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Introduction

A standard result in topological dynamics is the existence of minimal subsystem. It is a direct
consequence of Zorn’s lemma: given a compact topological space X with a map f : X—X,
the set of compact non empty subspaces K of X such that f(K) C K ordered by inclusion
is inductive, and hence has minimal elements. It is natural to ask for a point-free (or formal)
formulation of this statement. In a previous work [3], we gave such a formulation for a quite
special instance of this statement, which is used in proving a purely combinatorial theorem (van
de Waerden’s theorem on arithmetical progression).

In this paper, we extend our analysis to the case where X is a boolean space, that is compact
totally disconnected. In such a case, we give a point-free formulation of the existence of a
minimal subspace for any continuous map f : X—X. We show that such minimal subspaces
can be described as points of a suitable formal topology, and the “existence” of such points
become the problem of the consistency of the theory describing a generic point of this space.
We show the consistency of this theory by building effectively and algebraically a topological
model. As an application, we get a new, purely algebraic proof, of the minimal property of
[3]. We show then in detail how this property can be used to give a proof of (a special case
of) van der Waerden’s theorem on arithmetical progression, that is “similar in structure” to
the topological proof [6, 8], but which uses a simple algebraic remark (proposition 1) instead of
Zorn’s lemma. A last section tries to place this work in a wider context, as a reformulation of
Hilbert’s method of introduction/elimination of ideal elements.

1 Construction of Minimal Invariant Subspace

1.1 Algebraic formulation

The first step is to give a purely algebraic formulation of the problem of finding minimal invariant
subspace. By Stone duality, the space X can be seen as a boolean algebra B, the elements of
this boolean algebra being the clopen subset of the space. A continuous map f : X—X can be
seen as an algebra morphism ¢g : B—B. In term of points, g is the inverse image of f.

We are now looking for a minimal non empty closed invariant subset M C X. We represent
it as a predicate p(z) over clopen z € B, such that p(z) expresses that the minimal closed
invariant subset M is a subset of the clopen represented by x. We can characterise such a
predicate without explicitly mentioning the subset M by the following properties:

L p(1),

2. =u(0),



3. if p(z) and = C y, then u(y),
4. if p(x) and p(y), then p(z.y),

5. if p(x), then pu(g(z)),

6. 1(1 — ) or pi(Vicng'(z)) for some n.

It can be shown that, conversely, if p is a predicate over B that satisfies these properties,
then the closed subset that is the intersection of all clopen satisfying p is a closed minimal
invariant subset.

1.2 Space of minimal subspace

Following [15], we can see the 6 properties as describing “forcing” conditions on a point of a
space. This space M can be seen as an infinitary propositional logic defined inductively by the
properties

Lzt g(x),
2. TH1—2V\V,(Vicng'(2)).

A point of this space defines then exactly a closed minimal invariant subset.

We are going to show various properties of this space M, in particular that it is consistent,
that is 1 is not covered by the empty set, and that it is positive, that is any cover of 1 is
inhabited. The general method we follow for proving these properties is to build effectively
some entailment relations over B that satisfy the two conditions above, and hence contain the
entailment relation of the space M. This can be formulated as follows: we realize effectively the
6 conditions above in a topological model.

1.3 A class of intuitionistic models

This class of models is parametrised by an ideal I of the boolean algebra B which is closed
under the morphism ¢ : if € I then g(z) € I. Given such an ideal, we introduce then the
predicate Z7(z) meaning that there exists n such that Ajc,g'(z) € I. The next three lemmas
have a direct proof.

