
Diagnosis of Repeated/Intermittent Failures in Discrete
Event Systems ∗

Shengbing Jiang†, Ratnesh Kumar‡, and Humberto E. Garcia§

Abstract

We introduce the notion of repeated failure diagnosability for diagnosing the
occurrence of a repeated number of failures in discrete event systems. This generalizes
the earlier notion of diagnosability that was used to diagnose the occurrence of a
failure, but from which the information regarding the multiplicity of the occurrence of
the failure could not be obtained. It is possible that in some systems the same type of
failure repeats a multiple number of times. It is desirable to have a diagnoser which
not only diagnoses that such a failure has occurred but also determines the number
of times the failure has occurred. To aide such analysis we introduce the notions of
K-diagnosability (K failures diagnosability), [1,K]-diagnosability (1 through K failures
diagnosability), and [1,∞]-diagnosability (1 through ∞ failures diagnosability). Here
the first (resp., last) notion is the weakest (resp., strongest) of all three, and the
earlier notion of diagnosability is the same as that of K-diagnosability or that of [1,K]-
diagnosability with K = 1. We give polynomial algorithms for checking these various
notions of repeated failure diagnosability, and also present a procedure of polynomial
complexity for the on-line diagnosis of repeated failures.

Keywords: Discrete event system, failure diagnosis, repeated failures, diagnosability
testing, polynomial algorithm.

1 Introduction

Failure analysis of discrete event systems is an active area of research, see for example [10,
14, 15, 13, 3, 5, 2, 12, 11, 4, 9, 17, 6, 7]. Generally speaking, a failure is said to have occurred
in a system if the system executes a behavior that violates a specification representing

∗The research was supported in part by the U.S. Department of Energy contract W-31-109-Eng-38,
and also in part by the National Science Foundation under the grants NSF-ECS-9709796 and NSF-ECS-
0099851, a DoD-EPSCoR grant through the Office of Naval Research under the grant N000140110621, and
a KYDEPSCoR grant. A condensed version of this paper first appeared in [8]. The work was performed
while the first two authors were at the University of Kentucky.

†GM R&D and Planning, Mail Code 480-106-390, 30500 Mound Road, Warren, MI 48090-9055,
shengbing.jiang@gm.com

‡Department of Electrical & Computer Engineering, Iowa State University, 2215 Coover Hall, Ames, IA
50011, rkumar@iastate.edu

§Argonne National Laboratory, Idaho Falls, ID 83403-2528, garcia@anl.gov

1

system’s nominal behavior. Examples of failures include execution of a faulty event [14],
reaching a faulty state [17], or more generally violating a formal specification expressed,
say, in a temporal logic [7]. The task of failure analysis is to monitor the system behavior,
and determine the occurrence of any failures (called failure detection), and identify its type
or origin (called failure isolation or diagnosis). Note that failure diagnosis is equivalent to
failure detection when there is only one possible type of failure.

In many situations it is not possible to detect/diagnose the occurrence of a failure imme-
diately after it occurs, but it is desired that the detection/diagnosis occur within a bounded
delay. Systems, for which failure detection/diagnosis is possible within a bounded delay of
its occurrence, are called detectable/diagnosable.

Discrete event systems are event-driven systems that involve discrete quantities which
evolve in response to the occurrences of discrete changes, called events. Example of event-
driven systems include manufacturing systems, communication networks, and transportation
networks. Breakdown of a sensor or a actuator in a manufacturing system, loss of a message
packet or breakdown of a link in a communication network, and blockage of link in a trans-
portation network are examples of failures in such discrete event systems. The qualitative
or untimed behaviors of such systems is given as a collection of all possible sequences of
states/events the system can visit/execute, and is modeled as a formal language or a state
machine. Such a description contains information about the order in which state-transitions
and events can occur, and is useful for studying certain (qualitative) properties of systems
that only depend on such untimed description of the system behavior.

A notion of failure diagnosis of qualitative behaviors of discrete event systems was first
proposed by Sampath et al. [14]. The idea is that if the discrete event system being monitored
executes a faulty behavior, then it must be diagnosed within a bounded number of state-
transitions/events. A method for constructing a diagnoser was developed, and a necessary
and sufficient condition of diagnosability was obtained in terms of certain properties of the
constructed diagnoser. An algorithm of polynomial complexity for testing diagnosability
without having to construct a diagnoser was obtained in [6, 16]. This later work not only
provided a computationally superior test for diagnosability, but also by applying this test,
the construction of a diagnoser for systems that are determined to be not diagnosable can
be avoided.

The notion of diagnosability developed in [14] was applied to failure diagnosis in HVAC
(heating, ventilating, and air-conditioning) systems in [15], and a distributed implementation
of the diagnoser was reported in [3]. The notion of failure diagnosis was extended to a notion
of active failure diagnosis, where one could control the behavior of the system to better
diagnose it, in [13]. A template based approach to failure detection in timed discrete event
system was developed in [5, 2, 12]. Common to all these work is that they are “event-based”.
“State-based” approaches and their extension to timed systems were considered in [10, 9, 17].

In all prior work, the occurrence of a failure was specified either as the occurrence of
a faulty event (“event-based” approach) or as the visit of a faulty state (“state-based” ap-
proach). However, more generally a failure can be defined to be the execution of a state/event
trace that violates a given formal specification, such as reaching a “deadlock” state, or reach-
ing a “live-lock” set of states, or reaching a state from where no “fair execution” is possible
in future. We say a trace to be a failure-trace if its execution implies that the given formal
specification has already been violated, whereas we say a trace to be an indicator-trace if

2

its execution implies that the given formal specification is not necessarily violated by the
trace or any of its finite extensions, but is violated by all its feasible infinite extensions. A
failure-trace, on the other hand, is a trace for which any of its infinite extension (feasible
as well as infeasible) violates the given specification. The formal specification language of
linear-time temporal logic (LTL) was used to express such failure specifications in [7]. The
problem of failure diagnosis was reduced to that of model-checking [1], and an algorithm of
complexity polynomial in the number of system states and exponential in the length of the
LTL specification formula was obtained for failure diagnosis. A diagnoser that is a nondeter-
ministic state machine, and that has a size that is polynomial in the size of the system states
and exponential in the length of the LTL specification formula, was also obtained. Having
such a nondeterministic representation of the diagnoser makes it practical to have it stored
and utilized (a deterministic representation is likely to have a size that is exponential in the
size of system states).

All prior work on failure analysis of discrete event systems consider whether or not a
failure occurred, and determined its type. The information regarding the multiplicity of the
occurrence of the failure could not be obtained. It is possible that in some systems the same
type of failure repeats a multiple number of times. Similarly, intermittent or non-persistent
failures may occur repeatedly. For example at a bottle filling station, a multiple number
of bottles may be filled improperly. Although the work on template approach to failure
detection considered detection of such repeatedly occurring failures, it did not attempt to
formalize a notion that will allow determining the multiplicity of the occurrence of a failure.

It is desirable to have a failure analysis formalism which not only allows determining
that a failure, has occurred, but also determines each time the failure has occurred. To aide
such analysis, we introduce the notion of repeated failure diagnosability for diagnosing the
multiplicity of the occurrence of repeatedly occurring failures in discrete event systems. This
generalizes the earlier notion of diagnosability developed in [14], where the objective was to
diagnose the occurrence of a failure, but not its multiplicity of occurrence. Specifically, we
introduce the notions of K-diagnosability (K failures diagnosability), [1,K]-diagnosability (1
through K failures diagnosability), and [1,∞]-diagnosability (1 through ∞ failures diagnos-
ability). Here the first (resp., last) notion is the weakest (resp., strongest) of all three, and
the notion of diagnosability developed in [14] is the same as that of K-diagnosability or that
of [1,K]-diagnosability with K = 1.

Recall that a system is said to be diagnosable in the sense of [14] if there exists an
extension bound such that for any trace s containing a failure of a certain type, for any
extension t of s of length more than the bound, for all traces u indistinguishable to st, it
holds that u contains a failure of the same type. We call this property of a system to be
1-diagnosability to indicate that it can be used to diagnose whether a failure has occurred
(at least one time).

A natural generalization of this property provides us the notion of K-diagnosability that
can be used to diagnose whether a certain type of failure has occurred at least K times: A
system is said to be K-diagnosable if there exists an extension bound such that for any trace
s containing at least K failures of a certain type, for any extension t of s of length more
than the bound, for all traces u indistinguishable to st, it holds that u contains at least K
failures of the same type.

It turns out that the property of K-diagnosability as defined above is not monotonic

3

in K, i.e., K-diagnosability does not necessarily imply (K − 1)-diagnosability (for K ≥ 2).
In other words, it is possible to have a system for which it is possible to determine with a
bounded delay that at least K failures of a certain type have occurred, but it is not possible
to determine with a bounded delay that at least (K − 1) failures of a certain type have
occurred (see Example 1). This motivates a stronger notion of diagnosability, which we call
[1, K]-diagnosability, that is monotonic in K. We say a system is [1, K]-diagnosable if it
is J-diagnosable for each 1 ≤ J ≤ K. Obviously, [1, K]-diagnosability is monotonic in K,
i.e., it holds that if a system is [1, K]-diagnosable, then it is also [1, K − 1]-diagnosable (for
all K ≥ 2). Note that it also holds that [1, K]-diagnosable and K-diagnosable are both
equivalent to diagnosable in the sense of [14] under K = 1.

