter 5 presents the conclusions.

Chapter 2

Message Passing Versus DSM on Workstation
Clusters

Message passing and distributed shared memory are the major paradigms for paral-
lel programming on networks of workstations. With the message passing paradigm,
the application programmer must keep in mind that there is no memory accessible
by multiple processes. To share data between processes, the application program-
mer must write codes that explicitly exchange messages. Programming with message
passing is hard, because the application programmer must decide when to commu-
nicate with other processes, which process to communicate with, and what data to
communicate.

The distributed shared memory (DSM) systems provide the application program-
mer with the image of a shared memory. An application programmer can write the
program as if it is executing in a shared memory multiprocessor and leave the DSM
system to handle the underlying message passing. It is easier to program with the
shared memory paradigm, especially when the algorithm is very complicated, because
the programmer can concentrate more on the algorithm side rather than on moving
data among processes.

Although it is more complicated to program with message passing, message pass-
ing is more efficient than DSM. With some programmer effort, communication in
message passing is less frequent than in DSM. Since it is very expensive to pass mes-
sages between user level processes on different workstations, DSM systems must be
highly optimized to avoid additional communication. In this section, we introduce
two effective methods to reduce the number message in run time DSM systems —
relaxed memory consistency models [AH93] and multiple-writer protocols [BCZ90].
Both of them are used in TreadMarks.

The rest of this chapter is organized as follows. A brief introduction to program-

ming styles in the two paradigms, along with some simple examples are given in

Section 2.1. Section 2.2 introduces the two systems analyzed in this thesis — the mes-

sage passing system PVM, and the distributed shared memory system TreadMarks.

2.1 Different Programming Styles in Message Passing and
DSM

2.1.1 Message Passing

With the message passing paradigm, the only way for parallel processes to communi-
cate with each other is to exchange messages via the network. The basic primitives
in the message passing paradigm are send and receive.

A send 1s used to send a message containing data from one process to another.
The send can be either blocking or nonblocking. A process executing a nonblocking
send continues processing immediately after dispatching the message. In a blocking
send, the process waits until the message has been received by the other process. In
general, a blocking send is used only in the presence of unreliable communications,
or when it is important to send the messages in a particular order.

A receive is used to read a message sent from another process. The receive can also
be either blocking or nonblocking. A blocking receive waits until the message arrives.
A nonblocking receive returns if the message is not available. The nonblocking receive
can be used for asynchronous input, in which the process repeatedly checks for the
presence of an incoming message. Depending on the availability of the message, the
process can either read the message or do some other work.

The best way to get a feeling for what the message passing paradigm implies is
to look at some simple programs. In the message passing versions of these programs,
we assume that there is an initialization procedure to start up tasks on different ma-
chines. After the initialization, each process knows its process identifier, proc_id,
and the number of processes in the system, nprocs. The variable proc_id ranges
from 0 to nprocs-1. We also assume the following syntax for send and receive:
send(proc_id, start_address, length) and receive(proc_id, start._address,
length). The semantics of send is to send to proc_id the length elements start-
ing from start_address. In a receive, the process receives length elements from
proc_id, and loads them into memory beginning at start_address.

The first example is Successive Over-Relaxation (SOR). It solves partial differen-
tial equations. A simple form of SOR iterates over a two-dimensional array. During

each iteration, every matrix element is updated to the average of the values of its

nearest neighbors (above, below, left and right). Two separate arrays are used. One
array new is used to store the newly computed values, the other array old is used to
store the initial values or results from the last iteration. The array new is copied to
old at the end of each iteration. The sequential SOR program is shown in Figure 2.1.
The message passing version of SOR appears in Figure 2.2. Each process is assigned
to work on approximately the same number of consecutive rows. At the beginning of
the program, process 0 initializes the array old and distributes it to other processes.
At the end of each iteration, a process exchanges its highest and/or lowest numbered

rows with its neighbors. The send and receive here are blocking.

Another example with a bit more complicated communication is integer addition,
which sums an array A of 1,000,000 integers. The sequential code of integer addition
is shown in Figure 2.3 . A straightforward method to parallelize this algorithm is to
divide the array into equal-sized bands, assigning one to each process. Each process
computes the sum of the sub-array into a variable LocalSum. The values of LocalSum
are added together to GlobalSum at the end. The message passing version of integer
addition is in Figure 2.4. At the beginning of the program, process 0 initializes array
A and distributes it to other processes. Each process then sums its sub-array into
LocalSum. At the end of the program, each process sends its value of LocalSum to
process 0, and process 0 sums them up. Both send and receive in this program are

blocking.

2.1.2 Distributed Shared Memory

Distributed Shared Memory(DSM) provides the programmer with the abstraction of
a globally shared memory. The fact that the memory is distributed is hidden from the
user. DSM requires a set of primitives different from those used in message passing.
First, there is a need to distinguish data that are private to each process from those
shared by all processes. Second, because data is shared, synchronization is required
to prevent out-of-order accesses to shared variables. For instance, a critical section
contains code that can only be accessed by one process at a time. Critical sections
can be used for reduction operations such as summing values into a global variable.
A barrieris a point in the program where all processes must have arrived before any

one can proceed. Barriers are used to keep the processes working in lock step.

float new[M][N], old[M][N];
main()

{

Initialize old;
for C iterations {
for (i=1; i++; i<M)
for (j=1; j++; 1i<N)
new[i] [j] = (old[i-1][jJ+old[i+1][j1+01d[i][j-1]+old[j][i+1])/4;

for (i=0; i++; i<M)
for (j=0; j++; 1i<N)
01d[i] [j] = new[il[j];

}

} /* End of main */

Figure 2.1 Sequential SOR

Consider again the examples in the previous section. Besides the routine to start
up processes, suppose we have barrier(),begin critical(i) and end critical(i)
The last two functions specify a critical section.

The DSM version of SOR appears in Figure 2.5. In the DSM version, the array o1d
is shared, new is private. There are three barriers in the program. The first barrier is
right before the start of computation. This barrier is used in order to make sure that
data have been initialized by process 0 before other processes start computation. The
second barrier occurs before copying new to old. Because old is shared, a process
can not update its part of old until all its neighbors have finished the computation.
The third barrier is at the end of each iteration. It is there to make sure that each
process has finished updating its part of the shared array old before any of them can
go on to the next iteration.

The DSM version of integer addition is shown in Figure 2.6. In the DSM version,
the array A and the variable GlobalSum are shared. At the beginning of the program,
process 0 initializes A, while the other processes are blocked waiting at a barrier.
After the barrier, every process sums its part of the array into a private LocalSum.
Finally, all the LocalSum variables are added to the shared variable GlobalSum. This

operation must be serialized, i.e., protected by a critical section.

float new[M][N], old[M][N];
main()
{
int len;
Initialization();
len = M/nprocs;
if (proc_id == 0) {
Initialize old;
for (i=1; i<nprocs; i++) {
send(i, &len, 1);
send(i, new[lenxi], lenxN); }}
else {
receive(0, &len, 1);
receive(0, new[lenxproc_id], lenxN); }

/* All processes */
/* Low and high are the lower and upper bounds of a process’s rows */
for C iterations {
for (i=low; i<=high; i++)
for (j=1; j<N; j++)
new[i] [j] = (old[i-1][jJ+old[i+1][j1+01d[i][j-1]+old[j][i+1])/4;
for (i=low; i<=high; i++)
for (j=0; j++; 1i<N)
01d[i1[j] = new[il[j];

send(proc_id-1, old[low], N);

send(proc_id+1, old[high], N);

receive(proc_id-1, old[low-1], N);

receive(proc_id+1, old[high+1], N); }
} /* End of main */

Figure 2.2 Message Passing Version of SOR

#tdefine N 1000000
int A[N];
main()

{

int GlobalSum;
Initialize 4;
GlobalSum = SumSub(4, N);

int SumSub(array, len)
int *array, len;

int LocalSum, i;
LocalSum = 0;
for (i = 0; 1 < len; i++)
LocalSum = LocalSum + arrayl[i];
return(LocalSum) ;

Figure 2.3 Sequential Integer Add

2.2 PVM Versus TreadMarks

In this thesis, we compare the performance of Parallel Virtual Machine (PVM [GS92])
with TreadMarks [KDCZ94]. PVM is a message passing system originally developed
at Oak Ridge National Laboratory. It runs on Unix, and provides the programmer
with a set of user level library routines. Although there exist other message passing
systems such as TCGMSG [Har90], which provide higher bandwidth than PVM, we
chose PVM because of its popularity. PVM version 3.2.6 is used in our experiments.
TreadMarks is a software DSM system built at Rice University. Although many DSM
implementations have been reported in literature [NLI1], none of them is widely
available. One reason is that many of them run on experimental operating systems,
rather than general available operating systems, or require kernel modifications. Early
DSM systems also suffer from performance problems. TreadMarks overcomes most
of these problems. It is an efficient user level DSM system that runs on commonly

available Unix systems.