Lemma 1: If there exists n such that Z;(Ai<ng'(2)), then Z;(z).
Lemma 2: If Z;(z) and y C z, then Z;(y).
Lemma 3: If Z;(z) and y € I, then Zr(z V y).
Proof: Because [ is closed under the morphism ¢. []
Notice that, a priori, we cannot conclude that Zr(z V y) if we know only Z7(z) and Zj(y).
The main combinatorial property of this note is:
Proposition 1: If Z;(y.(1 — «)) and Z;(y. Vi<, ¢'(2)) for all n, then Z;(y).
Proof: We have n such that Ni<ng'(y.(1 — 2)) € I. By lemma 1, it is enough to show that
Z1(Ni<ng'(y)). This follows from lemmas 2, 3 and the inequality
Ni<ng' () C Ai<ng' (y-(1 = 2)) V y. Vicn g'(2).
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This inequality is a special case of the following remark: if w < w;Vu; for all ¢, then w < Au;VVo;.
We apply this remark to the case w = Aj<ng*(y) and u; = ¢'(y.(1 — 2)), v; = y.g*(z). U

We introduce next a covering relation on the set of clopen of the space X :
r<aU = (V2)[[(Vy e U)Z1(2.9)] = Z1(z.2)].

This defines a formal space My, following Sambin’s definition of a formal topology [16].

Proposition 2: The relation x < U satisfies

o if z € U, then z q U,

o ifz < U, and u <V for all w € U, then z <V,
o if z « U and & < V, then z <« U.V,

o if v < U then z.y <« U,

)

e lal—2aV, \/igngi@)-

Proof: The first three conditions do not use any special properties of the predicate Z;.
The fourth condition follows from lemma 2.

It is clear that if Z;(z.¢g(2)), then Z(z.z) and hence z < g(z).

The last condition follows from proposition 1. LI

1.4 An alternative presentation

For the locale-theorist reader not familiar with Sambin’s definition of spaces, we add here an
alternative presentation of the space My. If U is a subset of B, let UL be the subset of z € B
such that Zj(zu) for all w € U. (It can be checked that v < V for all w € U is equivalent to
Vvicut)

The space M7 can then be described as the locales of all U C B such that U = U+ with for
meet operation the intersection, and for infinitary join VU; = (UU;)tL. If we interpret u(z) as
the set {z}++, then we can use this construction to give a topological model of the predicate u
described above. It can then be checked that all 6 properties characterising the property p are
realized in this model.

1.5 The Minimal Property
As a first application, let us prove the Minimal Property as stated in [8, 3].
Proposition 3: If 1 <« 7/ in M, then 1 € [.

Proof: If 1 < [ in M, we have 1 < I in My. But it is direct that Z;(z) for all 2 € I. Hence
1 < Iin My implies Z;(1), which implies 1 € I. [

In term of points, this means that for proving that an open invariant by f is a covering of
the space X, it is enough to show that all minimal point belongs to this open, where a point is
minimal iff it belongs to a minimal closed invariant subset. Yet another reading is that if we
can prove dz € [.u(z) for a “generic” p satisfying the 6 properties above, then we have 1 € [I.
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1.6 The space M is consistent

If we take for I the zero ideal, we get the consistency of M. Indeed, by the minimal property,
we get that 1 < () implies 1 € I, which means 1 = 0 if I is the zero ideal. Thus we get that M
is consistent if B is a consistent boolean algebra, that is 1 # 0 in B.

1.7 The space M is positive

Let L be such that 1 <« L and let ¢ be the proposition that L is inhabited. We take for [
the ideal of elements @ € B such that ¢ V [# = 0]. Notice that we have Yy € L.¢ and hence
Vy € L.Z1(y) by construction of I. Since 1 < L in M, we have 1 < L in My. In particular, we
get

[Vy € L.Z[(y)] = Z[(l)

and hence Z7(1). This implies ¢ V [1 = 0] by definition of I, and hence ¢ if B is a consistent
boolean algebra.
1.8 Generalisation to Stone spaces

All these constructions can be generalised to the case of Stone spaces [10]!, that can be described
as spaces of prime filters of a distributive lattice. Given such a lattice D, and a lattice morphism
g, we can associate the formal propositional theory

L p(1),
2. —p(0),

and z C y, then u(y),

.
S
=

)
z) and p(y), then p(z.y),
)

Ot

—-

=
=

6. pu(x) or u(Vicng'(y)) for some n, whenever 1 = 2 V y.