The property of [1, K]-diagnosability can be used to determine with bounded delay if
the given system has executed at least K or less failures of a certain kind. Thus a repeated
occurrence of a failure of a certain type can be determined for up to its first K occurrences.
Of course it is desirable to be able to determine with bounded delay the repeated occurrence
of a failure of a certain type for any number of its occurrences. This motivates the notion
of [1,∞]-diagnosability, which is obtained by setting K to be ∞ in the definition of [1, K]-
diagnosability. In other words, a system is [1,∞]-diagnosable only if it is J-diagnosable for
each J ≥ 1.

We give polynomial algorithms for checking these various notions of repeated failure
diagnosability, and also present a method to construct a diagnoser for the diagnosis of the
repeated failures. The test for the diagnosability is based on the observation that a system is
diagnosable with respect to a given set of failures if and only if it is diagnosable with respect
to each of the failures individually. In other words, it suffices to assume that there is one
failure type, thereby reducing the problem of failure diagnosis to that of a failure detection.
The diagnoser operates on-line and determines the potential states of the system following
each observation, tagged with either the total number of failures or the total number of
undetected failures associated with each such state.

The work is further illustrated through a simple traffic monitoring example, where a
mouse moves around in a maze of rooms, one of which is occupied by a cat. The task of
failure analysis is to determine the number of times the mouse has visited the room where
the cat stays, by monitoring the motion of the mouse through a set of sensors.

The rest of the paper is organized as follows. Section 2 presents the definitions of various
notions of repeated failure diagnosability. Algorithms for testing these notions is given in
Section 3. Section 4 presents an on-line diagnosis procedure for systems which are determined
to be diagnosable. Finally, Section 5 presents an illustrative example and Section 6 concludes
the work presented.

2 Notions of Diagnosability for Repeated Failures

In this section, we give definitions of various notions of diagnosability for repeated failures
described above.

We suppose that the discrete event system P to be diagnosed for repeated failures is
modeled by a four tuple,

P = (X,Σ, R, x0),

4

where

• X is a finite set of states;

• Σ is a finite set of event labels;

• R : X × Σ ∪ {ε} × X is a transition relation that is total on the state set, i.e., ∀x ∈
X, ∃σ ∈ Σ ∪ {ε}, ∃x′ ∈ X, (x, σ, x′) ∈ R (this implies P is deadlock-free or non-
terminating);

• x0 ∈ X is the initial state.

From the above definition, we know that P is non-deterministic and is assumed to be
non-terminating (deadlock free). If P given to be a terminating system, i.e., if it contains
some terminating states where no transition is defined, we can add self-loops on ε on every
terminating state of P without altering its diagnosability. So, from now on we assume
without loss of any generality, that P has appropriately been augmented with self-loops on
ε, and so it is non-terminating.

Let L(P) ⊆ Σ∗ denote the language generated by P . A finite state-trace π = (x1 · · · xn) is
said to be contained in P if for all i > 0 there exists a σi ∈ Σ∪{ε} such that (xi, σi, xi+1) ∈ R.
Here the length of π is n, which we denote by |π|. A finite state-trace π = (x1 · · · xn) is said
to be generated by P if π is contained in P and it starts from the initial state of P , i.e.,
x1 = x0. We use TrP to denote the set of all finite state-traces generated by P . A finite
state-trace π = (x1 · · · xn) is called a cycle if xn = x1.

Let M : Σ ∪ {ε} → ∆ ∪ {ε} be an observation mask with M(ε) = ε, where ∆ is the set
of observed symbols and it may be disjoint with Σ. The definition of M can be extended to
event traces inductively as follows: ∀s ∈ Σ∗, σ ∈ Σ, M(sσ) = M(s)M(σ). For any two state-
traces π1 = (x1

0x
1
1 · · · x

1
k1

) and π2 = (x2
0x

2
1 · · · x

2
k2

) in P , π1 and π2 are called indistinguishable

with respect to the mask M if they can generate a common event-trace observation, i.e.,
Oπ1

∩Oπ2
6= ∅, where

Oπi
= {M(s) ∈ ∆∗ | s = (σi

1 · · · σ
i
ki

) ∈ L(P), (xi
j−1, σ

i
j, x

i
j) ∈ R, 1 ≤ j ≤ ki} for i = 1, 2.

Let F = {Fi, i = 1, 2, . . . ,m} be the set of failure types, and ψ : X → 2F be the failure
assignment function. For all Fi ∈ F and π ∈ TrP , let NFi

π denote the number of states in π
labeled with a Fi-type failure; in which case π is said to contain NFi

π failures of type Fi.

Remark 1 By defining a failure assignment function over the set of system states, we have
taken a “state-based” approach, where states are associated with one or more failure labels.
In an “event-based” approach, one associates failure labels with events or event labels of
state transitions. It is possible to transform an “event-based” approach to a “state-based”
one by replacing each transition (x, σ, x′) ∈ R by a pair of transitions (x, σ, x̂) and (x̂, σ̂, x′),
where x̂ and σ̂ are newly added state and event respectively with M(σ̂) := ε, and next by
associating the failure labels of event σ as the failure labels of state x̂.

In the following we define the various notions of diagnosability for repeated failures. We
begin with the definition of K-diagnosability.

5

Definition 1 Given a system P , an observation mask M , and a failure assignment function
ψ, P is said to be K-diagnosable (K ≥ 1) with respect to M and ψ if the following holds:

(∀Fi ∈ F)(∃nK
i ∈ N)

(∀π0 ∈ TrP , N
Fi

π0
≥ K)

(∀π = π0π1 ∈ TrP , |π1| ≥ nK
i)

(∀π′ ∈ TrP , Oπ ∩Oπ′ 6= ∅)

⇒ (NFi

π′ ≥ K),

where N is the set of all natural numbers.

Definition 1 states that a system is K-diagnosable if the execution of any state-trace
containing at least K failures of a same failure type can be deduced with a finite delay from
the observed behavior through the mask M . More precisely, for any failure type Fi, there
exists a number nK

i such that for any state-trace π0 containing at least K failures of the type
Fi, for any sufficient long (at least nK

i states longer) extension π of π0, and for any finite
state-trace π′ generated by P , if π′ and π are indistinguishable with respect to M , i.e., if
they can generate a same masked event-trace (Oπ ∩ Oπ′ 6= ∅), then π′ must also contain at
least K failures of the type Fi.

Remark 2 It turns out that the property of K-diagnosability as defined above is not mono-
tonic in K, i.e., K-diagnosability does not necessarily imply (K − 1)-diagnosability (for
K ≥ 2). In other words, it is possible to have a system for which it is possible to determine
with a bounded delay that at least K failures of a certain type have occurred, but it is not
possible to determine with a bounded delay that at least (K − 1) failures of a certain type
have occurred, as illustrated by the following example.

Example 1 Consider the system P shown in Figure 1, with M(a1) = M(a2) = a, M(b) = b,

x3

x1

a
2

a
1

x2
F

1

F
1

b

bx0

b

c c

x4

Figure 1: Model of the example

M(c) = c, F = {F1}, ψ(x0) = ψ(x1) = ψ(x3) = ∅, and ψ(x2) = ψ(x4) = F1. Then P is 2-
diagnosable but not 1-diagnosable. To see this first it is easy to verify that there are only two
different forms of state-traces generated by P : π

(i,j)
1 = (x0x1x

i
3x

j
4) and π

(i,j)
2 = (x0x2x

i
3x

j
4).

For any state-trace π generated by P containing two or more faulty states, we have one of
the following cases:

6

1. π is of the form of π
(i,j)
1 with j ≥ 2. Then for any state-trace π′ 6= π sharing a common

event-trace observation with π, π′ must be of the form of π
(i,j)
2 with j ≥ 2, which

implies that π′ must contain at least three faulty states.

2. π is of the form of π
(i,j)
2 with j > 1. Then for any state-trace π′ 6= π sharing a common

event-trace observation with π, π′ must be of the form of π
(i,j)
1 with j > 1, which

implies that π′ must contain at least two faulty states.

3. π is of the form of π
(i,j)
2 with j = 1. Then we can pick n1 = 1 to satisfy the requirement

of 2-diagnosability. To see this, let ππ0 be any extension of π with |π0| ≥ n1 = 1, then
we must have that π0 = (x4)

` with ` ≥ 1. Any state-trace π′ 6= ππ0 sharing a common

event-trace observation with ππ0 must be of the form of π
(i,j)
1 with j > 1, which implies

that π′ must contain at least two faulty states.

From Definition 1, the above discussion implies that P is 2-diagnosable. But P is not 1-
diagnosable. This is because for any integer n1, we can choose π0 = (x0x2), π = π0(x3)

n1+1,
and π′ = (x0x1x

n1+1
3), then we have that π0 contains 1 faulty state, |π| − |π0| = n1 + 1 > n1,

π′ and π generate a same observed event-trace (abcn1), but π′ does not contain any faulty
state. From Definition 1, we know that P is not 1-diagnosable.

The lack of monotonicity of K-diagnosability motivates a stronger notion of diagnos-
ability, which we call [1, K]-diagnosability, that is monotonic in K. We say a system is
[1, K]-diagnosable if it is J-diagnosable for each 1 ≤ J ≤ K. Formally,

Definition 2 Given a system P , an observation mask M , and a failure assignment function
ψ, P is said to be [1, K]-diagnosable (K ≥ 1) with respect to M and ψ if the following holds:

(∀Fi ∈ F)(∃ni ∈ N)

(∀J, 1 ≤ J ≤ K)

(∀π0 ∈ TrP , N
Fi

π0
≥ J)

(∀π = π0π1 ∈ TrP , |π1| ≥ ni)

(∀π′ ∈ TrP , Oπ ∩Oπ′ 6= ∅)

⇒ (NFi

π′ ≥ J).