#define N 1000000
int A[N];
main()
{
int SUM, len, i, LocalSum;
Initialization();
len = N/nprocs;
if (proc_id == 0){
Initialize 4;
for (i = 1; i < nprocs; i++)
send(i, &A[lenxi], len); }
else
receive(0, A, len);

LocalSum = SumSub(A, len);
if (proc_.id == 0) {
SUM = LocalSum;
for (i = 1; i < nprocs; i++) {
receive(i, &LocalSum, 1);
SUM = SUM + LocalSum; } }
else
send (0, &LocalSum, 1);

Figure 2.4 Message Passing Version of Integer Addition

10

11

shared floatold[M][N];
float new[M][N];
main()
{
Initialization();
if (proc_id == 0)
initialize old;
barrier();

for C iterations {
for (i=low; i<=high; i++)
for (j=1; j<N; j++)
new[i] [j] = (old[i-1][j]+o1d[i+1][jI+01d[i][j-1]+old[jI[i+1]1)/4;

barrier();

for (i=low; i<=high; i++)
for (j=0; j++; 1i<N)
01d[i][j] = new[il[j];
barrier(); }
} /* End of main(). */

Figure 2.5 DSM Version of SOR

#define N 1000000
shared int A[N];
shared int GlobalSum;
main()
{
int len, i, LocalSum;
Initialization();
GlobalSum = O;
if (proc_id == 0)
initialize 4;
/* All processes */
barrier();
len = N/nprocs;
LocalSum = SumSub(&A[proc_id X len], len);
begin_critical();
GlobalSum = GlobalSum + LocalSum;
end_critical();
barrier(); }
} /* End of main() */

Figure 2.6 DSM Version of Integer Addition

12

13

2.2.1 PVM

PVM Interface PVM allows heterogeneous computers in a network to appear as
a single concurrent computational resource. It provides data type abstraction and
buffers for messages. PVM assigns a unique task identifier to every process in a
virtual machine. There are both send and receive buffers. A send dispatches the
contents of the send buffer to its destination. A receive places an incoming message
in a receive buffer. User data are packed into the send buffer before sending and
unpacked from the receive buffer after receiving. Data types are specified at these
times. PVM has both C and FORTRAN libraries. We focus on C because that is the
language we used in application programs.

In PVM, the parent process uses pvm_spawn () to start children on different ma-
chines. The format is: int numt = pvm_spawn(char *task, char **argv, int
flag, char *where, int ntask, int *tids). The routine pvm_spawn() starts up
ntask copies of an executable file task on the virtual machine. The parameters flag
and where are used together to specify what architectures and machines to use. Each
process is assigned a unique task identifier in the virtual machine, tid. The tids are
used to specify source and destination of a message in message passing. The list of
tids are returned in tids. The number of processes created is returned in numt.

PVM provides the routine pvm_initsend () to clear the old send buffer and create
a new one: int bufid = pvm_initsend(int encoding). The new buffer identifier
is returned in bufid. The variable encoding specifies the encoding scheme, which
will be discussed in the implementation of PVM.

The routines pvm_pkType() are used to pack data into the send buffer. The
Type can either be byte for characters, int for integers, or float for floating point
numbers, etc. They all have the same syntax: int info = pvm_pkType(Type *ptr,
int nitem, int stride). The variable ptr is a pointer to the first element to be
packed, and nitem is the total number of items to be packed. The variable stride
is the stride to use when packing.

The routines pvm_send () and pvmmcast () send messages. Their formats are: int
info = pvm_send(int tid, int msgtag) and int info = pvmmcast(int *tids,
int ntask, int msgtag). The routine pvm_send() labels the message with an in-
teger identifier msgtag and sends it to the process tid. The routine pvmmcast ()

multicasts the message to all processes specified in the integer array tids except

14

itself. The tids array is of length ntask. Both pvm_send and pvm mcast are non-
blocking.

There are both blocking and nonblocking receives in PVM. They are pvm_recv ()
and pvm_nrecv() respectively:
int bufid = pvm.recv(int tid, int msgtag), int bufid = pvmnrecv(int tid,
int msgtag). The routine pvm_recv() waits until a message with label msgtag has
arrived from tid. A value of -1 in msgtag or tid will match any tag value or any
process identifier, respectively. It then clears the previous receive buffer, places the
message in the newly created receive buffer, and returns the receive buffer identifier
in bufid. The nonblocking pvm nrecv() returns 0 in bufid if the expected message
has not arrived. The routine pvm_nrecv() does the same thing as pvm_recv() if a
message with label msgtag has arrived from tid. This routine can be called multiple
times to check the presence of the same message, while performing other work be-
tween calls. When there is no useful work to do, pvm_recv() can be called for the
same message.

Data in the receive buffer are unpacked into a user data structure by using
pvm_upkType (). The routines pvm_upkType () are similar to pvm_pkType(): int info
= pvm_upkType(Type *ptr, int nitem, int stride). The variable ptr points
to the address of the first element to be unpacked. The unpack should match the
corresponding pack calls in types and number of items.

The PVM version of SOR appears in Figure 2.7. Because the entire program
is too long to fit in a simple example, details of the initialization subroutine and
computation are omitted. During initialization, after the master process spawns the
slaves, 1t broadcasts the number of processes started and an array containing task
identifiers of the processes. Then the master process initializes the array old and

distributes it to the other processes.

PVM Implementation PVM consists of two parts: a daemon process on each
host and a set of library routines. The daemons connect with each other by UDP,
and a user process connects with its local daemon using TCP. If a user process p; on
host H; wants to send a message to another user process p, on host Hy, the usual
way to do this is through the daemons on their hosts. However, p; and py can set up
a direct TCP connection between them in order to reduce overhead. We use direct
connections between the user processes in our experiments, because it gives better

performance.

float old[M][N], new[M][N];
main() {

Initialization();
/* All processes */
for C iterations {
msgtag = C
for my rows of matrix {
compute values of new;
copy new to old; }

/* Send to upper neighbor */

if (proc_id '= 0) {
pvm_initsend(PvmDataRaw) ;
pvm_pkfloat(&old[my_start_row] [0], N, 1);
pvm_send(tids[proc_id-1], msgtag++);

/* Send to lower neighbor */

if (proc_id != nprocs-1) {
pvm_initsend(PvmDataRaw) ;
pvm_pkfloat(&old[my_end_row] [0], N, 1);
pvm_send(tids[proc_id+1], msgtag); }

/* Receive from lower neighbor */

if (proc_id '= 0) {
pvm_recv(tids[proc_id+1], msgtag);
pvm_upkfloat(&old[my_end_row+1][0], N, 1);}

/* Receive from upper neighbor */
if (proc_id != nprocs-1) {
pvm_recv(tids[proc_id-1], msgtag);
pvm_upkfloat(&old[my_start_row-1][0], N, 1);}
+
} /* End of main */

Figure 2.7 PVM version Version of SOR

16

Because PVM is designed to work on a set of heterogeneous machines connected by
the network, it provides conversion to and from external data representation (XDR).
This conversion is avoided if all machines in the PVM are identical.

In PVM, data are usually packed into a message buffer and remain there until they
are dispatched. At the receiving end, the entire message is buffered until a receive
call accepts it. There exists in-place packing in the newest version of PVM, but it
is restricted to data with a stride of 1. The new version is not very stable on our

system, so we decided to use message buffers instead.

2.2.2 TreadMarks

TreadMarks Interface TreadMarks is a software distributed shared memory sys-
tem that allows shared memory programs to run on a cluster of workstations con-
nected by general-purpose networks such as the Ethernet. The fact that the memory
in the system is physically distributed is transparent to the user.

TreadMarks provides the user with two variables, Tmk nprocs and Tmk proc_id.
The variable Tmk_nprocs specifies the number of processes in this system. The vari-
able Tmk_proc_id is unique for each process, it ranges from 0 to Tmk_nprocs-1.

The routine Tmk_startup() starts up processes and initializes TreadMarks data
structures. A call to this routine must precede all other TreadMarks calls. After
Tmk_startup(), the contents of both private and shared memory are identical across
all processes in the system, except that the values in Tmk_proc_id are different for
each process. The function Tmk_startup takes no parameters. However, the number
of processes and host names can be specified on the command line.

There is no statically allocated shared memory segments in TreadMarks, shared
memory must be allocated dynamically. The routines char *Tmk_malloc(int size)
and char *Tmk_sbrk(int size) allocate memory on shared memory. If the pointers
to shared memory structures are in private memory, the user can use Tmk_distribute
to distribute values of these pointers to all the other processes in the system. The
routine Tmk_distribute(char *addr, int size) sends size bytes of private mem-
ory at address addr to all processes in the system, so that they all have the same
value at this address in private memory.

Application threads synchronize via two primitives: barriers and exclusive locks.
Barriers are used to synchronize all processes. Exclusive locks are used to control

accesses to critical sections. The routine Tmk barrier(int num) stalls the calling

17

process until all processes in the system have arrived at the same barrier. Barrier
indices num are integers in a certain range. Locks are used to control access to critical
sections. A lock is acquired before entering a critical section and released after the
critical section is finished. The routine Tmk_lock acquire(int num) acquires a lock
for the calling process, and the routine Tmk_lock release(int num) releases it. No
process can acquire a lock if another process is holding it. Integer num is a lock index
assigned by the programmer.

TreadMarks guarantees memory consistency only at certain synchronization points
in order to reduce communication among processes. It is imperative to use built-in
synchronizations in TreadMarks rather than rolling your own. In particular, neither
spin locks nor setting and checking flags in shared memory works, because data is
only moved from node to node in response to explicit TreadMarks synchronizations.

Furthermore, TreadMarks features a variant of release consistent(RC) shared mem-
ory model [GLL*90]. With this programming abstraction, memory accesses are di-
vided into normal accesses and synchronization accesses. Synchronization accesses
are further divided into acquires and releases. The basic idea is that shared memory
modifications by a process p; only need to become visible to another process p; when
a subsequent release of p; becomes visible at p, via some chain of mutual synchro-
nizations. This programming abstraction is slightly different from that of a shared
memory multiprocessor, because changes to the shared memory do not go anywhere
until a release is performed.