We can then prove as above that the space defined by this theory is consistent and positive.

2 Applications

2.1 Application to van der Waerden’s theorem

In what follows, we shall show how to give a proof of van der Waerden’s theorem on arithmetical
progression, that is “similar in structure” to the topological proof presented by Furstenberg and
Weiss [6], but is done in an elementary meta-language, and in particular, avoids the use of
Zorn’s lemma. Such a remark about similarity of proofs appear already in an early appplication
of point-free topology in avoiding the use of the axiom of choice [2, 13] in the development of
the theory of Banach algebras. In these works the notion of “topology without points” is used
to give “a theory entirely parallel to Gelfand’s, such that it is possible at every stage to reach
the corresponding stage in Gelfand’s theory by a simple application of the axiom of choice” [13].

All we shall use of the previous sections is proposition 1.

! Johnstone [10] call these spaces coherent spaces.



2.1.1 General Notations

We recall first some terminology extracted from [3]. A block is a finite sequence of 0s and 1s.
We use the notation 4, B,C, ... for blocks, and write AB for the concatenation of two blocks
Aand B. If A=10;...b, then pis called the size of the block A. We say that A is a subblock
of B if, and only if, B can be written BygABy, where By or By may be empty. If both By and
By are empty, then A is B itself, otherwise we say that A is a strict subblock of B. If By is
empty, we say that A is an initial subblock of B, and if B; is empty, we say that A is a final
subblock of B. If A is an initial subblock of B, we say also that B extends A. We say that A
avoids B if, and only if, B is not a subblock of A. These relations are decidable.

A small technical improvement w.r.t. the topological proof as presented in [3, 8] is that we

shall work with the space X = {0, 1}N7 and not the space {0, 1}Z. A colouring is a point of
the space X. We can define on this space the continuous map f: X — X by f(«a)(n) = a(n+1).
Our analysis does not require for f to be an homeomorphism.

We say that a finite block A is a subblock of o € X if, and only if, there exist n, p such that
Ais a(p)...a(p+n—1). A colouring 3 is said to be a subcolouring of another colouring o
if, and only if, any subblock of 3 is a subblock of . This defines a preorder (that is, a reflexive,
transitive relation) on the set X.

Each block A = bg...b,11 can be considered as a basic (closed) open subset of X, as the
set of all sequences «a such that a(0) = bg,...,a(n—1) = b, ;. If a satisfies this condition, we
say that A is an initial subblock of «. It is direct to check that § is a subcolouring of « iff any
initial subblock of 3 is a subblock of «.

Let W (3,1) the set of all & € X that contains three identical subblocks of size [ in arithmetical
progression (i.e. a has a subblock of the form BAgBA; B where B is of size [, and Ag, A1 have
the same size). It is clear that W (3,!) is an open of the space X. Furthermore, this open U has
the property that f(a) € U implies a € U, that is f11(U/) C U. This property will be used later.

For o € X, let & be the topological closure of the set {f”(«) | n € N}. It is clear that § is a

subcolouring of « if, and only if, 3 belongs to « if, and only if, 3 is a subset of a.

Proposition 4 (Minimal Property): For any a € X, there exists a subcolouring g of «
which is minimal.

Proof: The set of non empty closed subsets of @ ordered by containment is such that any
chain is dominated, by compactness. By Zorn’s lemma, it contains a maximal element, which
is clearly of the form 3, and 3 is then a minimal subcolouring of o. []

Using this fact allows for an elegant method for showing that a given open U of X such
that f+1(U) C U is the space X : it is enough to show that any minimal colouring is in U.
Indeed, let then o be an arbitrary sequence. By proposition 4, we can find # minimal which is a
subcolouring of a. We have then 3 € U. Since 8 € &, this implies that U meets {f™(a) | n € N},
and thus that there is n such that f"(a) € U. Since f1(U) C U, this in turn implies « € U.