Remark 3 Obviously, [1, K]-diagnosability is monotonic in K, i.e., it holds that if a system
is [1, K]-diagnosable, then it is also [1, K − 1]-diagnosable (for all K ≥ 2). Note that it also
holds that [1, K]-diagnosable and K-diagnosable are both equivalent to diagnosable in the
sense of [14] under K = 1.

It is obvious that if P is [1, K]-diagnosable then ∀J , 1 ≤ J ≤ K, P is J-diagnosable.
Conversely, if for all J with 1 ≤ J ≤ K, P is J-diagnosable, i.e., for each Fi ∈ F there exists
a bound nJ

i satisfying the requirement of J-diagnosability, then we can pick ni = maxJ=K
J=1 n

J
i

to satisfy the requirement of [1, K]-diagnosability. Thus P is [1, K]-diagnosable if and only
if for all J with 1 ≤ J ≤ K, P is J-diagnosable.

7

The property of [1, K]-diagnosability can be used to determine with bounded delay if
the given system has executed at least K or less failures of a certain kind. Thus a repeated
occurrence of a failure of a certain type can be determined for up to its first K occurrences.
Of course it is desirable to be able to determine with bounded delay the repeated occurrence
of a failure of a certain type for any number of its occurrences. This motivates the notion
of [1,∞]-diagnosability, which is obtained by setting K to be ∞ in the definition of [1, K]-
diagnosability.

Definition 3 Given a system P , an observation mask M , and a failure assignment function
ψ, P is said to be [1,∞]-diagnosable with respect to M and ψ if the following holds:

(∀Fi ∈ F)(∃ni ∈ N)

(∀J ≥ 1)

(∀π0 ∈ TrP , N
Fi

π0
≥ J)

(∀π = π0π1 ∈ TrP , |π1| ≥ ni)

(∀π′ ∈ TrP , Oπ ∩Oπ′ 6= ∅)

⇒ (NFi

π′ ≥ J).

Remark 4 It is obvious that if P is [1,∞]-diagnosable, then for all K ≥ 1, P is K- and
[1, K]-diagnosable. But the converse need not hold as illustrated by the following example.

Example 2 Consider the system P shown in Figure 2, where M(a1) = M(a2) = a, M(b) =

x3

F
1

x1

a
2

a
1

x2

F
1

b

bx0

c

Figure 2: Model of the example

b, M(c) = c, and F = {F1}, ψ(x0) = ψ(x1) = ∅, ψ(x2) = ψ(x3) = F1. It is easy to verify
that P is K-diagnosable for any finite K > 0. This is because any state-trace generated by
P containing more than 3K states, has at least K of them faulty. So we can pick n1 = 3K
to satisfy the requirement of K-diagnosability.

But P is not [1,∞]-diagnosable. This is because in this example, the delay bound
associated with K-diagnosability is an increasing function of K, and no uniform delay
bound can be found that works for every K > 0. To see this, suppose such an uniform
bound exists and that it is n1. We pick k to be the smallest integer bigger than the
real number n1/3, and set K = 2(k + 1). Then for the state-traces π0 = (x0x2x3)

k+1,
π = π0π1 = (x0x2x3)

k+1(x0x2x3)
k = (x0x2x3)

2k+1, and π′ = (x0x1x3)
2k+1, we have that π0

contains K faulty states, |π1| = 3k > n1, π
′ and π generate a same observed event-trace

(abc)2k+1, but π′ contains 2k + 1 faulty states which is less than K, a contradiction to the
[1,∞]-diagnosability. From Definition 3, we know that P is not [1,∞]-diagnosable.

8

3 Tests for Repeated Failure Diagnosability

In this section, we present algorithms for testing the various notions of diagnosability for
repeated failures defined above. From the various definitions of diagnosability, it is easy to
see that a system P is K-diagnosable (resp., [1, K]- or [1,∞]-diagnosable) with respect to
a given failure type set {Fi, 1 ≤ i ≤ m} if and only if P is K-diagnosable (resp., [1, K]- or
[1,∞]-diagnosable) with respect to each singleton failure type set {Fi}, 1 ≤ i ≤ m. Hence
it suffices to test for diagnosability with respect to each failure type individually. So in the
following we assume, without loss of any generality, that there is only one failure type F1,
i.e., F = {F1}.

Let P be a given system, M be the observation mask, and ψ : X → {∅, F1} be the
failure assignment function. From Definitions 1 and 2, we know that P is K-diagnosable
(resp., [1, K]-diagnosable) if and only if there does not exist a pair of state-traces (π1, π2)
in P such that NF1

π1
≥ J and NF1

π2
< J (J = K for K-diagnosability, J ∈ [1, K] for [1, K]-

diagnosability), and π1 and π2 share a common event observation, and π1 is infinitely long.
The above suggests a test for K- and [1, K]-diagnosability as follows:

1. Construct a transition graph (no event label associated with each transition) from the
“masked synchronous composition” of P with itself for capturing all pairs of state-
traces (π1, π2) in P that share a common event observation. The “masked synchronous
composition” of P with itself , denoted by P ′ = (X ′,∆, R′, x′0), is defined as follows:

• X ′ = X ×X is the state set;

• ∆ is the event set;

• R′ ⊆ X ′ × (∆ ∪ {ε}) ×X ′ is the state transition set that is defined as:
∀x12 = (x1, x2) ∈ X ′, ∀x′12 = (x′1, x

′
2) ∈ X ′, and ∀τ ∈ ∆ ∪ {ε}, (x12, τ, x

′
12) ∈ R′ if

and only if one of the following holds

– τ = ε, x1 = x′1 (resp., x2 = x′2), and ∃σ ∈ Σ ∪ {ε} such that M(σ) = ε and
(x2, σ, x

′
2) ∈ R (resp., (x1, σ, x

′
1) ∈ R);

– τ 6= ε, and ∃σ1, σ2 ∈ Σ such that M(σ1) = M(σ2) = τ , (x1, σ1, x
′
1) ∈ R, and

(x2, σ2, x
′
2) ∈ R.

• x′0 = (x0, x0) is the initial state.

In deriving the transition graph from the masked synchronous composition of P with
itself, we also keep track of the number of failures for each state-trace in each pair by
tagging the value-pair (min{NF1

π1
, K},min{NF1

π2
, K}) at each state-pair (x1, x2) in the

transition graph.

2. Check whether there exists a cycle in the transition graph such that the cycle con-
tains a state-pair (x1, x2) tagged with a value-pair (J, i) and i < J (J = K for K-
diagnosability, J ∈ [1, K] for [1, K]-diagnosability). If there exists such a cycle, and
the cycle embeds an infinite state-trace with a higher number of faults, then P is not
K- and [1, K]-diagnosable respectively. This is because there does not exist a pair of
indistinguishable state-traces (π1, π2) in P such that NF1

π1
≥ J , NF1

π2
< J , and π1 is

infinitely long, if and only if there does not exist a cycle in the transition graph such

9

that the cycle contains a state-pair (x1, x2) tagged with a value-pair (J, i) with i < J
and x1 is contained in a infinitely long state-trace embedded in the cycle.

Note that because we allow unobservable cycles in the system P , there may exist a cycle
in the transition graph that results from one infinite and one finite state-trace pair that are
indistinguishable. If such a cycle contains a state-pair (x1, x2) tagged with a value-pair (J, i)
and i < J , and the finite state-trace along the cycle has a higher number of faults, then the
cycle is not be treated as a “bad” one as stated above. This is because for diagnosability to
hold the finite state-trace needs to be extended sufficiently long, but along the above cycle
the finite state-trace is not extended sufficiently long. The above situation is illustrated in
Example 3 below. Thus for the test of K- and [1, K]-diagnosability, we shall check only those
cycles that embeds an infinite state-trace with a higher number of faults. In order to tell
whether a cycle embeds an infinite state-trace with a higher number of faults, we introduce
a binary valued entry k in each state-pair of the transition graph such that k = 1 if and only
if the state-pair results from an extension of the state-trace with a higher number of faults.
Now a cycle is “bad” if it contains a state-pair (x1, x2) tagged with a value-pair (J, i) and a
binary valued entry k such that i < J and k = 1.

Example 3 Consider the system P shown in Figure 3, where M(a1) = M(a2) = a 6= ε,

x3

x1

a
2

a
1

x2

F
1

x0

b

b

c

Figure 3: Example for 1-diagnosability

M(b) = ε, M(c) = c, and F = {F1}, ψ(x0) = ψ(x1) = ψ(x3) = ∅, ψ(x2) = F1. It is easy to
verify that P is 1-diagnosable. This is because π = (x0x2x

ω
3) is the only faulty state-trace

generated by P , and no other state-trace shares a common event observation with π.
If we introduce only the value-pair (min{NF1

π1
, K},min{NF1

π2
, K}) and not the binary

valued entry k mentioned above, we can get a transition graph from the masked composition
of P with itself as shown in Figure 4. There is a self-loop at the state ((x3, x2), (0, 1)), which
indicates that there are two state-traces in P sharing a common event observation, and the
number of faults associated with these traces is 0 and 1 respectively. But this self-loop is not
a bad-cycle. Since the two state-traces involved are π1 = (x0x1x

ω
3) and π2 = (x0x2), with

NF1

π1
= 0 and NF1

π2
= 1. But π2, which is the trace with a higher number of faults, never gets

extended along the self-loop due to the presence of unobservable cycle xω
3 in π1.