In TreadMarks, lock acquires and barrier departures are modeled as acquires, lock
releases and barrier arrivals are modeled as releases. In barriers, shared memory
modifications by a process before a barrier are guaranteed to be visible to other
processes only after the barrier. For example, in Figure 2.8 the second read in p,
returns 4. The first read does not return 4 even if in “wall clock time” the write
precedes that read. For locks, look at the example in Figure 2.9. The read by ps
after the lock acquire will return a value of 4. However, if either p;’s release or p;’s
acquire 1s not present, the value returned by the read may not be 4 even though in
“wall clock time” the write precedes the read.

The TreadMarks version of SOR is given in Figure 2.10. The array old is allocated
on shared memory. The explicit message passing at the end of each iteration in the

PVM version is replaced by a call to Tmk_barrier().

18

P1 P2

w(x) 4 r(x) 7

Tmk_barrier(1) Tmk_barrier(1)
r(x) 4

Figure 2.8 Release Consistency With Barriers

P1 P2

w(x) 4

lock_release(1) r(x) 7
lock_acquire(1l)
r(x) 4

Figure 2.9 Release Consistency With Locks

float *0ld[M], new[M][N];
main()
{
Tmk_startup();
/* Master process initializes Al */
if (Tmk_proc_id == 0)
for (i = 0; i<N; i++) {
0ld[i] = (float *)Tmk_malloc(sizeof(float)x*N);
Tmk_distribute(old[i], sizeof(floatx*));
initialize old; }
Tmk_barrier(l);

for C iterations {
for my rows of matrix {
Compute values of new;
Tmk_barrier(2);
copy new to old; }
Tmk_barrier(3); }

Figure 2.10 TreadMarks Version of SOR

19

TreadMarks Implementation TreadMarks relies on the operating system’s vir-
tual memory page protection mechanism to detect accesses to the shared pages. In
TreadMarks, processes communicate either through UDP on an Ethernet or an ATM
LAN, or through AAL3/4 on an ATM LAN. Because sending message between two
processes is very expensive, TreadMarks takes great effort to minimize synchroniza-

tion messages.

Release Consistency and Multiple-Writer Protocol

TreadMarks provides the user with the illusion of a globally shared memory and
does the underlying message passing to keep the shared memory consistent. It is
TreadMarks’s responsibility to decide when to send messages, what to send, and whom
to send to. In order to keep the shared memory consistent, one way would be sending
out messages whenever writing to a shared variable that is also remotely cached. This
method is implemented by most snoopy-cache, bus-based multiprocessors, but DSM
systems cannot afford such a high communication rate because of the high overhead
per message.

As mentioned before, TreadMarks features a release consistent (RC) [DKCZ93,
AH93] shared memory model. In the RC model, shared memory accesses are cat-
egorized either as ordinary or as synchronization accesses, with the latter category
further divided into acquire and release accesses. RC requires ordinary shared memory
updates by a process p to become visible to another process ¢ only when a subse-
quent release by p becomes visible to ¢ via some chain of mutual synchronizations.
In practice, this model allows a process to buffer multiple writes to shared data in its
private memory until the release. In TreadMarks, Tmk lock_acquire(i) is modeled
as an acquire, and Tmk_lock release(i) is modeled as a release. Tmk_barrier(i)
is modeled as a release followed by an acquire, where each process releases at barrier
arrival, and acquires at barrier departure.

False sharing also causes frequent communication. False sharing occurs when two
or more processes access different variables within the same page, with at least one
of the accesses being a write. If only one process is allowed to write to the page, the
shared page will ping-pong back and forth among processes, because a write to any
variable of a page causes the entire page to become invalid on all other processes that
cache the page. A subsequent access by any of these processes incurs an access miss

and causes the modified copy to be brought in over the network. The original copy of

20

the page may suffice in this case, because the write was to a variable different from the
one that was accessed locally. This problem occurs in snoopy-cache multiprocessors
as well, but it is more prevalent in software DSM because the consistency protocol
operates on pages that are much larger than cache blocks.

TreadMarks uses a multiple-writer protocol to address this problem. With the
multiple-writer protocol, two or more processes can simultaneously modify their own
copy of the shared page. Their modifications are merged at the next synchronization
operation in accordance with the definition of RC, thereby reducing the effect of false
sharing. In order to distinguish changes made by different processes, at the time
the process sends out update to the shared page, instead of sending the whole page,
only the modified values are sent. Those modified values are called diffs, meaning

difference between the modified page and the page before the modification.

A Lazy Invalidate Implementation of Release Consistency

TreadMarks implements a lazy invalidate version of release consistency [KCZ92]. The
propagation of modifications is postponed until the time of the acquire. The releaser
is lazy, 1t does not propagate modifications to the shared pages. Furthermore, instead
of sending new data to the acquirer, the releaser notifies the acquirer of which pages
have been modified, causing the acquirer to invalidate its local copies of these pages.
A process has an page fault on the first access to an invalidated page, and gets diffs
for that page from previous releasers.

The acquiring process determines which modifications it needs to see according to
the definition of RC. To do so, the execution of each process is divided into intervals.
A new interval begins every time a process executes a release or an acquire. Each
process has an interval index, which is incremented every time a new interval starts
on this process. Intervals on different processes are partially ordered [AH93]: (i)
intervals on a single process are totally ordered by program order, (ii) an interval on
process p precedes an interval on process ¢ if the interval of ¢ begins with the acquire
corresponding to the release that concluded the interval of p, and (iii) an interval
precedes another interval by transitive closure. In locks, the interval corresponding
to the release of a lock directly precedes the interval beginning with a subsequent
acquire to the same lock. In barriers, any interval corresponding to the barrier arrival
precedes all intervals corresponding to the subsequent barrier departures. However,

no ordering exist among the barrier arrivals, or among the barrier departures.

21

Each interval has a vector timestamp to record its knowledge of intervals in other
processes that precede it. A timestamp contains an entry for each process. For
example, in the timestamp of the ith interval of process p, the entry for process p is
equal to 7. The entry for process ¢ other than p denotes the most recent interval of
process ¢ that precedes interval ¢ of process p according to the partial order.

RC requires that before a process p may continue past an acquire, the updates
of all intervals preceding the current interval must be visible at p. Therefore, at
an acquire, p sends its current interval timestamp to the previous releaser ¢. The
releaser then compares the corresponding entries of both timestamps, and sends a
message to p including write notices for all intervals named in ¢’s current interval
timestamp but not in the timestamp it received from p. Process p computes a new
vector timestamp according to the pair-wise maximum of its previous timestamp and
the releaser’s timestamp. A write notice is an indication that a page has been modified

in a particular interval.

Implementation Details

TreadMarks uses diffs to record modifications to a page made by different processes.
In order to capture the modifications to a shared page, it is initially write protected.
At the first write, a protection violation occurs. The TreadMarks makes a copy of
the page (a twin), and removes the write protection so that further writes to the page
can occur without any TreadMarks intervention. The twin and the current copy can
later be compared to create a diff. At a release, a write notice is created for each
page that was twinned since the last remote synchronization.

In TreadMarks, each lock has a statically assigned manager. The manager records
which process has most recently requested the lock. All lock acquire requests are di-
rected to the manager, and, if necessary, forwarded to the process that last requested
the lock. A lock acquire request contains the current timestamp of the acquiring
process. When the lock is released, the releaser informs the acquirer of all intervals
between the vector timestamp in the acquirer’s lock request message, and the re-
leaser’s current vector timestamp. The acquiring process then invalidates all pages
for which write notices were received. A lock acquire takes up to 3 messages. A lock
release does not incur any message in this lazy implementation.

Barriers have a centralized manager. At the barrier arrival, each client informs

the barrier manager of its timestamp and all write notices created since the last time

22

that the client and the manager synchronized. The manager sets its new timestamp
according to the pair-wise maximum of its previous timestamp and the timestamps
of the clients. When all processes have arrived at the barrier, the manager then
informs all clients of write notices of all intervals between their vector timestamp and
the manager’s new timestamp. The clients then invalidate the pages for which write
notices were received. The number of messages sent in a barrier is 2(n — 1), where n
is the number of processes.

On an access miss, if the faulting process does not have a copy of the page, it
requests a copy from a member of the page’s approximate copyset. The approximate
copyset for each page is initialized to contain process 0. If write notices are present
for the page, the faulting process obtains the missing diffs and applies them to the
page in increasing timestamp order. It is usually unnecessary to send diff requests to
all the processes who have modified the page, because if a process has modified a page
during an interval, it must have all the diffs of all intervals that precede it, including
those from other processes. In TreadMarks, all write notices without corresponding
diffs are examined. TreadMarks then sends diff requests to the subset of processes
for which their most recent interval is not preceded by the most recent interval of

another process.

2.3 Summary

This chapter introduced two programming paradigms for parallel computing on net-
works of workstations, namely message passing and distributed shared memory(DSM).
In message passing, messages are exchanged explicitly in application programs. The
DSM systems provide a shared memory abstraction on top of message passing. The
DSM paradigm is easier to program with than the message passing paradigm, but
also incur more overhead than the latter.

We discussed user interface and implementation of the message passing system
PVM [GS92] and the DSM system TreadMarks [KDCZ94]. They are both user level
libraries running on commonly available Unix systems. PVM allows heterogeneous
computers in a network to appear as a single concurrent computational resource.
It provides data type abstraction and buffering for messages. TreadMarks features
release consistency and multiple-writer protocol to reduce communication in DSM

systems.

23

Chapter 3

Application Programs

In this chapter, we present both the PVM and the TreadMarks versions of nine pro-
grams. The programs are Successive Over-Relaxation (SOR), Traveling Salesman
Problem (TSP), and QuickSort (QSORT); Water and Barnes-Hut from the SPLASH
benchmarks [SWG92]; Embarrassingly Parallel (EP), Integer Sort (IS) and three di-
mensional FFT (3-D FFT) from the NAS benchmarks [BBLS91]; and ILINK, which
is a widely used genetic linkage analysis program. For each program, we tried to

achieve the best performance for each paradigm.