2.1.2 The non constructive argument

In order to simplify the presentation, I shall limit the analysis to the non constructive proof
that all sequences are in W (3,[) for an arbitrary number [. (The general case could be handled
similarly, using for instance the presentation given in [3]). That is, we are going to analyse a
proof of the following proposition.



Fact 1: All colourings belong to W (3,1).

Notice that W(3,l) is an open U of X such that f+!(U) C U. We can hence apply the
method derived from proposition 4: in order to prove that W (3,{) = X, it is enough to show
that an arbitrary minimal sequence belongs to W (3,1).

We have used proposition 4 to reduce in a non constructive way the fact 1 to the “easier”
following proposition.

Fact 2: All minimal colourings belong to W (3,1).

For sake of completeness, we shall give a proof of this fact, which is directly extracted from
the arguments in [8]. The result of our analysis is that it is possible to use proposition 1, which is
constructive, instead of proposition 4 in order to derive the fact 1. The reader can compare our
treatement with the one of Girard’s [7], which uses Kreisel’s no counterexample interpretation.

Proof (of fact 2): Let a be a minimal sequence. It can be checked (classically) that if A is
a subblock of «, then A is a subblock of any large enough subblock of a. In this way, we can
build larger and larger initial subblock of « :

o By=0a(0)...a(l-1),
e By = BoC1BoD1Bjj, where C, Dy have the same size, and B[ has the same size as By,

o in general By = ByCyy1 By Dyy1 By, where Ciyq, Dpyq have the same size, and Bj, has
the same size as By.

The construction of this sequence proceeds as follows. Since By is a subblock of «, there
exists mq such that By is a subblock of any subblock of & of size > nq. In the initial subblock of
« of size 4ny, we can then find an initial subblock By = BoC} By DB, where Cy, Dy have the
same size, and B{ has the same size as By. Similarly, we can build By given By.

Let Ay be the final subblock of By, of size . By the pigeon hole principle, we have i < j < 2!
such that A; = A;, and then « contains three copies of A; in arithmetical progression. []

2.1.3 A constructive proof

We now give a proof of fact 1 which is parallel to this proof of fact 2, but uses proposition 1
instead of proposition 4.

The general method that we apply here can be described as follows. In the proof of fact 2,
we prove a finitary property of an arbitrary, “generic” minimal sequence. Also, an analysis of
this proof reveals that all we are using of such a minimal sequence « is the predicate over blocks:
A is a subblock of «. This predicate can also be defined in term of a “generic” point p of the
space M as: there exists n such that u(Vi<,g'(A)). It is thus possible to interpret completely
the proof of fact 2 in terms of such a “gen(;ric” point u. We can in turn make sense of y using
the formal topological space My: the value of u(z) is the basic open set of M; defined by z.

It is in turn possible to “eliminate cuts” on this proof and obtain a direct algebraic proof of
fact 1. This is such a proof that we present.

We first notice a direct corollary of proposition 1, given an ideal I of the boolean algebra B
of closed open subsets of the space X which is such that ¢(I) C I, where g is the morphism of
B defined by the continuous map f.

If + € B we introduce the notation S(z, n) for the element V<, ¢*().



Corollary (of proposition 1): if y3 V...V y, = 1 then Z;(z) whenever Zr(zS(y;,n)) for all
nand all 1 < j < k. We have also Z(z) whenever Zj(z(1—y;)) and Z;(2S(y;,n)) for all n and
all 2 < j <k.