To identify such cycles in the transition graph, we introduce the binary valued tag k,
then we can get a transition graph similar to the one shown in Figure 4, except that now
every state is tagged with a number of 0. Then we know that there is no cycle in the graph
that contains a state in the form of ((x, x′), (0, 1), 1). Thus the system is 1-diagnosable, as
expected.

10

(x ,x), (0, 1)1 2

(x ,x), (0, 1)23

(x ,x), (1, 0)2 1

(x ,x), (1, 0)2 3

(x ,x), (0, 0)1 1

(x ,x), (0, 0)13(x ,x), (0, 0)1 3

(x ,x), (0, 0)3 3

(x ,x), (1, 1)2 2

(x ,x), (1, 1)3 3

(x ,x), (0, 0)
0 0

Figure 4: Transition graph for 1-diagnosability

To further illustrate how a bad cycle can prevent the diagnosability, we consider a new
observation mask M ′ for the system P , where M ′(a1) = M ′(a2) = a 6= ε and M ′(b) =
M ′(c) = b 6= ε. Then we can get the transition graph for the new mask M ′ from the
masked composition of P with itself as shown in Figure 5. There is a self-loop at the state

(x ,x), (1, 1), 03 3

(x ,x), (0, 0), 0
0 0

(x ,x), (0, 1), 01 2 (x ,x), (1, 0), 02 1

(x ,x), (0, 1), 133 (x ,x), (1, 0), 13 3

(x ,x), (0, 0), 01 1 (x ,x), (1, 1), 02 2

(x ,x), (0, 0), 03 3

Figure 5: Transition graph for mask M ′

((x3, x3), (0, 1), 1), which indicates that the two state-traces π1 = (x0x1x
ω
3) and π2 = (x0x2x

ω
3)

in P share a common event observation, and the number of faults associated with π1 and
π2 is 0 and 1 respectively. Then we know that for the finite state-trace π0 = (x0x2) that
contains a faulty state, no matter how long the extension of π0 could be (let π = (x0x2x

k
3)

denote any finite extension of π0), there always exists another trace π′ = (x0x1x
k
3) that

shares a common event observation with π, but π′ does not contain any faulty state. From
Defnition 1, it follows directly that P is not 1-diagnosable. Thus the self-loop at the state
((x3, x3), (0, 1), 1) is a bad cycle.

11

The algorithm for testing K- and [1, K]-diagnosability is given as follows.

Algorithm 1 Algorithm for testing K- and [1, K]-diagnosability:

1. Construct a transition graph T1 from P as follows:

T1 = (X1, R1, x
T1

0),

where

• X1 = X ×X × {i, 0 ≤ i ≤ K} × {i, 0 ≤ i ≤ K} × {0, 1} is the set of states

• R1 ⊆ X1 ×X1 is the set of transitions such that
∀ (((x1, x2), (i, j), k), ((x

′
1, x

′
2), (i

′, j′), k′)) ∈ X1 ×X1,

(((x1, x2), (i, j), k), ((x
′
1, x

′
2), (i

′, j′), k′)) ∈ R1

if and only if one of the following holds:

– ∃σ1, σ2 ∈ Σ s.t. M(σ1) = M(σ2) 6= ε, (x1, σ1, x
′
1) ∈ R, (x2, σ2, x

′
2) ∈ R, and

i′ =

{

i if ψ(x′1) = ∅
min{i+ 1, K} if ψ(x′1) = F1

j′ =

{

j if ψ(x′2) = ∅
min{j + 1, K} if ψ(x′2) = F1

k′ =

{

1 if i 6= j
0 otherwise

– ∃σ ∈ Σ ∪ {ε} s.t. M(σ) = ε, (x1, σ, x
′
1) ∈ R, x′2 = x2, and

i′ =

{

i if ψ(x′1) = ∅
min{i+ 1, K} if ψ(x′1) = F1

j′ = j

k′ =

{

1 if (i > j)
0 otherwise

– ∃σ ∈ Σ ∪ {ε} s.t. M(σ) = ε, (x2, σ, x
′
2) ∈ R, x′1 = x1, and

i′ = i,

j′ =

{

j if ψ(x′2) = ∅
min{j + 1, K} if ψ(x′2) = F1

k′ =

{

1 if (j > i)
0 otherwise

• xT1

0 = ((x0, x0), (i, i), 0) is the initial state, where i =

{

0 if ψ(x0) = ∅
1 if ψ(x0) = F1

T1 is constructed from the initial state xT1

0 , and so it is accessible (all states can be
reached from the initial state). We also make T1 non-terminating by deleting all the
deadlocked states from T1.

Note that associated with each state-trace π = (xT1

0 · · · ((x1, x2), (i, j), k)) in T1 there
are two state-traces π1 = (x0 · · · x1) and π2 = (x0 · · · x2) in P sharing a common event-
trace observation. The entry (i, j) in ((x1, x2), (i, j), k) ∈ X1 denotes the numbers of

12

faulty states (up to a maximum of K) contained in the two state-traces π1 and π2

respectively, i.e., i = min{NF1

π1
, K} and j = min{NF1

π2
, K}. The binary valued entry

k in ((x1, x2), (i, j), k) ∈ X1 is used to indicate whether the state ((x1, x2), (i, j), k) is
reached from a state ((x′1, x

′
2), (i

′, j′), k′) such that if i′ > j′ (resp., j ′ > i′), then there
exists σ ∈ Σ ∪ {ε} such that (x′1, σ, x1) ∈ R (resp., (x′2, σ, x2) ∈ R). In other words,
k = 1 indicates that the state-trace with a higher number of faults ending in the state
x′1 (resp., x′2) has evolved by one step by executing a transition in P (to end in the
state x1 (resp., x2)). This is needed to deal with the fact that we allow an unbounded
number of unobservable events to occur in P .

2. Delete all those states ((x1, x2), (i, j), k) ∈ X1 and their associated transitions from T1

for which i = j. If it is for the test of K-diagnosability, then also delete those states
and their associated transitions for which i < K and j < K.

3. Check if there is a state ((x1, x2), (i, j), k) with k = 1 that is contained in a cycle in
the remainder graph. If the answer is yes, then output that the system is not [1, K]-
or K-diagnosable; otherwise output that the system is [1, K]- or K-diagnosable. This
last step can be performed using a depth first search.

The following theorem establishes the correctness of Algorithm 1.

Theorem 1 Given a system P , an observation mask M , a failure assignment function ψ :
X → {∅, F1}, and the transition graph T1 derived using Algorithm 1, we have the following:

1. P is K-diagnosable if and only if T1 does not contain a cycle cl,

cl = (xT1

1 x
T1

2 . . . xT1

n x
T1

1), n ≥ 1,

with xT1

k = ((xk, x
′
k), (i, i

′), jk), k = 1, 2, . . . , n, i 6= i′, and either i = K or i′ = K, and
∃k ∈ {1, · · · , n} with jk = 1.

2. P is [1, K]-diagnosable if and only if T1 does not contain a cycle cl,

cl = (xT1

1 x
T1

2 . . . xT1

n x
T1

1), n ≥ 1,

with xT1

k = ((xk, x
′
k), (i, i

′), jk), k = 1, 2, . . . , n, i 6= i′, and ∃k ∈ {1, · · · , n} with jk = 1.

Proof: For the necessity of the first assertion, suppose P is K-diagnosable, but there exists
a cycle cl in T1, cl = (xT1

1 x
T1

2 · · · xT1

n x
T1

1), n ≥ 1, such that xT1

k = ((xk, x
′
k), (i,K), jk), k =

1, 2, · · · , n, i < K, and ∃k ∈ {1, · · · , n} with jk = 1. Since T1 is accessible, there exists
a state-trace tr generated by T1 ending with the state xT1

1 , i.e., tr = (xT1

0 · · · xT1

1), and
also the state-trace tr` = tr(xT1

2 · · · xT1

n x
T1

1)` for any ` ≥ 0 is generated by T1. From the
construction of T1, we know that associated with each tr`, ` ≥ 0, there are two state-traces
π`

1 = (x0 · · · x1) and π`
2 = (x0 · · · x

′
1) generated by P and sharing a common event-trace

observation, and NF1

π`

1

= i, NF1

π`

2

≥ K. Then for any integer nK
1 , we can choose another

integer `0 such that `0 > nK
1 . Now for the state-traces π0

2, π = π`0
2 , and π′ = π`0

1 , we have
that NF1

π0
2

≥ K, |π| − |π0
2| ≥ `0 > nK

1 (where the first inequality comes from the fact that

13

jk = 1 for some k ∈ {1, · · · , n}, which implies that the state xT1

k in the cycle cl is resulted
from a state movement in the state trace π`0

2 that has a bigger number of failures than π`0
1 ,

i.e., |πj
2| − |πj−1

2 | ≥ 1 for any j ≥ 1), and π and π′ share a common event-trace observation
(since they are both associated with tr`0). But NF1

π′ = NF1

π0
1

= i < K. From Definition 1, we

know P is not K-diagnosable, a contradiction. So the necessity of the first assertion holds.
For the sufficiency of the first assertion, suppose T1 does not contain a cycle cl =

(xT1

1 x
T1

2 · · · xT1

n x
T1

1), n ≥ 1, with xT1

k = ((xk, x
′
k), (i, i

′), jk), k = 1, 2, · · · , n, i 6= i′, and
either i = K or i′ = K, and ∃k ∈ {1, · · · , n} with jk = 1. This implies that for all
((x, x′), (i, i′), j) ∈ X1, if i 6= i′, j = 1, and either i = K or i′ = K, then xT1 is not contained
in a cycle. Because T1 is non-terminating, it further implies that for any state-trace π in T1,
if π contains more than m1 = 2|X|2K number of states of the type ((x, x′), (i, i′), 1), with
either i = K or i′ = K, then one of such states must be in the form of ((x, x′), (K,K), 1),
since otherwise one state must appear twice (there are at most m1 number of states of the
type ((x, x′), (i, i′), 1) with either i = K or i′ = K, and i 6= i′), i.e., this state must be
contained in a cycle, a contradiction.

