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Complementary Sets and Beatty Functions
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Abstract : A classical theorem of S. Beatty states that the set of positive integers
can be covered by a union of two disjoint sets of the form {bαnc} and {bβnc}
for appropriate irrationals α, β. This result has been subsequently generalized by
various authors, in particular, by A. McD. Mercer using a relatively simple analytic
approach. Here we extend Mercer’s method to deal with the non-homogeneous case
and obtain extensions of corresponding A. Fraenkel’s results.
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1 Introduction

Let U be a subset of Z. We call two non-empty sets A,B complementary with
respect to U if A ∩ B = ∅ and A ∪ B = U . A classical result of 1926 due to S.
Beatty [1] states that if α and β are positive irrational numbers with 1

α + 1
β = 1,

then {bnαc} and {bnβc} (n ∈ N) are complementary with respect to N, where bxc
denotes the greatest integer function of real x. This result has since then been
generalized by a number of authors, see e.g., [2], [4], [5], [6] and [7].

In particular, Mercer [7] replaces the two complementary sets of Beatty by
sets of the form {bf(n)c} , {bg(n)c} for suitably defined functions f and g, while
Fraenkel [2] replaces them by sets of the form {bnα + γc} and {bnβ + δc}, which is
referred to as non-homogeneous case, and carries out an extensive investigation on
their complementary properties related to the rationality of α and β. Note that the
class of functions f and g in Mercer’s work does not contain the non-homogeneous
case of Fraenkel.

In this work, we define a class of functions, named Beatty pairs, which includes
both of Mercer and Fraenkel classes and establish their complementary properties.
In contrast to Fraenkel’s results which provide necessary and sufficient conditions
for being complementary, our results extend the class of possible functions but
only yield sufficient conditions. We note in passing that complementary sets are
closely related to the so-called Wythoff’s game [8]. Indeed the winning positions
of Wythoff’s game are those elements in the Beatty complementary sequences
with α being the golden number, while a special case of the non-homogeneous
complementary sequences gives winning positions of a generalized Wythoff’s game
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[3].

2 Upper complementary sets

For a fixed integer N , by an N−upper Beatty pair, we mean a pair of functions
f : [N,∞) → R and g : [N − 1,∞) → R having the following properties :

1. bf(N)c ≥ bg(N − 1)c,
2. for all integers m,n ≥ N such that bf(m)c = bg(n)c, if f(m) ≤ g(n), then

f(m) /∈ Z, but if g(n) ≤ f(m), then g(n) /∈ Z,

3. g is a strictly increasing function,

4. f ′ exists and 1 ≤ f ′(x) ≤ 2.

Note that from this description, inverse functions of both elements of an N -upper
Beatty pair always exist. Our defining conditions of Beatty pairs are originated
from the work of Mercer ([7]), but differ markedly in the conditions 1, 2, and the
parameter N .

Following Fraenkel ([2]), let

SN := {bf(n)c; n ∈ Z, n ≥ N} , TN := {bg(n)c; n ∈ Z, n ≥ N} .

We say that SN and TN are N−upper complementary if

(i) SN ∩ TN = ∅,
(ii) SN ∪ TN = {k ∈ Z; k ≥ bf(N)c} , and

(iii) no integer appears more than once in the sequence {bf(n)c, bg(n)c; n ≥ N} .

Our first main theorem is :

Theorem 2.1 Let N be a fixed integer, (f, g) an N−upper Beatty pair, and F,G
the inverse functions of f, g, respectively. If there exists an integer c such that

F (x) + G(x) = x + c, x ∈ (f(N),∞),

then SN and TN are N-upper complementary.

Proof. (i) We first show that SN ∩ TN = φ.
Let M be an integer ≥ bf(N)c such that M ∈ SN ∩ TN . Then M = bf(m)c =
bg(n)c for some integers m,n ≥ N . Writing

f(m) = M + e, g(n) = M + d, 0 ≤ e, d < 1,

we have m + n = F (M + e) + G(M + d).
If f(m) ≤ g(n), then using also the condition 2 of Beatty pair, we get 0 < e ≤ d.

Since F and G are increasing, we have

F (M + e) + G(M + e) ≤ F (M + e) + G(M + d) ≤ F (M + d) + G(M + d),
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which by hypothesis implies M + e + c ≤ m + n ≤ M + d + c. Thus M + c <
m+n < M +c+1, which is impossible. The case g(n) ≤ f(m) is treated similarly.