Proof: We prove the first statement for k£ = 2, the proofs of the general case and of the other
statement being similar. By proposition 1, we have Zj(z) if Z;(z(1 — y1)) and Z;(2S(y1,n))
for all n. By the same proposition Z7(z(1 — y1)) holds whenever Zj(z(1 — y1)(1 — y2)) and
Z1(2(1 — y1)S(y2,n)) for all n. But we have (1 —y1)(1 — y2) =0, and Z;(0) holds directly, and
2(1 = y1)S(y2,n) C 2S(y2, n). Hence the result by lemma 2. L[]

Let I be the ideal corresponding to the open set W (3,{). Since fX1(W (3,1)) C W (3,1), we
have g(I) C I. In algebraic term, fact 1 expresses 1 € [. This is directly implied by Z;(1). Now,
the corollary of proposition 1 shows that for proving Zr(z), it is enough to show Z7(2S(A, n))
for all n and for all block A of a given size (seeing this block as a closed open set of X).

In particular, for proving Zr(1) it is enough to prove Zr(S(Lp, ny)) for all nqy and all block
FEy of size [. By using the second statement of the corollary, and writing z = S(Fp, n1), for
showing Zj(z) it is enough to show Zj(z(1 — L)) and Zr(2S(E4, ng)) for all block Fy of size
4nq that extends Fy. Indeed, if yo,...,yr is the list of all block of size 4n; that extends FEjy,
then (1 — Ey) Vys...Vyr =1 and we can hence apply the second part of corollary 2.

But Z;(2(1 — Ep)) is directly proved, because we have A<y, g'(z(1 — Ep)) = 0.

Hence, to prove Z(x), it is enough to prove Zr(2S(E4, ng)) for all ny and all block I of
size 4n; that extends Fy. In the same way, for proving

Z1(S(Eo, n1)S(E1,n2))

it is enough to prove
Z1(S(Fo, n1)S(F1, n2)S(Ea, n3))
for all ns and all block E5 of size 4ny that extends Ej.
Proceeding similarly, we get that it is enough to prove

Z[(S(Eb7 nl)S(El, ng) .. -S(Ep7 np_|_1))

for p large enough, where F/; extends F;; and is of size 4n;.
We have then reduced the problem to find p, n large enough such that the following element
of B
Ni<ng'(S(Eo, n1)S(E1,m2) ... S(Ep, npy1))

belongs to the ideal I, where E; extends E; 1 and is of size 4n;.

We can think of such an element as a finite information about an infinite sequence «, and
this information, in some sense, is a finitary version of the fact that « is minimal. For 2 < p
and n large enough, we can find a sequence By, ..., By as in the proof of the fact 2 such that

Ni<ng' (S(Eo,11)S(E1, n2) .. .S(Epynpt1)) € By
The proof of the fact 2 shows in a constructive way By € 1. Hence we get that
/\angl(S(Eyo7 nl)S(El, ng) . .S(E217 n21+1))

is in I for n large enough. Hence Z;(1) and 1 € [.



2.2 A special filter of functions

Another application is the intuitionistic construction of a special kind of non principal ultrafilter.
We start with the boolean algebra B = QN, together with the function g(z)(n) = z(n + 1). A
point g defines then a special kind of filter of functions, that has interesting combinatorial
properties. In term of points, g correspond to a continuous map f on the space X of ultrafilters,
and p corresponds to an invariant non empty invariant subset. Any point of this subset defines
a non principal ultrafilter. We refer to the paper [4] for a discussion on the analysis of the
notion of ultrafilters in formal topology.

3 A Reformulation of Hilbert’s Program

One important component of Hilbert’s program [9] is the following justification of non effective
reasoning. One sees the non effective components of a proof of a theorem as purely “ideal”
objects, having no “real existence”, and the problem is to show how to eliminate the uses of
these fictive objects in a given concrete instance of this theorem. For instance, talking about
the axiom of choice, Hilbert says that the theory he is proposing does not intend to show that
it is actually possible to make a choice, but that we can always proceed “as if” such a choice
was possible [9]. If this can be done in general, this will ensure that no contradiction can follow
from the uses of these “ideal” objects. To take an example given by Hilbert, if we prove the
statement
Vn > 2,2y, z[a" + y" # 2",

using some ideal elements, we will be sure that, for any concrete instance xg, yg, 20, 7o We do
no no no
have % 4+ y3° # 2,°.