Now we let nK
1 = m1 + 1. Then for any state-trace π0 ∈TrP with NF1

π0
≥ K, any of

its extension π = π0π1 ∈ TrP with |π1| ≥ nK
1 , and any state-trace π′ = π′

0π
′
1 ∈ TrP with

Oπ ∩ Oπ′ 6= ∅ and Oπ0
∩ Oπ′

0
6= ∅, we have that for any state-trace tr ∈ TrT1

that π0 and
π′

0 are associated with, tr must end with a state ((x1, x
′
1), (K, i), j) ∈ X1. if i = K, then

from Definition 1, we know that P is K-diagnosable. Otherwise, let tr1 be any extension
of tr in T1 that π and π′ are associated with, i.e., tr1 = trtr′. If in tr′ there is a state
((x, x′), (K,K), j), then from Definition 1, P is K-diagnosable. Now suppose that in tr ′

there is not such a state ((x, x′), (K,K), j), then it is obvious that tr′ must end with a state
((x2, x

′
2), (K, i

′), j) such that K > i′, i.e., along the trace tr′, π1 always has a bigger number
of failures than π′

1. Because tr′ is composed from π1 and π′
1, tr

′ must have |π1| number of
states that are resulted from the state movement in π1. Also because π1 always has a bigger
number of failures than π′

1, the above |π1| number of states in tr′ must be in the form of
((x, x′), (K, j), 1) with j < K. In other words, tr′ must contain |π1| ≥ nK

1 > m1 (more than
m1) number of states of the type ((x, x′), (K, j), 1). As argued above, tr′ must contain a
state ((x, x′), (K,K), 1), a contradiction. So the sufficiency of the first assertion also holds.

For the necessity of the second assertion, suppose P is [1, K]-diagnosable, but there
exists a cycle cl in T1, cl = (xT1

1 x
T1

2 · · · xT1

n x
T1

1), n ≥ 1, such that xT1

k = ((xk, x
′
k), (i, i

′), jk),
k = 1, 2, · · · , n, i < i′ ≤ K, and jk = 1 for some k ∈ {1, · · · , n}. Then using a similar
argument as above for the necessity of the first assertion and by viewing i′ as K, we can show
that P is not i′-diagnosable. This implies that P is not [1, K]-diagnosable, a contradiction
to the hypothesis. So the necessity of the second assertion holds.

For the sufficiency of the second assertion, suppose T1 does not contain a cycle cl =
(xT1

1 x
T1

2 · · · xT1

n x
T1

1), n ≥ 1, with xT1

k = ((xk, x
′
k), (i, i

′), jk), k = 1, 2, · · · , n, i 6= i′, and jk = 1
for some k ∈ {1, · · · , n}. This implies that for all ((x, x′), (i, i′), j) ∈ X1, if i 6= i′ and
j = 1 then xT1 is not contained in a cycle. Following a similar argument as above for the
sufficiency of the first assertion, we have that for any state-trace π in T1, if π contains more
than m2 = |X|2(K + 1)K number of states of the type xT1 = ((x, x′), (i, i′), 1), then π must
contain a state in the form of ((x, x′), (i, i), 1).

Now we let n1 = m2 + 1. Then for any state-trace π0 ∈ TrP with NF1

π0
≥ J , 1 ≤ J ≤ K,

14

any of its extension π = π0π1 ∈TrP with |π1| ≥ n1, and any state-trace π′ = π′
0π

′
1 ∈TrP

with Oπ ∩ Oπ′ 6= ∅ and Oπ0
∩ Oπ′

0
6= ∅, we have that if tr ∈ TrT1

is any state-trace that
π0 and π′

0 are associated with, then tr must end with a state ((x1, x
′
1), (i, i

′), j) ∈ X1 with
i ≥ J . If i′ ≥ i, then from Definition 2, P is [1, K]-diagnosable. Otherwise, let tr1 be any
extension of tr in T1 that π and π′ are associated with, i.e., tr1 = trtr′. If tr′ contains a state
((x, x′), (`, `′), k) with ` = `′, then from the construction of T1, we know that ` ≥ i, thus
` ≥ J , which implies that NF1

π′ ≥ J . It follows from Definition 2 that P is [1, K]-diagnosable.
Now suppose tr′ does not contain such a state ((x, x′), (`, `), k), then it is obvious that for
every state ((x, x′), (`, `′), k) in tr′, we must have ` > `′. Following a similar argument as
above for the sufficiency of the first assertion, we have that tr′ must contain more than m2

number of states of the type ((x, x′), (`, `′), 1). As argued above, tr′ must contain a state
((x, x′), (`, `), 1), a contradiction. So the sufficiency of the second assertion also holds.

From the definition of [1,∞]-diagnosability, we also know that P is [1,∞]-diagnosable if
and only if there does not exist a pair of state-traces (π1, π2) in P such that NF1

π1
≥ J and

NF1

π2
< J (J ≥ 1), and π1 and π2 share a common event observation, and π1 is infinitely long.

However we cannot directly use Algorithm 1 for the test of [1,∞]-diagnosability, since J is
now unbounded, i.e., if we keep track of the number of faults with each state-trace in each
state-trace pair of the transition graph, then we may get a transition graph with an infinite
number of states. So instead of keeping track of the number of faults with each state-trace
in the pair, we keep track of the difference of the number of faults with each state-trace
in the pair. Although the fault-difference may still be unbounded, it can be shown that if
the fault-difference goes beyond the bound |X|2 (|X| is the number of states in the system
P), then P is not [1,∞]-diagnosable (see Theorem 2 below). Thus even for checking [1,∞]-
diagnosability, we are able to work with a finite transition graph. Similar to the test of K-
and [1, K]-diagnosability, we need the binary valued tag k. It turns out that the information
of fault-difference and the entry k is not enough for testing [1,∞]-diagnosability, as shown
in Example 4 below. We need to introduce into the transition graph another binary valued
entry j to indicate whether a fault is reported, i.e., whether the two state-traces in the pair
both have experienced a fault upon reaching the state. This is because if a fault is detected
along both the state-traces, the fault-difference counter remains unchanged, but this is not
bad, as a fault does not remain undetected forever. Then the system is [1,∞]-diagnosable
if and only if there is no cycle that contains a state ((x, x′), i, j, k) with i 6= 0, j = 0, and
k = 1 (Theorem 2), where i is the fault-difference, j is the binary valued entry indicating
the reporting of a fault, and k is the binary valued entry indicating the extension of the
state-trace with a higher number of faults.

Example 4 Consider the system P shown in Figure 6, where M(a1) = M(a2) = a, M(b) =
b, and F = {F1}, ψ(x0) = ψ(x1) = ∅, ψ(x2) = ψ(x3) = F1. It is easy to verify that P is
[1,∞]-diagnosable applying Definition 3.

If we do not introduce the binary valued entry j indicating the reporting of a fault, we
can get a transition graph from the composition of two copies of masked P as shown in
Figure 7. There is a self-loop at the state ((x3, x3),−1, 1), which indicates that there are
two infinite state-traces π1 = (x0x1x

ω
3) and π2 = (x0x2x

ω
3) in P sharing a common event

observation, and the fault-difference between the two traces is −1. But this self-loop is not a
“bad” cycle. Note that a fault is reported each time the pair of the two state-traces visits the

15

x3

x1

a
2

a
1

x2

F
1

F
1

b

x0

b

b

Figure 6: Example for [1,∞]-diagnosability

(x ,x), −1, 01 2 (x ,x), 1, 02 1 (x ,x), 0, 01 1 (x ,x), 0, 02 2

(x ,x), 0, 0
0 0

(x ,x), 0, 03 3
(x ,x), −1, 13 3 (x ,x), 1, 13 3

Figure 7: Transition graph for [1,∞]-diagnosability

state (x3, x3), and because of this fault report, although the fault-difference counter remains
unchanged, the loop is not a “bad” one, since no fault remains undetected forever along the
loop.

If we also introduce the binary valued entry j into the transition graph for indicating
the reporting of a fault, then we can get a transition graph as shown in Figure 8. From
the graph, we know that there is no cycle in the graph that contains a state of the form
((x, x′), i, 0, 1) with i 6= 0. Thus the system is [1,∞]-diagnosable, which is true.

The algorithm for testing [1,∞]-diagnosability is given in the following.