3.1 EP: An Embarrassingly Parallel Benchmark

EP [BBLS91] is a heavily computation bound benchmark. EP generates pairs of
Gaussian random deviates according to a specific scheme and tabulates the number
of pairs in successive square annuli. This problem is typical of many Monte-Carlo
simulation applications.

The program first generates 2n (n = 22* in our test) pseudo random floating point
values r; in the interval (0,1) for I < ¢ < 2n. Thenfor 1 < j < n,set x; = 2ry;_1—1
and y; = 2ry; — 1. Next set k =0, and beginning with j =1, test if ¢; = :1;? —I-J}? <.
If not, reject this pair and proceed to the next j. If this inequality holds, then set
k=Fk+1, Xy = x;1/(—2logt;)/t; and Yy = y;1/(—2logt;)/t;. Approximately nx/4
pairs will be constructed in this manner. Finally, for 0 < < 9, tabulate (); as the
count of the pairs (X}, Yy) that lie in the square annulus [< max(|Xg|,|Yx|) <141,
and output the ten (); counts.

Because separate sections of the uniform pseudo random numbers can be indepen-
dently generated by each process, this program can be parallelized so that the only
requirement for communication is the combination of the ten (); sums from various
processes at the end.

In the TreadMarks version of EP, there is a shared array of (); sums, and each

process also has a private array of ();. The (); sums are accumulated locally and added

24

to the shared array only at the end of the program. Updates to the shared sum are
protected by a lock, and the processes wait at a barrier after the modification. After
the barrier, the master prints out the result.

In the PVM version, each process has a (); sum in its private memory. At the end
of program, each process sends its (J); array to the master. The master process adds

them together and outputs the result.

3.2 Red-Black SOR

Successive Over-Relaxation (SOR) is a method of solving partial differential equa-
tions. Our test program iterates over a two dimensional array. During each iteration,
every matrix element is updated to the average of its nearest neighbors (above, below,
left and right).

In red-black SOR, the elements are painted either red or black, such that all
the nearest neighbors of a red element are black and vice versa. FEach iteration
is divided into two phases. The red elements are updated in the first phase, and
the black elements are updated in the second phase. In practice, each row in the
array is split into two adjacent rows, with one containing all the red elements and
another containing all the black elements in the row. We have described a naive SOR
algorithm in chapter 2. Compared to the naive algorithm, red-black SOR does not
need a scratch array, and converges faster. In the second phase, all the red neighbors
of a black point contain new values from the first phase, unlike in the naive algorithm,
where only the old values from the last iteration are used.

SOR is parallelized by dividing the matrix into roughly equal size bands of rows,
assigning each band to different process. During an iteration, every process works
on its own band and synchronizes with others by a barrier at the end of each phase.
In the TreadMarks version, the matrix is allocated in shared memory, and processes
synchronize with barriers at the end of each phase. With PVM, each process allocates
its band of rows in its private memory and explicitly sends the shared row to its

neighbor at the end of each phase.

3.3 IS: Integer Sort

Integer Sort (IS) [BBLS91] requires ranking an unsorted sequence of N keys. The

rank of a key in a sequence is the index value i that the key would have if the sequence

25

of keys were sorted. All the keys are integers in the range 0 < x < B,,,, and the
method used is counting, or bucket sort.

The parallel version of IS divides up the keys among processes. First, each process
counts its keys and writes the result in the private bucket. Then, the values in the
private buckets are summed up. At last, the processes read the sum and rank their
keys. The amount of computation required for this benchmark is relatively small —
linear in the size of the array. The amount of communication is proportional to the
size of the key range, because the bucket is passed around among processes.

In the TreadMarks version of IS, the only shared structure is a bucket. Besides the
shared bucket, each process also has a private bucket and a private array containing
keys owned by this process. After counting locally, a process locks the shared bucket,
adds the values of its private bucket to the shared bucket, releases the lock, and waits
at a barrier until all others have finished their updates. Each process then reads the
final result in shared bucket and ranks its keys.

In the PVM version of IS, each process has a bucket and its part of the keys in
private memory. After counting locally, the processes form a chain, in which process
0 sends its local bucket to process 1, process 1 adds the values in its local bucket to
the values in the bucket it receives and forwards the result to the next process, etc.
The last process in the chain calculates the final result and broadcasts it to all the

other processes.

3.4 TSP

The Traveling Salesman Problem (TSP) finds the shortest path that starts at a desig-
nated node, passes through every other node exactly once and returns to the original
node. A complete path is known as a tour.

A brute force algorithm would try all possible path permutations and select the
shortest one, but the time to check all possible permutations is prohibitive. A simple
optimization is to use a branch-and-bound algorithm. In this solution, if the length
of a partial tour plus a lower bound of the remaining portion of the path is longer
than the current shortest tour, the partial tour will not be explored further, because
it cannot lead to a shorter tour than the current minimum length tour.

The version of TSP used in the evaluation maintains a priority queue of par-
tially evaluated tours, with the one having the shortest lower bound on its length at

the head. The evaluation of a partial tour is composed mainly of two procedures,

26

get_tour and recursive solve. The subroutine get_tour deletes the most promis-
ing path from the queue. If the path contains more than a threshold number of cities,
it returns this path. Otherwise, get_tour extends the path by one node, puts the
promising ones generated by the extension back on the priority queue, and calls itself
recursively. The subroutine get_tour returns either when the most promising path is
longer than a threshold, or when the priority queue becomes empty. The procedure
recursive_solve takes the path returned by get_tour, and tries all permutations of
remaining nodes recursively.

In the TreadMarks version, the major shared data structures are the global mini-
mum tour and its length, a tour array of structures describing both partially evaluated
and unused tours, a priority queue containing pointers to partly evaluated tours, and
a stack of pointers to unused tour structures. The get_tour is guarded by a lock
to guarantee exclusive access to the priority queue and the stack. At the end of
recursive solve, if the process finds a shorter tour than the global minimum tour,
it acquires the lock for global minimum tour and sets the new minimum value.

In the PVM version, the processes are divided into master and slaves. The mas-
ter executes get_tour and keeps track of the optimal solution. The slaves execute
recursive_solve. The slaves send requests to the master either to request solvable

tours, or to update the shortest tour.

3.5 QuickSort

QuickSort (QSORT) is a recursive sorting algorithm that operates by repeatedly
partitioning an unsorted input list into a pair of unsorted sublists, such that all
elements in one of the lists are strictly greater than those in the other, and then
recursively invokes itself on the two sublists. In the implementation used in our
evaluation, the base case of the recursion happens when a list is sufficiently small, at
which time it is sorted directly using bubble-sort. The QSORT is parallelized using a
work queue that contains descriptions of unsorted sublists, from which worker thread
continuously removes the lists.

In the TreadMarks version of QSORT, the major data structures are: an array to
be sorted, a task queue that contains range indices of the unsorted sub-array, and a
count of the number of worker threads blocked waiting for work. The TreadMarks
version of QSORT differs from the TreadMarks version of TSP in that the QSORT

worker releases the task queue without subdividing the sub-array it remove from the

27

queue. The QSORT worker may further divide the sub-array. It then reacquires
control of the task queue and places the newly generated sub-arrays back into the
task queue. In contrast, TSP workers do not relinquish control of the task queue until
they have removed a partial tour that can be solved directly. As a consequence, the
task queue in QSORT is accessed more frequently per unit of computation.

In the PVM version, the master maintains the work queue and performs the
partitioning on demand. The slaves send request messages to the master, which
responds either with a sublist to be sorted directly or an indication that there is no

more work. The slaves ship the sorted sublist along with the next request.

3.6 Water

Water [SWG92] is an N-body molecular dynamics application that evaluates forces
and potentials in a system of water molecules in the liquid state. The computation
is performed over a number of user-specified time steps. Both intramolecular and
intermolecular potentials are computed in each iteration. In order to avoid computing
all the n?/2 pairwise interactions among molecules, a spherical cutoff range is used.

The main data structure used in water is an one-dimensional array of molecules
called VAR. The structure of a molecule contains the center of mass of the molecule,
plus for each of its three atoms the forces acting on them, their displacements, and the
first six derivatives of the displacements. In order to make sure that each interaction is
computed only once, only the interactions between a molecule and the n/2 molecules
ahead of it in the VAR (wrapped around) are computed.

Water is parallelized by dividing VAR into equal segments, assigning one to each
process, regardless of the possible load imbalance caused by cutoff radius. Most of
the communication happens at the intermolecular force computation. At this time, a
process reads the center of mass and the displacement of two molecules, computes the
intermolecular force, and updates the force acting on each of the molecules. Only the
center of mass, the displacement and the force in the molecule structure are accessed
by multiple processes.

In the TreadMarks version of Water, the center of mass, the displacement and
the force of the VAR are allocated in shared memory, the other variables in VAR are
allocated in private memory. Each process also maintains a private copy of the forces.
There is a lock associated with each process. At the time of intermolecular force

computation, each process first zeros its private copy of the forces, and subsequent

28

changes to forces are accumulated locally into the private copy. Forces in the shared
VAR are updated after all processes have finished their computation. If a process
has updated molecules belonged to process ¢ in the private copy, it acquires lock 2
and adds all modifications to molecules owned by process . In the PVM version, the
processes must exchange displacement and mass of molecules explicitly. The forces

are also accumulated locally.

3.7 Barnes-Hut

Barnes-Hut [SWG92] simulates the evolution of a system of bodies under the influence
of gravitational forces. It is a classical gravitational N-body simulation, in which every
body is modeled as a point mass and exerts forces on all other bodies in the system.
If all pairwise forces are calculated directly, this has a complexity of O(n?) in the
number of bodies, which is impractical for simulating large systems. Barnes-Hut is a
hierarchical tree-based method that reduces the complexity to O(nlog n).