(ii) Next we show that SN ∪ TN = {k ∈ Z; k ≥ bf(N)c} .
Assume to the contrary that there is an integer h ≥ bf(N)c for which h /∈ SN

and h /∈ TN . Thus h > bf(N)c. We claim that for each integer k ≥ N , either
bf(k + 1)c = bf(k)c+ 1 or bf(k)c+ 2.

To verify this claim, write f(k) = bf(k)c + e, 0 ≤ e < 1. By the mean-
value theorem, we have f(k + 1) = bf(k)c + e + f ′(k + r) for some 0 < r < 1.
Using the condition 4 of Beatty pair, we see that 1 ≤ e + f ′(k + r) < 3, which
immediately yields the claim. Returning to the proof, since h > bf(N)c, there
is an integer n ≥ N such that bf(n)c < h < bf(n + 1)c. Using the claim, we
deduce bf(n)c = h − 1 and bf(n + 1)c = h + 1. From bf(N)c ≥ bg(N − 1)c,
let m be the greatest integer for which bg(m)c ≤ bf(n)c. Thus bg(m)c < h and
bg(m + 1)c ≥ h + 2, which yields

f(n) < h, g(m) < h, (2.1)

and
f(n + 1) > h + 1, g(m + 1) ≥ h + 2. (2.2)

¿From (2.1), we get n + m < F (h) + G(h) = h + c, and so

n + m + 1− c ≤ h. (2.3)

¿From (2.2), we get

n + m + 2 > F (h + 1) + G(h + 2) > F (h + 1) + G(h + 1) = h + 1 + c,

and so n + m + 1− c > h, which contradicts (2.3).

(iii) Finally we show that no integer appears more than once in the sequence
{bf(n)c, bg(n)c;n ≥ N} .
Observe that from the claim in (ii), we have bf(k)c < bf(k + 1)c for each integer
k ≥ N . From the condition 4 of Beatty pair, we deduce that 1

2 ≤ F ′(x) ≤ 1. Thus
the main hypothesis yields 0 ≤ G′(x) ≤ 1

2 , which infers that g′(x) ≥ 2. Using this
inequality and the same proof as for f , we similarly have bg(k)c < bg(k + 1)c for
each integer k ≥ N . Both statements together imply what we want to show, and
this completes the proof of our first main theorem. ¤

We now show that the necessary part of Fraenkel’s Theorem II ([2]) is a special
case of our Theorem 2.1. To do so, we find it convenient to use the following
technical result, which is part of Fraenkel’s Lemma 3 ([2]).

Lemma 2.2 Let α, β be positive numbers with 1
α + 1

β = 1, and γ, δ be real numbers

(i) Suppose that
γ

α
+

δ

β
= q ∈ Z.

Then there exists an integer m such that mα + γ = K ∈ Z if and only if
there exists an integer n such that nβ + δ = K.
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(ii) If
γ

α
+

δ

β
= bNα + γc − 2N + 1, (2.4)

then (N − 1)β + δ ≤ bNα + γc.

Example Let α, β be positive irrational numbers, γ, δ be real numbers and N a
fixed integer. Define f, g : R→ R by f(x) = αx+ γ, g(x) = βx+ δ. Assume that

(a) 1
α + 1

β = 1,

(b) γ
α + δ

β = bf(N)c − 2N + 1 and

(c) if n ∈ Z is such that nβ + δ ∈ Z, then n < N .

Then SN , TN are N -upper complementary.
By switching the role of f with g, if necessary, we may assume without loss

of generality that α < β. We first show that (f,g) is an N -upper Beatty pair. By
Lemma 2.2(ii), we have bf(N)c ≥ (N −1)β + δ = g(N −1), which fulfils condition
1.

To check condition 2, let m,n be integers such that m,n ≥ N, and

bαm + γc = bf(m)c = bg(n)c = bβn + δc. (2.5)

Consider the case f(m) ≤ g(n). From (2.5), we have

αm + γ ≤ βn + δ < αm + γ + 1. (2.6)

If f(m) = αm + γ ∈ Z, then by Lemma 2.2(i), there is an integer h such that

hβ + δ = αm + γ. (2.7)

Substituting this back into (2.6), we get h ≤ n < h+1, and so n = h. By (2.7), we
then deduce that βn + δ = αm + γ, which by (c) yields n < N , contradicting the
fact that n ≥ N . The case g(n) ≤ f(m) is similarly dealt with, and so condition
2 of Beatty pair holds.

Since g′(x) = β > 1, g is then strictly increasing on [N − 1,∞), which is
condition 3. Condition 4 follows from α < β and f ′(x) = α.