Algorithm 2 Algorithm for testing [1,∞]-diagnosability:

1. Construct a transition graph T2 from P as follows:

T2 = (X2, R2, x
T2

0),

where

• X2 = X ×X × {i, |i| ≤ |X|2} × {0, 1} × {0, 1} is the set of states

• R2 ⊆ X2 ×X2 is the set of transitions such that
∀ (((x1, x2), i, j, k), ((x

′
1, x

′
2), i

′, j′, k′)) ∈ X2 ×X2,

(((x1, x2), i, j, k), ((x
′
1, x

′
2), i

′, j′, k′)) ∈ R2

if and only if one of the following holds:

16

(x ,x),−1,0,01 2 (x ,x),1,0,02 1 (x ,x),0,0,01 1 (x ,x),0,1,02 2

(x ,x),0,0,0
0 0

(x ,x),0,1,03 3
(x ,x),−1,1,13 3 (x ,x),1,1,13 3

Figure 8: Revised transition graph

– ∃σ1, σ2 ∈ Σ s.t. M(σ1) = M(σ2) 6= ε, (x1, σ1, x
′
1) ∈ R, (x2, σ2, x

′
2) ∈ R, and

i′ =











i if ψ(x′1) = ψ(x′2)
i+ 1 if ψ(x′1) = F1 ∧ ψ(x′2) = ∅
i− 1 if ψ(x′1) = ∅ ∧ ψ(x′2) = F1

j′ =

{

1 if |i′| < |i| ∨ ψ(x′1) = ψ(x′2) = F1

0 otherwise

k′ =

{

1 if i 6= 0
0 otherwise

– ∃σ ∈ Σ ∪ {ε} s.t. M(σ) = ε, (x1, σ, x
′
1) ∈ R, x′2 = x2, and

i′ =

{

i if ψ(x′1) = ∅
i+ 1 if ψ(x′1) = F1

j′ =

{

1 if |i′| < |i|
0 otherwise

k′ =

{

1 if (i > 0)
0 otherwise

– ∃σ ∈ Σ ∪ {ε} s.t. M(σ) = ε, (x2, σ, x
′
2) ∈ R, x′1 = x1, and

i′ =

{

i if ψ(x′2) = ∅
i− 1 if ψ(x′2) = F1

j′ =

{

1 if |i′| < |i|
0 otherwise

k′ =

{

1 if (i < 0)
0 otherwise

• xT2

0 = ((x0, x0), 0, j, 0) is the initial state with j =

{

0 if ψ(x0) = ∅
1 if ψ(x0) = F1

T2 is constructed from the initial state xT2

0 , and so it is accessible. We also make T2 non-
terminating by deleting all the deadlocked states from T2. If during the construction, a
state ((x1, x2), i, j, k) with |i| > |X|2 is reached, then stop and output that the system
is not [1,∞]-diagnosable, in which case T2 is called unbounded; and otherwise T2 is

17

called bounded, and we continue to the next step.

Note that associated with each state-trace π = (xT2

0 · · · ((x1, x2), i, j, k)) in T2 there
are two state-traces π1 = (x0 · · · x1) and π2 = (x0 · · · x2) in P sharing a common
event-trace observation. The entry i in ((x1, x2), i, j, k) ∈ X2 indicates the difference
of the number of faulty states contained in the two state-traces π1 and π2, i.e., i =
NF1

π1
− NF1

π2
. The binary valued entry j in ((x1, x2), i, j, k) ∈ X2 is used to indicate

whether a fault is reported at the state ((x1, x2), i, j, k). This happens when either
ψ(x1) = ψ(x2) 6= ∅, or |i| gets decremented through the transition from a prior state
to the state ((x1, x2), i, j, k). A fault is reported at ((x1, x2), i, j, k) if and only if
j = 1. As is the case with the previous algorithm, the binary valued entry k in
((x1, x2), i, j, k) ∈ X2 is used to indicate whether the state ((x1, x2), i, j, k) is reached
from a state ((x′1, x

′
2), i

′, j′, k′) such that if i′ > 0 (resp., j ′ > 0), then there exists
σ ∈ Σ ∪ {ε} such that (x′1, σ, x1) ∈ R (resp., (x′2, σ, x2) ∈ R). In other words, k = 1
indicates that the state-trace with a higher number of faults ending in the state x′

1

(resp., x′2) has evolved by one step by executing a transition in P (to end in the state
x1 (resp., x2)). This is needed to deal with the fact that we allow an unbounded
number of unobservable events to occur in P .

2. Delete all those states ((x1, x2), i, j, k) and their associated transitions from T2 such
that either i = 0 or j = 1.

3. Check whether there is a state ((x1, x2), i, j, k) with k = 1 that is contained in a cycle
in the remainder graph. If the answer is yes, then output that the system is not [1,∞]-
diagnosable; otherwise output that the system is [1,∞]-diagnosable. This last step can
be performed using a depth first search.

The following theorem guarantees the correctness of Algorithm 2.

Theorem 2 Given a system P , an observation mask M , a failure assignment function ψ :
X → {∅, F1}, and the transition graph T2 derived using Algorithm 2, P is [1,∞]-diagnosable
if and only if T2 is bounded as defined in Algorithm 2, and T2 does not contain a cycle cl,

cl = (xT2

1 x
T2

2 . . . xT2

n x
T2

1), n ≥ 1,

with xT2

k = ((xk, x
′
k), i, 0, jk), k = 1, 2, . . . , n, i 6= 0, and jk = 1 for some k ∈ {1, 2, · · · , n}.

Proof: For necessity, suppose P is [1,∞]-diagnosable. For contradiction, first we suppose
that T2 is not bounded. Then there must exist a state-pair trace π in T2 such that

π = π0π1 = [(x0, x0)(x1, x
′
1) · · · (x`, x

′
`)][(x`+1, x

′
`+1) · · · (x`+n−1, x

′
`+n−1)(x`, x

′
`)]

and when the loop π1 is executed once, the difference between the number of failures of
the two state-traces associated with π will increase at least by one. In other words, for any
k ≥ 0, we can have a state-pair trace πk = π0(π1)k in T2, and if we let πk

1 and πk
2 be the two

state-traces associated with πk (assuming that NF1

π0
1

≥ NF1

π0
2

), then we have ∀k ≥ 0,

NF1

πk+1

1

−NF1

πk+1

2

≥ (NF1

πk

1

−NF1

πk

2

) + 1.

18

It further implies that

NF1

πk

1

−NF1

πk

2

≥ NF1

πk−1

1

−NF1

πk−1

2

+ 1

≥ NF1

πk−2

1

−NF1

πk−2

2

+ 2

≥ . . .

≥ NF1

π0
1

−NF1

π0
2

+ k

≥ k.

The above also implies that at least one state-pair in π1 is resulted from a state movement
in πk

1 (because πk
1 has a bigger number of failures than πk

2 , and the difference between the
number of failures in πk

1 and πk
2 is increased along the trace-segment π1), i.e., |πj+1

1 |−|πj
1| ≥ 1

for any j ≥ 0.
Now for any integer n1, we let k = n1 × |π1| + 1 and J = NF1

πk

1

. Then for the state-traces

πk
1 , π

k+n1

1 , and πk+n1

2 , we have that NF1

πk

1

= J , |πk+n1

1 | − |πk
1 | ≥ n1 (since |πj+1

1 | − |πj
1| ≥ 1

for any j ≥ 0), and πk+n1

1 shares a common event-trace observation with πk+n1

2 . But we also
have

NF1

π
k+n1
2

≤ NF1

πk

2

+ n1 × |π1|

≤ NF1

πk

1

− k + n1 × |π1|

= J − 1

< J.

From Definition 3, we know P is not [1,∞]-diagnosable. A contradiction to the hypothesis.
So T2 must be bounded.

Next we suppose that there exists a cycle cl in T2,

cl = (xT2

1 x
T2

2 · · · xT2

n x
T2

1),

n ≥ 1, such that xT2

k = ((xk, x
′
k), i, 0, jk), k = 1, 2, · · · , n, i > 0, and jk = 1 for some

k ∈ {1, · · · , n}. Since T2 is accessible, there exists a state-trace tr generated by T2 ending
with the state xT2

1 , i.e., tr = (xT2

0 · · · xT2

1), and also the state-trace tr` = tr(xT2

2 · · · xT2

n x
T2

1)`

for any ` ≥ 0 is generated by T2. From the construction of T2, we know that associated with
each tr`, ` ≥ 0, there are two state-traces π`

1 = (x0 · · · x1) and π`
2 = (x0 · · · x

′
1) generated

by P sharing a common event-trace observation; and NF1

π`

1

−NF1

π`

2

= i. Then for any integer

n1, we can choose another integer `0 such that `0 > n1, and let J = NF1

π0
1

. Then for the

state-traces π0
1, π = π`0

1 , and π′ = π`0
2 , we have that NF1

π0
1

≥ J , |π| − |π0
1| ≥ `0 > n1 (where

the first inequality follows from the fact that jk = 1 for some k ∈ {1, · · · , n}, which implies
that the state xT2

k in the cycle cl is resulted from a state movement in the state trace π`0
1

that has a bigger number of failures than π`0
2 , i.e., |πj

1| − |πj−1
1 | ≥ 1 for any j ≥ 1), and π

and π′ share a common event-trace observation (since they are both associated with tr`0).
We also have that NF1

π′ = NF1

π
`0
2

= NF1

π0
2

= NF1

π0
1

− i = J − i < J (where the second equality

follows from the fact that along the cycle cl the fault-difference remains unchanged and no

19

fault is reported, which implies that all states invloved in the cycle cl are non-faulty states,
in other words, NF1

π`

2

= NF1

π0
2

and NF1

π`

1

= NF1

π0
2

for any `). From Definition 3, we know P is not

[1,∞]-diagnosable, a contradiction to the hypothesis. So the necessity holds.
For sufficiency, suppose T2 is bounded and T2 does not contain a cycle

cl = (xT2

1 x
T2

2 · · · xT2

n x
T2

1), n ≥ 1,

such that xT2

k = ((xk, x
′
k), i, 0, jk), k = 1, 2, · · · , n, i 6= 0, and jk = 1 for some k ∈ {1, · · · , n}.