The Barnes-Hut algorithm is based on a hierarchical octree representation of space
in three dimensions. The root of the tree represents a space cell containing all bodies
in the system. The tree is built by adding particles into the initially empty root cell,
and subdividing a cell into its eight children as soon as it contains more than a single
body. The result is a tree whose internal nodes are cells and leaves are individual
bodies. The tree is therefore adaptive in that it extends to more levels in regions that
have high particle densities. The tree is traversed once per body to compute the net
force acting on that body. The force calculation algorithm starts at the root of the
tree and conducts the following test recursively for every cell it visits: If the center of
mass of the cell is far enough away from the body, the entire subtree under that cell
is approximated by a single particle at the center of mass of the cell, and the force
this center of mass exerts on the body is computed. However, if the center of mass is
not far enough away, the cell must be opened and each of its sub-cells visited.

The major data structures used in this algorithm are two arrays, one is the array
of bodies that are leaves of the tree, the other is an array of internal cells in the tree.
Load balance is achieved using the cost-zone method, where the cost of each body is
defined by the work associated with it, and the cost of a cell is the sum of the costs of
the bodies in the subtree rooted at this cell. The total work in the system is divided

among processes so that every process has a contiguous, equal zone of work.

29

There are five major phases in each time step. In the sequential version, most of

the time is spent in step 4.
1. MakeTree : Construct Barnes-Hut tree.
2. C_.OF_M : Compute center of mass for each cell.
3. Get_my bodies: Partition bodies among processes.
4. Force Computation: Compute forces on my own bodies.
5. Update: Update position and velocities of my bodies.

In the TreadMarks version, both body and cell arrays are shared. The subroutines
MakeTree and C_OF_M are executed only by the master process, because these incur
a lot of traffic if executed in parallel. There are barriers after C_OF_M and force
computation. No synchronization is necessary during the force computation.

The PVM version looks much like the TreadMarks version. The MakeTree and
C_OF_M are sequential, which means every process obtains all the bodies and creates
a complete tree. Then each process goes on to do the next three steps on its private
copy of the Barnes-Hut tree. At the end of each iteration, the processes broadcast
their bodies.

3.8 3-D FFT

3-D FFT [BBLS91] numerically solves a partial differential equation using three di-
mensional forward and inverse FF'T’s. After initializing an array U of size ny X ngy X ng

with pseudo random numbers, we need to

Compute forward 3-D FFT of U, and call the result V.
Adjust V to obtain X
DO for some fixed number of iterations:

Compute an inverse 3-D FFT on X.

Output the checksum of X.

The 3-D FFT applies one dimensional FFT on each of the three dimensions.
The parallel 3-D FFT algorithm we used is as follows. Assuming the input array
Ap xnyxns 18 organized in row-major order. We distribute the array elements along
the first dimension of A, so that for any ¢, all elements of the complex matrix A; ;.

0 <7 < ny,0 <k < ny are contained within a single process. The 3-D FFT first

30

performs a n3-point 1-D FFT on each of these nyn, complex vectors. Then it performs
a ng-point 1-D FFT on each of the nyns vectors. No communication is needed up to
now, because each of the ns-point vector or the ny-point vector is owned by a single
process. Last, it transposes the resulting array into an ny X ns x ny complex array B
and applies a ni-point 1-D FFT on each of the nyns complex vectors. The processes
communicate with each other at the transpose, because each process owns a different
set of elements after it.

In the TreadMarks version, both the original array A and the resulting array B
are allocated in shared memory. Since the original array has been modified before
the transpose, a barrier is called before each transpose to make sure that the new
values can be propagated to other processes. In the PVM version, messages are sent
explicitly at transpose. This includes figuring out where each part of the result array
comes from, where each part of the original array goes to, and sending messages
correspondingly. This index calculation on a 3-dimensional array is much more error-

prone than simply swapping the indices.

3.9 ILINK

The sequential version of ILINK is a program from version 1.0 of the FASTLINK ver-
sion [CIS93, SGSCY4] of the LINKAGE [LLJO84] package for genetic linkage analysis.
The LINKAGE/FASTLINK package contains programs used by geneticists around
the world to find the approximate location of disease genes. ILINK is one program in
the package. ILINK’s input is one or more family trees showing phenotypes at some
genes and the disease status for those individuals where it is known. It iteratively
estimates a vector which represents a maximum likelihood estimate of how close the
disease gene lies to the other specified genes on the genome.

Given a set of pedigrees and a fixed value of the probability, the outer loop of
the likelihood evaluation iterates over all the pedigrees calculating the likelihood for
each one. Within a pedigree, the program visits each nuclear family and updates
the probability of each genotype for each individual. The update to each individual’s
probability is parallelized. The TreadMarks version of ILINK comes from [DSC*94],
and we base our message passing version on it.

The main data structure in ILINK is a pool of genarrays, where each genarray
is indexed by genotype numbers. The genarray is sparse, and an index array is

associated with each one of them. Each update to an individual’s genarray either

31

updates one parent conditioned on the spouse and all children, or updates one child
conditioned on both parents and all the other siblings. Before each update, the
master allocates a genarray from the pool of genarrays and initializes it for each
person in the family. Then, the master assigns the nonzero elements in the parent’s
genarray to available processes in round robin fashion. FEach process works on its
share of nonzero values, and updates the individual’s genarray accordingly. The
master process summarizes the modifications made by each process at the end of
each update.

In the PVM version of ILINK, each process has a local copy of genarray, and mes-
sages are passed explicitly between the master and the slaves at the beginning and the
end of each update. Since the genarray is sparse, only the nonzero elements are sent.
In TreadMarks, genarray is allocated in shared memory, and barriers synchronize the
processes at the beginning and the end of the update to each person. The sparsity
of genarray is addressed automatically by the TreadMarks system. Since only the
nonzero elements are modified in each update, when the master collects updates at

the end, the diffs it receives only contain the nonzero elements.

3.10 Summary

From our experience with PVM and TreadMarks, we conclude that it is easier to
program using TreadMarks than using PVM. Although there is little difference in
programmability for simple programs, for programs with complicated communication
patterns, such as ILINK and 3-D FFT, it takes a lot of effort to figure out what to

send and whom to send to.

32

Chapter 4

Performance Results

In this chapter, we present and analyze the performance results of both the PVM and
the TreadMarks versions of the programs discussed in Chapter 3. The system used
to evaluate PVM and TreadMarks consists of 8 DECstation-5000/240 workstations,
each with a 40MHz MIPS R3000 processor and 24Mbytes of main memory. The work-
stations are connected to a high-speed ATM network using a Fore Systems TCA-100
network adapter card supporting communication at 100Mbits/second. The ATM in-
terface connects point-to-point to a Fore Systems ASX-100 ATM switch, providing a
high aggregate bandwidth because of the capability for simultaneous full-speed com-
munication between disjoint workstation pairs. In TreadMarks, the user processes
connect with each other with UDP. In PVM, processes set up direct TCP connec-
tions with each other. Both UDP and TCP are built on top of IP, with UDP being
connectionless and TCP being connection oriented. TCP is a reliable protocol while
UDP does not ensure reliable delivery. Using UDP for TreadMarks has the advantage
of the ability to use light-weight, operation-specific, user-level protocols to ensure re-
liable delivery. For PVM, since the type of communication is not known, there is no
significant disadvantage in using TCP over UDP.

Some of the runtime statistics are given. For the PVM versions, we counted the
number of user level messages and amount of user level data. For the TreadMarks
versions, we counted the total number of UDP messages, the total amount of data

sent in these messages, and the amount of data sent for transferring diffs and pages.

4.1 EP: An Embarrassingly Parallel Benchmark

EP is completely compute-bound, so the overhead added by TreadMarks has little
impact on performance. In our test, the program generates 2** pairs of random
numbers. This is much smaller than the 2?® pairs suggested in the NAS benchmark
suites. The results are shown in Table 4.1 and Table 4.2. The TreadMarks version

sends out much more data than the PVM version, because on the first access to

33

the shared ();, a process faults and brings in the whole page, rather than simply
initializing the local array as is done by the PVM version. The additional messages
in TreadMarks come from barriers, lock acquires, page and diff requests. In PVM,
communication only happens at the end of the program, when all processes send
their 40 byte (); to process 0. However, compared to the overall execution time,
the communication overhead is negligible. With 8 processes, the program runs for
36 seconds, and only 7 messages, a total of 308 bytes are sent in PVM. Although
TreadMarks sends more messages than PVM, the number of messages is still small at
86, and the total amount of data is only 33 Kbytes. Consequently, both TreadMarks
and PVM achieve a speedup of 7.9 with 8 processes.

4.2 Red-Black SOR

We ran red-black SOR on a 512 x 2048 matrix of floating point numbers for 101
iterations. The first iteration is excluded from timing and statistics so as to eliminate
cold start effect on our results. With this matrix size, the red or black elements of a
row occupy exactly one page, so at the beginning of each phase, only one page fault
is needed to get the red or black elements of the shared row.