We think that some techniques of point-free, or formal, topology provide an illustration of
this method reformulated in a constructive framework. Here the “ideal” objects are special kind
of objects: namely points of a formal space X. In usual applications, the formal basic open of X
are concrete object, and a point of X is a predicate over X. Thus, the ideal object that we try
to use is a certain predicate over a set of concrete objects, and in most cases, it can be shown
that this predicate cannot be defined effectively.

A formal space can be described as a set of (forcing) conditions on a point (see for instance
[15]). As we have just said, this space may fail to have any effective point. However, even if
such points may fail to exist “absolutely”, they exist always in a “relative” sense, namely in
the sense of the logic defined by the space X. By “changing logic”, we can then proceed as if
a given formal space had a point. This technique can be rightly described as one of the main
tool of topos theory.?

Thus, it is always possible to “explain” the meaning of these special “ideal” objects, and
to introduce a point of the space X. The connection with Hilbert’s program is now clear, and
in order to illustrate further this connection, we have to show how to eliminate the use of the
assumption that the space X has a point. This can be expressed as follows: if a concrete
statement (like the statement above) is valid in a “relativised” sense, namely interpreted in the

2See for instance [14] for one example of this technique; as shown in [5], this method can be used even in cases
where, even classically, the formal space fail to have any point. An example is the formal space of surjective
functions from natural numbers to a set X. This formal space is always consistent; but it has no point if X is for

instance the function set {0, I}N.



logic defined by the space X, is this statement valid “absolutely”? This is reduced to a question
that concerns only the formal space X, namely that this space is not covered by the empty set.

In such a case, we say that the space X is consistent. If a space is consistent, we can transfer
the truth of a concrete statement relative to the space X to an “absolute” truth. A stronger
form of consistency that we shall meet is that any covering of the space X is inhabited. We
say then that the space X is positive. It gives a stronger form of transfer for purely existential
statements.

The method we have used here to show the consistency and positivity of a space is the
following. We build effectively a positive topological model of the geometric theory describing a
point of this space. In other terms, we build a positive space Y with a continuous map ¥ —X.
The consistency (resp. positivity) of Y implies then the consistency (resp. positivity) of X.

This method of “eliminating the use of points” seems extremely general. In this paper, we
illustrate its use by giving an intuitionistic explanation of the existence of minimal invariant
subspace. We describe a formal space X such that a minimal invariant subspace corresponds
exactly to a point of this space, and we show then that this space is consistent and positive.
These are purely syntactical properties that can be shown in a relatively weak constructive
metalanguage. This can be seen as an illustration of some remarks contained in [1].

Conclusion

We have given a completely elementary and algebraic proposition that replaces in a given
concrete application the existence of minimal invariant closed subset of a boolean space with
a continuous map over itself. We have furthermore explicited such a reduction in a concrete
instance of the use of minimal invariant closed subset. We can see that as an illustration of the
power of algebraic reasoning. The proof of this algebraic property is not so different from the
Minimal Property proved in a combinatorial way in [3], but much simpler and general.

We have used only the simplest kind of topological models provided by formal topology.
There exists a subtler notion, based on the notion of sites [5]. It seems likely that this notion
will also be relevant to the constructive analysis of mathematical proofs. In any case, we could
not apply the method presented in this paper to the analysis of proofs that use non separable
spaces, such as the infinitary proofs of Hindman’s theorem in the reference [8].

We hope to have illustrated in this note a statement that we believe is quite general (see [4]
for another illustration): via the use of formal topology, it is often possible to transform a non
constructive proof that uses the axiom of choice in a simple, direct and purely algebraic proof.
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