This implies that for all xT2 = ((x, x′), i, j, k) ∈ X2, if i 6= 0, j = 0, and k = 1 then xT2

is not contained in a cycle. Because T2 is non-terminating, it further implies that for any
state-trace π in T2, if π contains more than m = |X|2 × |X|2 × 2 = 2|X|4 number of states
of the type ((x, x′), i, j, 1), then for one of such states we must have either i = 0 or j = 1,
since otherwise one state must appear twice (there are at most m number of states of the
type ((x, x′), i, j, 1), i.e., this state must be contained in a cycle, a contradiction.

Now we let n1 = (m + 1)|X|2. Then for any state-traces π0 ∈ TrP with NF1

π0
≥ J ≥ 1,

π = π0π1 ∈ TrP with |π1| ≥ n1, and π′ = π′
0π

′
1 ∈ TrP with Oπ∩Oπ′ 6= ∅ and Oπ0

∩Oπ′

0
6= ∅, let

tr ∈ TrT2
be any state-trace that π0 and π′

0 are associated with, and ((x1, x
′
1), i, j, k) be the

last state of tr with i = NF1

π0
−NF1

π′

0

. Since T2 is bounded, we have |i| ≤ |X|2. If i ≤ 0, then

NF1

π′ ≥ NF1

π′

0

≥ NF1

π0
≥ J . This according to Definition 3 implies that P is [1,∞]-diagnosable.

Otherwise, let tr1 be any extension of tr in T2 with which π and π′ are associated with,
i.e., tr1 = trtr′. If in tr′ there is a state ((x, x′), i′, j′, k′) with i′ = 0, then it implies that
NF1

π′ ≥ NF1

π0
≥ J . This according to Definition 3 implies that P is [1,∞]-diagnosable. If

tr′ does not contain such a state ((x, x′), 0, j ′, k′), then it is obvious that for every state
((x, x′), i′, j′, k′) in tr′, we have i′ > 0, i.e., along the trace tr′, π1 always has a bigger number
of failures than π′

1. Because tr′ is composed from π1 and π′
1, tr

′ must have at least |π1|
number of states that are resulted from the state movement in π1. Also because π1 always
has a bigger number of failures than π′

1, the above |π1| number of states in tr′ must be in
the form of ((x, x′), i′, j′, 1). In other words, tr′ must contain |π1| ≥ n1 > m|X|2 number
of states of the type ((x, x′), i′, j′, 1). As argued in the paragraph above and because of the
assumption that tr′ does not contain any state in the form of ((x, x′), 0, j ′, k′), there must
be at least one state in the form of ((x, x′), i′, 1, 1) among every m number of states of the
type ((x, x′), i′, j′, 1) in tr′. Now since tr′ contains more than m|X|2 number of states of the
type of ((x, x′), i′, j′, 1), so tr′ must contain at least |X|2 number of states of the type of
((x, x′), i′, 1, 1). It implies that at least |X|2 ≥ i number of failures have been reported along
tr′, i.e., NF1

π′

1

≥ |X|2 ≥ i. Further we have

NF1

π′ = NF1

π′

0

+NF1

π′

1

= NF1

π0
− i+NF1

π′

1

≥ NF1

π0

≥ J.

It follows from Definition 3 that P is [1,∞]-diagnosable. So the sufficiency also holds.

Remark 5 From Algorithms 1 and 2, we know that the number of states in T1 is at most
2|X|2×(K+1)2, and the number of states in T2 (if it is bounded) is at most 8|X|4+4|X|2. It

20

is easy to verify that each state in T1 and T2 has at most |X|2 transitions. So the complexity
of Algorithm 1 is O(|X|4) and that of Algorithm 2 is O(|X|6). For a deterministic system P ,
the complexity of Algorithm 1 is O(|X|2 × |Σ|2) and that of Algorithm 2 is O(|X|4 × |Σ|2).

Note that if the failure type set F is not a singleton, then we can invoke Algorithm 1 or 2
once for each failure type. Thus we obtain polynomial algorithms in the number of system
states and the number of failure types for testing K-, [1, K]-, and [1,∞]-diagnosability.

4 On-line Diagnosis of Repeated Failures

In this section, we give a procedure to construct a diagnoser for on-line diagnosis of
repeated failures. Let P = (X,Σ, R, x0) be a system with failure assignment function ψ,
which is to be diagnosed using the observations of event-traces filtered through a mask
M . If P passes the diagnosability test (K-, [1, K]-, or [1,∞]-diagnosability), then we use
the following procedure for the purpose of on-line diagnosis of repeated failures. As in
the previous section, we assume that F contains only one failure type, i.e., F = {F1}. If
F contains more than one failure type, then we concurrently apply the on-line diagnosis
procedure for each individual failure type.

The on-line diagnosis procedure, illustrated in Figure 9, maintains a state (Qd, Id) ∈

Id

ε{ }M ()Σ

On−line
Diagnoser

(Q , I)d d

σ

System P

Figure 9: On-line diagnosis

2X×N × N , and generates the second part of the state, Id, as its output. Here Qd =
{(x1, i1), . . . , (xn, in)} is a collection of system states x1 through xn that the system may
have reached (following an observed event-trace), tagged with counters i1 through in that
count either the total number of failures (in case of K- or [1, K]-diagnosis), or the total
number of undetected failures (in case of [1,∞]-diagnosis) along each possible state-trace
that generates the observed event-trace. Id is an indicator counter used for storing either the
total number of detected failures (for K or [1, K]-diagnosis) or the total number of newly
detected failures (for [1,∞]-diagnosis).

Procedure 1 Procedure for on-line diagnosis of repeated failures

21

1. Initialize Qd = {(x0, i0)} and Id = 0, where x0 is the initial state of P , and i0 indicates
whether or not the initial state is faulty, i.e.,

i0 =

{

0 if ψ(x0) = ∅
1 if ψ(x0) = F1

2. Recursively add (x′, i′) ∈ X ×N into Qd such that

• exists (x, i) ∈ Qd and σ ∈ Σ ∪ {ε} such that M(σ) = ε and (x, σ, x′) ∈ R, and

• for K- and [1, K]-diagnosis:

i′ =

{

i if ψ(x′) = ∅
min{i+ 1, K} if ψ(x′) = F1

for [1,∞]-diagnosis:

i′ =

{

i if ψ(x′) = ∅
i+ 1 if ψ(x′) = F1

3. When a new observation δ ∈M(Σ) with δ 6= ε becomes available,

• update Qd as follows:

– for all (x, i) ∈ Qd, delete (x, i) from Qd, and add all (x′, i′) ∈ X ×N into Qd

such that there exists σ ∈M−1(δ) with (x, σ, x′) ∈ R, and

– for K- and [1, K]-diagnosis:

i′ =

{

i if ψ(x′) = ∅
min{i+ 1, K} if ψ(x′) = F1

for [1,∞]-diagnosis:

i′ =

{

i− Id if ψ(x′) = ∅
(i+ 1) − Id if ψ(x′) = F1

• set Id = min{i | ∃x ∈ X s.t. (x, i) ∈ Qd}, and

– for K-diagnosis:
If Id = K, then output that at least Id failures have been detected and stop,
else go to Step 2.

– for [1, K]-diagnosis:
Output that at least Id failures have been detected and stop if Id = K, else
go to Step 2.

– for [1,∞]-diagnosis:
Output that Id new failures have been detected and go to Step 2.

Remark 6 It follows from the sizes of state sets of T1 and T2 that for K- or [1, K]-diagnosis,
the size of Qd is bounded by |X|×(K+1), i.e., |Qd| ≤ |X|×(K+1), and for [1,∞]-diagnosis,
the size of Qd is bounded by |X| × (|X|2 + 1), i.e., |Qd| ≤ |X| × (|X|2 + 1).

From above, we know that the on-line diagnosis procedure has a polynomial space and
time complexity in the number of system states. If F contains more than one failure type,
then as stated above we can apply |F| concurrent on-line diagnosis procedures. Thus we
obtain an on-line diagnosis procedure that has a polynomial space and time complexity in
the number of system states and the number of failure types.

22

Remark 7 The above procedure for constructing a diagnoser on-line can be used for con-
structing a diagnoser off-line as well. Instead of maintaining only the present state of the
diagnoser, this requires maintaining all possible states of the diagnoser, and also transi-
tions on all possible observed “events”. For an illustration, we have provided an off-line
construction of a diagnoser for the example presented in Section 5.

The following theorem establishes the soundness and the completeness of Procedure 1,
where the soundness of the procedure means that it never reports a failure that has not
occurred, i.e., there are no “false alarm”, and the completeness of the procedure means that
it never misses a failure, i.e., there are no “missed detections”.

Theorem 3 Procedure 1 is sound and complete, whenever the system being diagnosed is
diagnosable (K-, [1, K]-, or [1,∞]-diagnosable as the case may be).

Proof: For soundness, let π be a state-trace generated by the system P , and NF1

π be
the number of faulty states contained in π. In order to establish soundness by way of a
contradiction, we suppose that NF1

π < K if it is the case of K- or [1, K]-diagnosis, and that
Procedure 1 reports i > NF1

π failures for the state-trace π, where i = K for K-diagnosis,
and i ≤ K for [1, K]-diagnosis. From Procedure 1, this implies that any state-trace π ′ of
P , that shares a common event-trace observation of π, contains at least i faulty states. So
from Procedure 1, π must also contain at least i > NF1

π faulty states, a contradiction. Thus
Procedure 1 is sound.