In the first test, the elements in the middle of the array are initialized to zeroes,
and those on the edges are ones. The results are shown in Table 4.3 and Table 4.4.
Because of load imbalance, neither PVM nor TreadMarks achieves good speedup
with 8 processes. The load imbalance happens because floating point computation
involving zeroes takes longer time than others. The TreadMarks version performs
within 2% of the PVM version. This is a consequence of the low communication
rate in SOR, and the use of lazy release consistency in TreadMarks. Because of lazy
release consistency, although the processes keep writing to the shared pages between

two barriers, the number of messages sent in TreadMarks is always three times of

nprocs 2 4 6 8

Tmk 1.99 | 3.97 | 5.96 | 7.94
PVM 1.99 | 3.99 | 5.96 | 7.92
Tmk/PVM | 1.0 | 1.0| 1.0 | 1.0

Sequential time: 286 sec

Table 4.1 EP speedup

34

nprocs 2 4 6 8
Messages 9 33 62 86
Tmk | Total Bytes | 4K | 13K | 23K | 33K
User Bytes | 4K | 13K | 22K | 31K
PVM | Messages 1 3 5 7
Bytes 44 1 132 | 220 | 308

Table 4.2 EP Message and Data

that in PVM. Assume there are n processes, the number of shared rows is 2(n — 1).
In PVM, 2(n — 1) messages are sent in each phase, because processes send the shared
rows directly to their neighbors. In TreadMarks, since a request is sent to get the diff
of a row, a total of 4(n — 1) messages are sent to obtain the data. Besides, there are
2(n — 1) messages sent in the barrier at the end of each phase. Altogether, 6(n — 1)
messages are sent in each phase, which is three times of those sent in PVM.

Notice that the amount of data sent in TreadMarks is much less than that in
PVM. This is a result of multiple-writer protocol. Since all elements in the middle of
the array are zeroes, changes are propagated from the edge to the center of the array.
In TreadMarks, only the diffs are sent, compared to PVM, where the whole shared
row 1s transferred. However, this has little effect on the performance, because wire
time is negligible compared to the time to initiate a message.

We have also run SOR with all values in the matrix initialized to nonzero, such
that all elements in the matrix are changed in each iteration. The results are shown
in Table 4.5 and Table 4.6. The TreadMarks version and the PVM version send
the same amount of data, and the number of messages sent in each version remains
unchanged from the first test. Because the numbers are nonzero, the single process
time drops from 279 seconds to 122 seconds. Due to better load balance, this test also
has higher speedup than the first one. Consequently, communication rate has larger
influence on performance. The TreadMarks version achieves 91% of the speedup of

the PVM version with 8 processes, compared to 99% in the first test.

4.3 Integer Sort

We tested IS on two sets of parameters. In the first test, we sorted 2%° keys ranging

from 0 to 27 for 10 iterations. In the second test, the keys range from 0 to 2'°, and

35

nprocs 2 4 6 8

Tmk 1.98 | 2.80 | 2.94 | 3.32
PVM 1.98 | 2.85 | 3.01 | 3.36
Tmk/PVM | 0.99 | 0.98 | 0.98 | 0.99

Sequential time: 279 sec

Table 4.3 SOR-Zero speedup

nprocs 2 4 6 8

Messages(K) 1.2 36| 6.0 8.4
Tmk | Total Bytes(KB) | 157 | 801 | 2482 | 3613
User Bytes(KB) 137 | 7131|2292 | 3285

PVM | Messages(K) 04| 12| 20 2.8
Bytes(KB) 1640 | 4020 | 8200 | 11430

Table 4.4 SOR-Zero Message and Data

nprocs 2 4 6 8

Tmk 1.88 | 3.52 | 5.05 | 6.30
PVM 1.97 | 3.77 | 5.48 | 6.91
Tmk/PVM | 0.95 | 0.93 | 0.92 | 0.91

Sequential time: 122sec

Table 4.5 SOR-Nonzero speedup

nprocs 2 4 6 8

Messages(K) 1.2 36| 6.0 8.4
Tmk | Total Bytes(KB) | 1660 | 5008 | 8390 | 11808
User Bytes(KB) | 1640 | 4920 | 8200 | 11480

PVM | Messages(K) 04| 12| 20 2.8
Bytes(KB) 1640 | 4020 | 8200 | 11430

Table 4.6 SOR-Nonzero Message and Data

36

we measured 5 iterations. The results are shown in tables 4.7 to 4.10. We did not
try the 2% keys, and 22° buckets as suggested in NAS, because the extremely low
computation /communication ratio is not suitable for workstation clusters.

The results show the potential performance degradation caused by diff accumu-
lation in the current TreadMarks implementation. Assuming the bucket size is b, in
PVM, the amount of data sent in each iteration is 2(n — 1)b. In TreadMarks, since
updates to the shared bucket are protected by a lock, each process that modifies the
shared bucket must get all the diffs created by previous modifiers in this iteration.
The same thing happens after the barrier, where every process reads the final values in
the shared bucket. At this time, each process gets all the diffs made by the processes
who modified the shared bucket after it. These add up to n(n — 1)b in each itera-
tion. We call this phenomenon diff accumulation. Although in each case, the process
can obtain all the diffs from one process, this accumulation causes more messages
to be sent when the sum of the diffs exceeds the maximum size of a UDP message.
These results indicate that the diffing mechanism is not suitable for migratory data.
Coalescing the diffs before sending them out would eliminate this problem.

Diff accumulation is not a serious problem when the bucket size is 27 integers,
because 8 diffs of the bucket can be sent in one message. The overheads in the first test
come mainly from synchronization messages and diff requests. Consequently, with 8
processes, the Tread Marks version sends out 4 times more data, 8 times more messages
than the PVM version, and achieves 86% of the speedup in PVM. In the second test,
since the bucket of 2! integers is much larger than the message size, sending more
diffs means sending more messages. Because of the high communication/computation
ratio, with 8 processes, PVM achieves a speedup of 1.12, and TreadMarks achieves
48% of the speedup of PVM.

nprocs 2 4 6 8

Tmk 1941 3.6 | 47| 5.2
PVM 194 3.7 51| 6.1
Tmk/PVM | 1.0 | 0.98 | 0.93 | 0.86

Sequential time: 10 sec

Table 4.7 1S speedup, N = 2%, B, .. =27

nprocs 2 4 6 8
Messages 165 | 483 | 823 | 1141
Tmk | Total Bytes(KB) | 16 | 81 | 217 | 378
User Bytes(KB) 14| 72197 | 348
PVM | Messages 20 | 60 | 100 | 140
Bytes(KB) 10| 31| 51 71

Table 4.8 IS Message and Data, N =22, B, . = 27

nprocs 2 4 6 8

Tmk 1.43 1 1.26 | 0.83 | 0.53
PVM 1.54 | 1.85 | 1.56 | 1.12
Tmk/PVM | 0.93 | 0.68 | 0.54 | 0.48

Sequential time: 10 sec

Table 4.9 1S speedup, N = 2%, B,,, = 2"

nprocs 2 4 6 8
Messages 705 | 2491 | 4981 | 8355
Tmk | Total Bytes(MB) | 1.3 | 7.4 | 18.8 | 35.4
User Bytes(MB) | 1.3 | 7.4 | 18.7| 35.2
PVM | Messages 10 30 50 70
Bytes(MB) 1.3 39| 66| 9.2

Table 4.10 IS Message and Data, N = 2?°, B, ,, = 21°

38

4.4 TSP

We solved a 18 city problem. The results are shown in Table 4.11 and Table 4.12.
With 8 processes, TreadMarks sends 5 times more messages and 72 times more data
than PVM, and achieves 84% of the speedup of PVM. The performance gap comes
from the cost of accessing the priority queue.

In the PVM version of TSP, only the solvable tours and the minimum tour are
exchanged between the slave and the masters. It takes 2 messages each for a slave
to obtain a solvable tour, or to update the global minimum tour. The number of
messages and the amount data sent in PVM changes little with increasing numbers
of process, because the total amount of work remains stable.

The additional messages in TreadMarks come from both lock acquires and diff
requests. Furthermore, in get_tour, it takes 3 page faults to obtain the priority
queue, because it is composed of 3 distinct data structures, each of which takes more
than one page. Overall, TreadMarks should send 4.5 times more messages than PVM,
provided that every lock acquirer gets the lock from a remote process. This is not true
with 2 processes, where 90 of the 165 locks are remote. Consequently, TreadMarks
only sends 3 times more messages than PVM. With 8 processes, since 170 of the 200
locks are remote, PVM sends 5 times more messages than PVM. As for the amount
of data, in TreadMarks, besides the additional data movement to get the shared tour
structures, because accesses to the shared data are protected by a lock, on each access
miss, a process gets all the diffs created since its last release of the lock. On average,

this means getting diffs created by all the other processes.

nprocs 2 4 6 8

Tmk 1.73 | 3.07 | 4.03 | 4.74
PVM 2.01 | 3.6 | 4.82] 5.63
Tmk/PVM | 0.86 | 0.85 | 0.84 | 0.84

Sequential time: 27.1 sec

Table 4.11 TSP speedup

39

nprocs 2 4 6 8
Messages(K) 0.7 13] 19| 23
Tmk | Total Bytes(KB) | 76 | 241 | 531 | 802
User Bytes(KB) | 67 [217 | 492 | 748
PVM | Messages(K) 03(04] 04| 04
Bytes(KB) 0 1] 11| 11

Table 4.12 TSP Message and Data

4.5 QuickSort

We used two sets of parameters, where the array size is 256K, and the bubble sort
thresholds are 1024 and 512 respectively. The results are shown in Tables 4.13 to 4.16.
Because the coarse-grained version runs for a longer amount of time, and sends less
messages than the fine-grained version, it allows for better speedup than the latter. In
the fine-grained version, although both PVM and TreadMarks get lower speedup, with
8 processes, TreadMarks only achieves 50% of the performance of PVM, compared to
78% in the coarse-grained version. Most of the performance dropoff comes from the
different ways that work is distributed in each version.