It remains to show the existence of an integer c fulfilling the main hypothesis
of Theorem 2.1. Since

F (x) = f−1(x) =
x− γ

α
, G(x) = g−1(x) =

x− δ

β
,

using the given conditions (a) and (b), we have F (x) + G(x) = x + c with c =
−bf(N)c+ 2N − 1. The assertion now follows from Theorem 2.1.

Note that in the case where γ = δ = 0 and bαNc = 2N − 1, N > 0, the condi-
tions (b) and (c) can be omitted, which yields an extension one half of Fraenkel’s
Theorem IX ([2]).
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3 Lower complementary sets

Parallel to upper complementary notion is the concept of lower complementary
sets, which we now describe. For a fixed integer N , by an N−lower Beatty pair,
we mean a pair of functions f : (−∞, N ] → R and g : (−∞, N − 1] → R having
the following properties:

1. bf(N)c ≥ bg(N − 1)c,
2. for all integers m, n < N such that bf(m)c = bg(n)c, if f(m) ≤ g(n), then

f(m) /∈ Z, but if g(n) ≤ f(m), then g(n) /∈ Z,

3. g is a strictly increasing function,

4. f ′ exists and 1 ≤ f ′(x) ≤ 2.

Let
S′N :=

{
bf(n)c; n ∈ Z, n < N

}
, T ′N :=

{
bg(n)c; n ∈ Z, n < N

}
.

We say that S′N and T ′N are N−lower complementary if

(i) S′N ∩ T ′N = ∅,
(ii) S′N ∪ T ′N = {k ∈ Z; k < bf(N)c} and

(iii) no integer appears more than once in the sequence {bf(n)c, bg(n)c; n < N} .

Using similar consideration as in the last section, we have:

Theorem 3.1 Let N be a fixed integer, (f, g) an N−lower Beatty pair, and F, G
the inverse functions of f and g, respectively. If there exists an integer c such that

F (x) + G(x) = x + c, x ∈ (−∞, f(N)),

then S′N and T ′N are N-lower complementary.

¿From this theorem, an extension of Fraenkel’s Theorem I ([2]) follows.

Example Let α, β be positive irrational numbers, γ, δ be real numbers and N a
fixed integer. Define f, g : R→ R by f(x) = αx + γ, g(x) = βx + δ. Assume that

(a) 1
α + 1

β = 1,

(b) γ
α + δ

β = bf(N)c − 2N + 1 and

(c) if n ∈ Z is such that nβ + δ ∈ Z, then n ≥ N .

Then S′N , T ′N are N -lower complementary.
As before in the case where γ = δ = 0 and bαNc = 2N − 1, N ≤ 0, the

conditions (b) and (c) can be omitted, which yields an extension of one half of
Fraenkel’s Theorem VIII ([2]).
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4 Complementary sets

Note that if there is a pair of functions (f, g) and a fixed integer N for which
both SN , TN are N -upper complementary and S′N , T ′N are N -lower complementary,
then their corresponding sets S := {bf(n)c; n ∈ Z} and T := {bg(n)c; n ∈ Z} are
complementary with respect to Z. Combining Theorems 2.1 and 3.1, we have
the following generalization embracing both homogeneous and non-homogeneous
cases.

Theorem 4.1 Let f and g : R→ R. Assume that:

1. for all m,n ∈ Z such that bf(m)c = bg(n)c, if f(m) ≤ g(n), then f(m) /∈ Z,
but if g(n) ≤ f(m), then g(n) /∈ Z,

2. g is a strictly increasing function,

3. f ′ exists and 1 ≤ f ′(x) ≤ 2,

4. there exists an integer c such that

F (x) + G(x) = x + c, x ∈ R,

where F and G the inverse functions of f and g, respectively.

Then S := {bf(n)c; n ∈ Z} and T := {bg(n)c; n ∈ Z} are complementary with
respect to Z.

The following particular case is an extension of one half of Fraenkel’s Theorem
XI ([2]), which also contains the classical Beatty’s theorem.

Example Let α, β be positive irrational numbers, and γ, δ be real numbers.
Define f(x) = αx + γ and g(x) = βx + δ. Assume that

(a) 1
α + 1

β = 1,

(b) γ
α + δ

β ≡ 0 (mod 1) and

(c) there is no n ∈ Z such that nβ + δ ∈ Z.

Then the sets {bαn + γc; n ∈ Z} and {bβn + δc; n ∈ Z} are complementary with
respect to Z.
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