For completeness, suppose the system P is diagnosable (K-, [1, K]-, or [1,∞]-diagnosable
as the case may be). Let π0 be a state-trace generated by P and NF1

π0
be the number of faulty

states contained in π0. We assume that NF1

π0
≥ K if it is the case of K-diagnosis. Since P is

diagnosable, we know that there exists an integer n1 such that for any extension π = π0π1

of π0 generated by P with |π1| ≥ n1, and any state-trace π′ generated by P , if π and π′

share a common event-trace observation, then π′ must contain at least NF1

π0
faulty states.

From the construction of Procedure 1 it follows that after the execution of any extension π
that is at least n1 state longer than π0 (since P is non-terminating, such an extension does
exist), the value of Qd computed by the procedure is such that ∀(x, i) ∈ Qd, the state x is
reached by the execution of a state-trace that contains at least NF1

π0
faulty states. Further,

if it is the case of K-diagnosis, then the procedure has had reported K failures, and if it is
the case for [1, K]- or [1,∞]-diagnosis, then the procedure has had reported min{N F1

π0
, K}

or NF1

π0
failures respectively. Thus no failure is missed by the procedure, i.e., Procedure 1 is

complete.

5 Illustrative Example

In this section, we present a simple example to illustrate the concepts and algorithms
developed in this paper. Consider a traffic monitoring problem of a mouse that moves around
in maze of rooms, one of which occupied by a cat. The maze, shown in Figure 10, consists of
four rooms connected by various one-way passages, and some of them have sensors installed
to detect the motion of the mouse through them. The cat always stays in room 1. The
mouse is initially in room 0, and it can visit other rooms by using the one way passages, and

23

: observable

: unobservable

cat 1

2mouse
0 3

Figure 10: Mouse in a maze: repeated monitoring

it never stays at one room forever. A failure is said to have occurred if the mouse moves
to the room where the cat stays. The task of repeated failure diagnosis is to monitor the
motion of the mouse by observing the sensor signals, and to detect the number of times the
failure has occurred.

The above problem can be viewed as one of [1,∞]-diagnosis, where the system P =
(X,Σ, R, x0) to be diagnosed is shown in Figure 11. Here X = {xi, 0 ≤ i ≤ 3}, Σ =

u

u

u

o3

x2

x0

o2
o

1

x1

F
1

x 3

Figure 11: System model

{o1, o2, o3, u}, ∆ = {o1, o2, o3}, the mask M is given as M(u) = ε and M(oi) = oi for
0 ≤ i ≤ 3, F = {F1}, and the failure assignment function ψ is given as ψ(xi) = ∅ for i 6= 1
and ψ(x1) = {F1}.

We apply Algorithm 2 to test for the [1,∞]-diagnosability of the above system. First the
transition graph T2 = (X2, R2, x

′
0) is derived, which is shown in Figure 12. The state set is

given by X2 = {x′i, 0 ≤ i ≤ 13} with

x′0 = ((x0, x0), 0, 0, 0), x
′
1 = ((x2, x2), 0, 0, 0), x

′
2 = ((x2, x5), 0, 0, 0),

x′3 = ((x5, x2), 0, 0, 0), x
′
4 = ((x5, x5), 0, 0, 0), x

′
5 = ((x0, x1),−1, 0, 0),

x′6 = ((x1, x0), 1, 0, 0), x
′
7 = ((x0, x5),−1, 0, 1), x′8 = ((x1, x1), 0, 1, 0),

x′9 = ((x5, x0), 1, 0, 1), x
′
10 = ((x1, x5), 0, 1, 0), x

′
11 = ((x1, x5), 0, 0, 0),

x′12 = ((x5, x1), 0, 0, 0), x
′
13 = ((x5, x1), 0, 1, 0).

It is easy to verify that after pruning the graph T2 as described in Algorithm 2, only
states x′5, x

′
6, x

′
7, and x′9 remain in the pruned T2. So the pruned T2 contains no cycle,

implying that P is [1,∞]-diagnosable with respect to M and ψ.

24

x
1
’ x

6
’

x
7
’ x

8
’ x

9
’

x
5
’

x
0
’

x
10
’ x

11
’ x

13
’x

12
’

x
4
’

x
2
’ x

3
’

Figure 12: Transition graph T2

Since P is [1,∞]-diagnosable, we can use the on-line diagnosis procedure presented in
Section 4 for the diagnosis of the repeated failures. A diagnoser can also be constructed
off-line as discussed in Remark 7, which is described in the following.

From Figure 11 and the first step of Procedure 1, initially we have Qd = {(x0, 0)}
and Id = 0. Next from the second step of Procedure 1, Qd is updated for the unobservable
transitions, and thenQd = {(x0, 0), (x1, 1), (x3, 1)}. Letting q0 = {(x0, 0), (x1, 1), (x3, 1)}, the
initial state of the off-line diagnoser is given by (q0, Id = 0). Now there are two possible event
observations o1 and o3. Using the third step of Procedure 1, Qd is updated to Qd = {(x2, 0)},
and Id = 0, upon the observation of o1; and then from the second step, Qd is updated to
Qd = {(x2, 0), (x3, 0)}. Letting q1 = {(x2, 0), (x3, 0)}, (q1, Id = 0) is also a state, and there is
a transition labelled with o1 from (q0, 0) to (q1, 0) in the off-line diagnoser. Continuing the
above process, we can get the off-line diagnoser as shown in Figure 13, where

q0 = {(x0, 0), (x1, 1), (x3, 1)},

q1 = {(x2, 0), (x3, 0)},

q2 = {(x2, 1), (x3, 1)}.

The diagnoser reports the detection of one new failure each time it reaches the state q2

which is the only state with a non-zero Id equaling 1.

6 Conclusion

In order to be able to detect the multiplicity of a repeatedly occurring failure, we have
introduced three different notions of repeated failure diagnosis. The first notion, called K-
diagnosability, allows the detection of at least K repeated failures, the second notion, called

25

I
d =0q

0 ,

q1 I
d =0, q 2 I

d =1,

o1 o3

o2o2

o3

o3

Figure 13: Off-line constructed diagnoser

[1, K]-diagnosability, allows the detection of at least J repeated failures for each J ≤ K,
and the last notion, called [1,∞]-diagnosability, allows the detection of at least J repeated
failures for each J ≥ 1. We show that [1, K]-diagnosability is same as J-diagnosability for
each J ≤ K. However, [1,∞]-diagnosability is strictly stronger than J-diagnosability for
each J ≥ 1. We obtain algorithms of polynomial complexity for checking these various
notions of diagnosability of repeated failures. We also present on-line procedures for the
diagnosis of repeated failures, the complexity of which is also polynomial.

References

[1] E. M. Clarke and E. A. Emerson. Automatic verification of finite-state concurrent sys-
tems using temporal logic. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[2] S. R. Das and L. E. Holloway. Characterizing a confidence space for discrete event
timings for fault monitoring using discrete sensing and actuation signals. IEEE Trans-

actions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30(1):52–66,
2000.

[3] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for
failure diagnosis of discrete event systems. Discrete Event Dynamical Systems: Theory

and Applications, 10:33–79, 2000.

[4] D. N. Godbole, J. Lygeros, E. Singh, A. Deshpande, and A. E. Lindsey. Communication
protcols for a fault-tolerant automated highway system. IEEE Transactions on Control

Systems Technology, 8(5):787–800, September 2000.

[5] L. E. Holloway and S. Chand. Distributed fault monitoring in manufacturing systems
using concurrent discrete-event observations. Integrated Computer-Aided Engineering,
3(4), 1996.

26

[6] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing
diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
46(8):1318–1321, August 2001.

[7] S. Jiang and R. Kumar. Failure diagnosis of discrete event systems with linear-time
temporal logic fault specifications. In Proceedings of 2002 American Control Conference,
Anchorage, Alaska, May 2002.

[8] S. Jiang, R. Kumar, and H. E. Garcia. Diagnosis of repeated failures in discrete event
systems. In Proceedings of 2002 IEEE Conference on Decision and Control, Las Vegas,
December 2002.

[9] M. Larsson. Behavioral and structural model based approaches to discrete diagnosis.
PhD thesis, Linkoping University, Linkoping, Sweden, 1999.

[10] F. Lin. Diagnosability of discrete event systems and its applications. Discrete Event

Dynamic Systems: Theory and Applications, 4(1):197–212, 1994.

[11] J. Lygeros, D. N. Godbole, and M. Broucke. A fault tolerant control architecture
for automated highway system. IEEE Transactions on Control Systems Technology,
8(2):205–219, March 2000.

[12] D. Pandalai and L. Holloway. Template languages for fault monitoring of timed discrete
event processes. IEEE Transactions on Automatic Control, 45(5):868–882, May 2000.

[13] M. Sampath and S. Lafortune. Active diagnosis of discrete event systems. IEEE Trans-

actions on Automatic Control, 43(7):908–929, 1998.

[14] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Diagons-
ability of discrete event systems. IEEE Transactions on Automatic Control, 40(9):1555–
1575, September 1995.

[15] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Failure
diagnosis using discrete event models. IEEE Transactions on Control Systems Technol-

ogy, 4(2):105–124, March 1996.

[16] T. Yoo and S. Lafortune. On the computational complexity of some problems arising
in partially-observed discrete event systems. In Proceedings of 2001 American Control

Conference, Arlington, VA, June 2001.

[17] S. H. Zad. Fault diagnosis in discrete-event and hybrid systems. PhD thesis, University
of Toronto, Toronto, Canda, 1999.

27