In the PVM version, the only data sent are sublists that can be bubble sorted,
and each sublist is sent exactly twice. Consequently, the amount of data transferred
is always twice the size of the total array, and the number of messages is twice the size
of the array divided by the bubble sort threshold. For example, in the coarse-grained
version, 2,103 Kbytes of data are sent in 1K messages, compared to the fine-grained
version, where 2,110 Kbytes of data are sent in 2K messages.

TreadMarks sends more data than PVM, because the intermediate sub-arrays
and the task queue are also shifted among processes. As with TSP, due to diff
accumulation, the amount of data sent increases with the number of processes. The
additional messages come from lock acquires and diff requests. Because the processes
continually re-acquire the task queue as they divides the array until it is smaller than
the threshold, the lock acquires are more frequent than the message passing in PVM.
Since the size of the sublists is not an integral of a page, extra messages are sent due

to false sharing.

40

nprocs 2 4 6 8

Tmk 1.84 | 3.37 | 4.32 | 5.33
PVM 1.92 | 3.66 | 5.32 | 6.79
Tmk/PVM | 0.96 | 0.92 | 0.81 | 0.78

Sequential time: 81.33 sec

Table 4.13 QSORT - Coarse-grained speedup

nprocs 2 4 6 8

Messages(K) 2.9 5.6 8.9 10.0
Tmk | Total Bytes(KB) | 2,709 | 7,251 | 12,121 | 13,969
User Bytes(KB) | 2,671 | 7,136 | 11,890 | 13,632

PVM | Messages(K) 1 1 1 1
Bytes(KB) 5103 | 2,103 | 2,103 | 2.103

Table 4.14 QSORT Coarse-Grained Message and Data

nprocs 2 4 6 8

Tmk 1.60 | 2.43 | 2.58 | 2.81
PVM 1.73 | 3.2 1 4.49 | 5.58
Tmk/PVM | 0.92 | 0.76 | 0.57 | 0.50

Sequential time: 41.31 sec

Table 4.15 QSORT - Fine-grained speedup

nprocs 2 4 6 8

Messages(K) 4.9 12.4 18.7 18.9
Tmk [Total Bytes(KB) | 3,216 | 10,504 | 19,163 | 20,050
User Bytes(KB) | 3,147 | 10,321 | 18,636 | 20,245

PVM | Messages(K) 2.1 2.1 2.1 2.1
Bytes(KB) 9110 | 2,110 | 2,110 | 2,110

Table 4.16 QSORT Fine-Grained Message and Data

41

4.6 Water

We used two data set sizes, 288 molecules and 1728 molecules, and ran for 5 time
steps. The 288 molecule simulation is used in the SPLASH. The results are shown in
tables 4.17 to 4.20.

With 288 molecules, TreadMarks achieves 76% of the speedup of PVM with 8
processes. In addition to synchronization messages and repeated page faults, false
sharing causes extra messages in TreadMarks. In PVM, two user level messages are
sent for each pair of processes that interact with each other. In TreadMarks, if a
process computes the forces between its molecules and the molecules belonging to
process t, 1t sends diff requests when reading the displacements, and when updating
the forces of molecules belonging to process :. When process ¢ reads the new values
of its molecules after the barrier synchronizing these updates, it may fault again if
process ¢ 1s not the last one to update these molecules before the barrier. At this
point, false sharing causes the faulting process to send diff requests to two different
processes, because molecules belonging to different processes are protected by different
locks. With 8 processes, since each process owns 1.48 pages, false sharing occurs on 7
of the 11.8 pages of the VAR array. Consequently, TreadMarks sends 5977 messages
compared to 620 messages in PVM.

False-sharing also causes the TreadMarks version to send more data than the PVM
version. Another cause of the additional data sent in TreadMarks is diff accumulation.
Because updates to the shared array are protected by locks, diff accumulation causes
TreadMarks to send (n/2 4+ 1)/2 times more data than the PVM, where n is the
number of processes. Adding the two factors, with 8 processes, TreadMarks sends 3.4
times more data than PVM.

With 1728 molecules, TreadMarks achieves 99% of the speedup in PVM with
8 processes. This is the results of increased computation/communication ratio and
reduced false-sharing in TreadMarks. Because the reduced false-sharing, with 8 pro-
cesses, TreadMarks sends 2.8 times more data than PVM, compared to 3.4 times

more with 288 molecules.

4.7 Barnes-Hut

We ran Barnes-Hut with 4096 bodies for 5 steps, and fcell = 0.8, § = 0.6. The results
are shown in Table 4.21 and Table 4.22. TreadMarks achieves 90% of the speedup in

nprocs 2 4 6 8

Tmk 1.8 34| 46| 5.3
PVM 1.9 36| 54| 6.9
Tmk/PVM | 0.98 | 0.93 | 0.85 | 0.76

Sequential time: 42.9 sec

Table 4.17 Water speedup, 288 molecules, 5 time steps

nprocs 2 4 6 8
Messages 727 | 2295 | 3938 | 5977
Tmk | Total Bytes(KB) | 668 | 1935 | 3397 | 5195
User Bytes(KB) | 659 | 1894 | 3311 | 5039
PVM | Messages 50 | 180 | 370 | 620
Bytes(KB) 379 | 759 | 1139 | 1520

Table 4.18 Water Message and Data, 288 molecules, 5 time steps

nprocs 2 4 6 8

Tmk 1.94 | 3.80 | 5.64 | 7.47
PVM 1.98 | 3.82 | 5.73 | 7.55
Tmk/PVM | 0.99 | 0.99 | 0.99 | 0.99

Sequential time: 1568 sec

Table 4.19 Water speedup, 1728 molecules, 5 time steps

nprocs 2 4 6 8
Messages 2805 | 6074 | 9779 | 14399
Tmk | Total Bytes(MB) | 4.01 | 9.66 | 16.98 | 26.05
User Bytes(MB) | 3.98 | 9.58 | 16.83 | 25.79
PVM | Messages 50 | 180 370 620
Bytes(MB) 228 | 456 | 6.84 | 9.12

Table 4.20 Water Message and Data, 1728 molecules, 5 time steps

43

PVM with 2 processes, and 58% of that in PVM with 8 processes. With 8 processes,
TreadMarks sends 70% more data and about 200 times more messages than PVM.

The difference in the amount of data is due to the different programming styles
in TreadMarks and PVM. In the PVM version, each process broadcasts its bodies
at the end of the iteration. With 8 processes, this takes 56 user level messages, and
the total amount of data sent is 7 times the size of the array of bodies. However, in
TreadMarks, the master process first collects bodies from all the others and builds
the tree. Then the whole tree is sent to each of the processes, where the size of the
tree is about half of the size of the array of bodies. Moreover, during the computation
step, each process reads most of the bodies. Overall, the data sent in the TreadMarks
version is about 50% more than that in the PVM version.

As for the number of messages, TreadMarks sends a lot more messages than PVM,
mostly because the large data size and false-sharing. Since the size of the array of
bodies is 147K bytes, it takes a lot of page faults to get the bodies and the Barnes-
Hut tree. Furthermore, although the set of bodies owned by a process are adjacent in
physical space, they are not adjacent in memory, which causes false-sharing. Because
of the false-sharing, in MakeTree, each page fault causes the process to send out
diff requests to several processes. All these add up to about 1400 messages in each

iteration.

4.8 3-D FFT

The results are obtained by running on a 32 x 64 x 64 array of double precision
complex numbers for 6 iterations, excluding the time for distributing the initial value
at the beginning of program. This matrix size if one fourth of that used in the NAS
benchmark. The statistics are shown in Table 4.23 and Table 4.24. TreadMarks

nprocs 2 4 6 8

Tmk 1.63 | 2.44 | 2.73 | 2.78
PVM 1.82 1 3.21 | 4.06 | 4.83
Tmk/PVM | 0.9 |0.76 | 0.67 | 0.58

Sequential time: 69.1 sec

Table 4.21 Barnes-Hut speedup

44

nprocs 2 4 6 8
Messages(K) 4.7 177 32.6 52.5
Tmk [Total Bytes(KB) | 3,493 | 9,766 | 14,576 | 19,555
User Bytes(KB) | 3,449 | 9,593 | 14,249 | 19,020
PVM | Messages(K) 0.01 | 0.06 0.15 0.28
Bytes(KB) T.305 | 5,426 | 9,050 | 12,704

Table 4.22 Barnes-Hut Message and Data

achieves 98% and 76% of the speedup in PVM with 2 processes and 8 processes
respectively.

Because of release consistency, TreadMarks almost sends the same amount of
data as PVM, with the exception of 6 processes. However, because of diff requests,
many more messages are sent in TreadMarks than in PVM. These diff requests play
a more important role with increasing number of processes, both because the com-
putation/communication ratio is lower, and because more data are transferred in
transposition with the increase of the number of processes.

An abnormally happens with 6 processes. We attribute this to false-sharing.
During the transposition in inverse 3-D FFT, each page modified by one process is
read by two other processes. Although the two processes read disjoint parts in the
page, the same diff is sent to both of them. Since this happens only when running
with 6 processes, in TreadMarks, 36% more messages and 45% more data are sent
with 6 processes than with 8 processes. Consequently, TreadMarks only achieves 71%
of the speedup in PVM, compared to 76% with 8 processes.

4.9 ILINK

nprocs 2 4 6 8

Tmk 1.48 | 2.40 | 2.54 | 3.88
PVM 1.51 | 2.63 | 3.58 | 5.08
Tmk/PVM | 0.98 | 0.91 | 0.71 | 0.76

Sequential time: 39.6 sec

Table 4.23 3-D FFT speedup

nprocs 2 4 6 8
Messages 3639 | 6363 | 11569 | 8505
Tmk | Total Bytes(MB) | 7.39 | 12.68 | 22.92 | 15.76
User Bytes(MB) | 7.35 | 12.60 | 22.78 | 15.63
PVM | Messages 230 | 1362 | 2130 | 3178
Bytes(MB) 7.34 | 11.01 | 12.23 | 12.85
Table 4.24 3-D FFT Message and Data
nprocs 2 4 6 8
Tmk 1.69 | 2.72 | 3.20 | 3.33
PVM 1.73 | 2.85 | 3.67 | 3.84
Tmk/PVM | 0.98 | 0.96 | 0.87 | 0.87
Sequential time: 910 sec
Table 4.25 ILINK speedup
nprocs 2 4 6 8
Messages(K) 40 | 161 | 331 | 545
Tmk | Total Bytes(MB) | 20.9 | 65.4 | 111.6 | 158.0
User Bytes(KB) | 20.5 | 63.7 | 107.1 | 152.1
PVM | Messages(K) 21 6.3 10.5| 19.6
Bytes(MB) 18.8 [47.9 | 75.1 | 101.9

Table 4.26 ILINK Message and Data

45

46

In this test, we use the data set RP01-3 [BHC*91], with an allele product 2 x 6 x 6.
The results are shown in Table 4.25 and Table 4.26. With 8 processes, TreadMarks
sends 55% more data and 27 times more messages than PVM, and achieves 87% of
the speedup of PVM.

Sparsity of the genarray is the main reason that makes TreadMarks send more
messages than PVM. In our test, the size of the genarray is about 16 pages. In PVM,
the processes send the nonzero values in one message, which is much smaller than 16
pages. Because the nonzero elements are scattered on 16 pages, TreadMarks sends
32 messages in respond to the 16 page faults.

One source of the additional data sent in TreadMarks is false sharing. False
sharing happens because the nonzero values in the parent’s genarrays are assigned to
processes in round robin fashion. When the parent’s genarrays are distributed to the
slaves, in PVM, each slave receives only its part of the genarray, but in TreadMarks,
a slave gets all the nonzero elements in the page, including those belonging to other
processes. False sharing has a large effect when there is only one child in the family,
where among the three genarrays of the family members to be distributed, both of
the parent’s genarrays are assigned in round robin fashion. With more children in the
family, more genarrays are distributed, and only one parent’s genarray is partitioned.
We assume that for 50% of the families, there is only one child in the family.

Another source of additional data in TreadMarks is diff accumulation. Since
the genarrays are initialized at the beginning of computation for each nuclear fam-
ily. Although it is correct for the processes to get newly initialized data only, in

TreadMarks, they also get the diffs created during previous computations.

4.10 Summary

Our results show that because of the use of release consistency and the multiple-
writer protocol, TreadMarks performs comparable with PVM on a large variety of
problems. For example, in SOR-zero, the Water simulation of 1728 molecules, and
EP, TreadMarks performs within 2% of PVM. In most of the other tests, TreadMarks
performs within 76% to 91% of PVM with 8 processes. In three of the thirteen
tests, PVM performs about twice as well as TreadMarks with 8 processes. These are
Barnes-Hut, the fine-grained QuickSort, and the Integer Sort with a bucket size of 2'°.
In Integer Sort, PVM achieves a speedup of 1.12 with 8 processes. We do not think
this is a great advantage compared to the speedup of 0.53 achieved by TreadMarks.

47

The separation of synchronization and data transfer, and the additional diff re-
quests in TreadMarks are two of the causes of its lower performance for all the pro-
grams. In PVM, data communication and synchronization are integrated together.
The send and receive operations not only exchange data, but also regulate the progress
of the processes. In TreadMarks, synchronization is through locks/barriers, which do
not communicate data. Data movement is triggered by expensive page faults, and
diff requests are sent out in order to get the modifications.

Although the multiple-writer protocol addresses the problem of simultaneous
writes to the same page, false sharing still affects the performance of TreadMarks.
This occurs in QuickSort, 3-D FFT, the Water run of 288 molecules, and Barnes-Hut.
Although multiple processes write to disjoint parts of the same page without interfer-
ing with each other, when a process reads the data written by one of the writers, diff
requests are sent to all the writers, which causes a lot of redundant communication.

In addition, PVM also benefits from the ability to aggregate scattered data in a
single message, an access pattern that would result in several miss messages in the
invalidate-based TreadMarks protocol. This occurs in Barnes-Hut and ILINK.

In the current implementation of TreadMarks, diff accumulation causes additional
communication. Diff accumulation is the problem of transmitting multiple overlap-
ping diffs as a result of several processes modifying the same data. This occurs in

migratory data, and in data that are reinitialized, such as Integer Sort, QuickSort,

TSP, Water, and ILINK.

48

Chapter 5

Conclusions

This thesis presents two contributions. First, our results show that, on a large variety
of programs, the performance of a well optimized DSM system is comparable to a
message passing system. Especially for practical problems, such as ILINK and the
Water simulation of 1728 molecules, TreadMarks performs within 15% of PVM.

Second, we summarize four main causes for the lower performance of TreadMarks
compared to PVM. The first is the separation of synchronization and data transfer in
TreadMarks, the second is additional access misses in the invalidate based TreadMarks
protocol, the third is false sharing in TreadMarks, and finally, PVM benefits from
the ability to aggregate scattered data in a single message, an access pattern that
would result in several miss messages in the invalidate-based TreadMarks protocol.
To alleviate these problems, we suggest a combination of performance analysis tools
and compiler annotation. To avoid expensive page faults, we can use the compiler to
determine the data that will be accessed in an interval. The runtime system can then
prefetch this data with the acquires. We can also use the compiler to detect data
migration and re-initialization, so that we can use more efficient runtime protocols in
these cases. For numerical computations with static shared memory access patterns,
such as 3-D FFT, we can use the compiler to detect sharing patterns, and avoid
false sharing. Finally, if the application is programmed with poor locality, compiler
optimization may not be possible. In this case, a performance analysis tool could
assist the user in improving the parallel program.

In terms of programmability, our experience indicates that it is easier to program
using TreadMarks than using PVM. Although there is little difference in programma-
bility for simple programs, for programs with complicated communication patterns,
such as ILINK and 3-D FFT, a lot of effort is required to determine what data to send
and whom to send the data to. Distributed shared memory, on the other hand, pro-

vides an easier path to developing parallel programs on networks of workstations.

[AH93]

[BBLS91]

[BCZ90]

[BHCT91]

[BZ91]

[C1593]

[DKCZ93]

49

Bibliography

S. V. Adve and M. D. Hill. A unified formalization of four shared-memory
models. IEEE Transactions on Parallel and Distributed Systems, 4(6):613—
624, June 1993.

D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel bench-
marks. International Journal of Supercomputing Applications, 5(3):63-73,
Fall 1991.

J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin: Distributed shared
memory based on type-specific memory coherence. In Proceedings of the
Second ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, pages 168-176, March 1990.

S.H. Blanton, J.R. Heckenlively, A.W. Cottingham, J. Friedman, L.A.
Sadler, M. Wagner, L.H. Friedman, and S.P. Daiger. Linkage mapping of
autosomal dominant retinities pigmentosa (RP1) to the pericentric region
of human chromosome 8. Genomics, 11:8357-869, 1991.

B.N. Bershad and M.J. Zekauskas. Midway: Shared memory parallel pro-
gramming with entry consistency for distributed memory multiprocessors.
Technical Report CMU-CS-91-170, Carnegie-Mellon University, Septem-
ber 1991.

R. W. Cottingham Jr., R. M. Idury, and A. A. Schaffer. Faster sequen-
tial genetic linkage computations. American Journal of Human Genetics,

53:252-263, 1993.

S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of re-
lease consistent software distributed shared memory on emerging network
technology. In Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 244-255, May 1993.

[DSC+94]

[GLL*90]

[GS92]

[Har90]

[KC792]

[KDC794]

[Li86]

[LLJOSA]

[Mes94]

INLO1]

30

S. Dwarkadas, A.A. Schaffer, R.W. Cottingham Jr., A.L. Cox, P. Keleher,
and W. Zwaenepoel. Parallelization of general linkage analysis problems.

Human Heredity, 44:127-141, 1994.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, pages 15-26, May 1990.

G.A. Geist and V.S. Sunderam. Network-based concurrent computing on
the PVM system. In Concurrency: Practice and Ezxperience, pages 293—
311, June 1992.

R.J. Harrison. Portable tools and applications for parallel computers. In
International Journal of Quantum Chemistry, volume 40, pages 847863,
February 1990.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for
software distributed shared memory. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages 13-21, May
1992.

P. Keleher, 5. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Dis-
tributed shared memory on standard workstations and operating systems.
In Proceedings of the 1994 Winter Useniz Conference, pages 115-131, Jan-
uary 1994.

K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD
thesis, Yale University, September 1986.

G. M. Lathrop, J. M. Lalouel, C. Julier, and J. Ott. Strategies for multilo-
cus linkage analysis in humans. Proc. Natl. Acad. Sci. USA, 81:3443-3446,
June 1984.

Message Passing Interface Forum. MPI: A message-passing interface stan-

dard, version 1.0, May 1994.

B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues
and algorithms. IEEE Computer, 24(8):52-60, August 1991.

[Par92]

[SGSCo4]

[SWG92]

51

Parasoft Corporation, Pasadena, CA. Express user’s guide, version 3.2.5,

1992.

A. A. Schaffer, S. K. Gupta, K. Shriram, and R. W. Cottingham Jr. Avoid-
ing recomputation in linkage analysis. Human Heredity, 44:225-237, 1994.

J.P. Singh, W.D. Weber, and A. Gupta. SPLASH: Stanford parallel ap-
plications for shared-memory. Computer Architecture News, 20(1):2-12,
March 1992.

